JP2003190996A - Anaerobic treatment method and apparatus therefor - Google Patents

Anaerobic treatment method and apparatus therefor

Info

Publication number
JP2003190996A
JP2003190996A JP2001394227A JP2001394227A JP2003190996A JP 2003190996 A JP2003190996 A JP 2003190996A JP 2001394227 A JP2001394227 A JP 2001394227A JP 2001394227 A JP2001394227 A JP 2001394227A JP 2003190996 A JP2003190996 A JP 2003190996A
Authority
JP
Japan
Prior art keywords
gas
water
organic waste
treatment
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001394227A
Other languages
Japanese (ja)
Other versions
JP3700935B2 (en
JP2003190996A5 (en
Inventor
Yasuhiro Honma
康弘 本間
Toshihiro Tanaka
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001394227A priority Critical patent/JP3700935B2/en
Publication of JP2003190996A publication Critical patent/JP2003190996A/en
Publication of JP2003190996A5 publication Critical patent/JP2003190996A5/ja
Application granted granted Critical
Publication of JP3700935B2 publication Critical patent/JP3700935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance ascending flowing anaerobic sludge bed treatment method for an organic solid in wastewater, garbage and other organic waste, and an apparatus therefor. <P>SOLUTION: In the method for anaerobically treating organic waste, the ascending flowing anaerobic sludge bed treatment apparatus having gas-liquid- solid separation parts, which are formed from baffle plates each having an angle of 35° or less with respect to the side wall of the apparatus main body and having an occupying area becoming 1/2 or more the cross-sectional area of the apparatus, in a multistage fashion is used and the inflow organic waste is ground to prepare a slurry containing the ground waste with a mean particle size of 200 μm or less and this slurry is treated directly or after diluted. It is preferable to add a deforming agent to water, to blow air containing no oxygen, especially the gas generated in a gas holder into the apparatus or to mix the organic waste with a part of treated water to subject the resulting mixture to the anaerobic treatment after acid fermentation. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種工場、下水、
し尿、畜産業施設等より排出される有機性の固形廃棄物
等を対象とし、これを無害化する嫌気性汚泥床処理方法
及び装置に関し、更に詳しくは、特に、ガス・液・固分
離部(以下、「GSS部」とも記す)を多段に有する上
向流嫌気性汚泥床処理方法及び装置に関する。
TECHNICAL FIELD The present invention relates to various factories, sewage,
The present invention relates to an anaerobic sludge bed treatment method and apparatus for detoxifying organic solid waste discharged from human waste, livestock industry facilities, etc., and more particularly, particularly to gas / liquid / solid separation unit ( Hereinafter, it also relates to an upflow anaerobic sludge bed treatment method and apparatus having multiple stages of "GSS section".

【0002】[0002]

【従来の技術】廃水中の有機性固形分、厨芥、その他の
有機性廃棄物を処理するメタン発酵処理法は、活性汚泥
法等の好気性処理に比べると曝気のためのエネルギーが
不要であり、余剰汚泥の発生量が少なく、発生するバイ
オガスからエネルギーを回収できるため、省エネルギー
の点で優れている。しかし、メタン生成菌又はメタン発
酵菌は増殖量が少なく、沈降性が悪いので微生物が処理
水とともに流出しやすい。そのため、メタン発酵処理に
用いる発酵槽内の微生物濃度を上げることが困難であっ
た。さらに、コストや敷地等の面で問題点を抱えてい
た。
2. Description of the Related Art Methane fermentation treatment methods for treating organic solids, kitchen waste, and other organic wastes in wastewater require less energy for aeration than aerobic treatments such as activated sludge method. Since the amount of excess sludge generated is small and the energy can be recovered from the generated biogas, it is excellent in energy saving. However, methanogens or methane-fermenting bacteria have a small amount of growth and poor sedimentation properties, so that the microorganisms easily flow out together with the treated water. Therefore, it was difficult to increase the concentration of microorganisms in the fermenter used for methane fermentation treatment. In addition, there were problems in terms of cost and site.

【0003】微生物濃度の高い高効率型の発酵槽とし
て、上向流嫌気性汚泥床法(以下、「UASB」とも記
す)がある。これは近年普及してきた方法で、メタン菌
等の嫌気性菌をグラニュール状に造粒化することによ
り、リアクター内のメタン菌の濃度を高濃度に維持でき
るという特徴があり、その結果、廃水中の有機物の濃度
が相当高い場合でも効率よく処理できる。
An upflow anaerobic sludge bed method (hereinafter, also referred to as "UASB") is a highly efficient fermenter having a high concentration of microorganisms. This is a method that has become widespread in recent years and is characterized in that the concentration of methane bacteria in the reactor can be maintained at a high concentration by granulating anaerobic bacteria such as methane bacteria into granules. Even if the concentration of organic substances therein is considerably high, the treatment can be performed efficiently.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、廃水中
の有機性固形分、厨芥、その他の有機性廃棄物を対象と
した従来のUASB処理法(図2)には、いまなお、以
下に示すような課題がある。 (イ)有機性固形分を含む廃水を処理するとリアクター
内に固形分が堆積し、グラニュール汚泥が処理水ととも
に流出し、処理性能が低下する。 (ロ)GSS部内部でスカムを形成し、発生ガスの捕集
が困難となる。とりわけ、負荷が低く、発生ガス量が少
ない場合には、発生ガスによるスカムの破壊・除去作用
が小さく、スカムを形成しやすい。 (ハ)前記(ロ)の結果、GSS部での発生ガスを捕集
し、排出する効果を失い、汚泥の多大な流出を招き、処
理悪化の原因となる。
However, the conventional UASB treatment method (FIG. 2) for organic solids, garbage, and other organic wastes in wastewater still has the following problems. There is a problem. (A) When wastewater containing organic solids is treated, solids accumulate in the reactor, and granulated sludge flows out together with the treated water, resulting in deterioration of treatment performance. (B) A scum is formed inside the GSS portion, which makes it difficult to collect the generated gas. In particular, when the load is low and the amount of generated gas is small, the action of breaking and removing scum by the generated gas is small, and scum is easily formed. (C) As a result of the above (b), the effect of collecting and discharging the gas generated in the GSS part is lost, causing a large outflow of sludge, which causes deterioration of the treatment.

【0005】このような実情に鑑み、本発明は、廃水中
の有機性固形分、厨芥、その他の有機性廃棄物を対象と
した、高性能な上向流嫌気性汚泥床処理方法及び装置の
提供を目的とする。
In view of such circumstances, the present invention provides a high-performance upward-flow anaerobic sludge bed treatment method and apparatus for organic solids, waste, and other organic wastes in wastewater. For the purpose of provision.

【0006】[0006]

【課題を解決するための手段】本発明は、以下に記載す
る手段によって前記課題を解決した。 (1)有機性廃棄物を嫌気処理する方法において、装置
本体側壁との角度が35度以下、かつ各占有面積が装置
断面積の2分の1以上となる邪魔板により形成されるガ
ス・液・固分離部を多段に有する上向流嫌気性汚泥床処
理装置を用い、かつ、流入する有機性廃棄物を粉砕し、
平均粒径200μm以下のスラリーとして供給し、更
に、有機性廃棄物を含む被処理水を直接、もしくは希釈
して、処理を行うことを特徴とする嫌気性処理方法。
The present invention has solved the above-mentioned problems by the means described below. (1) In a method for anaerobic treatment of organic waste, a gas / liquid formed by a baffle whose angle with the side wall of the apparatus main body is 35 degrees or less and each occupied area is one-half or more of the apparatus cross-sectional area.・ Using an upflow anaerobic sludge bed treatment device having a solid separation section in multiple stages, and crushing inflowing organic waste,
An anaerobic treatment method, which comprises supplying as a slurry having an average particle size of 200 μm or less, and further performing treatment by directly or diluting water to be treated containing organic waste.

【0007】(2)被処理水に消泡剤を添加することに
より、前記ガス・液・固分離部内部での発泡及びスカム
の形成を防止することを特徴とする前記(1)記載の嫌
気性処理方法。 (3)装置内に酸素を含有しない空気を吹き込み、汚泥
層の攪拌及びガス・液・固分離部内部でのスカムの形成
を防止し、かつ、装置内に吹き込まれた酸素を含有しな
い気体をガス・液・固分離部より排出することを特徴と
する前記(1)又は(2)記載の嫌気性処理方法。 (4)流入する有機性廃棄物と前記嫌気性処理装置の処
理水の一部とを混合し、酸発酵した後に嫌気性処理を行
うことを特徴とする前記(1)記載の嫌気性処理方法。
(2) Addition of an antifoaming agent to the water to be treated prevents the formation of foam and scum inside the gas / liquid / solid separation section. Sex processing method. (3) Air containing no oxygen is blown into the device to prevent agitation of the sludge layer and formation of scum inside the gas / liquid / solid separation part, and to remove the gas containing no oxygen blown into the device. The anaerobic treatment method according to the above (1) or (2), wherein the anaerobic treatment is carried out from the gas / liquid / solid separation section. (4) The anaerobic treatment method according to (1), wherein the inflowing organic waste and a part of the treated water of the anaerobic treatment apparatus are mixed, and the anaerobic treatment is performed after acid fermentation. .

【0008】(5)ガス・液・固分離部を多段に有する
上向流嫌気性汚泥床処理装置において、装置本体側壁と
の角度が35度以下、かつ各占有面積が装置断面積の2
分の1以上となる邪魔板により形成されるガス・液・固
分離部を多段に取り付け、流入する有機性廃棄物を平均
粒径200μm以下に粉砕する粉砕機を設置してスラリ
ー化した被処理水を流入する供給管を底部に設けたこと
を特徴とする嫌気性処理装置。
(5) In an upflow anaerobic sludge bed treatment device having multiple stages of gas / liquid / solid separation parts, the angle with the side wall of the device body is 35 degrees or less, and each occupied area is 2 of the device cross-sectional area.
The gas, liquid, and solid separation parts formed by the baffle that becomes one-third or more are attached in multiple stages, and a crusher that crushes the inflowing organic waste to an average particle size of 200 μm or less is installed to make a slurry An anaerobic treatment device, characterized in that a supply pipe for inflowing water is provided at the bottom.

【0009】本発明の骨子は、「流入する有機性廃棄物
を粉砕し、平均粒径200μm以下のスラリーとし、原
水を処理水の循環液や系外から供給する希釈水により必
要に応じて適宜希釈を行う」ことにより、一貫して、流
入水のリアクター内部における装置断面積基準の通水速
度0.05〜5m/hとなるように調節することができ
るようにして、原水中の固形分はリアクター内にとどま
ることなく処理水とともに系外に流出することがないよ
うにしたものであり、さらに、その際の嫌気性処理装置
として、「装置本体側壁との角度が35度以下、かつ各
占有面積が装置断面積の2分の1以上となる邪魔板によ
り形成されるガス・液・固分離部を多段に有する上向流
嫌気汚泥床処理装置」を用いることでリアクター内のガ
ス・液・固分離性能が高まるため、リアクター内にグラ
ニュール汚泥を高濃度に保持することが可能となり、廃
水中の有機性固形分、厨芥、その他の有機性廃棄物を対
象とした高性能な上向流嫌気性汚泥床処理が達成できる
ことにある。
The gist of the present invention is that "inorganic waste that flows in is crushed to obtain a slurry having an average particle size of 200 μm or less, and raw water is appropriately circulated as necessary by circulating liquid of treated water or dilution water supplied from outside the system. By "diluting", it is possible to consistently adjust the water flow rate of the inflow water inside the reactor so that the water flow rate is 0.05 to 5 m / h on the basis of the device cross-sectional area. Is designed so that it does not stay inside the reactor and flows out of the system together with the treated water. Furthermore, as an anaerobic treatment device at that time, "An angle with the side wall of the device body is 35 degrees or less, and The upflow anaerobic sludge bed treatment device that has multiple stages of gas / liquid / solid separation parts formed by baffles that occupy more than half of the device cross-sectional area.・ Solid separation As a result, it is possible to maintain a high concentration of granule sludge in the reactor, which is a high-performance upflow anaerobic sludge targeting organic solids in the wastewater, kitchen waste, and other organic wastes. Floor treatment can be achieved.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して説明するが、本発明はこれに限定されな
い。図1は、嫌気性処理方法を実施するのに好ましい本
発明の上向流嫌気性処理装置の一形態の概要を例示した
図である。図1において、原水送液管1が連通し、上下
を閉塞した筒状のリアクター2の内部の左右両側壁に
は、それぞれに一方の端部を固定し、他方の端部を反対
側の側壁を反対側の側壁方向に向かって、下降しながら
延びている邪魔板3が設置されている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a diagram exemplifying an outline of one embodiment of an upflow anaerobic treatment apparatus of the present invention which is preferable for carrying out an anaerobic treatment method. In FIG. 1, one end is fixed to each of the left and right side walls inside the cylindrical reactor 2 which is connected to the raw water feed pipe 1 and which is closed at the top and bottom, and the other end is attached to the opposite side wall. A baffle plate 3 is installed which extends while descending toward the side wall on the opposite side.

【0011】邪魔板3は、上下方向に3箇所左右交互に
設けてあって、リアクター2の側壁との間にそれぞれ鋭
角の区分スラッジゾーン4a、4b、4cを形成してい
る。リアクター2の側壁と邪魔板3のなす角度θは35
度以下の鋭角であり、占有面積は装置断面積の1/2以
上である。35度を越える角度の場合には、スラッジゾ
ーン4a、4b、4cの邪魔板3にグラニュール汚泥が
堆積し、流動性が不十分となり、デッドスペースが形成
される。また、邪魔板3の占有面積が1/2以下である
と、発生ガスの捕捉が不十分となり、気液固の分離に不
具合を生じる。つまり、リアクター2の中心よりガスが
上方へ抜けてしまい後記のGSS部5にガスを十分に集
積することができなくなる。
The baffle plates 3 are alternately provided at three places in the vertical direction and on the left and right sides, and the sludge zones 4a, 4b, 4c having acute angles are formed between the baffle plates 3 and the side wall of the reactor 2, respectively. The angle θ between the side wall of the reactor 2 and the baffle plate 3 is 35
The angle is less than or equal to a degree, and the occupied area is 1/2 or more of the cross-sectional area of the device. When the angle is more than 35 degrees, granule sludge is deposited on the baffle plate 3 of the sludge zones 4a, 4b, 4c, the fluidity becomes insufficient, and a dead space is formed. Further, if the occupied area of the baffle plate 3 is ½ or less, the generated gas is not sufficiently captured, which causes a problem in the separation of gas-liquid solid. That is, the gas escapes upward from the center of the reactor 2, and the gas cannot be sufficiently accumulated in the GSS portion 5 described later.

【0012】区分スラッジゾーン4a、4b、4c上部
はGSS部5を形成している。反応が開始すると発生ガ
スが集まる気相部5aには、外部と通じる発生ガス回収
配管6への排出口を設けてある。なお、気相部5aから
接続されている発生ガス回収配管6の吐出口は、水を充
填した水封槽7の水中内で開口している。開口位置は水
圧が異なる適宜な水深位にあり、水封槽7には発生ガス
回収配管6から吐き出されたガス流量を測定するガスメ
ーター8を設けられている。ガスメーター8の先には、
ガスホルダー11が設けられている。また、リアクター
2の上端には上澄み液を排出する処理水配管9が開口し
ている。
A GSS portion 5 is formed on the upper portions of the divided sludge zones 4a, 4b and 4c. When the reaction starts, the gas phase portion 5a where the generated gas collects is provided with an outlet to the generated gas recovery pipe 6 communicating with the outside. The discharge port of the generated gas recovery pipe 6 connected from the gas phase portion 5a is opened in the water of the water sealing tank 7 filled with water. The opening position is at an appropriate water depth where the water pressure is different, and the water sealing tank 7 is provided with a gas meter 8 for measuring the flow rate of the gas discharged from the generated gas recovery pipe 6. Beyond the gas meter 8,
A gas holder 11 is provided. Further, a treated water pipe 9 for discharging the supernatant liquid is opened at the upper end of the reactor 2.

【0013】リアクター2には嫌気性菌からなるグラニ
ュール汚泥を投入して使用する。本発明の対象となる嫌
気性処理は、30℃〜35℃を至適温度とした中温メタ
ン発酵処理、50℃〜55℃を至適温度とした高温メタ
ン発酵処理の温度範囲の嫌気性処理を対象としている。
嫌気性菌からなるグラニュール汚泥を投入し、平均粒径
200μm以下に粉砕した廃水中の有機性固形分、厨
芥、その他の有機性廃棄物15を含む原水を送液管1か
らリアクター2へ導入する。原水を処理水の循環液や系
外から供給する希釈水等により必要に応じて適宜希釈を
行い、流入する有機性廃棄物15の液化状況に応じて酸
発酵処理を行うが、酸発酵処理は4時間から4日程度が
妥当である。
Granule sludge made of anaerobic bacteria is put into the reactor 2 for use. The anaerobic treatment targeted by the present invention is an anaerobic treatment in the temperature range of a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C to 35 ° C and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C to 55 ° C. Intended.
Introduce raw water containing organic solids, kitchen waste, and other organic waste 15 in waste water crushed to an average particle size of 200 μm or less into reactor 2 by introducing granule sludge composed of anaerobic bacteria To do. The raw water is appropriately diluted with a circulating liquid of the treated water or a dilution water supplied from outside the system, etc., and the acid fermentation process is performed according to the liquefaction status of the inflowing organic waste 15. 4 hours to 4 days is appropriate.

【0014】流入水のリアクター2内部での通水速度が
0.05〜5m/hとなるように調節する。リアクター
2内では嫌気性菌の介在によって有機性廃棄物が分解
し、分解ガスが発生する。発生したガスは、各区分スラ
ッジゾーン4a、4b、4c上端のGSS部5に別れて
集まり、それぞれに気相部5aを形成し、発生ガス回収
配管6を通じて水封槽7に至る。こうした発生ガスは、
ガスメーター8でその排出量が記録され、ガスホルダー
11に送られる。
The water flow rate of the inflow water inside the reactor 2 is adjusted to be 0.05 to 5 m / h. In the reactor 2, organic waste is decomposed by the interposition of anaerobic bacteria, and decomposed gas is generated. The generated gas is separately collected in the GSS part 5 at the upper end of each of the divided sludge zones 4a, 4b, 4c, forms a gas phase part 5a in each, and reaches the water sealing tank 7 through the generated gas recovery pipe 6. These gases are
The discharged amount is recorded by the gas meter 8 and sent to the gas holder 11.

【0015】発生ガスの一部は、区分スラッジゾーン4
a、4b、4c内でグラニュール汚泥に付着し、その見
かけ比重を軽減させるとともに、グラニュール汚泥を同
伴してGSS部5の水面に達する。こうした発生ガス
は、気泡を形成して水面気泡部5bに一時的に滞留す
る。水面気泡部5bに集合した気泡はやがて破裂し、発
生ガスとグラニュール汚泥とが分離され、グラニュール
汚泥はもとの比重を回復して水中に潜り、発生ガスは発
生ガス回収配管6から水封槽7を経由して、系外に排出
される。有機物が分解して清澄になって水はリアクター
2の上端から、処理水配管9を経由して系外に排出され
る。
A part of the generated gas is partially sludge zone 4
It adheres to the granule sludge in a, 4b, and 4c, reduces its apparent specific gravity, and accompanies the granule sludge to reach the water surface of the GSS part 5. Such generated gas forms bubbles and temporarily stays in the water surface bubble portion 5b. The air bubbles collected in the water surface air bubble portion 5b eventually burst, the generated gas and the granulated sludge are separated, the granulated sludge recovers its original specific gravity and dives into the water, and the generated gas is recovered from the generated gas recovery pipe 6. It is discharged to the outside of the system via the sealing tank 7. Water is discharged from the upper end of the reactor 2 through the treated water pipe 9 to the outside of the system by decomposing the organic matter to clarify.

【0016】各GSS部5の気相部のガス圧は異なるの
で、その差圧は水封槽7で調整するとよい。原水送液側
に近い順に水封圧は高く保つ必要がある。ガス回収の圧
調整は、水封槽7を使う方法以外にも多くの方法があ
る。例えば圧力弁等を使用してもよい。本発明の嫌気性
処理方法においては、各区分スラッジゾーン4a、4
b、4c毎に、そこで発生する発生ガスを回収できるた
め、リアクター2の単位断面積当たりの発生ガス量が少
なくなる。特に処理水を流出させる処理水配管9に最も
近い所では、リアクター2の単位断面積当たりのガス量
が小さくなる。そのため、グラニュール汚泥の系外流出
量を極く少なくすることができる。
Since the gas pressure of the gas phase portion of each GSS portion 5 is different, it is advisable to adjust the pressure difference in the water sealing tank 7. It is necessary to keep the water sealing pressure high in the order of getting closer to the raw water feed side. There are many methods for adjusting the pressure for gas recovery other than the method using the water sealing tank 7. For example, a pressure valve or the like may be used. In the anaerobic treatment method of the present invention, the divided sludge zones 4a, 4
Since the generated gas generated there can be recovered for each of b and 4c, the amount of generated gas per unit cross-sectional area of the reactor 2 is reduced. In particular, the amount of gas per unit cross-sectional area of the reactor 2 becomes small at a position closest to the treated water pipe 9 through which treated water flows out. Therefore, the amount of granulated sludge flowing out of the system can be extremely reduced.

【0017】GSS部5を多段に設置したリアクター2
では、通水速度を0.05〜5m/h、好ましくは0.
5〜5m/hとすることにより、グラニュール汚泥層の
流動状態が良好となり、また、リアルター2内の90%
以上のグラニュール汚泥は、粒径0.5〜1.5mmと
なる。そのため、廃水中の有機性固形分、厨芥、その他
の有機性廃棄物15を粉砕機14で粉砕し、平均粒径を
200μm以下、好ましくは50μm以下の原水とする
ことによって、グラニュール汚泥層の流動が良好になる
ため、有機性廃棄物由来の固形分がリアクター2内に堆
積することなく、メタン発酵処理を受け、さらに、通水
速度を0.05〜5m/hと高めることにより処理水と
ともに流出する。一方、原水に比べ、粒径、比重の大き
いグラニュール汚泥はリアクター2内にとどまる。
Reactor 2 in which GSS section 5 is installed in multiple stages
Then, the water flow rate is 0.05 to 5 m / h, preferably 0.
By setting it to 5 to 5 m / h, the flow condition of the granule sludge layer becomes good, and 90% of the realter 2
The above granule sludge has a particle size of 0.5 to 1.5 mm. Therefore, the organic solid content, kitchen waste, and other organic wastes 15 in the waste water are crushed by a crusher 14 to obtain raw water having an average particle size of 200 μm or less, preferably 50 μm or less, thereby forming a granule sludge layer. Since the flow becomes good, the solid content derived from the organic waste is not accumulated in the reactor 2 and is subjected to the methane fermentation treatment, and the treated water is further increased by increasing the water flow rate to 0.05 to 5 m / h. Flows out with. On the other hand, the granulated sludge, which has a larger particle size and a larger specific gravity than the raw water, stays in the reactor 2.

【0018】本発明の嫌気性処理は、30℃〜35℃を
至適温度とした中温メタン発酵処理、50℃〜55℃を
至適温度とした高温メタン発酵処理であり、水温が30
℃以上であるため、リアクター2内の有機性廃棄物15
を粉砕機14で粉砕し、平均粒径を200μm以下とし
た原水の粘性は低下する。そのため、原水の粘性による
グラニュール汚泥層の流動状態の悪化、及びグラニュー
ル汚泥の系外への流出は生じない。
The anaerobic treatment of the present invention is a medium temperature methane fermentation treatment in which the optimum temperature is 30 ° C to 35 ° C and a high temperature methane fermentation treatment in which the optimum temperature is 50 ° C to 55 ° C, and the water temperature is 30.
Since it is above ℃, the organic waste in the reactor 2 15
Is crushed by a crusher 14 to reduce the viscosity of the raw water having an average particle size of 200 μm or less. Therefore, the flow state of the granule sludge layer due to the viscosity of the raw water does not deteriorate, and the granule sludge does not flow out of the system.

【0019】発泡性の原水の場合には、GSS部5内の
気相部5a及び発生ガス回収配管6が閉塞し、発生ガス
の回収が困難となる。このような場合、リアクター2へ
の流入水に予め消泡剤10を加えることにより、GSS
部5内での発泡を抑えることができる。GSS部5内に
消泡剤10を滴下、噴霧する方法に比べ、本手法は密閉
空間での消泡に効果的である。消泡剤10は原水性状に
応じた消泡効果を有し、発酵液の消泡に適した、中温
(30〜35℃)あるいは高温(50℃〜55℃)にお
いて消泡効果をなくすことのない消泡剤を使用する。消
泡剤10の種類としては、シリコーン系消泡剤、アルコ
ール系消泡剤の何れも使用が可能である。また、原水の
性状によっては、発泡を抑制することによりスカムの形
成を防止することが可能となる。
In the case of foaming raw water, the gas phase portion 5a in the GSS portion 5 and the generated gas recovery pipe 6 are blocked, and it becomes difficult to recover the generated gas. In such a case, by adding the defoaming agent 10 to the water flowing into the reactor 2 in advance,
Foaming in the part 5 can be suppressed. This method is more effective for defoaming in the closed space than the method of dropping and spraying the defoaming agent 10 in the GSS portion 5. The defoaming agent 10 has a defoaming effect according to the state of the raw water and is suitable for defoaming the fermentation liquor at a medium temperature (30 to 35 ° C.) or a high temperature (50 ° C. to 55 ° C.) to eliminate the defoaming effect. Use no defoamer. As the type of the defoaming agent 10, either a silicone defoaming agent or an alcohol defoaming agent can be used. Further, depending on the properties of the raw water, it is possible to prevent the formation of scum by suppressing foaming.

【0020】原水が高SSである場合には、GSS部5
内の気泡部表面及び内部にスカムを形成するため、発生
ガスの回収が困難となる。このような場合には、発生ガ
ス吹き込み配管13を散気管12に接続し、ガスホルダ
ー11内の発生ガスをGSS部5内に供給することによ
ってスカムの破壊あるいはスカムの形成防止が可能とな
る。破壊されたスカムはリアクター2内の液の流れとと
もに処理水として排出される。
When the raw water has a high SS, the GSS part 5
Since scum is formed on the surface of and inside the air bubble portion, it is difficult to collect the generated gas. In such a case, by connecting the generated gas blowing pipe 13 to the diffuser pipe 12 and supplying the generated gas in the gas holder 11 into the GSS portion 5, it becomes possible to prevent the scum from breaking or prevent the scum from forming. The destroyed scum is discharged as treated water together with the liquid flow in the reactor 2.

【0021】各GSS部5で吹き込みガスを回収できる
ため、リアクター2の単位断面積当たりの発生ガス量が
少なく、特に処理水を流出させる処理水配管9に最も近
い所では、リアクター2の単位断面積当たりのガス量が
小さくなり、グラニュール汚泥の系外流出量を極く少な
くすることができる機能を損なわない。散気管12はリ
アクター2の下部あるいは各GSS部5の下部に配置す
る。吹き込みガスによりグラニュール汚泥層が攪拌さ
れ、グラニュール汚泥と流入廃水の接触は良好となり、
特に、リアクター2本体内に流入する有機物負荷量が少
ない場合には、これにより発生するガスの量も少ないた
め、吹き込みガスによるグラニュール汚泥層の攪拌の効
果は大きい。
Since the blown-in gas can be recovered in each GSS part 5, the amount of generated gas per unit cross-sectional area of the reactor 2 is small, and particularly in the place closest to the treated water pipe 9 through which treated water flows out, the unit disconnection of the reactor 2 is performed. The amount of gas per area is reduced, and the function of minimizing the outflow of granule sludge from the system is not impaired. The air diffuser 12 is arranged at the lower part of the reactor 2 or the lower part of each GSS part 5. The granulated sludge layer is agitated by the blown gas, and the contact between the granulated sludge and the inflowing wastewater becomes good,
In particular, when the load of organic substances flowing into the main body of the reactor 2 is small, the amount of gas generated by this is small, so that the effect of stirring the granulated sludge layer by the blown gas is large.

【0022】なお、GSS部5内部のスカムを破壊・除
去するためにGSS部5内に吹き込む気体は、窒素ガス
等の酸素を含まない、メタン発酵等の生物処理に影響を
与えない気体を使用できるが、嫌気性処理によって発生
したガスを使用することが望ましい。ガスを吹き込む頻
度は、廃水の性状にもよるが、1日に1回から1週間に
1回とすることによって、GSS部5内部のスカムを破
壊・除去の効果がある。また、ガスを吹き込む頻度を1
日に1回以上とすることで、汚泥層の攪拌効果が、さら
に高まる。
As the gas blown into the GSS part 5 to destroy and remove the scum inside the GSS part 5, a gas that does not contain oxygen such as nitrogen gas and does not affect biological treatment such as methane fermentation is used. Although possible, it is desirable to use the gas generated by the anaerobic treatment. The frequency of blowing the gas depends on the nature of the wastewater, but by setting it once a day to once a week, the scum inside the GSS part 5 is effectively destroyed and removed. In addition, the frequency of blowing gas is 1
By setting it once or more a day, the stirring effect of the sludge layer is further enhanced.

【0023】[0023]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例によって限定されるもの
ではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0024】実施例1 図3に、実験に用いた上向流嫌気性汚泥床装置の概要を
示す。A系列は嫌気処理の従来法であり、(a)に従来
法として図示するものである。B系列はUASBの従来
法であり、(b)に示すように図2の構造を有するもの
である。C系列は傾斜する邪魔板を3個取り付け、装置
側壁と邪魔板との角度を30度とし、原水に消泡剤を添
加し、散気管から発生ガスを吹き込むスカムの破壊・除
去機能を付加した系列である。C系列は本発明に基づく
系列であり、(c)に示すように図1に示す構成からな
るものである。
Example 1 FIG. 3 shows an outline of the upflow anaerobic sludge bed apparatus used in the experiment. The A series is a conventional method for anaerobic treatment, and is shown as a conventional method in (a). The B series is the conventional method of UASB and has the structure of FIG. 2 as shown in (b). In the C series, three inclined baffles were attached, the angle between the side wall of the device and the baffle was set to 30 degrees, an antifoaming agent was added to the raw water, and the function of destroying and removing the scum that blows the generated gas from the diffuser pipe was added. It is a series. The C series is a series based on the present invention, and has the configuration shown in FIG. 1 as shown in (c).

【0025】液層部の容量は1m3である。リアクター
内の水温は、56℃になるように温度制御されている。
原水には、食品工場から排出される有機性廃棄物と活性
汚泥処理設備の余剰汚泥の混合物を用いた。原水のTS
は10g/リットル、COD Cr(以下、「COD」と記
す)は18g/リットルである。A系列及びB系列では
原水を酸発酵処理した後、リアクターに供給した。C系
列では原水を粉砕機で粉砕し、平均粒径を50μm以下
として酸発酵処理をした後リアクターに供給した。C系
列での発生ガスの散気管からの吹き込みは、1日当たり
2回とした。C系列では、流出液を原水とともにリアク
ターに流入させ、通水速度を1m/hに設定した。
The volume of the liquid layer is 1 m3Is. reactor
The temperature of the water inside is controlled to 56 ° C.
Raw water contains organic waste and active substances emitted from food factories.
A mixture of excess sludge from a sludge treatment facility was used. Raw water TS
Is 10 g / liter, COD Cr(Hereinafter referred to as "COD"
Is 18 g / liter. In A series and B series
The raw water was acid-fermented and then fed to the reactor. C series
In the row, raw water is crushed with a crusher, and the average particle size is 50 μm or less
Then, after acid fermentation treatment, it was supplied to the reactor. C series
Insufflation of evolved gas from the diffuser tube in a row per day
It was twice. In the C series, the effluent and the raw water
The water flow rate was set to 1 m / h.

【0026】図4に実験経過と流出液の酢酸濃度、CO
D分解率の処理成績の変化を示し、(d)はCOD負荷
の変化を、(e)は流出液酢酸濃度の変化を、(f)は
COD分解率の変化を示す。 A系列では90日後にC
OD負荷を7kg/m3/dとしたところ、過負荷のた
め、流出液の酢酸濃度が1300mg/リットルと高く
なり、分解率が30%まで低下した。100日後以降に
COD負荷を5kg/m3/dとしたところ、流出液の
酢酸濃度は500mg/リットル以下で安定し、COD
分解率は65%になった。
FIG. 4 shows the progress of the experiment and the acetic acid concentration in the effluent, CO
The change in the treatment result of the D decomposition rate is shown, (d) shows the change of the COD load, (e) shows the change of the acetic acid concentration of the effluent, and (f) shows the change of the COD decomposition rate. After 90 days in the A series, C
When the OD load was set to 7 kg / m 3 / d, the acetic acid concentration in the effluent increased to 1300 mg / liter due to overload, and the decomposition rate decreased to 30%. When the COD load was set to 5 kg / m 3 / d after 100 days, the acetic acid concentration in the effluent was stable at 500 mg / liter or less,
The decomposition rate became 65%.

【0027】B系列では、80日後にCOD負荷を4k
g/m3/dとしたところ、過負荷のため、流出液の酢
酸濃度が1300mg/リットルと高くなり、COD分
解率が30%まで低下した。90日後以降にCOD負荷
を3kg/m3/dとしたところ、流出液の酢酸濃度は
500mg/リットル以下で安定し、COD分解率は6
5%になった。GSS部内部の発泡、スカムの形成が認
められ、発生ガスの回収が不十分となり、また、原水の
固形物成分がリアクター内に堆積したが、投入したCO
D負荷が低く、発生ガス量も少ないため、発生ガスの上
昇による汚泥層の攪拌が弱くなる。この結果、汚泥のデ
ッドスペースが広がり、汚泥と流入廃水の接触が不十分
となり、負荷を高めることが困難であった。
In the B series, the COD load is 4k after 80 days.
When g / m 3 / d was set, the acetic acid concentration in the effluent increased to 1300 mg / liter due to the overload, and the COD decomposition rate decreased to 30%. When the COD load was set to 3 kg / m 3 / d after 90 days, the acetic acid concentration in the effluent was stable at 500 mg / liter or less, and the COD decomposition rate was 6%.
It became 5%. Foaming inside the GSS part and formation of scum were observed, recovery of generated gas was insufficient, and solid components of raw water were accumulated in the reactor.
Since the D load is low and the amount of generated gas is small, the agitation of the sludge layer due to the rise of the generated gas becomes weak. As a result, the dead space of sludge expands, contact between sludge and inflowing wastewater becomes insufficient, and it is difficult to increase the load.

【0028】一方、原水を粉砕機で粉砕し、平均粒径を
50μm以下とし、GSS部を多段とすることでグラニ
ュール汚泥保持性能が向上し、消泡剤を添加することこ
とによってGSS部内部の発泡を抑制し、発生ガスを吹
き込むことによりGSS部内部のスカム形成の防止、及
びグラニュール汚泥層の良好な攪拌を行ったC系列で
は、110日後以降にCOD負荷15kg/m3/dで
流出液の酢酸濃度が500mg/リットル以下、COD
分解率75%の処理が可能であった。本発明法であるC
系列では、従来法のA、B系列に比べ、3倍以上の高負
荷処理が可能となり、COD分解率が向上した。第1表
に各系列の処理成績の比較を示す。
On the other hand, the raw water is crushed by a crusher to have an average particle size of 50 μm or less and the GSS part has multiple stages to improve the granule sludge retention performance. By adding a defoaming agent, the inside of the GSS part can be improved. In the C series, which suppresses the foaming of the slag and prevents the formation of scum inside the GSS part by blowing the generated gas, and the granule sludge layer is well stirred, the COD load is 15 kg / m 3 / d after 110 days. The acetic acid concentration of the effluent is 500 mg / liter or less, COD
A treatment with a decomposition rate of 75% was possible. The method C of the present invention
Compared with the conventional methods A and B, the series can perform high-load treatment three times or more, and the COD decomposition rate is improved. Table 1 shows a comparison of the processing results of each series.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例2 C,D系列ともに、傾斜する邪魔板を3ケ取り付け、装
置側壁と邪魔板との角度を30度とし、原水に消泡剤を
添加し、散気管から発生ガスを吹き込む、スカムの破壊
・除去機能を付加した系列である。液層部の容量は1m
3である。リアクター内の水温は56℃になるように温
度制御されている。原水には、食品工場から排出される
有機性廃棄物及び活性汚泥処理設備の余剰汚泥の混合物
を用いた。原水のTSは10g/リットル、COD
Cr(以下、CODと記す)は18g/リットルである。
A系列及びB系列では原水を酸発酵処理した後、リアク
ターに供給した。C系列では原水を粉砕機で粉砕し、平
均粒径を50μm以下として酸発酵処理した後、リアク
ターに供給した。D系列では平均粒径2mmの原水を粉
砕しないで酸発酵処理した後、リアクターに供給した。
C系列が本発明法である。
Example 2 For both C and D series, install 3 inclined baffle plates
The angle between the side wall and the baffle plate is 30 degrees, and defoamer is added to the raw water.
Addition and blowing of generated gas from the diffuser, destruction of scum
-It is a series with the removal function added. Volume of liquid layer is 1m
3Is. The water temperature in the reactor should be warmed to 56 ° C.
Controlled. Raw water is discharged from the food factory
Mixture of organic waste and excess sludge from activated sludge treatment equipment
Was used. Raw water TS is 10g / liter, COD
Cr(Hereinafter referred to as COD) is 18 g / liter.
In the A series and B series, raw water is subjected to acid fermentation treatment, and then
Supplied to the tar. In the C series, raw water is crushed with a crusher and
After acid fermentation treatment with a uniform particle size of 50 μm or less,
Supplied to the tar. In the D series, raw water with an average particle size of 2 mm is powdered
After acid fermentation treatment without crushing, it was supplied to the reactor.
The C series is the method of the present invention.

【0031】C,D系列ともに発生ガスの散気管からの
吹き込みは1日当たり2回とし、流出液を原水とともに
リアクターに流入させ、通水速度を1m/hに設定し
た。図5に実験経過と流出液の酢酸濃度、COD分解率
の処理成績の変化を示し、(g)はCOD負荷の変化
を、(h)は流出液酢酸濃度の変化を、(i)はCOD
分解率の変化を示す。C系列では、110日後以降にC
OD負荷15kg/m3/dで流出液の酢酸濃度が50
0mg/リットル以下、COD分解率75%の処理が可
能であった。一方、D系列ではCOD負荷を1kg/m
3/dで運転を行っていたが、20日後以降、流出液の
酢酸濃度が1000mg/リットル以上と高くなり、C
OD分解率が30%以下に低下した。これは平均粒径2
mmの固形分を含む廃水を処理することでリアクター内
に固形分が堆積し、グラニュール汚泥が処理水とともに
流出し、処理性能が低下したためである。
In both the C and D series, the generated gas was blown from the diffuser tube twice a day, the effluent was introduced into the reactor together with the raw water, and the water flow rate was set to 1 m / h. Fig. 5 shows the progress of the experiment and changes in the acetic acid concentration of the effluent and the treatment results of the COD decomposition rate. (G) shows the change of COD load, (h) shows the change of effluent acetic acid concentration, and (i) shows COD.
The change in the decomposition rate is shown. In the C series, C after 110 days
At an OD load of 15 kg / m 3 / d, the acetic acid concentration of the effluent was 50
A treatment with a COD decomposition rate of 75% or less was possible at 0 mg / liter or less. On the other hand, in the D series, the COD load is 1 kg / m.
It was operated at 3 / d, but after 20 days, the acetic acid concentration in the effluent increased to 1000 mg / liter or more, and C
The OD decomposition rate decreased to 30% or less. This is the average particle size 2
This is because the solid content is accumulated in the reactor by treating the waste water containing the solid content of mm, and the granulated sludge flows out together with the treated water, and the treatment performance is deteriorated.

【0032】[0032]

【発明の効果】本発明によれば、装置本体側壁との角度
が35度以下、かつ、各占有面積が装置断面積の2分の
1以上となる邪魔板により形成されるガス・液・固分離
部を多段に有する上向流嫌気性汚泥床処理装置を使用す
ることにより、リアクター内の発生ガス・処理水・汚泥
の分離性能が向上し、リアクター内のグラニュール汚泥
保持量が高まり、かつ流入する有機性廃棄物を粉砕し、
平均粒径200μm以下のスラリーとし、原水を処理水
の循環液や系外から供給する希釈水により必要に応じて
適宜希釈を行うことにより、一貫して、流入水のリアク
ター内部における装置断面積基準の通水速度が0.05
〜5m/hとなるように調節することができ、それによ
って原水中の固形分はリアクター内にとどまることなく
処理水とともに系外に流出させることができる。さら
に、消泡剤を添加することによって、前記ガス・液・固
分離部内部での発泡及びスカムの形成を防止すること、
及びガス・液・固分離部内部に酸素を含有しない気体を
吹き込むことにより、このガス・液・固分離部内部での
スカムの形成を防止することができる。これらにより、
廃水中の有機性固形分、厨芥、その他の有機性廃棄物を
対象とした高性能な上向流嫌気性汚泥床処理が達成でき
る嫌気性処理方法と、これを実施する装置を提供するこ
とができる。
According to the present invention, the gas / liquid / solid formed by the baffle plate having an angle with the side wall of the main body of the device of 35 degrees or less and each occupied area of ½ or more of the cross-sectional area of the device. By using an upflow anaerobic sludge bed treatment device that has multiple separation sections, the separation performance of generated gas, treated water, and sludge in the reactor is improved, and the granule sludge retention amount in the reactor is increased, and Crush the inflowing organic waste,
By making the slurry with an average particle size of 200 μm or less and appropriately diluting the raw water with the circulating fluid of the treated water or the dilution water supplied from outside the system, the cross-sectional area of the equipment inside the reactor can be consistently standardized. Water flow rate is 0.05
The solid content in the raw water can be discharged out of the system together with the treated water without staying in the reactor. Furthermore, by adding an antifoaming agent, preventing foaming and scum formation inside the gas / liquid / solid separation section,
Also, by blowing a gas containing no oxygen into the gas / liquid / solid separation section, it is possible to prevent the formation of scum inside the gas / liquid / solid separation section. With these,
(EN) An anaerobic treatment method capable of achieving high-performance upward-flow anaerobic sludge bed treatment of organic solids, kitchen waste, and other organic wastes in wastewater, and an apparatus for implementing the method. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の上向流嫌気性処理装置の一形態を例示
した模式図。
FIG. 1 is a schematic view illustrating one embodiment of an upflow anaerobic treatment apparatus of the present invention.

【図2】従来の上向流嫌気性処理装置の一形態を例示し
た模式図。
FIG. 2 is a schematic view illustrating an example of a conventional upflow anaerobic treatment apparatus.

【図3】実験に用いたA〜C系列で使用した処理装置を
示す図であり、(a)はA系列で、(b)はB系列で、
(c)はC系列でそれぞれ使用した処理装置である。
FIG. 3 is a diagram showing a processing device used in the A to C series used in the experiment, where (a) is the A series and (b) is the B series.
(C) is a processing device used in each of the C series.

【図4】実施例1における実験経過と流出液酢酸濃度と
COD処理成績の変化を示す図であり、(d)はCOD
負荷の変化を、(e)は流出液酢酸濃度の変化を、
(f)はCOD分解率の変化を示す。
FIG. 4 is a graph showing changes in the experimental course, acetic acid concentration in the effluent, and COD treatment results in Example 1, where (d) is COD.
Change in load, (e) change in acetic acid concentration in the effluent,
(F) shows the change in the COD decomposition rate.

【図5】実施例2における実験経過と流出液酢酸濃度と
COD処理成績の変化を示す図であり、(g)はCOD
負荷の変化を、(h)は流出液酢酸濃度の変化を、
(i)はCOD分解率の変化を示す。
FIG. 5 is a diagram showing changes in the experimental course, acetic acid concentration in the effluent, and COD treatment results in Example 2, where (g) is COD.
Load changes, (h) changes in effluent acetic acid concentration,
(I) shows the change in the COD decomposition rate.

【符号の説明】[Explanation of symbols]

1 原水送液管 2 リアクター 3 邪魔板 4a 区分スラッジゾーン 4b 区分スラッジゾーン 4c 区分スラッジゾーン 5 GSS部 5a 気相部 5b 気泡部 6 発生ガス回収配管 7 水封槽 8 ガスメータ 9 処理水配管 10 消泡剤 11 ガスホルダー 12 散気管 13 発生ガス吹き込み配管 14 粉砕機 15 有機性廃棄物 21 流入原水 22 リアクター 23 汚泥層 24 処理水 25 GSS部 26 ガス排出管 27 攪拌装置 28 攪拌翼 29 モーター 1 Raw water delivery pipe 2 reactor 3 baffles 4a Classification sludge zone 4b Classification sludge zone 4c Classification sludge zone 5 GSS section 5a Gas phase part 5b Bubble part 6 Generated gas recovery piping 7 water sealed tank 8 gas meters 9 Treated water piping 10 Defoamer 11 gas holder 12 Air diffuser 13 Generated gas blowing piping 14 crusher 15 Organic waste 21 Inflow raw water 22 Reactor 23 Sludge layer 24 Treated water 25 GSS Department 26 Gas exhaust pipe 27 Stirrer 28 Stirrer 29 motor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D004 AA03 BA03 CA04 CA18 CA19 CC20 DA03 DA20 4D011 CA01 CB01 4D059 AA05 AA07 BA13 BA21 BJ09 BK11 BK14 DB02 DB40    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D004 AA03 BA03 CA04 CA18 CA19                       CC20 DA03 DA20                 4D011 CA01 CB01                 4D059 AA05 AA07 BA13 BA21 BJ09                       BK11 BK14 DB02 DB40

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機性廃棄物を嫌気処理する方法におい
て、装置本体側壁との角度が35度以下、かつ各占有面
積が装置断面積の2分の1以上となる邪魔板により形成
されるガス・液・固分離部を多段に有する上向流嫌気性
汚泥床処理装置を用い、かつ、流入する有機性廃棄物を
粉砕し、平均粒径200μm以下のスラリーとして供給
し、更に、有機性廃棄物を含む被処理水を直接、もしく
は希釈して、処理を行うことを特徴とする嫌気性処理方
法。
1. A method of anaerobically treating organic waste, wherein a gas is formed by a baffle plate having an angle of 35 degrees or less with a device body side wall and each occupied area being ½ or more of a device cross-sectional area.・ Using an upflow anaerobic sludge bed treatment device with multiple stages of liquid / solid separation, and crushing the inflowing organic waste and supplying it as a slurry with an average particle size of 200 μm or less, and further organic waste An anaerobic treatment method characterized in that treatment is carried out by directly or diluting water to be treated containing substances.
【請求項2】 被処理水に消泡剤を添加することによ
り、前記ガス・液・固分離部内部での発泡及びスカムの
形成を防止することを特徴とする請求項1記載の嫌気性
処理方法。
2. The anaerobic treatment according to claim 1, wherein foaming and scum formation inside the gas / liquid / solid separation section are prevented by adding an antifoaming agent to the water to be treated. Method.
【請求項3】 装置内に酸素を含有しない空気を吹き込
み、汚泥層の攪拌及びガス・液・固分離部内部でのスカ
ムの形成を防止し、かつ、装置内に吹き込まれた酸素を
含有しない気体をガス・液・固分離部より排出すること
を特徴とする請求項1又は請求項2記載の嫌気性処理方
法。
3. An air containing no oxygen is blown into the apparatus to prevent agitation of the sludge layer and formation of scum inside the gas / liquid / solid separation section, and to contain no oxygen blown into the apparatus. The anaerobic treatment method according to claim 1 or 2, wherein the gas is discharged from the gas / liquid / solid separation section.
【請求項4】 流入する有機性廃棄物と前記嫌気性処理
装置の処理水の一部とを混合し、酸発酵した後に嫌気性
処理を行うことを特徴とする請求項1記載の嫌気性処理
方法。
4. The anaerobic treatment according to claim 1, wherein the inflowing organic waste and a part of the treated water of the anaerobic treatment apparatus are mixed and acid-fermented, and then the anaerobic treatment is performed. Method.
【請求項5】 ガス・液・固分離部を多段に有する上向
流嫌気性汚泥床処理装置において、装置本体側壁との角
度が35度以下、かつ各占有面積が装置断面積の2分の
1以上となる邪魔板により形成されるガス・液・固分離
部を多段に取り付け、流入する有機性廃棄物を平均粒径
200μm以下に粉砕する粉砕機を設置してスラリー化
した被処理水を流入する供給管を底部に設けたことを特
徴とする嫌気性処理装置。
5. An upflow anaerobic sludge bed treatment apparatus having a gas / liquid / solid separation section in multiple stages, the angle with the side wall of the apparatus main body is 35 degrees or less, and each occupied area is half of the apparatus cross-sectional area. The gas / liquid / solid separation parts formed by one or more baffle plates are attached in multiple stages, and a crusher for crushing the inflowing organic waste to an average particle size of 200 μm or less is installed to treat slurry water to be treated. An anaerobic treatment device having an inflow supply pipe provided at the bottom.
JP2001394227A 2001-12-26 2001-12-26 Anaerobic treatment method and apparatus Expired - Fee Related JP3700935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394227A JP3700935B2 (en) 2001-12-26 2001-12-26 Anaerobic treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001394227A JP3700935B2 (en) 2001-12-26 2001-12-26 Anaerobic treatment method and apparatus

Publications (3)

Publication Number Publication Date
JP2003190996A true JP2003190996A (en) 2003-07-08
JP2003190996A5 JP2003190996A5 (en) 2005-02-03
JP3700935B2 JP3700935B2 (en) 2005-09-28

Family

ID=27601022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394227A Expired - Fee Related JP3700935B2 (en) 2001-12-26 2001-12-26 Anaerobic treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3700935B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014864A (en) * 2005-07-06 2007-01-25 Sumitomo Heavy Ind Ltd Anaerobic treatment method and treatment apparatus of waste water
JP2007098228A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Method and apparatus for treatment of organic waste
CN102626708A (en) * 2012-04-01 2012-08-08 农业部沼气科学研究所 Household garbage bioreactor and aerobic-anaerobic-semi-aerobic circulation treatment method
KR101219494B1 (en) 2010-06-10 2013-01-11 한성국 Pretreatment method of high concentrated ogranic sludges to applying for uasb

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014864A (en) * 2005-07-06 2007-01-25 Sumitomo Heavy Ind Ltd Anaerobic treatment method and treatment apparatus of waste water
JP2007098228A (en) * 2005-09-30 2007-04-19 Kurita Water Ind Ltd Method and apparatus for treatment of organic waste
KR101219494B1 (en) 2010-06-10 2013-01-11 한성국 Pretreatment method of high concentrated ogranic sludges to applying for uasb
CN102626708A (en) * 2012-04-01 2012-08-08 农业部沼气科学研究所 Household garbage bioreactor and aerobic-anaerobic-semi-aerobic circulation treatment method

Also Published As

Publication number Publication date
JP3700935B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP2010042352A (en) Anaerobic treatment method and apparatus
CN108046516A (en) A kind of OCO activated sludge modified technique and device for being used to strengthen urban wastewater treatment
WO2023138073A1 (en) Ultrasonic wastewater treatment device and method
JP2008086862A (en) Anaerobic treatment method and arrangement
JP4671434B2 (en) Ammonia inhibition suppression type methane fermentation equipment
JP6497871B2 (en) Method and apparatus for treating oil-containing wastewater
JP2003326295A (en) Method and apparatus for treating organic waste water
JP2003190996A (en) Anaerobic treatment method and apparatus therefor
JP2003190986A (en) Anaerobic treatment method and apparatus therefor
JP2006281215A (en) Apparatus for treating organic waste water and method therefor
JP4162234B2 (en) Anaerobic treatment equipment
JP2006212483A (en) Treatment equipment for sewage containing collected night soil and the like
JP4001507B2 (en) Method and apparatus for treating organic wastewater
KR100593010B1 (en) A Sewage Treatment System Equiped Ultrasonic Sludge Disintegration Reactor, adopted Split FloW
JP2004089858A (en) Organic waste processing method and apparatus
JP2006320777A (en) Waste water treatment apparatus
JP3852109B2 (en) Methane fermentation treatment equipment
CN106745708A (en) A kind of compound type sludge bed reactor and its application
JP2002001384A (en) Treating method for organic waste water and treating apparatus for the same
JP2007117867A (en) Method and equipment for treating organic solid
JP4503248B2 (en) Wastewater treatment method
KR100478044B1 (en) Decomposition device of organic waste
CN217103481U (en) Small-size sewage treatment device
CN114074998B (en) Pretreatment method and system for preventing pipeline scaling and recovering cooperative resources
JP2005254199A (en) Method and apparatus for wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050707

R150 Certificate of patent or registration of utility model

Ref document number: 3700935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees