JP2003078267A - Heat sink - Google Patents

Heat sink

Info

Publication number
JP2003078267A
JP2003078267A JP2001270713A JP2001270713A JP2003078267A JP 2003078267 A JP2003078267 A JP 2003078267A JP 2001270713 A JP2001270713 A JP 2001270713A JP 2001270713 A JP2001270713 A JP 2001270713A JP 2003078267 A JP2003078267 A JP 2003078267A
Authority
JP
Japan
Prior art keywords
heat
radiation
section
heat dissipation
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001270713A
Other languages
Japanese (ja)
Inventor
Katsuaki Tanaka
勝章 田中
Kyoichi Kinoshita
恭一 木下
Takashi Yoshida
貴司 吉田
Tomohei Sugiyama
知平 杉山
Eiji Kono
栄次 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2001270713A priority Critical patent/JP2003078267A/en
Publication of JP2003078267A publication Critical patent/JP2003078267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve radiation performance per installation area in a heat sink where a radiation section made of a high heat-conductivity metal is surrounded by a frame section made of a material having a low thermal coefficient of expansion. SOLUTION: A heat spreader 10 comprises a radiation section 11 that is formed nearly in a square flat plate shape by copper having a high thermal coefficient of expansion, and a frame section 12 that is formed in a square frame shape by an invar having a low thermal coefficient of expansion. The radiation section 11 has a base section 13 in a square pole shape, the upper surface of the base section 13 is set to be a mounting surface 11a, and the lower surface is set to be a radiation surface 11b. At the side of the radiation surface 11b in the base 13, a radiation surface enlargement section 14 projecting from an outer periphery surface 13a to the outside is provided. The radiation surface enlargement section 14 forms the radiation surface 11b that is larger than the mounting surface 11a made of only the upper surface of the base section 13 along with the lower surface of the base section 13. The radiation surface enlargement section 14 efficiently radiates heat that is transferred from the side of the mounting surface 11a to the radiation section 11 from the radiation surface 11b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置に用い
る放熱体に好適な放熱体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiator suitable for a heat radiator used in a semiconductor device.

【0002】[0002]

【従来の技術】従来、例えば半導体装置用の放熱体(ヒ
ートスプレッダー)として、特開2000−77582
号公報に開示された放熱材が提案されている。図8に示
すように、この放熱材50は、熱伝導率が高い銅からな
る芯材51が、熱膨張率が小さいインバーからなる枠材
52で取り囲まれた構造を備えている。
2. Description of the Related Art Conventionally, as a heat radiator (heat spreader) for a semiconductor device, for example, Japanese Patent Application Laid-Open No. 2000-77582.
The heat dissipating material disclosed in the publication is proposed. As shown in FIG. 8, the heat dissipation material 50 has a structure in which a core material 51 made of copper having a high thermal conductivity is surrounded by a frame material 52 made of Invar having a small thermal expansion coefficient.

【0003】この放熱材50は、図9に示すように、芯
材51に設けられた取付面51aに半導体チップTが取
り付けられ、この取付面51aと反対側に設けられた放
熱面51bが基板B上に当接する状態で基板Bに固定さ
れる。そして、半導体チップTが発生する熱は、取付面
51aから芯材51に伝達され、放熱面51bから基板
Bに放熱される。その結果、半導体チップTの温度上昇
が抑制される。
As shown in FIG. 9, in this heat dissipation member 50, a semiconductor chip T is attached to an attachment surface 51a provided on a core member 51, and a heat dissipation surface 51b provided on the opposite side of the attachment surface 51a is a substrate. It is fixed to the substrate B while being in contact with B. Then, the heat generated by the semiconductor chip T is transferred from the mounting surface 51a to the core member 51 and is radiated to the substrate B from the heat radiation surface 51b. As a result, the temperature rise of the semiconductor chip T is suppressed.

【0004】このとき、温度上昇に伴う芯材51の取付
面51aに沿う方向での熱膨張が、枠材52によって制
限される。このため、半導体チップTと芯材51との実
質的な熱膨張量の差が小さくなり、半導体チップTと取
付面51aとの半田付け部に発生する取付面51aに沿
う方向の熱応力が抑制される。
At this time, the frame member 52 limits the thermal expansion in the direction along the mounting surface 51a of the core member 51 due to the temperature rise. For this reason, the difference in the substantial amount of thermal expansion between the semiconductor chip T and the core material 51 becomes small, and the thermal stress in the direction along the mounting surface 51a generated at the soldering portion between the semiconductor chip T and the mounting surface 51a is suppressed. To be done.

【0005】[0005]

【発明が解決しようとする課題】ところが、上述の放熱
材50では、基板Bに接触する放熱面51bの面積が、
放熱材50の設置面積よりも枠材52の分だけ小さくな
っている。このため、芯材51から基板Bへの放熱量が
十分でなく、設置面積当たりの放熱性能が良くなかっ
た。
However, in the above-mentioned heat dissipation material 50, the area of the heat dissipation surface 51b in contact with the substrate B is
It is smaller than the installation area of the heat dissipation member 50 by the amount of the frame member 52. Therefore, the amount of heat released from the core material 51 to the substrate B was not sufficient, and the heat dissipation performance per installation area was not good.

【0006】本発明は、上記課題を解決するためになさ
れたものであって、その目的は、熱伝導性が高い金属か
らなる放熱部を熱膨張材が小さい材料からなる枠部で取
り囲んだ構成の放熱体において、その設置面積当たりの
放熱性能をより高くすることにある。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to surround a heat radiation portion made of a metal having a high thermal conductivity with a frame portion made of a material having a small thermal expansion material. In the heat radiating body, the heat radiating performance per installation area is to be further improved.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に記載の発明は、熱伝導率が100W/
(m・K)以上の金属からなる放熱部と、この放熱部を
形成する金属よりも熱膨張率が低い材料からなる環状の
枠部とを備え、前記放熱部には、発熱体が取り付けられ
る取付面と、この取付面と反対側に位置する放熱面とが
設けられ、前記枠部は、前記放熱部の外周面に対し全周
で密接する状態で放熱部に一体化されている放熱体にお
いて、前記放熱部には、前記取付面及び放熱面の少なく
ともいずれか一方の側に、前記枠部が密接する外周面を
形成する部位の最大断面積よりも取付面又は放熱面の面
積を大きくするように外周側に張り出す面拡大部が設け
られている。
In order to solve the above problems, the invention according to claim 1 has a thermal conductivity of 100 W /
A heat dissipation part made of a metal of (m · K) or more and an annular frame part made of a material having a coefficient of thermal expansion lower than that of the metal forming the heat dissipation part are provided, and a heat generating body is attached to the heat dissipation part. A heat dissipating body provided with a mounting surface and a heat dissipating surface located on the opposite side of the mounting surface, and the frame portion being integrated with the heat dissipating portion in close contact with the outer peripheral surface of the heat dissipating portion over the entire circumference. In the heat dissipating portion, the area of the mounting surface or the heat dissipating surface is larger than the maximum cross-sectional area of the portion forming the outer peripheral surface in close contact with the frame portion on at least one side of the mounting surface and the heat dissipating surface. As described above, the enlarged surface portion is provided on the outer peripheral side.

【0008】請求項1に記載の発明によれば、発熱体で
発生する熱は、熱伝導率が100W/(m・K)以上の
金属からなる放熱部の取付面からその反対側に位置する
放熱面まで伝達され、放熱面から外部に放熱される。こ
こで、放熱部の温度上昇に伴って取付面及び放熱面に沿
う方向で発生する放熱部の熱膨張が、放熱部の外周面に
全周で密接する状態で放熱部に一体化された枠部によっ
て制限される。その結果、取付面に半田つけ又はろう付
けされる発熱体の半田付け部又はろう付け部や、基板に
固定される取付面の半田付け部やろう付け部に発生する
面に沿う方向での熱応力の発生が抑制される。このと
き、放熱部の取付面又は放熱面の少なくとも一方の側に
設けられた面拡大部によって、枠部が密接する外周面を
形成する部位の最大断面積よりも取付面又は放熱面が拡
大される。このため、放熱体の設置面積に対する放熱面
積が増大する。
According to the first aspect of the present invention, the heat generated by the heating element is located on the opposite side of the mounting surface of the heat radiating portion made of metal having a thermal conductivity of 100 W / (m · K) or more. It is transmitted to the heat dissipation surface, and is dissipated to the outside from the heat dissipation surface. Here, the thermal expansion of the heat radiating portion, which occurs in the direction along the mounting surface and the heat radiating surface due to the temperature rise of the heat radiating portion, is in close contact with the outer circumferential surface of the heat radiating portion over the entire circumference, and thus is integrated with the heat radiating portion. Limited by department. As a result, heat is generated in the direction along the soldering part or brazing part of the heating element that is soldered or brazed to the mounting surface, or the surface generated in the soldering part or brazing part of the mounting surface fixed to the board. Generation of stress is suppressed. At this time, the mounting surface or the heat radiating surface is expanded more than the maximum cross-sectional area of the portion forming the outer peripheral surface in close contact with the frame portion by the mounting surface of the heat radiating portion or the surface expanding portion provided on at least one side of the heat radiating surface. It For this reason, the heat radiation area with respect to the installation area of the heat radiator increases.

【0009】請求項2に記載の発明は、請求項1に記載
の発明において、前記面拡大部は、前記放熱面を大きく
するように放熱面側に設けられている。請求項2に記載
の発明によれば、請求項1に記載の発明の作用に加え
て、放熱部の取付面の側に設けられた拡大部によって、
放熱体の設置面積当たりの放熱面の面積が、枠部が密接
する放熱部の部位の断面積よりも大きくなる。
According to a second aspect of the present invention, in the first aspect of the invention, the surface enlarging portion is provided on the heat radiation surface side so as to enlarge the heat radiation surface. According to the invention described in claim 2, in addition to the function of the invention described in claim 1, by the enlarged portion provided on the mounting surface side of the heat dissipation portion,
The area of the heat radiating surface per installation area of the heat radiator is larger than the cross-sectional area of the portion of the heat radiating portion with which the frame portion is in close contact.

【0010】請求項3に記載の発明は、請求項1又は請
求項2に記載の発明において、前記放熱部及び枠部はそ
れぞれ予め成形され、嵌合によって一体化されている。
請求項3に記載の発明によれば、請求項1又は請求項2
に記載の発明の作用に加えて、別々に形成した放熱部と
枠部とを嵌合によって一体化するので、枠部を鋳造によ
って成形すると同時に放熱部に一体化する場合と異な
り、鋳造工程がない製造ラインで製造することができ
る。
According to a third aspect of the present invention, in the first or second aspect of the invention, the heat radiating portion and the frame portion are respectively preformed and integrated by fitting.
According to the invention of claim 3, claim 1 or claim 2
In addition to the effect of the invention described in (1), since the separately formed heat dissipation part and the frame part are integrated by fitting, unlike the case where the frame part is molded by casting and the heat dissipation part is integrated at the same time, the casting process is It can be manufactured on a non-production line.

【0011】請求項4に記載の発明は、請求項1〜請求
項3のいずれか一項に記載の発明において、前記放熱部
を形成する金属は銅である。請求項4に記載の発明によ
れば、請求項1〜請求項3のいずれか一項に記載の発明
の作用に加えて、金や銀等と異なり、豊富に得られる金
属中では熱伝導率が最も高い銅を用いれば、原価をそれ
ほど高くすることなく良好な放熱性能を得ることができ
る。
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the metal forming the heat dissipation portion is copper. According to the invention as set forth in claim 4, in addition to the effect of the invention as set forth in any one of claims 1 to 3, unlike gold or silver, the thermal conductivity in abundantly obtained metals is high. If the highest copper is used, good heat dissipation performance can be obtained without raising the cost so much.

【0012】請求項5に記載の発明は、請求項1〜請求
項4のいずれか一項に記載の発明において、前記枠部を
形成する材料はインバー系合金である。請求項5に記載
の発明によれば、請求項1〜請求項4のいずれか一項に
記載の発明の作用に加えて、モリブデン等と異なり、豊
富に得られる金属中では熱膨張率が最も低いグループの
インバー系合金を用いれば、原価をそれほど高くするこ
となく良好な熱膨張制限効果を得ることができる。
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the material forming the frame portion is an Invar alloy. According to the invention described in claim 5, in addition to the action of the invention described in any one of claims 1 to 4, unlike molybdenum and the like, the coefficient of thermal expansion is the highest among the abundantly obtained metals. If the Invar alloy of the low group is used, a good thermal expansion limiting effect can be obtained without increasing the cost so much.

【0013】[0013]

【発明の実施の形態】以下、本発明を半導体装置用のヒ
ートスプレッダーに具体化した一実施形態を図1及び図
2に従って説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is embodied in a heat spreader for a semiconductor device will be described below with reference to FIGS. 1 and 2.

【0014】図1,2に示すように、本実施形態のヒー
トスプレッダー10は、略板状の放熱部11と、枠状の
枠部12とが一体化されたものである。放熱部11は、
金や銀と異なり豊富に得られる金属の中で熱伝導率が最
も高い銅(Cu)で一体形成されている。また、放熱部
11は、銅より熱伝導率が低いアルミニウム(Al)で
あってもよい。これ以外の金属であってもよいが、その
熱伝導率は、100W/(m・K)以上であることが好
ましい。
As shown in FIGS. 1 and 2, the heat spreader 10 of the present embodiment has a substantially plate-shaped heat dissipation portion 11 and a frame-shaped frame portion 12 which are integrated. The heat dissipation part 11 is
Unlike gold and silver, it is integrally formed of copper (Cu), which has the highest thermal conductivity among the abundantly available metals. Further, the heat dissipation portion 11 may be aluminum (Al) having a lower thermal conductivity than copper. Other metals may be used, but their thermal conductivity is preferably 100 W / (m · K) or more.

【0015】枠部12は、半導体チップのシリコン(S
i)よりも熱伝導率が小さい材料であって、モリブデン
(Mo)よりも安価なインバー(Fe−36.5wt%
Ni)から形成されている。枠部12は、この他、イン
バー系合金であるスーパーインバー(Fe−32Ni−
5Co)、ステンレスインバー(Fe−54Co−9.
5Cr)、Fe−Pd合金(Fe−46Pd)等で形成
することができる。これ以外の金属であっても、その熱
膨張率が銅よりも小さい必要があり、10×10-6/°
C以下であることが好ましい。
The frame portion 12 is made of silicon (S
Invar (Fe-36.5 wt%), which is a material having a smaller thermal conductivity than i) and is cheaper than molybdenum (Mo).
Ni). In addition to this, the frame portion 12 is made of Super Invar (Fe-32Ni-) which is an Invar alloy.
5Co), stainless steel invar (Fe-54Co-9.
5Cr), Fe-Pd alloy (Fe-46Pd), or the like. Even for metals other than these, the coefficient of thermal expansion must be smaller than that of copper, and 10 × 10 -6 / °
It is preferably C or less.

【0016】ヒートスプレッダー10を使用して半導体
装置を実装した場合は、ケースを構成するアルミニウム
ベースの上にHITT(High Insulated Thermal Techn
ology )基板Bが半田により固定されている。HITT
基板Bは、アルミニウム製の本体と、そのアルミニウム
ベースと反対側の面に接着された例えばエポキシ樹脂か
らなる絶縁層と、絶縁層の上に積層された金属(銅)層
とから構成されている。HITT基板B上にはヒートス
プレッダー10が半田で固定され、ヒートスプレッダー
10の上に半田を介して半導体チップTが実装されてい
る。
When a semiconductor device is mounted using the heat spreader 10, a HITT (High Insulated Thermal Techn) is mounted on the aluminum base forming the case.
ology) Board B is fixed by soldering. HITT
The substrate B is composed of an aluminum main body, an insulating layer made of, for example, an epoxy resin adhered to the surface opposite to the aluminum base, and a metal (copper) layer laminated on the insulating layer. . The heat spreader 10 is fixed on the HITT board B by solder, and the semiconductor chip T is mounted on the heat spreader 10 via the solder.

【0017】放熱部11は略平板状に形成され、そのう
ち、半導体チップTが実装される側の面が取付面11a
とされ、その反対側の面が放熱面11bとされている。
放熱部11は、四角柱状の基部13と、この基部13の
外周面13aから外方に突出するように放熱面11b側
に設けられた放熱面拡大部14とからなる。そして、基
部13の上面が取付面11aとなり、放熱面拡大部14
の下面を合わせた基部13の下面が放熱面11bとなっ
ている。従って、放熱面11bは、放熱面拡大部14の
分だけ取付面11aよりも大きくなっている。
The heat radiating portion 11 is formed in a substantially flat plate shape, of which the surface on which the semiconductor chip T is mounted is the mounting surface 11a.
And the surface on the opposite side is the heat dissipation surface 11b.
The heat radiating portion 11 includes a square columnar base portion 13 and a heat radiating surface widening portion 14 provided on the heat radiating surface 11b side so as to project outward from the outer peripheral surface 13a of the base portion 13. Then, the upper surface of the base portion 13 becomes the mounting surface 11a, and the heat dissipation surface expansion portion 14
The bottom surface of the base 13 including the bottom surfaces of the above is the heat dissipation surface 11b. Therefore, the heat dissipation surface 11b is larger than the attachment surface 11a by the heat dissipation surface enlarged portion 14.

【0018】枠部12は四角枠状に形成され、その内周
面12aが部位としての基部13の外周面13aに対し
全周で密接する状態で放熱部11に一体化されている。
前記放熱面拡大部14は、放熱部11に一体化された枠
部12の外周面12bの位置まで放熱面11bを拡大す
るように形成されている。
The frame portion 12 is formed in the shape of a rectangular frame, and is integrated with the heat dissipation portion 11 in a state where the inner peripheral surface 12a is in close contact with the outer peripheral surface 13a of the base portion 13 as a site over the entire circumference.
The heat dissipation surface expanding portion 14 is formed so as to expand the heat dissipation surface 11b to the position of the outer peripheral surface 12b of the frame portion 12 integrated with the heat dissipation portion 11.

【0019】本実施形態では、枠部12は、温度が低い
状態に維持された放熱部11の基部13に対し嵌合され
ることで放熱部11と一体化されている。その後、一体
化された放熱部11及び枠部12が焼鈍されることで、
放熱面拡大部14の環状の端面14aが、枠部12の放
熱面拡大部14側の端面12cに拡散接合されている。
In the present embodiment, the frame portion 12 is integrated with the heat radiating portion 11 by being fitted to the base portion 13 of the heat radiating portion 11 which is maintained in a low temperature. After that, the integrated heat dissipation part 11 and the frame part 12 are annealed,
The annular end surface 14a of the heat dissipation surface expansion portion 14 is diffusion-bonded to the end surface 12c of the frame portion 12 on the heat dissipation surface expansion portion 14 side.

【0020】以上のように構成された本実施形態のヒー
トスプレッダー10は以下のように作用する。半導体チ
ップTが動作に伴って発熱すると、その熱は半導体チッ
プTが接触する放熱部11の取付面11aから放熱部1
1に伝達され、熱伝導率が高い放熱部11によって基板
B側に効率良く伝達され、放熱面11bから基板Bに伝
達される。このため、半導体チップTで発生する熱がヒ
ートスプレッダー10によって効率良く放熱され、その
温度上昇が抑制される。
The heat spreader 10 of the present embodiment configured as described above operates as follows. When the semiconductor chip T generates heat as it operates, the heat is transferred from the mounting surface 11a of the heat dissipation part 11 with which the semiconductor chip T contacts to the heat dissipation part 1
1, and is efficiently transmitted to the substrate B side by the heat radiating portion 11 having a high thermal conductivity, and then is transmitted to the substrate B from the heat radiating surface 11b. Therefore, the heat generated by the semiconductor chip T is efficiently radiated by the heat spreader 10, and the temperature rise is suppressed.

【0021】ここで、放熱部11の温度上昇に伴う放熱
部11の取付面11a及び放熱面11bに沿う方向での
熱膨張が、熱膨張率が低いインバー等からなる枠部12
によって制限される。このため、取付面11aにおける
半導体チップTの半田付け部、放熱面11bにおける基
板Bとの半田付け部において、各面11a,11bに沿
う方向での熱応力の発生が抑制され、各半田付け部での
クラックの発生が抑制される。
Here, the thermal expansion in the direction along the mounting surface 11a and the thermal radiation surface 11b of the thermal radiation portion 11 due to the temperature rise of the thermal radiation portion 11, the frame portion 12 made of Invar or the like having a low thermal expansion coefficient.
Limited by Therefore, in the soldering portion of the semiconductor chip T on the mounting surface 11a and the soldering portion of the heat dissipation surface 11b with the substrate B, generation of thermal stress in the direction along each surface 11a, 11b is suppressed, and each soldering portion is suppressed. The occurrence of cracks in the ground is suppressed.

【0022】このとき、放熱面拡大部14により、基板
Bに接触する放熱面11bの面積が、枠部12が密接す
る放熱部11の部位の断面積よりも拡大されているた
め、放熱部11に伝達された熱が放熱面11bから基板
Bにより効率良く放熱される。このため、半導体チップ
Tで発生する熱がより効率良く基板B側に放熱され、半
導体チップTの温度上昇がより効率良く抑制される。
At this time, the area of the heat dissipation surface 11b contacting the substrate B is made larger by the heat dissipation surface expanding portion 14 than the cross-sectional area of the portion of the heat dissipation portion 11 to which the frame portion 12 closely contacts. The heat transferred to the substrate B is efficiently radiated from the heat radiation surface 11b by the substrate B. Therefore, the heat generated in the semiconductor chip T is radiated to the substrate B side more efficiently, and the temperature rise of the semiconductor chip T is suppressed more efficiently.

【0023】以上詳述した本実施形態によれば、以下の
各効果を得ることができる。 (1) 放熱面拡大部14によって拡大された放熱面1
1bからより多量の熱が放熱されるので、ヒートスプレ
ッダー10の設置面積に対する放熱性能をより高くする
ことができる。
According to this embodiment described in detail above, the following respective effects can be obtained. (1) Heat dissipation surface 1 expanded by the heat dissipation surface expansion portion 14
Since a larger amount of heat is radiated from 1b, the heat radiation performance for the installation area of the heat spreader 10 can be further enhanced.

【0024】(2) 放熱面拡大部14が、枠部12の
外周面12bまで張り出すように形成されている。この
ため、ヒートスプレッダー10の設置面積に対する放熱
性能をより一層高くすることができる。
(2) The radiating surface enlarged portion 14 is formed so as to extend to the outer peripheral surface 12b of the frame portion 12. For this reason, the heat dissipation performance with respect to the installation area of the heat spreader 10 can be further enhanced.

【0025】(3) 放熱面拡大部14は、放熱部11
の全周に形成されている。このため、ヒートスプレッダ
ー10の設置面積に対する放熱性能をより一層高くする
ことができる。
(3) The heat radiating surface expansion portion 14 has the heat radiating portion 11
Is formed all around. For this reason, the heat dissipation performance with respect to the installation area of the heat spreader 10 can be further enhanced.

【0026】(4) 放熱面11bの側だけに放熱面拡
大部14を設け、別々に形成した放熱部11と枠部12
とを嵌合させた後に焼鈍させることで一体化するように
した。このため、鋳造工程がない製造ラインで製造する
ことができる。
(4) The radiating surface enlarged portion 14 is provided only on the radiating surface 11b side, and the radiating portion 11 and the frame portion 12 are formed separately.
After fitting and, they were annealed to be integrated. Therefore, it can be manufactured on a manufacturing line without a casting process.

【0027】(5) 金、銀等と異なり豊富に得られる
金属中では最も熱伝導率が高い銅によって放熱部11を
一体形成したので、原価に対する放熱性能を高くするこ
とができる。
(5) Unlike gold, silver, etc., the heat dissipation portion 11 is integrally formed of copper, which has the highest thermal conductivity among metals that can be obtained in abundance, so that heat dissipation performance with respect to cost can be improved.

【0028】次に、上記一実施形態以外の実施形態を箇
条書きする。 ○ 図3,4に示すように、面拡大部は、放熱面拡大部
14として放熱部11の放熱面11b側に形成されるだ
けでなく、取付面拡大部15として放熱部11の取付面
11a側にも形成されてよい。
Next, an embodiment other than the above-mentioned one embodiment will be itemized. As shown in FIGS. 3 and 4, the expanded surface portion is not only formed as the expanded heat dissipation surface 14 on the side of the dissipated heat dissipation surface 11b of the dissipative heat dissipation portion 11, but also as the expanded surface 15 at the mounting surface 11a of the dissipative heat dissipation portion 11. It may also be formed on the side.

【0029】○ 面拡大部は、取付面11a側のみに取
付面拡大部15として設けられてもよい。 ○ 前記一実施形態で、放熱部11と枠部12とは、拡
散接合によって一体化されなくても、放熱部11と枠部
12とを別々に形成した後に嵌合することによって一体
化してもよい。
The surface enlargement portion may be provided as the attachment surface enlargement portion 15 only on the side of the attachment surface 11a. In the above-described embodiment, the heat dissipation part 11 and the frame part 12 may not be integrated by diffusion bonding, but may be integrated by forming the heat dissipation part 11 and the frame part 12 separately and then fitting them. Good.

【0030】○ 前記一実施形態で、枠部12を、成形
金型内に固定した放熱部11と金型の間に溶融させたイ
ンバーを鋳込むことで成形すると同時に放熱部11に一
体化させてもよい。この場合には、枠部12の内周面1
2aが基部13の外周面13aに拡散接合し、同じく端
面12cが放熱面拡大部14の端面14aに拡散接合す
る。
In the above-described embodiment, the frame portion 12 is molded by casting the melted invar between the heat radiation portion 11 fixed in the molding die and the die, and at the same time integrated with the heat radiation portion 11. May be. In this case, the inner peripheral surface 1 of the frame portion 12
2a is diffusion-bonded to the outer peripheral surface 13a of the base portion 13, and similarly, the end surface 12c is diffusion-bonded to the end surface 14a of the heat dissipation surface expansion portion 14.

【0031】○ 前記一実施形態で、図5に示すよう
に、放熱面拡大部14が、枠部12の外周面12bの位
置まで放熱面11bを拡大しない構成とする。この場合
にも、第1実施形態の(1)〜(3)の各効果を得るこ
とができる。
In the above-described one embodiment, as shown in FIG. 5, the heat dissipation surface enlarging portion 14 does not expand the heat dissipation surface 11b to the position of the outer peripheral surface 12b of the frame portion 12. Also in this case, the effects (1) to (3) of the first embodiment can be obtained.

【0032】○ 前記一実施形態で、図6に示すよう
に、枠部12が外周面13aに密接する基部13が、放
熱面拡大部14が設けられた放熱面11b側に近づくほ
どその断面積が徐々に大きくなるように形成された構成
であってもよい。この場合には、外周面13aが、放熱
面拡大部14の端面14aに切り替わるところの基部1
3の部位の最大断面積よりも放熱面11bを拡大するよ
うに放熱面拡大部14が設けられている。このような構
成によれば、半導体チップTが接続する取付面11aか
ら放熱部11に伝達される熱が、放熱面拡大部14が拡
大した放熱面11bにより効率的に伝達されるので、第
1実施形態の(1)の効果がより顕著となる。
In the above-described embodiment, as shown in FIG. 6, the cross-sectional area of the base portion 13 in which the frame portion 12 closely contacts the outer peripheral surface 13a becomes closer to the heat radiation surface 11b side where the heat radiation surface enlarged portion 14 is provided. May be formed so as to gradually increase. In this case, the base portion 1 where the outer peripheral surface 13a is switched to the end surface 14a of the heat dissipation surface enlarged portion 14
The heat dissipation surface expansion portion 14 is provided so as to expand the heat dissipation surface 11b beyond the maximum cross-sectional area of the region 3. According to such a configuration, the heat transferred from the mounting surface 11a to which the semiconductor chip T is connected to the heat radiating portion 11 is efficiently transferred to the heat radiating surface 11b enlarged by the heat radiating surface expanding portion 14, so that the first The effect (1) of the embodiment becomes more remarkable.

【0033】○ 前記一実施形態で、図7に示すよう
に、放熱面拡大部14が、基部13の対向する一組の両
外周面13aからのみ外周側に張り出すように形成され
た構成とする。このような構成の場合でも、第1実施形
態の(1)の効果を得ることができる。
In the above-described one embodiment, as shown in FIG. 7, the heat dissipation surface enlarging portion 14 is formed so as to project to the outer peripheral side only from a pair of opposing outer peripheral surfaces 13a of the base 13. To do. Even with such a configuration, the effect (1) of the first embodiment can be obtained.

【0034】○ 前記一実施形態で、放熱部がアルミニ
ウム又はアルミニウム・シリコン合金で一体形成された
ものであってもよい。 ○ 放熱体はヒートシンクとして用いられてもよい。
In the one embodiment, the heat dissipation portion may be integrally formed of aluminum or aluminum-silicon alloy. ○ The heat radiator may be used as a heat sink.

【0035】以下、前述した各実施形態から把握される
技術的思想をその効果とともに記載する。 (1) 請求項1に記載の発明において、前記面拡大部
(取付面拡大部15)は、前記取付面を大きくするよう
に取付面側に設けられている放熱体。このような構成に
よれば、取付面側の面拡大部によって拡大された取付面
の周囲部分からも放熱されるので、電子部品の温度上昇
をより抑制することができる。
Hereinafter, the technical idea understood from each of the above-described embodiments will be described together with its effects. (1) In the invention as set forth in claim 1, the surface expanding portion (mounting surface expanding portion 15) is a radiator provided on the mounting surface side so as to enlarge the mounting surface. According to such a configuration, heat is also radiated from the peripheral portion of the mounting surface enlarged by the surface enlarging portion on the mounting surface side, so that the temperature rise of the electronic component can be further suppressed.

【0036】(2) 請求項1〜請求項5のいずれか一
項に記載の発明において、前記面拡大部(放熱面拡大部
14、取付面拡大部15)は、前記枠部(12)の外周
面(12b)の位置まで前記取付面又は放熱面を拡大す
るように設けられている放熱体。このような構成によれ
ば、放熱体の設置面積当たりの放熱性能をより一層高く
することができる。
(2) In the invention according to any one of claims 1 to 5, the surface enlarging portion (the heat dissipating surface enlarging portion 14 and the mounting surface enlarging portion 15) is the frame portion (12). A heat radiator provided so as to expand the attachment surface or the heat radiation surface to the position of the outer peripheral surface (12b). With such a configuration, it is possible to further improve the heat radiation performance per installation area of the heat radiator.

【0037】(3) (図5に示す実施形態)請求項1
〜請求項5のいずれか一項に記載の発明において、枠部
が密接する外周面を形成する放熱部の部位は、前記面拡
大部が設けられた取付面又は放熱面側に近づくほどその
断面積が大きくなる形状を備えている放熱体。このよう
な構成によれば、発熱体が取り付けられた取付面から放
熱部により効率的に熱が伝達され、あるいは、放熱部に
伝達された熱がより効率的に取付面側に伝達されるの
で、放熱性能をより一層高くすることができる。
(3) (Embodiment shown in FIG. 5) Claim 1
In the invention according to any one of claims 5 to 5, the portion of the heat dissipation portion forming the outer peripheral surface with which the frame portion closely contacts is cut off as it approaches the mounting surface or the heat dissipation surface side where the surface enlarging portion is provided. A radiator with a shape that increases the area. According to such a configuration, heat is efficiently transferred from the mounting surface on which the heating element is mounted to the heat dissipation section, or the heat transferred to the heat dissipation section is more efficiently transferred to the mounting surface side. The heat dissipation performance can be further enhanced.

【0038】(4) 請求項1〜請求項5のいずれか一
項に記載の発明において、前記面拡大部(放熱面拡大部
14、取付面拡大部15)は、前記枠部の外周面全周に
形成されている放熱体。このような構成によれば、取付
面の面積に対する放熱体の設置面積を大きくすることな
く、放熱性能をより一層高くすることができる。
(4) In the invention according to any one of claims 1 to 5, the surface enlarging portion (the heat dissipating surface enlarging portion 14, the mounting surface enlarging portion 15) is the entire outer peripheral surface of the frame portion. Radiator formed around the circumference. With such a configuration, the heat radiation performance can be further enhanced without increasing the installation area of the heat radiator with respect to the area of the mounting surface.

【0039】(5) 請求項1〜請求項4のいずれか一
項に記載の発明において、前記枠部を形成する材料は、
熱膨張率が10×10-6/°C以下の金属である放熱
体。
(5) In the invention according to any one of claims 1 to 4, the material forming the frame is
A heat radiator that is a metal having a coefficient of thermal expansion of 10 × 10 −6 / ° C or less.

【0040】[0040]

【発明の効果】請求項1〜請求項5に記載の発明によれ
ば、高熱伝導性の金属からなる放熱部を、低熱膨張材か
らなる枠部で取り囲んだ構成の放熱体において、設置面
積当たりの放熱性能をより高くすることができる。
According to the inventions of claims 1 to 5, in a radiator having a structure in which a heat radiating portion made of a metal having a high thermal conductivity is surrounded by a frame portion made of a low thermal expansion material, The heat radiation performance of can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 一実施形態のヒートスプレッダーを示す一部
破断斜視図。
FIG. 1 is a partially cutaway perspective view showing a heat spreader according to an embodiment.

【図2】 使用状態を示すヒートスプレッダーの模式縦
断面図。
FIG. 2 is a schematic vertical sectional view of the heat spreader showing a usage state.

【図3】 別の実施形態のヒートスプレッダーを示す一
部破断斜視図。
FIG. 3 is a partially cutaway perspective view showing a heat spreader of another embodiment.

【図4】 使用状態を示すヒートスプレッダーの模式縦
断面図。
FIG. 4 is a schematic vertical sectional view of the heat spreader showing a usage state.

【図5】 別の実施形態のヒートスプッダーを示す模式
縦断面図。
FIG. 5 is a schematic vertical sectional view showing a heat spreader according to another embodiment.

【図6】 別の実施形態のヒートスプッダーを示す模式
縦断面図。
FIG. 6 is a schematic vertical sectional view showing a heat spreader according to another embodiment.

【図7】 別の実施形態のヒートスプッダーを示す一部
破断斜視図。
FIG. 7 is a partially cutaway perspective view showing a heat spreader according to another embodiment.

【図8】 従来のヒートスプレッダーを示す模式斜視
図。
FIG. 8 is a schematic perspective view showing a conventional heat spreader.

【図9】 同じく使用状態を示すヒートスプレッダーの
模式縦断面図。
FIG. 9 is a schematic vertical sectional view of the heat spreader similarly showing a usage state.

【符号の説明】[Explanation of symbols]

10…放熱体としてのヒートスプレッダー、11…放熱
部、11a…取付面、11b…放熱面、12…枠部、1
3…放熱部を構成する部位としての基部、13a…外周
面、14…放熱部を構成する面拡大部としての放熱面拡
大部、15…同じく取付面拡大部。
DESCRIPTION OF SYMBOLS 10 ... Heat spreader as a radiator, 11 ... Heat dissipation part, 11a ... Mounting surface, 11b ... Heat dissipation surface, 12 ... Frame part, 1
3 ... Base part as a part which constitutes a heat dissipation part, 13a ... Outer peripheral surface, 14 ... Heat dissipation surface expansion part as a surface expansion part which comprises a heat dissipation part, 15 ... Similarly mounting surface expansion part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 貴司 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機内 (72)発明者 杉山 知平 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機内 (72)発明者 河野 栄次 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機内 Fターム(参考) 5E322 AA11 EA11 FA04 5F036 AA01 BB21 BC33 BD01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Yoshida             2-1, Toyota-cho, Kariya City, Aichi Stock Association             Inside Toyota Toyota Industries (72) Inventor Chihei Sugiyama             2-1, Toyota-cho, Kariya City, Aichi Stock Association             Inside Toyota Toyota Industries (72) Inventor Eiji Kono             2-1, Toyota-cho, Kariya City, Aichi Stock Association             Inside Toyota Toyota Industries F-term (reference) 5E322 AA11 EA11 FA04                 5F036 AA01 BB21 BC33 BD01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導率が100W/(m・K)以上の
金属からなる放熱部と、この放熱部を形成する金属より
も熱膨張率が低い材料からなる環状の枠部とを備え、 前記放熱部には、発熱体が取り付けられる取付面と、こ
の取付面と反対側に位置する放熱面とが設けられ、 前記枠部は、前記放熱部の外周面に対し全周で密接する
状態で放熱部に一体化されている放熱体において、 前記放熱部には、前記取付面及び放熱面の少なくともい
ずれか一方の側に、前記枠部が密接する外周面を形成す
る部位の最大断面積よりも取付面又は放熱面の面積を大
きくするように外周側に張り出す面拡大部が設けられて
いる放熱体。
1. A heat radiating portion made of a metal having a thermal conductivity of 100 W / (m · K) or more, and an annular frame portion made of a material having a coefficient of thermal expansion lower than that of the metal forming the heat radiating portion, The heat radiating portion is provided with a mounting surface on which a heating element is mounted and a heat radiating surface located on the opposite side of the mounting surface, and the frame portion is in close contact with the outer peripheral surface of the heat radiating portion over the entire circumference. In the heat dissipating body integrated with the heat dissipating part, the heat dissipating part has a maximum cross-sectional area of a portion forming an outer peripheral surface to which the frame part closely contacts at least one of the mounting surface and the heat dissipating surface. A heat-dissipating body provided with a surface-expanded portion projecting to the outer peripheral side so as to increase the area of the mounting surface or the heat-dissipating surface.
【請求項2】 前記面拡大部は、前記放熱面を大きくす
るように放熱面側に設けられている請求項1に記載の放
熱体。
2. The heat radiator according to claim 1, wherein the surface enlargement portion is provided on the heat radiation surface side so as to enlarge the heat radiation surface.
【請求項3】 前記放熱部及び枠部はそれぞれ予め成形
され、嵌合によって一体化されている請求項1又は請求
項2に記載の放熱体。
3. The heat radiating body according to claim 1, wherein the heat radiating portion and the frame portion are pre-molded and integrated by fitting.
【請求項4】 前記放熱部を形成する金属は銅である請
求項1〜請求項3のいずれか一項に記載の放熱体。
4. The heat radiator according to claim 1, wherein the metal forming the heat radiation portion is copper.
【請求項5】 前記枠部を形成する材料はインバー系合
金である請求項1〜請求項4のいずれか一項に記載の放
熱体。
5. The heat radiator according to claim 1, wherein the material forming the frame portion is an Invar alloy.
JP2001270713A 2001-09-06 2001-09-06 Heat sink Pending JP2003078267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270713A JP2003078267A (en) 2001-09-06 2001-09-06 Heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270713A JP2003078267A (en) 2001-09-06 2001-09-06 Heat sink

Publications (1)

Publication Number Publication Date
JP2003078267A true JP2003078267A (en) 2003-03-14

Family

ID=19096329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270713A Pending JP2003078267A (en) 2001-09-06 2001-09-06 Heat sink

Country Status (1)

Country Link
JP (1) JP2003078267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279723B2 (en) 2003-03-20 2007-10-09 Toyoda Gosei Co., Ltd. LED lamp
KR101277202B1 (en) * 2011-04-25 2013-06-20 주식회사 코스텍시스 Metal base and Method of manufacturing the same and Device package using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279723B2 (en) 2003-03-20 2007-10-09 Toyoda Gosei Co., Ltd. LED lamp
US7768029B2 (en) 2003-03-20 2010-08-03 Toyoda Gosei Co., Ltd. LED lamp
KR101277202B1 (en) * 2011-04-25 2013-06-20 주식회사 코스텍시스 Metal base and Method of manufacturing the same and Device package using the same

Similar Documents

Publication Publication Date Title
JP6199397B2 (en) Semiconductor device and manufacturing method thereof
JPWO2014181426A1 (en) Semiconductor module
JP2006269966A (en) Wiring substrate and its manufacturing method
JP2008235576A (en) Heat dissipation structure of electronic component and semiconductor device
JP2001217363A (en) Semiconductor device and its heat sink
JP5957866B2 (en) Semiconductor device
JP2007227762A (en) Semiconductor device and semiconductor module equipped therewith
JP2003078267A (en) Heat sink
JP2003204021A (en) Substrate for semiconductor module
JP2008306134A (en) Semiconductor module
JP2004336046A (en) Application specific heat sink element
JP2019080045A (en) Submount and manufacturing method thereof
JP2004096034A (en) Method of manufacturing module structure, circuit board and method of fixing the same
JP2008098243A (en) Heat sink, method for mounting electronic part on heat sink and manufacturing method for heat sink
JP2017183533A (en) Heat sink with circuit board and manufacturing method therefor
JPH0677678A (en) Heat sink structure
JP2008270296A (en) Semiconductor device
JP3124294U (en) Semiconductor device package housing
JP2004083964A (en) Copper-based heat radiation board and production method therefor
JP3044952B2 (en) Semiconductor chip mounting structure
JP2002299532A (en) Al-SiC BASED COMPOUND MATERIAL AND HEAT RADIATION COMPONENT
JP2002043480A (en) Semiconductor device
JP2004200369A (en) Power module and substrate therefor
JP2004200567A (en) Radiator and its producing process, substrate for power module, power module
JP2006114716A (en) Power semiconductor device