JP2010042352A - Anaerobic treatment method and apparatus - Google Patents

Anaerobic treatment method and apparatus Download PDF

Info

Publication number
JP2010042352A
JP2010042352A JP2008208036A JP2008208036A JP2010042352A JP 2010042352 A JP2010042352 A JP 2010042352A JP 2008208036 A JP2008208036 A JP 2008208036A JP 2008208036 A JP2008208036 A JP 2008208036A JP 2010042352 A JP2010042352 A JP 2010042352A
Authority
JP
Japan
Prior art keywords
anaerobic treatment
water
treatment device
circulating water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008208036A
Other languages
Japanese (ja)
Other versions
JP5114780B2 (en
Inventor
Kazumasa Kamaike
一将 蒲池
Yuji Tsukamoto
祐司 塚本
Yasuhiro Honma
康弘 本間
Asei Mizuoka
亜聖 水岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2008208036A priority Critical patent/JP5114780B2/en
Publication of JP2010042352A publication Critical patent/JP2010042352A/en
Application granted granted Critical
Publication of JP5114780B2 publication Critical patent/JP5114780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable and high-performance methane fermentation treatment method and apparatus for organic wastewater. <P>SOLUTION: In an anaerobic treatment method for biologically treating organic wastewater by using an upflow anaerobic treatment device having multi-stage gas/liquid/solid separation portions filled with granule sludge and/or carriers, water in the upflow anaerobic treatment device is drawn as circulating water from a circulating water intake ports disposed above the interface of the granule sludge and/or the carriers and below the gas/liquid/solid separation portion arranged at the highest stage, and the circulating water is circulated to the bottom of the upflow anaerobic treatment device and/or a raw water inflow part and/or a preceding treatment device of the upflow anaerobic treatment device. The intake ports are arranged according to the area or arrangement of passages formed by the gas/liquid/solid separation portions. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、食品工場、化学工場、紙パルプ工場などの各種工場より排出される有機性廃水等を対象とし、この廃水を処理する嫌気性処理方法及び装置、特にメタン発酵処理方法及び装置に関するものである。   The present invention is directed to organic wastewater discharged from various factories such as food factories, chemical factories, and paper pulp factories, and relates to an anaerobic treatment method and apparatus for treating this wastewater, and particularly to a methane fermentation treatment method and apparatus. It is.

有機性廃水をメタン発酵により分解して処理するメタン発酵処理法は、活性汚泥法等の好気性処理に比べると曝気のためのエネルギーが不要であり、余剰汚泥が少なく、発生するバイオガスからエネルギーを回収できるため、省エネルギーの点で優れている。しかし、メタン生成菌は増殖量が少なく、沈降性が悪いので微生物が処理水とともに流出しやすい。そのため、メタン発酵処理に用いる発酵槽内の微生物濃度を上げることが困難であった。さらに、コストや敷地等の面で問題点を抱えていた。
微生物濃度の高い、高効率型のメタン発酵槽として上向流嫌気性汚泥床法(Up−flow Anaerobic Sludge Blanket Process;以後「UASB」と記す)や膨張式汚泥床法EGSB(Expanded Granular Sludge Blanket;以後「EGSB」と略す)がある。これらは近年普及してきた方法で、メタン菌等の嫌気性菌をグラニュール状に造粒化することにより、メタン発酵槽内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できる。
The methane fermentation treatment method, which decomposes organic wastewater by methane fermentation and treats it, requires less energy for aeration than the aerobic treatment such as the activated sludge method, reduces the amount of excess sludge, and generates energy from the generated biogas. Is excellent in terms of energy saving. However, since the methanogenic bacteria have a small growth amount and poor sedimentation, the microorganisms easily flow out with the treated water. Therefore, it was difficult to increase the microorganism concentration in the fermenter used for the methane fermentation treatment. Furthermore, there were problems in terms of cost and site.
Up-flow Anaerobic Sludge Bed Process (hereinafter referred to as “UASB”) and expanded sludge bed method EGSB (Expanded Granular Sludge B) Hereinafter, it is abbreviated as “EGSB”). These are methods that have become widespread in recent years and have the feature that the concentration of methane bacteria in the methane fermentation tank can be maintained at a high level by granulating anaerobic bacteria such as methane bacteria into granules. Even when the concentration of organic matter in the wastewater is considerably high, it can be treated efficiently.

廃水中に含まれる多糖類やタンパク質、脂質などの有機物は、(1)加水分解過程、(2)酸発酵過程、(3)メタン発酵過程を経て分解される。具体的には、加水分解過程において多糖類、タンパク質、脂質が、アミノ酸、糖、アルコール、高級脂肪酸に分解される。次に、酸発酵過程において酢酸などの低級脂肪酸、二酸化炭素、水素に分解される。最終的にメタン発酵過程においてメタン、二酸化炭素となる。
上記酸発酵過程では生成する低級脂肪酸などの有機酸によってpHが低下するため、中和のためのアルカリ剤が必要となる。廃水性状によっては多量のアルカリ剤を消費するため、運転コストが高くなる問題点がある。メタン発酵過程では、有機酸はメタンに分解されるとともに重炭酸塩となることで、アルカリ度を生成する。したがって、メタン発酵の処理水を酸発酵過程に循環することによるアルカリ度補給を行うことで、アルカリ剤の消費量を少なくし、運転コストを低くすることができる。
Organic substances such as polysaccharides, proteins, and lipids contained in wastewater are decomposed through (1) hydrolysis process, (2) acid fermentation process, and (3) methane fermentation process. Specifically, polysaccharides, proteins, and lipids are decomposed into amino acids, sugars, alcohols, and higher fatty acids during the hydrolysis process. Next, it is decomposed into lower fatty acids such as acetic acid, carbon dioxide and hydrogen in the acid fermentation process. Eventually it becomes methane and carbon dioxide in the methane fermentation process.
In the acid fermentation process, since the pH is lowered by an organic acid such as a lower fatty acid produced, an alkali agent for neutralization is required. Depending on the state of waste water, a large amount of alkaline agent is consumed, so that there is a problem that the operating cost becomes high. In the methane fermentation process, the organic acid is decomposed into methane and becomes bicarbonate to produce alkalinity. Therefore, by performing alkalinity replenishment by circulating the treated water of methane fermentation to the acid fermentation process, the consumption of the alkaline agent can be reduced and the operating cost can be reduced.

メタン発酵過程では、遊離の酢酸が10mg/L以上、一例として、pH6.5で酢酸濃度1500mg/L以上になると阻害があることが知られている。このため酢酸が高濃度に含まれる廃水や酸発酵処理水がメタン発酵槽に流入した場合、高濃度の酢酸に接触する流入部で阻害が起こる可能性がある。このようにメタン発酵過程で分解できるものの高濃度で阻害がある物質を高濃度に含む排水を処理する場合は、安定した処理のために希釈水が使用される。希釈水には、水道水、井水、工水、他工程の希薄排水、メタン発酵処理水が使われることがある。しかし、希釈水にかかるコストが増大すること、メタン発酵処理水の水量が増大し後処理に影響を及ぼすことから、希釈水の一部/全部にメタン発酵処理水が使われている。また、メタン発酵処理水を使用することでアルカリ剤の消費量を少なくできるメリットもある。
槽内にグラニュール汚泥を保持する上向流嫌気性処理装置では、グラニュール汚泥を流動化するために0.5〜10m/h程度の上昇流速を与えている。排水量が少ない場合に循環なしで運転を行うと、上昇流速が不足することでグラニュール汚泥の流動が不十分になり、処理が悪化する可能性がある。このため、メタン発酵処理水の一部を循環することで水量を確保し、必要な上昇流速を保つことができる。
In the methane fermentation process, it is known that free acetic acid has an inhibition of 10 mg / L or more, for example, an acetic acid concentration of 1500 mg / L or more at pH 6.5. For this reason, when wastewater or acid-fermented water containing acetic acid at a high concentration flows into the methane fermentation tank, there is a possibility that inhibition occurs at the inflow portion that contacts the high-concentration acetic acid. In this way, when treating wastewater that can be decomposed in the methane fermentation process but contains a substance having a high concentration and an inhibition, a dilution water is used for stable treatment. Dilution water may be tap water, well water, industrial water, dilute waste water from other processes, or methane fermentation water. However, since the cost for dilution water increases and the amount of methane fermentation treated water increases and affects post-treatment, methane fermentation treated water is used for some / all of the diluted water. In addition, there is a merit that consumption of the alkaline agent can be reduced by using methane fermentation treated water.
In an upward flow anaerobic treatment apparatus that holds granular sludge in a tank, an ascending flow velocity of about 0.5 to 10 m / h is given to fluidize the granular sludge. If the operation is performed without circulation when the amount of discharged water is small, the flow rate of the granular sludge becomes insufficient due to insufficient ascending flow velocity, which may deteriorate the treatment. For this reason, the amount of water can be secured by circulating a part of the methane fermentation treated water, and the necessary ascending flow rate can be maintained.

メタン発酵工程の前段に酸発酵工程を設置した二相式メタン発酵を行う場合、酸発酵工程では生成する有機酸によりpHが低下し、このため酸発酵菌の活性が低下し酸生成速度が低下するため通常アルカリが添加される。アルカリ量を低減し、コストを下げる方法として「特許文献1」では、メタン生成工程を行った処理液の一部を返送液として前段の酸生成工程に返送する方法が示されている。しかし、酸発酵工程の滞留時間とメタン発酵槽の上昇流速を個別に設定できない構造であること、及び滞留時間・上昇流速の制御手段を持たないこと、の問題があるため負荷変動に弱く、安定運転が困難になる。   When performing two-phase methane fermentation with an acid fermentation process installed in the previous stage of the methane fermentation process, the pH decreases due to the organic acid produced in the acid fermentation process, which reduces the activity of the acid fermentation bacteria and decreases the acid production rate. Therefore, alkali is usually added. As a method for reducing the amount of alkali and reducing the cost, “Patent Document 1” discloses a method in which a part of the treatment liquid subjected to the methane production process is returned to the acid production process in the previous stage as a return liquid. However, there is a problem that the residence time of the acid fermentation process and the ascending flow rate of the methane fermenter cannot be set individually, and that there is no means for controlling the residence time and ascending flow rate. Driving becomes difficult.

「特許文献2」に示されるようなガスリフト型内部循環構造を持つリアクターは、循環の動力なしに運転できる特徴がある。しかし、ガスリフト型内部循環構造を持つリアクターの特徴として立ち上げ時や低負荷運転時は、内部循環量が減少し撹拌効果がなくなり処理効率が低下する。一方、高負荷運転時にはガス発生量の増加とともに内部循環量が増加し水流のせん断力によって、グラニュール汚泥が微細化する。このように処理状況により内部循環量が変動するため最適な状態の循環量を維持することは困難である。さらにリアクター内部に設置されたガスリフト型の循環方式であるため構造が複雑になるという欠点がある。
「特許文献3」に示されるガスリフト型内部循環構造を持つリアクターにおいて、リアクター内の廃水をグラニュール汚泥と共にリアクター底部に戻す循環ラインを接続するメタン発酵装置とすることで、特にCODCr容積負荷10kg/(m・d)以下の低負荷運転時においてもグラニュール汚泥と廃水の接触効率を下げずに運転できる特徴がある。しかし、グラニュール汚泥をポンプで循環させるため、グラニュール核を崩壊させにくいポンプであっても、繰り返しポンプのせん断力にさらされることでグラニュール汚泥は徐々に微細化し、微細化した汚泥が流出したり、グラニュール汚泥層に堆積し流動不良が生じる。
A reactor having a gas lift type internal circulation structure as shown in “Patent Document 2” has a feature that it can be operated without the power of circulation. However, as a feature of a reactor having a gas lift type internal circulation structure, at the time of start-up or low-load operation, the amount of internal circulation is reduced, the stirring effect is lost, and the processing efficiency is lowered. On the other hand, during high-load operation, the amount of internal circulation increases as the amount of gas generated increases, and the granular sludge is refined by the shear force of the water flow. As described above, since the internal circulation amount varies depending on the processing state, it is difficult to maintain the optimum circulation amount. Furthermore, there is a drawback that the structure is complicated because of the gas lift type circulation system installed inside the reactor.
In the reactor having a gas lift type internal circulation structure shown in “Patent Document 3”, a COD Cr volume load of 10 kg is particularly obtained by connecting a circulation line for returning waste water in the reactor together with granule sludge to the bottom of the reactor. Even when operating at a low load of less than / (m 3 · d), there is a feature that it can be operated without lowering the contact efficiency of granular sludge and wastewater. However, because the granule sludge is circulated with a pump, the sludge is gradually refined by repeated exposure to the shearing force of the pump even if it is difficult to disrupt the granule core, and the refined sludge flows out. Or accumulated in the granular sludge layer, resulting in poor flow.

汚泥界面の過上昇を防止するため発生ガス量に応じて循環流速を自動調節する装置が「特許文献4」に示されている。この装置では、高負荷運転による発生ガス増大の際にも、汚泥の流出を防止できるとしている。しかし、処理水の一部又はガス・液・固分離部(「GSS」ともいう)によりガスと汚泥を分離した槽内液を循環するため、循環水量を多くすると、流出部の上昇流速が増加することになり越流負荷が増加し汚泥が流出する。
特開平09−001178号公報 特開2001−162298号公報 特開2008−29993号公報 特開平6−47393号公報
An apparatus that automatically adjusts the circulation flow rate in accordance with the amount of gas generated in order to prevent an excessive increase in the sludge interface is disclosed in “Patent Document 4”. In this apparatus, sludge can be prevented from flowing out even when the generated gas increases due to high-load operation. However, since the liquid in the tank in which gas and sludge are separated by part of the treated water or gas / liquid / solid separation part (also referred to as “GSS”) is circulated, the rising flow rate of the outflow part increases when the amount of circulating water is increased As a result, the overflow load increases and sludge flows out.
JP 09-001178 A JP 2001-162298 A JP 2008-29993 A JP-A-6-47393

本発明は、上記従来技術の問題を解決するために、グラニュール汚泥又は/及び担体を保持し、ガス・液・固分離部を多段に有する上向流嫌気性処理装置内において、グラニュール汚泥又は/及び担体の界面および最下段に設置されたガス・液・固分離部より上方、かつ最上段に設置されたガス・液・固分離部よりも下方に配置され、ガス・液・固分離部によって形成される流路の開口部の面積あるいは流路の開口部の配置に応じて配置される循環水の取水口から、グラニュール汚泥及び/又は担体の分離された上向流嫌気性処理装置内の水を循環水として引き抜き、汚泥又は/及び担体の界面を検知又は/及びグラニュール汚泥及び/又は担体の界面より下部のpHを検知することで循環水の水量を調整し、これを前記上向流嫌気性処理装置に流入又は/及び前段の処理装置に流入させる嫌気性処理装置を開発し、有機性廃水の安定かつ高性能なメタン発酵処理方法及び装置を提供することである。   In order to solve the above-described problems of the prior art, the present invention provides a granular sludge in an upflow anaerobic treatment apparatus that holds granular sludge or / and a carrier and has gas, liquid, and solid separation sections in multiple stages. Or / and arranged above the gas / liquid / solid separation part installed at the interface and the lowermost stage and below the gas / liquid / solid separation part installed at the uppermost stage, and gas / liquid / solid separation Upstream anaerobic treatment in which granule sludge and / or carrier are separated from circulating water intake arranged according to the area of the opening of the channel formed by the section or the arrangement of the opening of the channel The water in the apparatus is drawn out as circulating water, and the amount of circulating water is adjusted by detecting the sludge or / and carrier interface or / and detecting the pH below the granular sludge and / or carrier interface. The upward flow anaerobic treatment equipment Developing the inflow or / and anaerobic treatment apparatus to flow in front of the processing apparatus, to provide a stable and high-performance methane fermentation treatment method and apparatus for organic waste water.

本発明は、以下に記載する手段によって前記課題を解決した。
(1)グラニュール汚泥及び/又は担体を充填した、ガス・液・固分離部を多段に有する上向流嫌気性処理装置を用いて有機性廃水を生物学的に処理する嫌気性処理方法において、前記グラニュール汚泥及び/又は担体の界面より上方に配置し、かつ、最上段に設置された前記ガス・液・固分離部よりも下方に配置した循環水の取水口から上向流嫌気性処理装置内の水を循環水として引き抜き、前記循環水を上向流嫌気性処理装置の底部及び/又は原水流入箇所及び/又は当該上向流嫌気性処理装置の前段処理装置に循環させることを特徴とする嫌気性処理方法。
(2)前記取水口はガス・液・固分離部によって形成される流路の開口部の面積又は前記流路の開口部の配置に合わせて、前記流路の開口部あたりの取水口を1ヶ所以上配置したことを特徴とする前記(1)記載の嫌気性処理方法。
(3)前記グラニュール汚泥及び/又は担体の界面を検知し、検知した界面が循環水の取水口の高さを越えないように循環水の取水量の制御を行うことを特徴とする前記(1)又は(2)記載の嫌気性処理方法。
(4)前記グラニュール汚泥及び/又は担体の界面より下部のpHを検知し、前記循環水の取水量を制御することを特徴とする前記(1)〜(3)のいずれか一項に記載の嫌気性処理方法。
The present invention has solved the above problems by the means described below.
(1) In an anaerobic treatment method for biologically treating organic wastewater using an upflow anaerobic treatment device filled with granular sludge and / or a carrier and having gas, liquid, and solid separation parts in multiple stages. Upstream anaerobic from the intake of circulating water placed above the interface of the granular sludge and / or carrier and below the gas / liquid / solid separation part installed at the top The water in the treatment device is drawn out as circulating water, and the circulating water is circulated to the bottom of the upward flow anaerobic treatment device and / or the raw water inflow portion and / or the upstream treatment device of the upward flow anaerobic treatment device. Characteristic anaerobic treatment method.
(2) The intake port has 1 intake port per opening of the flow path according to the area of the opening of the flow path formed by the gas / liquid / solid separation part or the arrangement of the opening of the flow path. The anaerobic treatment method according to (1) above, wherein at least one place is arranged.
(3) The interface of the granular sludge and / or the carrier is detected, and the intake amount of the circulating water is controlled so that the detected interface does not exceed the height of the intake port of the circulating water. The anaerobic treatment method according to 1) or (2).
(4) The pH below the granular sludge and / or the carrier is detected, and the water intake of the circulating water is controlled, as described in any one of (1) to (3) above Anaerobic treatment method.

(5)グラニュール汚泥及び/又は担体を充填した、ガス・液・固分離装置を多段に有する上向流嫌気性処理装置を用いて有機性廃水を生物学的に処理する嫌気性処理装置において、
前記グラニュール汚泥及び/又は担体の界面より上方、かつ、最上段に設置されたガス・液・固分離部よりも下方に配置した上向流嫌気性処理装置内の水を引き抜く循環水の取水口を有する上向流嫌気性処理装置と、
前記取水口と前記上向流嫌気性処理装置の底部及び/又は原水流入箇所、及び/又は当該上向流嫌気性処理装置の前段に配置した前段処理装置をつなぐ循環水返送ラインとを
有することを特徴とする嫌気性処理装置。
(6)前記取水口は、前記ガス・液・固分離部によって形成される流路の面積又は該流路の配置に合わせて配置したことを特徴とする前記(5)記載の嫌気性処理装置。
(5) In an anaerobic treatment apparatus that biologically treats organic wastewater using an upflow anaerobic treatment apparatus filled with granular sludge and / or a carrier and having gas, liquid, and solid separation devices in multiple stages. ,
Intake of circulating water to extract water in an upward-flow anaerobic treatment device disposed above the interface between the granular sludge and / or carrier and below the gas / liquid / solid separation section installed at the uppermost stage. An upflow anaerobic treatment device having a mouth;
A circulating water return line that connects the intake and the bottom of the upflow anaerobic treatment device and / or the raw water inflow location and / or the pretreatment device disposed in the previous stage of the upflow anaerobic treatment device; An anaerobic treatment device characterized by.
(6) The anaerobic treatment apparatus according to (5), wherein the water intake is arranged in accordance with an area of a flow path formed by the gas / liquid / solid separation portion or an arrangement of the flow path. .

本発明の骨子は、グラニュール汚泥及び/又は担体を充填した、ガス・液・固分離装置を多段に有する上向流嫌気性処理装置を用いて有機性廃水を生物学的に処理する嫌気性処理装置において、前記グラニュール汚泥及び/又は担体の界面より上方に配置し、かつ、最上段に設置されたガス・液・固分離部よりも下方に配置した循環水の取水口から
上向流嫌気性処理装置内の水を循環水として上向流嫌気性処理装置の底部及び/又は原水流入箇所、及び/又は当該上向流嫌気性処理装置の前段処理装置に流入させることで、
上向流嫌気性処理装置内の最上段に設置されたガス・液・固分離部でのガス・液・固分離性能を維持したまま循環水の水量を増加させることができ、
これにより、原水中の高濃度では阻害のある酢酸等の物質の希釈、処理水のアルカリ度を供給、さらに循環水量の増加によるグラニュール汚泥及び/又は担体の流動化を促進をするものである。
また、最下段のガス・液・固分離部より上方に循環水の取水口を設置することで、グラニュール汚泥及び/又は担体の分離された上向流嫌気性処理装置内の水をグラニュール汚泥及び/又は担体が極めて少ない循環水として利用することができる。
さらに、グラニュール汚泥及び/又は担体の界面を検知することで、界面が循環水の取水口の高さを超えないように循環水の取水量を制御すること、及び/又は、グラニュール汚泥及び/又は担体の界面より下部のpHを検知し、循環水の取水量を制御することで、
循環水の水量の増加によって汚泥界面が上昇した場合でも、グラニュール汚泥及び/又は担体が、循環水ラインに取り込まれることを回避するものである。
The essence of the present invention is an anaerobic treatment in which organic wastewater is biologically treated using an upflow anaerobic treatment device filled with granular sludge and / or a carrier and having multiple stages of gas / liquid / solid separation devices. In the treatment apparatus, the upward flow from the intake of the circulating water, which is disposed above the interface between the granular sludge and / or the carrier and disposed below the gas / liquid / solid separation section installed at the uppermost stage. By flowing the water in the anaerobic treatment device as circulating water into the bottom and / or raw water inflow portion of the upward flow anaerobic treatment device and / or the upstream treatment device of the upward flow anaerobic treatment device,
The amount of circulating water can be increased while maintaining the gas / liquid / solid separation performance in the gas / liquid / solid separation section installed in the uppermost stage in the upward flow anaerobic treatment equipment.
As a result, substances such as acetic acid that are inhibited at high concentrations in the raw water are diluted, the alkalinity of the treated water is supplied, and the fluidization of the granular sludge and / or carrier by increasing the amount of circulating water is promoted. .
In addition, by installing a circulating water intake above the gas / liquid / solid separation section at the lowest stage, the water in the upflow anaerobic treatment device with the granular sludge and / or carrier separated is granulated. It can be used as circulating water with very little sludge and / or carrier.
Further, by detecting the interface between the granular sludge and / or the carrier, the intake amount of the circulating water is controlled so that the interface does not exceed the height of the intake port of the circulating water, and / or the granular sludge and By detecting the pH below the interface of the carrier and / or controlling the intake of circulating water,
Even when the sludge interface rises due to an increase in the amount of circulating water, it prevents the granular sludge and / or carrier from being taken into the circulating water line.

以下、本発明の実施の形態を図面を参照して説明するが、本発明はこれに限定されるものではない。
本発明における上向流嫌気性処理とは、溶解性物質をメタン発酵処理する上向流汚泥床法、流動床法、固定床法などの高負荷嫌気性処理があるが、いずれの方式でも良い。また、酸発酵とメタン発酵とを一つの反応槽で行う一相式でも、両反応を別々の反応槽で行う二相式でも良い。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
The upward flow anaerobic treatment in the present invention includes a high load anaerobic treatment such as an upward flow sludge bed method, a fluidized bed method, and a fixed bed method in which a soluble substance is subjected to a methane fermentation treatment. . In addition, a single-phase system in which acid fermentation and methane fermentation are performed in one reaction tank, or a two-phase system in which both reactions are performed in separate reaction tanks may be used.

図1は、メタン発酵処理方法を実施するのに好ましい本発明を適用した上向流嫌気性処理としてUASBまたは、UASBに担体を投入した流動床法の一形態の概要を例示した図である。
上向流嫌気性処理装置は発生ガスと処理水3、グラニュール汚泥及び/又は担体を分離回収する気・液・固分離部(以下、GSSとも記す)5が上向流嫌気性処理装置上部に設置されている。このGSS5を多段に配置することで、グラニュール汚泥及び/又は担体の保持性能、つまり、上向流嫌気性処理装置内の菌体の保持量が高まり、UASBの処理性能が高まる。GSS5を多段に配置することで発生するバイオガスを上向流嫌気性処理装置内で回収できるため、上向流嫌気性処理装置の単位断面積当たりの発生ガス量が少なくなり、特に処理水3を流出させる処理水配管に最も近い所では上向流嫌気性処理装置の単位断面積当たりのガス量が小さくなる。そのため、グラニュール汚泥及び/又は担体の系外流出量を非常に少なくすることができる。
FIG. 1 is a diagram illustrating an outline of one form of a fluidized bed method in which a carrier is added to UASB or UASB as an upflow anaerobic treatment to which the present invention is applied, which is preferable for carrying out a methane fermentation treatment method.
The upflow anaerobic treatment unit is a gas / liquid / solid separation unit (hereinafter also referred to as GSS) 5 that separates and recovers the generated gas, treated water 3, granule sludge and / or carrier. Is installed. By arranging this GSS5 in multiple stages, the retention performance of granule sludge and / or carrier, that is, the retention amount of bacterial cells in the upward flow anaerobic treatment apparatus is increased, and the treatment performance of UASB is enhanced. Since the biogas generated by arranging GSS5 in multiple stages can be recovered in the upward flow anaerobic treatment device, the amount of gas generated per unit cross-sectional area of the upward flow anaerobic treatment device is reduced. The gas amount per unit cross-sectional area of the upward flow anaerobic treatment device is small at the place closest to the treated water piping through which water flows out. Therefore, the outflow amount of granule sludge and / or the carrier can be extremely reduced.

気・液・固分離部では、上向流嫌気性処理装置内部の左右両側壁には、それぞれに一方の端部を固定し、他方の端部を反対側の側壁方向に向かって下降しながら延ばしている邪魔板を設けてある。邪魔板は、上下方向に3箇所左右交互に設けてある。上向流嫌気性処理装置本体側壁と邪魔板のなす角度θを35度以下の鋭角とすることで、邪魔板上でのグラニュール汚泥及び/又は担体の堆積による槽内のデッドスペースの形成を防ぐことが可能となり、より好ましい形態になる。なお、邪魔板の占有面積が装置断面積の1/2以下であると、発生ガスの捕捉が不十分となり、気液固分離に不具合が生じる。つまり、装置中心部より発生ガスが上方へ抜けてしまいGSS部5で十分に発生ガスを捕集できなくなる。発生ガス集積部を備えた各GSS部5は、装置の上部50%の範囲内に取り付け、かつ最下段の発生ガス集積部を備えた該GSSがグラニュール汚泥及び/又は担体の層内にあるように取り付けられている。各GSS部5の気相部のガス圧は異なるので、その差圧は水封槽で調整するとよい。原水1送液側に近い順に水封圧は高く保つ必要がある。   In the gas / liquid / solid separation part, one end is fixed to each of the left and right side walls inside the upward flow anaerobic treatment device while the other end is lowered toward the opposite side wall. There is an extended baffle plate. The baffle plates are provided alternately at three places on the left and right in the vertical direction. By forming the angle θ formed between the side wall of the upward flow anaerobic treatment device main body and the baffle plate to be an acute angle of 35 degrees or less, formation of dead space in the tank due to accumulation of granular sludge and / or carrier on the baffle plate It becomes possible to prevent, and it becomes a more preferable form. If the area occupied by the baffle plate is ½ or less of the cross-sectional area of the apparatus, trapping of the generated gas becomes insufficient, resulting in problems in gas-liquid solid separation. That is, the generated gas escapes upward from the center of the apparatus, and the generated gas cannot be sufficiently collected by the GSS unit 5. Each GSS unit 5 provided with the generated gas accumulation part is mounted within the upper 50% of the apparatus, and the GSS with the lowest generated gas accumulation part is in the granular sludge and / or carrier layer. It is attached as follows. Since the gas pressure in the gas phase portion of each GSS portion 5 is different, the differential pressure may be adjusted in a water-sealed tank. It is necessary to keep the water sealing pressure higher in the order closer to the raw water 1 liquid feed side.

上向流嫌気性処理装置は、嫌気性菌からなるグラニュール汚泥又は/及び嫌気性菌が付着する担体を投入して使用する。本発明の対象となる嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理の温度範囲の嫌気性処理のいずれでもよい。原水1は送液管から上向流嫌気性処理装置へ導入する。
本発明に用いる担体としては、生物が付着する素材であれば活性炭や砂、アルミナ、ガラス、プラスティックなど何でもよいが、好ましくは生物付着性が優れている活性炭がよい。活性炭は、粒状炭、破砕炭、粉状炭のいずれでも使用できるが、長期にわたって使用するため、圧壊強度として、少なくとも1kg/cmの圧力でも形状が維持できる粒状や破砕状の活性炭が好ましい。使用する活性炭の粒径は、上向流嫌気性処理装置内の流動条件と、必要な微生物量で決定される。すなわち、原水の有機物濃度が低濃度の場合(CODCrで3000mg/L以下)は、上向流嫌気性処理装置内の流速を速くすることが可能であり、比較的大きい粒径の活性炭が選択できるし、高濃度の場合は小さい粒径の活性炭が選択される。本発明の活性炭は、有効径0.05mm〜3mm、好ましくは0.2mm〜0.7mmの範囲で、均等係数は1.2〜2の範囲とする。
The upward flow anaerobic treatment apparatus is used by introducing a granular sludge composed of anaerobic bacteria and / or a carrier to which anaerobic bacteria adhere. The anaerobic treatment that is the subject of the present invention is an anaerobic treatment in the temperature range of a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C. and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. Either is acceptable. The raw water 1 is introduced from the liquid feed pipe into the upward flow anaerobic treatment apparatus.
The carrier used in the present invention may be anything such as activated carbon, sand, alumina, glass, and plastic as long as it is a material to which organisms adhere, and preferably activated carbon having excellent bioadhesiveness. The activated carbon can be any of granular charcoal, crushed charcoal, and pulverized charcoal. However, since it is used for a long period of time, granular or crushed activated carbon whose shape can be maintained even at a pressure of at least 1 kg / cm 3 is preferable as the crushing strength. The particle size of the activated carbon to be used is determined by the flow conditions in the upward flow anaerobic treatment apparatus and the necessary amount of microorganisms. That is, when the organic matter concentration in the raw water is low (COD Cr is 3000 mg / L or less), the flow rate in the upward flow anaerobic treatment apparatus can be increased, and activated carbon having a relatively large particle size is selected. In the case of high concentration, activated carbon having a small particle size is selected. The activated carbon of the present invention has an effective diameter of 0.05 mm to 3 mm, preferably 0.2 mm to 0.7 mm, and a uniformity coefficient of 1.2 to 2.

循環水2の取水口6は、グラニュール汚泥及び/又は担体の界面上方かつ最上段に設置されたGSS5よりも下方に設置されている。これにより取水口6より上部では固液分離性能を維持したまま、取水口6より下部では循環水量を多く取ることができ、循環水2による原水1の希釈効果及び上昇流速増加による上向流嫌気性処理装置内のグラニュール汚泥及び/又は担体の撹拌効果を高めることができる。
グラニュール汚泥及び/又は担体の界面上方に取水口6を設置することで、循環水2にグラニュール汚泥及び/又は担体が直接流入することを避けることができ、さらに最下段のGSS5より上方に取水口6を設置しているので、グラニュール汚泥及び/又は担体の分離された上向流嫌気性処理装置内の水をグラニュール汚泥及び/又は担体が極めて少ない循環水2として利用することができる。循環水2にグラニュール汚泥及び/又は担体が流入すると、循環ポンプでグラニュール汚泥及び/又は担体が破砕され、微細化したグラニュール汚泥及び/又は担体の流出を招く恐れがあるため好ましくない。
The water intake 6 of the circulating water 2 is installed below the GSS 5 installed above and on the uppermost stage of the granular sludge and / or carrier. As a result, while maintaining the solid-liquid separation performance above the intake port 6, a large amount of circulating water can be taken below the intake port 6, and the upward flow anaerobic effect due to the dilution effect of the raw water 1 by the circulating water 2 and the increase in the rising flow velocity. The agitation effect of the granular sludge and / or the carrier in the chemical treatment device can be enhanced.
By installing the water intake 6 above the interface of the granule sludge and / or carrier, it is possible to prevent the granule sludge and / or carrier from directly flowing into the circulating water 2, and further above the lowermost GSS 5 Since the intake port 6 is installed, it is possible to use the water in the upward flow anaerobic treatment apparatus from which the granular sludge and / or the carrier is separated as the circulating water 2 with very little granular sludge and / or the carrier. it can. If the granular sludge and / or the carrier flow into the circulating water 2, the granular sludge and / or the carrier is crushed by the circulation pump, which may cause the finer granular sludge and / or the carrier to flow out.

取水口付近では局所的に上昇流速が増加し、一方、取水口から離れた場所では上昇流速が減少し、上向流嫌気性処理装置内の液・ガスの上昇流速の偏りが発生する。取水口の位置を槽水平面において偏った配置とすると、ショートパスによる処理の悪化や、グラニュール汚泥及び/又は担体の流出を招く恐れがあるため好ましくない。
取水口6の設置位置は、上向流嫌気性処理装置内の液・ガスの上昇流速の偏りを少なくするためにGSS5によって形成される流路の開口部の面積あるいは流路の開口部の配置に合わせて単数ないし複数配置される。取水口1ヶ所に対しGSS5によって形成される流路の面積は、5m以下、好ましくは1m以下、さらに好ましくは0.5m以下がよい。流路の開口部に合わせた取水口の設置位置は、流路の開口部が円形であれば同心円状や線対称状に等間隔に配置するのが好ましい。流路の開口部が直線状であれば直線状や線対称上に等間隔に配置するのが好ましい。
取水口1ヶ所に対するGSS5によって形成される流路の面積が大きい場合や、取水口6の設置位置がGSS5によって形成される流路の開口部の配置に対して偏った場合は、上向流嫌気性処理装置内に液・ガスの上昇流速の偏りが生じて、ショートパスによる処理の悪化や、グラニュール汚泥及び/又は担体の流出を引き起こす恐れがあるため好ましくない。
前記GSS5によって形成される流路の開口部の面積にかかわらず、取水口の直下に位置するGSS5によって形成される流路の開口部あたり1ヶ所以上の取水口を配置する。前記流路の開口部の数に対して取水口の数が不足した状態では、不足した側の前記流路の開口部での液・ガスの上昇速度は、十分な側より減少する。また、同形状の前記流路の開口部複数箇所に対し、中心部に取水口を1ヶ所配置した場合は、流路の開口部ごとの液・ガスの上昇速度を均等に調整するのが困難である。
したがって、流路の開口部に対して取水口の数が少ないと、上向流嫌気性処理装置内に液・ガスの上昇流速が偏った結果生じる、ショートパスによる処理の悪化や、グラニュール汚泥及び/又は担体の流出を抑止する効果が極めて高まる。
さらに上向流嫌気性処理装置の上方ほどGSSによる気・液・固分離効果が高まるため、取水口は上方に位置するGSS5の開口部の直下に配置することが好ましい。
図1の場合、取水口6は上方に位置するGSS5の開口部の直下に3ヶ所設けられている。
The ascending flow rate increases locally near the intake port, while the ascending flow rate decreases at a location away from the intake port, resulting in a deviation in the ascending flow rate of the liquid / gas in the upward flow anaerobic treatment apparatus. It is not preferable to place the water intake at an uneven position in the horizontal plane of the tank, because there is a risk of deteriorating treatment due to a short pass and outflow of granule sludge and / or carrier.
The installation position of the water intake 6 is the area of the opening of the flow path formed by the GSS 5 or the arrangement of the opening of the flow path in order to reduce the unevenness of the rising speed of the liquid / gas in the upward flow anaerobic treatment apparatus. One or more are arranged according to the above. The area of the flow path formed by GSS5 with respect to one intake port is 5 m 2 or less, preferably 1 m 2 or less, more preferably 0.5 m 2 or less. The installation positions of the water intakes that match the opening of the flow path are preferably arranged at equal intervals in a concentric or line symmetrical manner if the opening of the flow path is circular. If the openings of the flow path are linear, it is preferable to arrange them at equal intervals in a straight line or line symmetry.
When the area of the flow path formed by the GSS 5 with respect to one intake port is large, or when the installation position of the intake port 6 is biased with respect to the arrangement of the opening portion of the flow path formed by the GSS 5, the upward flow anaerobic This is not preferable because the ascending flow rate of the liquid / gas is uneven in the chemical treatment apparatus, which may cause deterioration of the treatment due to a short pass and outflow of granule sludge and / or carrier.
Regardless of the area of the opening of the flow path formed by the GSS 5, one or more water intakes are arranged per opening of the flow path formed by the GSS 5 located immediately below the water intake. In a state where the number of water intakes is insufficient with respect to the number of openings of the flow path, the rising speed of the liquid / gas at the opening of the flow path on the insufficient side decreases from the sufficient side. In addition, when one intake port is arranged at the center of the multiple openings in the flow path of the same shape, it is difficult to evenly adjust the rising speed of the liquid / gas for each flow path opening. It is.
Therefore, if the number of water intakes is small with respect to the opening of the flow path, the deterioration of the treatment due to the short path or the granule sludge that occurs as a result of the uneven flow rate of the liquid / gas in the upward flow anaerobic treatment device And / or the effect of suppressing the outflow of the carrier is greatly enhanced.
Furthermore, since the gas / liquid / solid separation effect by GSS increases as it is above the upward flow anaerobic treatment apparatus, the water intake is preferably disposed directly below the opening of GSS 5 located above.
In the case of FIG. 1, the water intake 6 is provided in three places just under the opening part of GSS5 located upward.

取水口6が複数配置される場合の取水口6の開口面積、取水口6が設置される取水管の配管径は、装置水平面において均等な取水が達成されるものであればよい。取水口6の開口方向については、水平方向、下方、上方、斜め、のいずれでもよく槽水平面において均等な取水が達成されるものであればよい。   The opening area of the water intake port 6 when a plurality of water intake ports 6 are arranged and the pipe diameter of the water intake pipe where the water intake port 6 is installed may be anything that can achieve uniform water intake in the horizontal plane of the apparatus. The opening direction of the water intake 6 may be any of the horizontal direction, the downward direction, the upward direction, and the diagonal direction as long as uniform water intake is achieved in the tank horizontal plane.

図6の例は、取水口6を最上段のGSS開口部の下部に配した例である。(a)は側面図を示し、(b)は取水管が設けられている面における平面図を示す。中心側の集水管9は直線状に、壁面側の集水管9はリング状としている。取水口6は下方のGSS5に形成される開口比に応じて中心側に2ヶ所、壁面側に8ヵ所を配した。
図7の例は、取水口6をGSS5頂部の上部にリング状に配した例である。(a)及び(b)は図6の場合と同様である。取水口6は下方のGSS5に形成される開口比に応じて中心側に2ヶ所、壁面側に8ヵ所を配した。取水口6はそれぞれ中心側と壁面側に向けて開口している。
以上、代表的な取水管9を示したが、本発明はこれらに限定されるものではなく、装置水平面において均等な取水が達成されるものであればよい。
The example of FIG. 6 is an example in which the water intake 6 is arranged below the uppermost GSS opening. (A) shows a side view and (b) shows a plan view on the surface where the intake pipe is provided. The central water collecting tube 9 is linear, and the wall collecting tube 9 is ring-shaped. The water intake 6 was arranged at two places on the center side and eight places on the wall surface side according to the opening ratio formed in the lower GSS 5.
The example of FIG. 7 is an example in which the water intake 6 is arranged in a ring shape above the top of the GSS 5. (A) and (b) are the same as in FIG. The water intake 6 was arranged at two places on the center side and eight places on the wall surface side according to the opening ratio formed in the lower GSS 5. The water intake 6 opens toward the center side and the wall surface side, respectively.
As mentioned above, although the representative intake pipe 9 was shown, this invention is not limited to these, What is necessary is just to achieve equal intake in an apparatus horizontal surface.

取水口6から引き抜いた循環水2は前段処理装置の流出水と混合されて再び上向流嫌気性処理装置へ流入する。前段処理装置は、酸発酵、中和、混合、加温等の処理を行う装置を示し、また各装置をつなぐ配管も含む。循環水流入配管は前段処理装置の流出水と混合してから上向流嫌気性処理装置へ流入させてもよいし、別途循環水配管を設けて上向流嫌気性処理装置の底部に流入させてもよい。また、循環水2の全量もしくは一部を前段処理装置へ直接流入させてもよい。
前段処理装置が酸発酵装置である場合は、酸発酵装置又は酸発酵装置への流入配管へ循環水2を流入することで、酸発酵装置でのアルカリ使用量の削減できることがある。酸発酵装置へ循環水2を過大に流入させると、酸発酵装置に必要な滞留時間を確保できなくなるので、必要量を酸発酵装置へ流入させ、残りは直接上向流嫌気性処理装置へ流入させても良い。
The circulating water 2 withdrawn from the water intake 6 is mixed with the outflow water of the pretreatment device and flows into the upward flow anaerobic treatment device again. The pre-treatment device indicates a device that performs treatments such as acid fermentation, neutralization, mixing, and heating, and also includes piping that connects the devices. The circulating water inflow pipe may be mixed with the effluent of the upstream treatment apparatus and then flow into the upward flow anaerobic treatment apparatus, or a separate circulation water pipe may be provided to flow into the bottom of the upward flow anaerobic treatment apparatus. May be. Further, the entire amount or part of the circulating water 2 may be directly flowed into the pre-treatment device.
When the pre-treatment apparatus is an acid fermentation apparatus, the amount of alkali used in the acid fermentation apparatus may be reduced by flowing the circulating water 2 into the acid fermentation apparatus or an inflow pipe to the acid fermentation apparatus. If the circulating water 2 flows excessively into the acid fermentation apparatus, the necessary residence time cannot be secured in the acid fermentation apparatus, so the required amount flows into the acid fermentation apparatus, and the remainder flows directly into the upflow anaerobic treatment apparatus. You may let them.

循環水返送ラインは1系列でも複数系列でもよい。
循環水返送ラインは、発生ガスによるガスロックが生じる場合があるので、ガスロック防止のための手段を設けるのが望ましい。循環水2のラインの途中でガス分離槽を設けて分離したガスを真空ポンプで抜いても良いし、循環ポンプの吐出にバイパス弁を設けて間欠的にフラッシング操作を行うことで管内ガスロックを解消しても良い。フラッシング操作はタイマー制御、循環水配管内の圧力、液位、流量によって検知して行ってもよい。
The circulating water return line may be one line or plural lines.
Since the circulating water return line may cause gas lock due to the generated gas, it is desirable to provide means for preventing gas lock. A gas separation tank may be provided in the middle of the circulating water 2 line, and the separated gas may be extracted with a vacuum pump, or a bypass valve may be provided at the discharge of the circulation pump to intermittently perform a flushing operation, thereby preventing the gas lock in the pipe. It may be resolved. The flushing operation may be performed by detecting by timer control, pressure in the circulating water piping, liquid level, and flow rate.

循環水の水量は、pHやアルカリ度に基づいて決定されることが多いが、上向流嫌気性処理装置内下部の上昇流速によって決定することもある。pHに基づく場合は、前段処理装置のpH計指示値が任意の設定値に保たれるように循環水量を制御してもよいし、グラニュール汚泥又は/及び担体の界面より下部に設置したpH計指示値が任意の設定値に保たれるように循環水量を制御してもよい。上向流嫌気性処理装置内下部の上昇流速に基づく場合は、グラニュール汚泥又は/及び担体の界面高さを超音波センサー等を内蔵した汚泥界面計8等によってモニタリングし一定範囲に収まるように循環水量を制御してもよい。また、これらを組み合わせても良い。   The amount of circulating water is often determined based on pH and alkalinity, but it may be determined by the rising flow velocity in the lower part of the upward flow anaerobic treatment apparatus. When based on pH, the circulating water volume may be controlled so that the pH meter indicated value of the pre-treatment device is maintained at an arbitrary set value, or the pH installed below the interface of the granular sludge or / and the carrier. The circulating water volume may be controlled so that the meter indication value is maintained at an arbitrary set value. When based on the rising flow velocity in the lower part of the upflow anaerobic treatment device, the interface height of the granular sludge or / and the carrier is monitored by the sludge interface meter 8 incorporating an ultrasonic sensor etc. so that it is within a certain range. The amount of circulating water may be controlled. Moreover, you may combine these.

グラニュール汚泥又は/及び担体の界面より下部のpHをメタン発酵菌の至適pHである6.5以上8.5以下の任意の一定範囲に、好ましくは6.8以上7.8以下の一定範囲に保つように、pHが6.5以上8.5以下である循環水の水量を決定することで、原水pHの変動の影響を受けることなく良好な処理を継続することができる。
原水pHが酸性の場合、グラニュール汚泥又は/及び担体の界面より下部のpHが所定pH範囲より下降したときには、pHが中性域にある循環水の水量を多くすることで、メタン発酵菌の存在するグラニュール汚泥又は/及び担体部分のpHを所定pH範囲内に引き上げることができ、低pHによる処理悪化を防止することができる。
原水pHがアルカリ性の場合、グラニュール汚泥又は/及び担体の界面より下部のpHが所定pH範囲より上昇したときには、pHが中性域にある循環水2の水量を多くすることで、メタン発酵菌の存在するグラニュール汚泥又は/及び担体部分のpHを所定pH範囲内に引き下げることができ、高pHによる処理悪化を防止することができる。
The pH below the interface of the granular sludge and / or carrier is in an arbitrary fixed range of 6.5 to 8.5, which is the optimum pH of the methane fermentation bacteria, and preferably 6.8 to 7.8. By determining the amount of circulating water having a pH of 6.5 or more and 8.5 or less so as to keep the range, it is possible to continue good treatment without being affected by the fluctuation of the raw water pH.
When the pH of the raw water is acidic, when the pH below the granular sludge or / and the carrier interface falls below the predetermined pH range, the amount of circulating water in the neutral range is increased to increase the amount of methane fermentation bacteria. It is possible to raise the pH of the existing granular sludge and / or the carrier portion within a predetermined pH range, and to prevent deterioration of treatment due to low pH.
When the raw water pH is alkaline, when the pH below the granular sludge and / or carrier interface rises above the predetermined pH range, the amount of circulating water 2 in the neutral range is increased to increase the amount of methane-fermenting bacteria. It is possible to lower the pH of the granular sludge or / and the carrier portion in the presence of a pH within a predetermined pH range, and to prevent deterioration of treatment due to high pH.

グラニュール汚泥又は/及び担体の界面高さを一定範囲に保つように循環水量を制御することで、グラニュール汚泥又は/及び担体が良好に流動でき、かつ流出しない上昇流速を与えることができ、良好な処理を継続することができる。グラニュール汚泥又は/及び担体の界面が循環水2の取水口6の高さを越えないように循環水2の取水量の制御を行うことが好ましい。過度の上昇流速により上昇したグラニュール汚泥又は/及び担体の界面が循環水2の取水口の高さを越えると、循環ポンプでグラニュール汚泥及び/又は担体が破砕され、微細化したグラニュール汚泥の流出を招く恐れがある。   By controlling the amount of circulating water so that the interfacial height of the granule sludge or / and the carrier is kept within a certain range, the granule sludge or / and the carrier can flow well and give an ascending flow velocity that does not flow out, Good processing can be continued. It is preferable to control the intake amount of the circulating water 2 so that the interface between the granular sludge and / or the carrier does not exceed the height of the intake port 6 of the circulating water 2. Granule sludge that has been granulated and / or crushed by the circulation pump when the interface of the granule sludge and / or carrier that has risen due to excessive ascending flow velocity exceeds the intake port of circulating water 2 There is a risk of leaking.

上向流嫌気性処理装置内下部の上昇流速が増加することで、グラニュール汚泥及び/又は担体の流動化を促進することができる。原水VSS、無機塩濃度が高く、グラニュール汚泥及び/又は担体が厚密したり、汚泥床が閉塞したりするような排水性状や汚泥性状の場合、流動化することで微細VSSを槽内から排出でき、処理の安定化を図れる。
また、酢酸のように高濃度では阻害性を示す基質である原水1の場合、循環水2によって原水1を希釈し、槽内の濃度勾配を小さくすることで、処理の安定化を図ることができる。一例として図1のフローにおいて、原水の酢酸濃度が3000mg/Lである場合は、メタン発酵工程流入水の酢酸濃度が1500mg/L以下となるように原水の水量に対して循環水の水量を1倍以上で希釈する。原水の酢酸濃度が6000mg/Lである場合は、原水の水量に対して循環水の水量を3倍以上で希釈する。
By increasing the ascending flow velocity in the lower part in the upward flow anaerobic treatment apparatus, fluidization of the granular sludge and / or the carrier can be promoted. In the case of drainage properties or sludge properties where raw water VSS, inorganic salt concentration is high, granule sludge and / or carrier is dense, or sludge bed is clogged, fine VSS is released from the tank by fluidizing It can be discharged and the process can be stabilized.
Further, in the case of raw water 1 that is a substrate that exhibits inhibition at a high concentration such as acetic acid, the treatment can be stabilized by diluting raw water 1 with circulating water 2 and reducing the concentration gradient in the tank. it can. As an example, in the flow of FIG. 1, when the acetic acid concentration of raw water is 3000 mg / L, the amount of circulating water is set to 1 with respect to the amount of raw water so that the acetic acid concentration of inflow water of the methane fermentation process is 1500 mg / L or less. Dilute at least twice. When the concentration of acetic acid in the raw water is 6000 mg / L, the amount of circulating water is diluted three times or more with respect to the amount of raw water.

以下に本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1〜6、比較例1〜3
CODCr4000〜6000mg/Lの清涼飲料廃水を原水1として本発明のUASBで処理を行った。UASBの前段処理工程として酸発酵工程を設置し、酸発酵工程の設定pHは6.5、滞留時間は8時間として運転されている。水酸化ナトリウムをアルカリ剤として、窒素、リンなどが無機栄養塩類として添加されている。原水の水量は、すべての例で同じ条件とし6m/dとした。種汚泥は、同じ清涼飲料廃水を処理している実機のグラニュール汚泥を投入した。循環水なしで運転する場合のUASBの上昇流速は1.3m/hとなる。
図1から図8に示すUASBにて運転を行った。UASBの高さは5m、内径0.5m、容量は1mである。UASB内部の水温は35℃に保たれるよう温度制御されている。
運転は90日間行い評価を行った。第1表に上昇流速、溶解性CODCr、処理水VSSの除去率の期間中の平均値を示す。
Examples 1-6, Comparative Examples 1-3
The soft drink waste water of COD Cr 4000-6000 mg / L was made into the raw water 1, and it processed with UASB of this invention. An acid fermentation process is installed as a pretreatment process for UASB, and the acid fermentation process is operated with a set pH of 6.5 and a residence time of 8 hours. Sodium hydroxide is used as an alkaline agent, and nitrogen, phosphorus and the like are added as inorganic nutrient salts. The amount of raw water was set to 6 m 3 / d under the same conditions in all examples. For seed sludge, granule sludge of the actual machine treating the same soft drink wastewater was used. When operating without circulating water, the ascending flow rate of UASB is 1.3 m / h.
Operation was performed with the UASB shown in FIGS. The height of the UASB is 5 m, the inner diameter is 0.5 m, and the capacity is 1 m 3 . The temperature of the water inside the UASB is controlled to be kept at 35 ° C.
The operation was performed for 90 days and evaluated. Table 1 shows the average values during the ascending flow rate, soluble COD Cr , and removal rate of the treated water VSS during the period.

Figure 2010042352
Figure 2010042352

<比較例1>
図8は、原水の水量の4倍量をUASBの処理水3を循環水2としてUASBの流入水配管へ導入させた既存の例である。
流出VSSは321mg/Lであった。溶解性CODCr除去率は81%であった。
流出VSSは多く、グラニュール汚泥の流出がみられた。
<Comparative Example 1>
FIG. 8 is an existing example in which four times the amount of raw water is introduced into the UASB inflow water piping using the UASB treated water 3 as the circulating water 2.
The outflow VSS was 321 mg / L. The soluble COD Cr removal rate was 81%.
There were many spilled VSS, and granule sludge was spilled.

<比較例2>
図9は、最上段GSS5の上方の側壁に循環水2の取水口6を1ヶ所を設置した例である。原水の水量の4倍量の循環水をUASBの流入水配管へ導入させた。
流出VSSは334mg/Lであり、溶解性CODCr除去率は80%であった。図8の例と同等の結果であった。
<Comparative example 2>
FIG. 9 shows an example in which one intake port 6 for circulating water 2 is installed on the upper side wall of the uppermost stage GSS 5. Circulating water 4 times the amount of raw water was introduced into the UASB inflow piping.
The outflow VSS was 334 mg / L, and the soluble COD Cr removal rate was 80%. The result was equivalent to the example of FIG.

<比較例3>
図10は、UASB内の上段GSS5の上方に循環水2の取水口6を設置した例である。取水口6は図6に示すようにGSS5によって形成される流路の直上にGSS5によって形成される流路の面積に合わせて10ヶ所配置した。原水の水量の4倍量の循環水をUASBの流入水配管へ導入させた。
流出VSSは326mg/L、溶解性CODCr除去率は82%であり、循環水2の取水口6をGSS5によって形成される流路の面積に合わせて10ヶ所を設置したが、図8の例と同等の結果であった。
<Comparative Example 3>
FIG. 10 is an example in which the intake 6 for the circulating water 2 is installed above the upper stage GSS 5 in the UASB. As shown in FIG. 6, 10 water intakes 6 were arranged immediately above the flow path formed by GSS 5 in accordance with the area of the flow path formed by GSS 5. Circulating water 4 times the amount of raw water was introduced into the UASB inflow piping.
The outflow VSS is 326 mg / L, the soluble COD Cr removal rate is 82%, and the intake 6 of the circulating water 2 is installed at 10 locations in accordance with the area of the flow path formed by the GSS 5. The result was equivalent.

<実施例1、実施例2>
図1は、図10で図示した例において循環水2の取水口6の上方に最上段GSS5を設置した例である。原水の水量の4倍量の循環水2をUASBの流入水配管へ導入させた。
この場合の中、図6(実施例1)の例は、集水管9を最上段のGSS開口部の下部に配した例である。中心側の取水管9は直線状、壁面側の集水管9はリング状としている。取水口6は下方にある中段GSS5に形成される開口比に応じて中心側に2ヶ所、壁面側に8ヵ所を配した。
図6の例では、流出VSSは108mg/L、溶解性CODCr除去率は86%であった。
<Example 1 and Example 2>
FIG. 1 is an example in which the uppermost stage GSS 5 is installed above the intake 6 of the circulating water 2 in the example shown in FIG. Circulating water 2 that is four times the amount of raw water was introduced into the inflow water piping of UASB.
In this case, the example of FIG. 6 (Example 1) is an example in which the water collecting pipe 9 is disposed below the uppermost GSS opening. The central intake pipe 9 is linear, and the wall-side water collection pipe 9 is ring-shaped. The water intake 6 was arranged at two places on the center side and eight places on the wall surface side according to the opening ratio formed in the middle stage GSS 5 below.
In the example of FIG. 6, the outflow VSS was 108 mg / L, and the soluble COD Cr removal rate was 86%.

図7(実施例2)の例は、集水管9を中段GSS頂部の上部にリング状に配した例である。取水口6は下方にある中段GSS5によって形成される開口比に応じて中心側に2ヶ所、壁面側に8ヵ所を配した。取水口6はそれぞれ中心側と壁面側に向けて開口している。
図7の例では、流出VSSは110mg/L、溶解性CODCr除去率は86%であった。
最上段GSSの下方に循環水2の取水口6を配置することにより、図10の比較例3より流出VSSを抑制でき、溶解性CODCr除去性能も高まった。
The example of FIG. 7 (Example 2) is an example in which the water collecting pipe 9 is arranged in a ring shape at the top of the top of the middle stage GSS. The water intake 6 was arranged at two places on the center side and eight places on the wall surface according to the opening ratio formed by the lower middle stage GSS 5. The water intake 6 opens toward the center side and the wall surface side, respectively.
In the example of FIG. 7, the outflow VSS was 110 mg / L, and the soluble COD Cr removal rate was 86%.
By disposing the intake port 6 of the circulating water 2 below the top GSS, it can suppress the outflow VSS Comparative Example 3 in FIG. 10, as well as enhanced solubility COD Cr removal performance.

<実施例3>
図2は、図1で図示した例において取水口の下方にある中段GSSと下段GSSの間にも取水口を設置した例である。原水の水量の4倍量の循環水2を下段の取水管から、原水の水量の3倍量の循環水を上段の取水管から引抜き、UASBの流入水配管へ導入させた。
図2の例では、流出VSSは102mg/L、溶解性CODCr除去率は88%であった。
取水口の段数を2段にすることにより、UASB下部における上昇流速が大きくても図1の例と同等の流出VSSを維持することができた。本例は、原水の希釈効果をさらに高めたい場合や、上昇流速を上げることで槽内汚泥の攪拌効果を高めたい場合に有効な方法である。
<Example 3>
FIG. 2 is an example in which a water intake is also installed between the middle stage GSS and the lower stage GSS below the water intake in the example illustrated in FIG. 1. Circulating water 2, which is four times the amount of raw water, was drawn from the lower intake pipe, and three times the amount of raw water was extracted from the upper intake pipe, and introduced into the inflow water piping of UASB.
In the example of FIG. 2, the outflow VSS was 102 mg / L, and the soluble COD Cr removal rate was 88%.
By setting the number of intake stages to two, the outflow VSS equivalent to the example of FIG. 1 could be maintained even when the rising flow velocity at the lower part of the UASB was large. This example is an effective method when it is desired to further increase the dilution effect of the raw water, or when it is desired to increase the stirring effect of the sludge in the tank by increasing the ascending flow rate.

<実施例4>
図3は、図1及び図6で図示した例において、グラニュール汚泥層内にpHセンサー7を設置し、測定されたpHが6.8〜7.5に収まるように循環水2の水量を制御した例である。具体的には、グラニュール汚泥層内のpHが6.8以下になると循環水量を増やし、7.5以上となると循環水の水量を減らした。
図3の例では、流出VSSは101mg/L、溶解性CODCr除去率は87%であった。
図11に示すように循環水量をpHによって制御することで、循環水の水量を一定とした図1の例より良好な溶解性CODCr除去率での運転が可能であった。
<Example 4>
FIG. 3 shows an example shown in FIG. 1 and FIG. 6 in which a pH sensor 7 is installed in the granular sludge layer, and the amount of circulating water 2 is adjusted so that the measured pH is within 6.8 to 7.5. This is a controlled example. Specifically, when the pH in the granular sludge layer was 6.8 or less, the amount of circulating water was increased, and when it was 7.5 or more, the amount of circulating water was reduced.
In the example of FIG. 3, the outflow VSS was 101 mg / L, and the soluble COD Cr removal rate was 87%.
As shown in FIG. 11, by controlling the amount of circulating water according to pH, it was possible to operate at a better COD Cr removal rate than the example of FIG. 1 where the amount of circulating water was constant.

<実施例5>
図4は、図1、図5で図示した例において、汚泥界面計8を設置し、測定された汚泥界面が2.0〜2.5mに収まるように循環水2の水量を制御した例である。具体的には、グラニュール汚泥の界面が2.0m以下になると循環水量を増やし、2.5m以上となると循環水量を減らした。
図4の例では、流出VSSは89mg/L、溶解性CODCr除去率は90%であった。
循環水量を汚泥界面によって制御することにより、負荷増加時のガス発生量増加に伴う汚泥界面の過上昇、負荷減少時のガス発生量減少に伴うグラニュール汚泥の流動状態の悪化を防ぐことができた結果、図11、図12に示すように図1の例より流出VSSを抑制しつつ、良好な溶解性CODCr除去率での運転が可能であった。
<Example 5>
FIG. 4 shows an example in which the sludge interface meter 8 is installed in the example shown in FIGS. 1 and 5 and the amount of the circulating water 2 is controlled so that the measured sludge interface is within 2.0 to 2.5 m. is there. Specifically, the amount of circulating water was increased when the interface of the granular sludge was 2.0 m or less, and the amount of circulating water was decreased when the interface was 2.5 m or more.
In the example of FIG. 4, the outflow VSS was 89 mg / L, and the soluble COD Cr removal rate was 90%.
By controlling the amount of circulating water through the sludge interface, it is possible to prevent excessive increase in the sludge interface due to an increase in the amount of gas generated when the load increases and deterioration of the flow state of the granular sludge due to a decrease in the amount of gas generated when the load decreases. As a result, as shown in FIGS. 11 and 12, it was possible to operate with a good soluble COD Cr removal rate while suppressing the outflow VSS from the example of FIG.

<実施例6>
図5は、図1、図6で図示した例において循環水2を原水の水量の1.5倍を酸発酵槽に、2.5倍をUASBの流入水配管へ導入させた例である。
図5の例では、流出VSSは111mg/L、溶解性CODCr除去率は86%であり、図1の例と同等であった。
酸発酵槽で供給する必要のあったアルカリは、図1の例では原水CODCr1kgあたり0.2〜0.3kgの水酸化ナトリウムが必要であったが、図5の例では0.1〜0.2kgに低減できた。
<Example 6>
FIG. 5 is an example in which the circulating water 2 in the example illustrated in FIGS. 1 and 6 is introduced 1.5 times the amount of raw water into the acid fermenter and 2.5 times into the inflow water pipe of the UASB.
In the example of FIG. 5, the outflow VSS was 111 mg / L, and the soluble COD Cr removal rate was 86%, which was the same as the example of FIG.
The alkali that had to be supplied in the acid fermenter required 0.2 to 0.3 kg of sodium hydroxide per kg of raw water COD Cr in the example of FIG. It was reduced to 0.2 kg.

本発明の嫌気性処理方法及びその装置は、循環水の水量をグラニュール汚泥又は/及び担体の界面又は/及びグラニュール汚泥又は/及び担体の界面より下部のpHによって制御することにより、負荷増加時のガス発生量増加に伴う汚泥界面の過上昇、負荷減少時のガス発生量減少に伴うグラニュール汚泥の流動状態の悪化を防ぐことができるので、安定した工程管理が可能となり、流出VSSを抑制しつつ、良好な溶解性CODCr除去率での運転が可能となる。従って、本発明による処理方法と装置は多くの廃水処理施設での利用が期待される。 The anaerobic treatment method and apparatus of the present invention increase the load by controlling the amount of circulating water by the pH of the granule sludge or / and carrier interface or / and the granule sludge or / and carrier lower interface. It is possible to prevent excessive increase of the sludge interface due to the increase in gas generation amount at the time and deterioration of the flow state of the granular sludge due to the decrease in gas generation amount when the load is reduced. Operation with a good soluble COD Cr removal rate is possible while suppressing. Therefore, the treatment method and apparatus according to the present invention are expected to be used in many wastewater treatment facilities.

本発明で使用した取水口とGSS部の位置関係を示すUASB装置の概略を示す図である。It is a figure which shows the outline of the UASB apparatus which shows the positional relationship of the water intake used by this invention, and a GSS part. 実施例3で用いた取水口の下方にある中段GSSと下段GSSの間の二段に取水口を配置したUASB装置の概略を示す図である。It is a figure which shows the outline of the UASB apparatus which has arrange | positioned the water intake to the 2nd stage between the middle stage GSS and the lower stage GSS which are under the water intake used in Example 3. FIG. 実施例4で用いた汚泥層内にpHセンサーを設置したUASB装置の概略を示す図である。It is a figure which shows the outline of the UASB apparatus which installed the pH sensor in the sludge layer used in Example 4. FIG. 実施例5で用いた汚泥界面計を設置したUASB装置の概略を示す図である。It is a figure which shows the outline of the UASB apparatus which installed the sludge interface meter used in Example 5. FIG. 実施例6において、酸発酵槽とUASBへの循環水の流入量を変更したとき用いた図1、図6と類似のUASB装置の概略を示す。In Example 6, the outline of the UASB apparatus similar to FIG. 1, FIG. 6 used when the inflow amount of the circulating water to an acid fermenter and UASB was changed is shown. 本発明の実施例1で使用したUASB装置の取水管の形状と取水口の配置を示す概略図であり、(a)は側面図であり、(b)は平面図である。It is the schematic which shows the shape of the intake pipe of the UASB apparatus used in Example 1 of this invention, and arrangement | positioning of an intake port, (a) is a side view, (b) is a top view. 本発明の実施例2で使用したUASB装置の取水管の形状と取水口の配置を示す概略図であり、(a)は側面図であり、(b)は平面図である。It is the schematic which shows the shape of the intake pipe of the UASB apparatus used in Example 2 of this invention, and arrangement | positioning of an intake port, (a) is a side view, (b) is a top view. 比較例1で使用したUASB装置の概略を示す図である。It is a figure which shows the outline of the UASB apparatus used in the comparative example 1. 比較例2で使用したUASB装置の概略を示す図である。It is a figure which shows the outline of the UASB apparatus used in the comparative example 2. 比較例3で使用したUASB装置の概略を示す図である。It is a figure which shows the outline of the UASB apparatus used in the comparative example 3. 嫌気性処理の経過日数(d)と溶解性CODCr除去率(%)の関係を示す図である。It is a figure which shows the relationship between the elapsed days (d) of anaerobic treatment, and soluble COD Cr removal rate (%). 嫌気性処理の経過日数(d)と、流出SS(mg/L)の関係を示す図である。It is a figure which shows the relationship between the elapsed days (d) of anaerobic processing, and outflow SS (mg / L).

符号の説明Explanation of symbols

1 原水
2 循環水
3 処理水
4 汚泥層
5 GSS
6 取水口
7 pHセンサー
8 汚泥界面計
9 取水(集水)管
1 Raw water 2 Circulating water 3 Treated water 4 Sludge layer 5 GSS
6 Water intake 7 pH sensor 8 Sludge interface meter 9 Water intake (collection) pipe

Claims (6)

グラニュール汚泥及び/又は担体を充填した、ガス・液・固分離部を多段に有する上向流嫌気性処理装置を用いて有機性廃水を生物学的に処理する嫌気性処理方法において、前記グラニュール汚泥及び/又は担体の界面より上方に配置し、かつ、最上段に設置された前記ガス・液・固分離部よりも下方に配置した循環水の取水口から上向流嫌気性処理装置内の水を循環水として引き抜き、前記循環水を上向流嫌気性処理装置の底部及び/又は原水流入箇所及び/又は当該上向流嫌気性処理装置の前段処理装置に循環させることを特徴とする嫌気性処理方法。   In the anaerobic treatment method of biologically treating organic wastewater using an upflow anaerobic treatment device having a plurality of stages of gas, liquid and solid separation, filled with granular sludge and / or a carrier, the granule Inside the upstream anaerobic treatment device from the intake of circulating water placed above the interface of the sludge and / or carrier and below the gas / liquid / solid separation part installed at the top Water is drawn out as circulating water, and the circulating water is circulated to the bottom of the upward flow anaerobic treatment device and / or the raw water inflow portion and / or the upstream treatment device of the upward flow anaerobic treatment device. Anaerobic treatment method. 前記取水口はガス・液・固分離部によって形成される流路の開口部の面積又は前記流路の開口部の配置に合わせて、前記流路の開口部あたりの取水口を1ヶ所以上配置したことを特徴とする請求項1記載の嫌気性処理方法。   The water intake is arranged at one or more water intakes per opening of the flow path in accordance with the area of the opening of the flow path formed by the gas / liquid / solid separation part or the arrangement of the opening of the flow path. The anaerobic treatment method according to claim 1, wherein: 前記グラニュール汚泥及び/又は担体の界面を検知し、検知した界面が循環水の取水口の高さを越えないように循環水の取水量の制御を行うことを特徴とする請求項1又は請求項2記載の嫌気性処理方法。   The interface of the granular sludge and / or carrier is detected, and the intake amount of the circulating water is controlled so that the detected interface does not exceed the height of the intake port of the circulating water. The anaerobic treatment method according to Item 2. 前記グラニュール汚泥及び/又は担体の界面より下部のpHを検知し、前記循環水の取水量を制御することを特徴とする請求項1〜請求項3のいずれか一項に記載の嫌気性処理方法。   The anaerobic treatment according to any one of claims 1 to 3, wherein a pH below the interface between the granular sludge and / or the carrier is detected to control the intake amount of the circulating water. Method. グラニュール汚泥及び/又は担体を充填した、ガス・液・固分離装置を多段に有する上向流嫌気性処理装置を用いて有機性廃水を生物学的に処理する嫌気性処理装置において、
前記グラニュール汚泥及び/又は担体の界面より上方、かつ、最上段に設置されたガス・液・固分離部よりも下方に配置した上向流嫌気性処理装置内の水を引き抜く循環水の取水口を有する上向流嫌気性処理装置と、
前記取水口と前記上向流嫌気性処理装置の底部及び/又は原水流入箇所、及び/又は当該上向流嫌気性処理装置の前段に配置した前段処理装置をつなぐ循環水返送ラインとを
有することを特徴とする嫌気性処理装置。
In an anaerobic treatment device that biologically treats organic wastewater using an upflow anaerobic treatment device that is filled with granular sludge and / or a carrier and has gas, liquid, and solid separation devices in multiple stages.
Intake of circulating water to extract water in an upward-flow anaerobic treatment device disposed above the interface between the granular sludge and / or carrier and below the gas / liquid / solid separation section installed at the uppermost stage. An upflow anaerobic treatment device having a mouth;
It has a circulating water return line that connects the intake, the bottom of the upward flow anaerobic treatment device and / or the raw water inflow location, and / or the upstream treatment device arranged in the previous stage of the upward flow anaerobic treatment device. An anaerobic treatment device characterized by.
前記取水口は、前記ガス・液・固分離部によって形成される流路の面積又は該流路の配置に合わせて配置したことを特徴とする請求項5記載の嫌気性処理装置。   6. The anaerobic treatment apparatus according to claim 5, wherein the intake port is arranged in accordance with an area of a flow path formed by the gas / liquid / solid separation portion or an arrangement of the flow path.
JP2008208036A 2008-08-12 2008-08-12 Anaerobic treatment method and apparatus Active JP5114780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208036A JP5114780B2 (en) 2008-08-12 2008-08-12 Anaerobic treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208036A JP5114780B2 (en) 2008-08-12 2008-08-12 Anaerobic treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2010042352A true JP2010042352A (en) 2010-02-25
JP5114780B2 JP5114780B2 (en) 2013-01-09

Family

ID=42014177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208036A Active JP5114780B2 (en) 2008-08-12 2008-08-12 Anaerobic treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP5114780B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050910A (en) * 2010-08-31 2012-03-15 Kobelco Eco-Solutions Co Ltd Upflow type reaction tank, water treatment method using the reaction tank, and water treatment apparatus equipped with the reaction tank
WO2012070493A1 (en) * 2010-11-26 2012-05-31 栗田工業株式会社 Anaerobic treatment method
JP2012239929A (en) * 2011-05-16 2012-12-10 Swing Corp Method and apparatus for anaerobic treatment of organic wastewater
JP2013176746A (en) * 2012-02-29 2013-09-09 Swing Corp Treatment method and treatment device for organic wastewater
JP2014111251A (en) * 2012-10-31 2014-06-19 Swing Corp Purifying method and purifying apparatus of drainage and granular activated carbon used for the same
JP2014180622A (en) * 2013-03-19 2014-09-29 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment apparatus
JP2014237102A (en) * 2013-06-10 2014-12-18 栗田工業株式会社 Apparatus and method for treating alcohol production drainage
JP2015229150A (en) * 2014-06-06 2015-12-21 住友重機械工業株式会社 Anaerobic treatment apparatus, anaerobic treatment method, and display device of anaerobic treatment apparatus
CN105645580A (en) * 2016-03-22 2016-06-08 合肥广庆防腐设备有限公司 Antiseptic three-phase separator for high concentration wastewater treatment
JP2017177098A (en) * 2016-03-28 2017-10-05 住友重機械エンバイロメント株式会社 Water treatment apparatus
JP2018083139A (en) * 2016-11-21 2018-05-31 株式会社クラレ Processing method of organic waste water
CN109553187A (en) * 2017-09-27 2019-04-02 天津科技大学 A kind of method of anaerobic reactor mass transfer enhancement
JP2021126658A (en) * 2017-03-28 2021-09-02 住友重機械エンバイロメント株式会社 Water treatment apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044096A (en) * 1990-04-19 1992-01-08 Shinko Pantec Co Ltd Method for controlling boundary of microorganism bed of upward current anaerobic treating tank for waste water
JPH11207384A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerobic treating method and device therefor
JP2000117284A (en) * 1998-10-12 2000-04-25 Mitsubishi Kakoki Kaisha Ltd Upflow type anaerobic treatment equipment and treatment using the same
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044096A (en) * 1990-04-19 1992-01-08 Shinko Pantec Co Ltd Method for controlling boundary of microorganism bed of upward current anaerobic treating tank for waste water
JPH11207384A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerobic treating method and device therefor
JP2000117284A (en) * 1998-10-12 2000-04-25 Mitsubishi Kakoki Kaisha Ltd Upflow type anaerobic treatment equipment and treatment using the same
JP2008029993A (en) * 2006-07-31 2008-02-14 Ihi Corp Methane fermenter

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050910A (en) * 2010-08-31 2012-03-15 Kobelco Eco-Solutions Co Ltd Upflow type reaction tank, water treatment method using the reaction tank, and water treatment apparatus equipped with the reaction tank
JP5949554B2 (en) * 2010-11-26 2016-07-06 栗田工業株式会社 Anaerobic treatment method
US9102550B2 (en) 2010-11-26 2015-08-11 Kurita Water Industries Ltd. Anaerobic treatment method
JPWO2012070493A1 (en) * 2010-11-26 2014-05-19 栗田工業株式会社 Anaerobic treatment method
WO2012070493A1 (en) * 2010-11-26 2012-05-31 栗田工業株式会社 Anaerobic treatment method
JP2012239929A (en) * 2011-05-16 2012-12-10 Swing Corp Method and apparatus for anaerobic treatment of organic wastewater
JP2013176746A (en) * 2012-02-29 2013-09-09 Swing Corp Treatment method and treatment device for organic wastewater
JP2014111251A (en) * 2012-10-31 2014-06-19 Swing Corp Purifying method and purifying apparatus of drainage and granular activated carbon used for the same
JP2014180622A (en) * 2013-03-19 2014-09-29 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment apparatus
JP2014237102A (en) * 2013-06-10 2014-12-18 栗田工業株式会社 Apparatus and method for treating alcohol production drainage
WO2014199972A1 (en) * 2013-06-10 2014-12-18 栗田工業株式会社 Alcohol production waste water treatment device, and treatment method
JP2015229150A (en) * 2014-06-06 2015-12-21 住友重機械工業株式会社 Anaerobic treatment apparatus, anaerobic treatment method, and display device of anaerobic treatment apparatus
CN105645580A (en) * 2016-03-22 2016-06-08 合肥广庆防腐设备有限公司 Antiseptic three-phase separator for high concentration wastewater treatment
JP2017177098A (en) * 2016-03-28 2017-10-05 住友重機械エンバイロメント株式会社 Water treatment apparatus
JP2018083139A (en) * 2016-11-21 2018-05-31 株式会社クラレ Processing method of organic waste water
JP2021126658A (en) * 2017-03-28 2021-09-02 住友重機械エンバイロメント株式会社 Water treatment apparatus
JP7233473B2 (en) 2017-03-28 2023-03-06 住友重機械エンバイロメント株式会社 water treatment equipment
CN109553187A (en) * 2017-09-27 2019-04-02 天津科技大学 A kind of method of anaerobic reactor mass transfer enhancement

Also Published As

Publication number Publication date
JP5114780B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5114780B2 (en) Anaerobic treatment method and apparatus
CN104045156B (en) Integrated high-efficiency self-supported denitrification reactor
JP5017725B2 (en) Anaerobic treatment method and apparatus
WO2012075615A1 (en) Integrated bioreactor and use thereof and method for treating high content organic wastewater
CN101734827B (en) Method for treating yeast wastewater
CN105293818A (en) Method for treating ammonia-nitrogen wastewater through coupling of immobilization technology and CANON process
JP2008029993A (en) Methane fermenter
CN109912029B (en) Self-flowing internal circulation aerobic granular sludge continuous flow reactor
JP4428188B2 (en) Organic wastewater treatment method and treatment apparatus
CN101708893A (en) Anaerobic circulating granular sludge suspended-bed reactor and method for synchronously decarbonizing and denitrifying
CN105565489A (en) Sludge circulation efficient hydrolytic reactor
CN201258281Y (en) Spiral bioreactor
CN101405222A (en) Process and device for the anaerobic treatment of waste water
CN105884152A (en) IFBR-UASB-A/OBR chemical wastewater treatment combined process
CN104609550B (en) A kind of method that immobilized sludge granule removes ammonia nitrogen in waste water
CN206051804U (en) Chemical wastewater treatment system
CN210150801U (en) Integrated sewage treatment tank applying biological multiplication and fluidized bed process
CN207121472U (en) A kind of aerobic integrated sewage-treating reactor device of internal circulating anaerobic
CN207418381U (en) A kind of Aerobic three-phase separator
CN203112653U (en) Soybean product wastewater biochemical treatment device
CN103936140A (en) MBBR pretreatment method and system for high-ammonia nitrogen micro-polluted raw water
CN109942085B (en) Continuous flow upflow type aerobic granular sludge reactor
CN111115822B (en) PN/A integrated autotrophic nitrogen removal system based on MBBR and quick starting method
CN104743659A (en) New hydrolysis acidification sewage treatment process
CN113830891A (en) Sewage treatment device and method based on aerobic granular sludge process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

R150 Certificate of patent or registration of utility model

Ref document number: 5114780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250