JP2000077582A - Heat dissipating material - Google Patents

Heat dissipating material

Info

Publication number
JP2000077582A
JP2000077582A JP24551398A JP24551398A JP2000077582A JP 2000077582 A JP2000077582 A JP 2000077582A JP 24551398 A JP24551398 A JP 24551398A JP 24551398 A JP24551398 A JP 24551398A JP 2000077582 A JP2000077582 A JP 2000077582A
Authority
JP
Japan
Prior art keywords
heat
semiconductor element
thermal expansion
coefficient
heat spreader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24551398A
Other languages
Japanese (ja)
Inventor
Masahiko Masubuchi
昌彦 増渕
Yoshihiko Sakurai
可彦 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Musical Instrument Manufacturing Co Ltd
Original Assignee
Kawai Musical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Musical Instrument Manufacturing Co Ltd filed Critical Kawai Musical Instrument Manufacturing Co Ltd
Priority to JP24551398A priority Critical patent/JP2000077582A/en
Publication of JP2000077582A publication Critical patent/JP2000077582A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat dissipating material in which both sufficient heat dissipating properties and excellent fixing stability of heating body can be satisfied at a relatively low cost. SOLUTION: This head dissipating material 1 comprises a core material 2, having a copper face for fixing a heating body and an opposite face for dissipating heat of the heating body, and a frame material 3 made of a specified material, having coefficient of thermal expansion lower than those of copper and the heating body and arranged to surround the core material 2 except for the fixing face and the heat dissipating face thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子や電気
素子などの発熱体が動作中に発生する熱を放熱するため
の放熱材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating material for radiating heat generated during operation of a heating element such as a semiconductor element or an electric element.

【0002】[0002]

【従来の技術】従来、この種の放熱材として、半田付け
やろう付けによって半導体チップが取り付けられるヒー
トスプレッダーが知られている。ヒートスプレッダー
は、半導体チップを構成するSiやGaAs(砒化ガリ
ウム)などが、動作中の半導体チップ自身の発熱によっ
て破損するのを防止するためのものであり、それゆえ、
ヒートスプレッダーには、良好な放熱性、すなわちでき
るだけ高い熱伝導性が要求される。このようなヒートス
プレッダーとして、高い熱伝導性を備えたCu単体また
はMo単体で構成したものや、図3に示すようなクラッ
ド材31で構成したものがある。図3に示すクラッド材
31で構成したヒートスプレッダー30は、インバー
(Fe−36wt%Ni合金)層32を2つのCu層3
3,33で挟んだ積層体であり、Cu層33による比較
的、高い熱伝導性と、インバー層32による低い熱膨張
性とを兼ね備えている。
2. Description of the Related Art Conventionally, a heat spreader to which a semiconductor chip is attached by soldering or brazing has been known as this kind of heat radiating material. The heat spreader is for preventing Si and GaAs (gallium arsenide) constituting the semiconductor chip from being damaged by heat generated by the semiconductor chip itself during operation.
The heat spreader is required to have good heat radiation, that is, as high a thermal conductivity as possible. As such a heat spreader, there is a heat spreader composed of Cu or Mo alone having a high thermal conductivity, and a heat spreader composed of a clad material 31 as shown in FIG. The heat spreader 30 composed of the clad material 31 shown in FIG.
It is a laminate sandwiched between 3, 33, and has both relatively high thermal conductivity by the Cu layer 33 and low thermal expansion by the Invar layer 32.

【0003】[0003]

【発明が解決しようとする課題】半導体チップは、動作
中に自らの発熱によって熱膨張し、これと同時に、ヒー
トスプレッダーも半導体チップの熱によって熱膨張す
る。このため、半導体チップを構成する例えばSiの熱
膨張率と、ヒートスプレッダーの熱膨張率との差が大き
い場合には、半導体チップをヒートスプレッダーに取り
付けている半田付け部やろう付け部に取付面に沿う方向
の熱応力が発生し、これによって、半田付け部やろう付
け部にクラックが生じてしまうという問題がある。特に
近年では、演算処理速度の高速化などにより、半導体チ
ップの発熱量が増大していることによって、このような
クラックが生じやすくなっている。この問題に関連し
て、Cuは、Siとの熱膨張率の差が大きいので、従来
のCu単体で構成したヒートスプレッダーでは、上記ク
ラックが生じやすい。一方、Moは、Cuと比べてSi
との熱膨張率の差が小さいので、従来のMo単体で構成
したヒートスプレッダーでは、上記クラックが生じにく
い。しかし、Moは、Cuよりも高価であることに加え
て熱伝導率が低いので、Mo単体で構成したヒートスプ
レッダーでは、Cu単体のものと比べて高価で放熱性が
劣るという問題がある。
During operation, the semiconductor chip thermally expands due to its own heat, and at the same time, the heat spreader also thermally expands due to the heat of the semiconductor chip. Therefore, if the difference between the coefficient of thermal expansion of, for example, Si constituting the semiconductor chip and the coefficient of thermal expansion of the heat spreader is large, the mounting surface of the semiconductor chip is attached to the soldering portion or the brazing portion where the semiconductor chip is mounted on the heat spreader. There is a problem that a thermal stress is generated in a direction along the line, and this causes a crack in a soldered portion or a brazed portion. In particular, in recent years, such cracks are likely to occur due to an increase in heat generation of the semiconductor chip due to an increase in arithmetic processing speed or the like. In connection with this problem, since Cu has a large difference in thermal expansion coefficient from Si, the cracks are liable to occur in a conventional heat spreader composed of Cu alone. On the other hand, Mo has a higher Si content than Cu.
Since the difference in the coefficient of thermal expansion between the heat spreader and the conventional heat spreader is small, the above cracks are unlikely to occur. However, since Mo is more expensive than Cu and has a low thermal conductivity, there is a problem that a heat spreader composed of Mo alone is expensive and inferior in heat dissipation as compared with a Cu single substance.

【0004】また、インバーは、CuやSiよりも熱膨
張率が小さく、かつMoと比べて安価である。このた
め、従来のクラッド材31で構成したヒートスプレッダ
ー30では、Cu層33,33間にインバー層32が介
在していることによって、半導体チップとの間の半田付
け部やろう付け部にクラックが生じにくいとともに、M
o単体のものと比べて安価に製造できる。しかし、イン
バーは、Cuよりも熱伝導率が低いので、従来のヒート
スプレッダー30では、Cu層33,33間にインバー
層32が介在していることによって、Cu単体のものと
比べて放熱性が劣り、十分な放熱性が得られないという
問題がある。
[0004] Invar has a smaller coefficient of thermal expansion than Cu or Si and is inexpensive as compared with Mo. Therefore, in the conventional heat spreader 30 made of the clad material 31, cracks are formed in the soldering portion and the brazing portion between the Cu layers 33, 33 due to the interposition of the Invar layer 32 between the Cu layers 33, 33. Hardly to occur and M
o Can be manufactured at a lower cost than a single unit. However, since Invar has a lower thermal conductivity than Cu, in the conventional heat spreader 30, the heat dissipation is lower than that of Cu alone because the Invar layer 32 is interposed between the Cu layers 33, 33. However, there is a problem that sufficient heat dissipation cannot be obtained.

【0005】本発明は、上記課題を解決するためになさ
れたもので、比較的、安価で、十分な放熱性と発熱体の
良好な取付安定性とを両立させることができる放熱材を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and provides a heat dissipating material that is relatively inexpensive and can achieve both sufficient heat dissipating properties and good mounting stability of a heating element. The purpose is to:

【0006】[0006]

【課題を解決するための手段】請求項1の放熱材は、銅
で構成され、発熱体を取り付けるための取付面と、発熱
体の熱を放熱するための、取付面の反対側の放熱面とを
有する芯材と、この芯材の取付面および放熱面を除く外
周を取り囲むように設けられ、銅および発熱体の熱膨張
率よりも低い熱膨張率を有する所定の材質で構成された
枠材と、を備えていることを特徴とする。
The heat dissipating material of claim 1 is made of copper and has a mounting surface for mounting the heating element and a heat dissipating surface opposite to the mounting surface for dissipating heat of the heating element. And a frame formed of a predetermined material provided so as to surround the outer periphery excluding the mounting surface and the heat radiation surface of the core material, and having a lower coefficient of thermal expansion than that of copper and the heating element. And a material.

【0007】この放熱材によれば、銅は、高い熱伝導性
を備えているので、芯材の取付面に発熱体を取り付ける
と、銅で構成した芯材は、発熱体の熱を放熱面側に効率
よく伝達し、放熱する。また、この発熱体の熱による発
熱体自体および芯材の熱膨張を取付面に沿う方向の熱膨
張について着目すると、放熱材の枠材の熱膨張率は、芯
材の銅および発熱体の熱膨張率よりも低いので、枠材
は、芯材の熱膨張を拘束し、芯材の見かけの熱膨張率を
抑制する。したがって、枠材の材質および寸法を予め適
切に選定および設定することによって、芯材の見かけの
熱膨張率を、発熱体の熱膨張率とほぼ同一に抑制するこ
とができる。これによって、例えば発熱体が取付面に半
田付けやろう付けされているときに、これらの半田付け
部やろう付け部において、発熱体の熱により取付面に沿
う方向に発生する熱応力を小さくでき、クラックなどの
発生を抑制できる。したがって、十分な放熱性と取付面
における発熱体の良好な取付安定性とを両立させること
ができる。
According to this heat dissipating material, copper has a high thermal conductivity. Therefore, when a heating element is attached to the mounting surface of the core material, the copper core material dissipates the heat of the heating element to the heat dissipating surface. It efficiently transmits to the side and dissipates heat. Focusing on the thermal expansion of the heat generating element itself and the core material due to the heat of the heat generating element in the direction along the mounting surface, the coefficient of thermal expansion of the frame material of the heat dissipating material is determined by the thermal expansion coefficient of the copper of the core material and the heat of the heat generating element. Since it is lower than the coefficient of expansion, the frame material restrains the thermal expansion of the core material and suppresses the apparent coefficient of thermal expansion of the core material. Therefore, by appropriately selecting and setting the material and dimensions of the frame material in advance, the apparent coefficient of thermal expansion of the core material can be suppressed to substantially the same as the coefficient of thermal expansion of the heating element. Thereby, for example, when the heating element is soldered or brazed to the mounting surface, it is possible to reduce the thermal stress generated in the direction along the mounting surface due to the heat of the heating element at these soldered portions or brazed portions. , Cracks and the like can be suppressed. Therefore, both sufficient heat dissipation and good mounting stability of the heating element on the mounting surface can be achieved.

【0008】請求項2の発明は、請求項1に記載の放熱
材において、発熱体は、シリコンで構成された半導体素
子であり、所定の材質は、Fe−42wt%Ni合金で
あることを特徴とする。
According to a second aspect of the present invention, in the heat radiation material according to the first aspect, the heating element is a semiconductor element made of silicon, and the predetermined material is an Fe-42 wt% Ni alloy. And

【0009】この放熱材によれば、枠材を構成するFe
−42wt%Ni合金は、Moと比べて安価であるとと
もに、半導体素子を構成する例えばSiの熱膨張率より
低い熱膨張率を有している。これに加えて、芯材を構成
する銅も、Moと比べて安価である。したがって、上記
の請求項1に係る放熱材を比較的、安価に製造できる。
According to this heat radiating material, Fe constituting the frame material
The −42 wt% Ni alloy is inexpensive as compared with Mo, and has a lower coefficient of thermal expansion than the coefficient of thermal expansion of, for example, Si forming the semiconductor element. In addition, copper constituting the core material is also less expensive than Mo. Therefore, the heat dissipating material according to claim 1 can be manufactured relatively inexpensively.

【0010】[0010]

【発明の実施の形態】以下、添付図面を参照しながら、
本発明の一実施形態に係る放熱材について説明する。図
1に示すように、放熱材としてのヒートスプレッダー1
は、矩形板状の芯材2と、この芯材2を取り囲む枠材3
とを備え、これらを一体化した矩形板である。芯材2
は、枠材3と面一になるように嵌め込まれ、かしめによ
って枠材3に固定されている。芯材2は、無酸素銅で構
成されており、その熱膨張率は17.2×10-6/K
で、熱伝導率は0.92cal/cm・sec・℃であ
る。この芯材2の上面および下面はそれぞれ、図2に示
すような発熱体としての半導体素子4などを取り付ける
ための取付面2aと、取り付けた半導体素子4の熱を放
熱するための放熱面2bとを構成している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
A radiator according to an embodiment of the present invention will be described. As shown in FIG. 1, a heat spreader 1 as a heat dissipating material
Is a rectangular plate-shaped core material 2 and a frame material 3 surrounding the core material 2.
And a rectangular plate in which these are integrated. Core material 2
Are fitted so as to be flush with the frame member 3 and are fixed to the frame member 3 by caulking. The core material 2 is made of oxygen-free copper, and has a coefficient of thermal expansion of 17.2 × 10 −6 / K.
And the thermal conductivity is 0.92 cal / cm · sec · ° C. An upper surface and a lower surface of the core member 2 have a mounting surface 2a for mounting a semiconductor element 4 or the like as a heating element as shown in FIG. 2, and a heat radiating surface 2b for radiating heat of the mounted semiconductor element 4, respectively. Is composed.

【0011】また、枠材3は、42アロイすなわちFe
−42wt%Ni合金で構成されており、その熱膨張率
は4.35×10-6/Kで、熱伝導率は0.035ca
l/cm・sec・℃である。このように、枠材3は、
芯材2よりも熱膨張率が低いことによって、ヒートスプ
レッダー1が図2に示すような半導体素子4の熱を放熱
する際に、芯材2の熱膨張を抑制するように構成されて
いる。これらの芯材2および枠材3の寸法は、取付面2
aに沿う方向における芯材2の見かけの膨張率が半導体
素子4を構成するSiの熱膨張率(9.6×10-6
K)とほぼ同一になるように、それぞれ設定されてい
る。
The frame member 3 is made of 42 alloy, that is, Fe
-42 wt% Ni alloy, its thermal expansion coefficient is 4.35 × 10 -6 / K, and its thermal conductivity is 0.035 ca
1 / cm · sec · ° C. Thus, the frame material 3 is
Since the thermal expansion coefficient is lower than that of the core material 2, when the heat spreader 1 radiates heat of the semiconductor element 4 as shown in FIG. The dimensions of the core material 2 and the frame material 3 are
The apparent expansion coefficient of the core material 2 in the direction along the line a is the thermal expansion coefficient of Si constituting the semiconductor element 4 (9.6 × 10 −6 /
K) are respectively set so as to be almost the same.

【0012】図2は、上記のような構成のヒートスプレ
ッダー1に半導体素子4を取り付けるとともに、ヒート
スプレッダー1を基板5に固定した状態を示している。
半導体素子4は、Siで構成され、ヒートスプレッダー
1の取付面2aに半田付けによって取り付けられてい
る。また、半導体素子4は、図示しないボンディングワ
イヤを介して基板5に電気的に接続されている。一方、
ヒートスプレッダー1は、その放熱面2bが基板5の上
面に接した状態で基板5に半田付けされている。
FIG. 2 shows a state in which the semiconductor element 4 is attached to the heat spreader 1 having the above-described configuration, and the heat spreader 1 is fixed to the substrate 5.
The semiconductor element 4 is made of Si, and is mounted on the mounting surface 2a of the heat spreader 1 by soldering. The semiconductor element 4 is electrically connected to the substrate 5 via a bonding wire (not shown). on the other hand,
The heat spreader 1 is soldered to the substrate 5 with its heat radiation surface 2b in contact with the upper surface of the substrate 5.

【0013】このようにヒートスプレッダー1に半導体
素子4を取り付けた状態で、半導体素子4を動作させる
と、半導体素子4が発熱する。この半導体素子4の熱
は、ヒートスプレッダー1の芯材2を介して基板5側に
伝達され、放熱される。この場合、芯材2を構成する無
酸素銅は、上述したように、0.92cal/cm・s
ec・℃と高い熱伝導率を備えているので、半導体素子
4の熱は、芯材2によって効率よく放熱される。これに
よって、半導体素子4を構成するSiの破損を防止する
ことができる。また、半導体素子4の発熱によって、半
導体素子4自体とヒートスプレッダー1が熱膨張する。
このとき、ヒートスプレッダー1の枠材3は、芯材2よ
りも低い熱膨張率を備え、かつ両者の寸法が上述したよ
うに設定されていることによって、取付面2aに沿う方
向における芯材2の熱膨張を拘束し、その見かけの膨張
率を半導体素子4のSiの膨張率とほぼ同一に抑制す
る。これにより、半導体素子4をヒートスプレッダー1
に固定している半田付け部において、取付面2aに沿う
方向に発生する熱応力を小さくすることができ、クラッ
クなどの発生を抑制することができる。以上のように、
十分な放熱性と取付面2aにおける半導体素子4の良好
な取付安定性とを両立させることができる。
When the semiconductor element 4 is operated with the semiconductor element 4 attached to the heat spreader 1 as described above, the semiconductor element 4 generates heat. The heat of the semiconductor element 4 is transmitted to the substrate 5 via the core material 2 of the heat spreader 1 and is radiated. In this case, the oxygen-free copper constituting the core material 2 is 0.92 cal / cm · s, as described above.
Since it has a high thermal conductivity of ec · ° C., heat of the semiconductor element 4 is efficiently radiated by the core material 2. As a result, breakage of Si constituting the semiconductor element 4 can be prevented. In addition, heat generation of the semiconductor element 4 causes the semiconductor element 4 itself and the heat spreader 1 to thermally expand.
At this time, the frame member 3 of the heat spreader 1 has a lower coefficient of thermal expansion than the core member 2 and the dimensions of both are set as described above, so that the core member 2 in the direction along the mounting surface 2a is provided. Of the semiconductor element 4 is suppressed, and the apparent expansion coefficient is suppressed to substantially the same as the expansion coefficient of Si of the semiconductor element 4. Thereby, the semiconductor element 4 is connected to the heat spreader 1.
In the soldering portion fixed to the mounting surface, the thermal stress generated in the direction along the mounting surface 2a can be reduced, and the occurrence of cracks and the like can be suppressed. As mentioned above,
Sufficient heat dissipation and good mounting stability of the semiconductor element 4 on the mounting surface 2a can be compatible.

【0014】また、芯材2および枠材3はそれぞれ、M
oと比べて安価な銅およびFe−42wt%Ni合金で
構成されているので、ヒートスプレッダー1をMo単体
で構成したものと比べて安価に製造することができる。
The core material 2 and the frame material 3 are each M
Since the heat spreader 1 is made of copper and Fe-42 wt% Ni alloy, which are inexpensive as compared with o, the heat spreader 1 can be manufactured at a lower cost as compared with the case where Mo is used alone.

【0015】なお、上記実施形態においては、Fe−4
2wt%Ni合金で構成された枠材3を用いたが、枠材
3の材質はこれに限らず、Fe−36wt%Ni合金
(インバー)やFe−31wt%Ni−5%Co合金
(スーパーインバー)など、芯材2のCuおよび半導体
素子を構成する材質よりも熱膨張率の低い物性を備えた
ものであればよい。この場合に、上記実施形態のFe−
42wt%Ni合金は、インバーと比べて安価であるの
で、コスト的に有利である。また、半導体素子4を芯材
2の取付面2aにのみ取り付けるようにしたが、これに
限らず、半導体素子4を芯材2の取付面2aと枠材3の
上面とにまたがるように取り付けてもよい。
In the above embodiment, Fe-4
Although the frame member 3 made of a 2 wt% Ni alloy was used, the material of the frame member 3 is not limited to this, and an Fe-36 wt% Ni alloy (Invar) or an Fe-31 wt% Ni-5% Co alloy (Super Invar) ), Etc., as long as it has physical properties with a lower coefficient of thermal expansion than Cu of the core material 2 and the material constituting the semiconductor element. In this case, the Fe-
The 42 wt% Ni alloy is inexpensive compared to Invar, and is therefore advantageous in terms of cost. Further, the semiconductor element 4 is mounted only on the mounting surface 2a of the core member 2, but the present invention is not limited to this, and the semiconductor element 4 is mounted so as to straddle the mounting surface 2a of the core member 2 and the upper surface of the frame member 3. Is also good.

【0016】さらに、発熱体としてSiで構成された半
導体素子4をヒートスプレッダー1に取り付けたが、ヒ
ートスプレッダー1に取り付ける発熱体はこれに限ら
ず、GaAs(砒化ガリウム)で構成された半導体素子
やその他の電気素子であってもよい。また、かしめるこ
とによって芯材2と枠材3を一体化したが、芯材2と枠
材3を一体化する方法はこれに限らず、圧接や銀ろう付
けなど、堅固に一体化できる方法であればよい。
Further, the semiconductor element 4 made of Si as a heating element is attached to the heat spreader 1, but the heating element attached to the heat spreader 1 is not limited to this, and a semiconductor element made of GaAs (gallium arsenide) or Other electric elements may be used. Also, the core material 2 and the frame material 3 are integrated by caulking, but the method of integrating the core material 2 and the frame material 3 is not limited to this, but a method that can be firmly integrated such as pressure welding or silver brazing. Should be fine.

【0017】[0017]

【発明の効果】以上のように、本発明の放熱材によれ
ば、比較的、安価で、十分な放熱性と発熱体の良好な取
付安定性とを両立させることができる。
As described above, according to the heat dissipating material of the present invention, it is relatively inexpensive and can achieve both sufficient heat dissipating properties and good mounting stability of the heating element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る放熱材としてのヒー
トスプレッダーを示す斜視図である。
FIG. 1 is a perspective view showing a heat spreader as a heat radiating material according to an embodiment of the present invention.

【図2】ヒートスプレッダーに半導体素子を取り付けた
状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state where a semiconductor element is attached to a heat spreader.

【図3】従来のヒートスプレッダーを示す斜視図であ
る。
FIG. 3 is a perspective view showing a conventional heat spreader.

【符号の説明】[Explanation of symbols]

1 ヒートスプレッダー(放熱材) 2 芯材 3 枠材 4 半導体素子(発熱体) DESCRIPTION OF SYMBOLS 1 Heat spreader (heat dissipation material) 2 Core material 3 Frame material 4 Semiconductor element (heating element)

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年10月29日(1998.10.
29)
[Submission date] October 29, 1998 (1998.10.
29)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】請求項2の発明は、請求項1に記載の放熱
材において、発熱体は、シリコンで構成された半導体素
子であり、所定の材質は、インバーであることを特徴と
する。
According to a second aspect of the present invention, in the heat radiating material according to the first aspect, the heating element is a semiconductor element made of silicon, and the predetermined material is Invar .

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】この放熱材によれば、枠材を構成するイン
バーは、Moと比べて安価であるとともに、半導体素子
を構成する例えばSiの熱膨張率より低い熱膨張率を有
している。これに加えて、芯材を構成する銅も、Moと
比べて安価である。したがって、上記の請求項1に係る
放熱材を比較的、安価に製造できる。
According to the heat dissipating material, the ins constituting the frame material are formed.
The bar is inexpensive compared to Mo, and has a lower coefficient of thermal expansion than the coefficient of thermal expansion of, for example, Si forming the semiconductor element. In addition, copper constituting the core material is also less expensive than Mo. Therefore, the heat dissipating material according to claim 1 can be manufactured relatively inexpensively.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】また、枠材3は、インバーすなわちFe−
36wt%Ni合金で構成されており、その熱膨張率は
1.2×10 -6 /Kで、熱伝導率は0.035cal/
cm・sec・℃である。このように、枠材3は、芯材
2よりも熱膨張率が低いことによって、ヒートスプレッ
ダー1が図2に示すような半導体素子4の熱を放熱する
際に、芯材2の熱膨張を抑制するように構成されてい
る。これらの芯材2および枠材3の寸法は、取付面2a
に沿う方向における芯材2の見かけの膨張率が半導体素
子4を構成するSiの熱膨張率(20℃時、2.6×1
-6 /K)とほぼ同一になるように、それぞれ設定され
ている。
The frame member 3 is made of Invar, that is, Fe-
It is composed of 36wt% Ni alloy , and its coefficient of thermal expansion is
1.2 × 10 −6 / K and thermal conductivity of 0.035 cal /
cm · sec · ° C. As described above, since the frame member 3 has a lower coefficient of thermal expansion than the core member 2, when the heat spreader 1 radiates heat of the semiconductor element 4 as shown in FIG. It is configured to suppress. The dimensions of the core member 2 and the frame member 3 are determined by the mounting surface 2a.
The apparent expansion coefficient of the core material 2 in the direction along the axis is the thermal expansion coefficient of Si constituting the semiconductor element 4 (at 20 ° C., 2.6 × 1
0 −6 / K ).

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】また、芯材2および枠材3はそれぞれ、M
oと比べて安価な銅およびインバーで構成されているの
で、ヒートスプレッダー1をMo単体で構成したものと
比べて安価に製造することができる。
The core material 2 and the frame material 3 are each M
Since the heat spreader 1 is made of copper and invar , which are inexpensive as compared with o, the heat spreader 1 can be manufactured at a lower cost as compared with the case where the heat spreader 1 is made of Mo alone.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】なお、上記実施形態においては、インバー
で構成された枠材3を用いたが、枠材3の材質はこれに
限らず、Fe−31wt%Ni−5%Co合金(スーパ
ーインバー)など、芯材2のCuおよび半導体素子を構
成する材質よりも熱膨張率の低い物性を備えたものであ
ればよい。また、半導体素子4を芯材2の取付面2aに
のみ取り付けるようにしたが、これに限らず、半導体素
子4を芯材2の取付面2aと枠材3の上面とにまたがる
ように取り付けてもよい。
In the above-described embodiment, the frame material 3 made of invar is used, but the material of the frame material 3 is not limited to this, and an Fe-31 wt% Ni-5% Co alloy ( Super Invar) or any other material having a lower coefficient of thermal expansion than the material of the core material 2 and the material constituting the semiconductor element may be used. Further, the semiconductor element 4 is mounted only on the mounting surface 2a of the core member 2, but the present invention is not limited to this, and the semiconductor element 4 is mounted so as to straddle the mounting surface 2a of the core member 2 and the upper surface of the frame member 3. Is also good.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅で構成され、発熱体を取り付けるため
の取付面と、当該発熱体の熱を放熱するための、前記取
付面の反対側の放熱面とを有する芯材と、 この芯材の前記取付面および前記放熱面を除く外周を取
り囲むように設けられ、前記銅および前記発熱体の熱膨
張率よりも低い熱膨張率を有する所定の材質で構成され
た枠材と、 を備えていることを特徴とする放熱材。
1. A core member made of copper and having a mounting surface for mounting a heating element, and a heat radiation surface opposite to the mounting surface for radiating heat of the heating element. A frame member provided so as to surround the outer periphery excluding the mounting surface and the heat radiating surface, and made of a predetermined material having a lower coefficient of thermal expansion than that of the copper and the heating element. A heat dissipating material characterized by being.
【請求項2】 前記発熱体は、シリコンで構成された半
導体素子であり、前記所定の材質は、Fe−42wt%
Ni合金であることを特徴とする請求項1に記載の放熱
材。
2. The heating element is a semiconductor element made of silicon, and the predetermined material is Fe-42 wt%.
The heat dissipating material according to claim 1, wherein the heat dissipating material is a Ni alloy.
JP24551398A 1998-08-31 1998-08-31 Heat dissipating material Withdrawn JP2000077582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24551398A JP2000077582A (en) 1998-08-31 1998-08-31 Heat dissipating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24551398A JP2000077582A (en) 1998-08-31 1998-08-31 Heat dissipating material

Publications (1)

Publication Number Publication Date
JP2000077582A true JP2000077582A (en) 2000-03-14

Family

ID=17134805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24551398A Withdrawn JP2000077582A (en) 1998-08-31 1998-08-31 Heat dissipating material

Country Status (1)

Country Link
JP (1) JP2000077582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091363A1 (en) * 2004-03-18 2005-09-29 Hitachi, Ltd. Heat sink board and manufacturing method thereof
US7468554B2 (en) 2005-03-11 2008-12-23 Hitachi, Ltd. Heat sink board and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091363A1 (en) * 2004-03-18 2005-09-29 Hitachi, Ltd. Heat sink board and manufacturing method thereof
US7468554B2 (en) 2005-03-11 2008-12-23 Hitachi, Ltd. Heat sink board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2548350B2 (en) Heat dissipation interconnect tape used for tape self-bonding
JP5588419B2 (en) package
JP2001156219A (en) Semiconductor device
JPH02283053A (en) Integrated circut/ heatsink intermediate products
JPH11274770A (en) Package accommodating electronic circuit device
JP2005191502A (en) Electronic part cooling device
JP2505065B2 (en) Semiconductor device and manufacturing method thereof
JP3733783B2 (en) Module having heat dissipation structure of heating element
JP2004356625A (en) Semiconductor device and method for manufacturing the same
JP5031136B2 (en) Semiconductor laser device
JP4608409B2 (en) High heat dissipation type electronic component storage package
JP2000077582A (en) Heat dissipating material
JP2001035977A (en) Container for semiconductor device
JP2008098243A (en) Heat sink, method for mounting electronic part on heat sink and manufacturing method for heat sink
JP2007012725A (en) Semiconductor device
JP5935330B2 (en) Semiconductor device, manufacturing method thereof, and electronic device
JPH08186199A (en) Resin-encapsulated semiconductor device
JPH0321092B2 (en)
JP2000091481A (en) Power transistor case and power transistor
JP2010098144A (en) Lead frame and semiconductor device
JPH1065072A (en) Heat radiating electrode structure
JP3460631B2 (en) High frequency semiconductor device
JP2521624Y2 (en) Semiconductor device
JP2619155B2 (en) Hybrid integrated circuit device
JP3109267B2 (en) Lead frame with heat sink and semiconductor device using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101