JP2003184910A - Device of regulating fluid friction transfer force - Google Patents

Device of regulating fluid friction transfer force

Info

Publication number
JP2003184910A
JP2003184910A JP2001402748A JP2001402748A JP2003184910A JP 2003184910 A JP2003184910 A JP 2003184910A JP 2001402748 A JP2001402748 A JP 2001402748A JP 2001402748 A JP2001402748 A JP 2001402748A JP 2003184910 A JP2003184910 A JP 2003184910A
Authority
JP
Japan
Prior art keywords
roller
limiting device
transmission force
force limiting
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001402748A
Other languages
Japanese (ja)
Inventor
Shiro Sawa
司郎 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001402748A priority Critical patent/JP2003184910A/en
Publication of JP2003184910A publication Critical patent/JP2003184910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Friction Gearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a strong variable speed fluid coupling with a creeping phenomenon by rheology of the elastic fluid lubrication film under rolling contact. <P>SOLUTION: Viscous speed is made variable by the means that changes the skew angle of a roller in the constitution of a conical roller bearing. A traction component and a rheology component of oil film are corrected with the elastic displacement means of the established ball, and a direct coupled viscous hydraulic coupling of torque transmission is obtained with 0 to direct coupling. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は動力の伝達量のマネ
ジメントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to power transmission amount management.

【0002】[0002]

【従来の技術】動力の伝達量を増減する媒体には古典的
な摩擦板クラッチ、粘性継ぎ手、流体継ぎ手、ウオーム
ギヤの逆効率による摩擦抵抗、遠心ガバナ、転がり接触
による無段変速機などに加えて、新しい原理では特許第
2903325号の円すいころ軸受の構成でローラに推
力を生じるようにローラを軸心に対して傾斜させ、転が
り接触面下に閉じ込められた油膜が接触圧でトラクショ
ンを生ずると共に油膜の塑性変形現象を利用して高トル
クの粘性回転を得る流体摩擦伝達力制限装置がある。
2. Description of the Related Art In addition to classical friction plate clutches, viscous joints, fluid joints, frictional resistance due to worm gear reverse efficiency, centrifugal governors, continuously variable transmissions due to rolling contact, etc. According to the new principle, in the configuration of the tapered roller bearing of Japanese Patent No. 2903325, the roller is inclined with respect to the shaft center so as to generate thrust on the roller, and the oil film trapped under the rolling contact surface causes traction due to contact pressure and the oil film. There is a fluid friction transmission force limiting device that obtains high torque viscous rotation by utilizing the plastic deformation phenomenon.

【0003】この原理を発展させたものにローラのスキ
ュウ角度を任意に変化させてトルクの伝達量を増減する
案が特願平2−177047 平3−232581 平
4−97523 平4−295520 平4−3271
90があり、スキュウ角度固定方式では平3−5255
8の請求項2及び平4−129661の請求項1の如く
過剰なトルクを遮断するトルクミッタの機能を得るため
にローラの楔作用を停止する側にストッパ軸受けを介在
したもの、並びに同願の請求項3、4の軌道輪間にロー
ラよりも小サイズのボール又はスキュウ方向を逆にした
ローラを介装して一定以上のトルクが入力すると当ボー
ルと軌道が衝突してローラを滑らせる提案がある。とこ
ろが上記の方法はトルクを負荷すると伝達用のローラで
軌道間隔を押し広げてしまうので小サイズのボール又は
ローラは軌道に接触せず機能しない。特許第26632
24号のオートテンショナは特許第2903325の構
成に対して一定量以上の軌道間距離の接近を禁止するた
めに剛性の高いスラスト軸受けを入出力軸間にストッパ
として追加したものであるが、この技術範囲には油膜の
存在はもとより油膜のトラクション、塑性変形速度を制
御する思想は無く単に過剰トルクを負荷するとクラッチ
が滑るようにしたものである。
In addition to the development of this principle, there is a plan to arbitrarily change the skew angle of the roller to increase / decrease the amount of torque transmission. Japanese Patent Application No. 2-177047 flat 3-232581 flat 4-97523 flat 4-295520 flat 4 -3271
There is 90, and in the skew angle fixed system, flat 3-5255
No. 8 and No. 4-129661, a stopper bearing is provided on the side for stopping the wedge action of the roller in order to obtain the function of the torque limiter for cutting off excessive torque, and the same application. There is a proposal that a ball smaller than the roller or a roller whose skew direction is reversed is interposed between the races of items 3 and 4 and a torque collides with the ball and the race collides with the race when the torque exceeds a certain level. is there. However, in the above method, when torque is applied, the orbital interval is widened by the transmission roller, so that a small-sized ball or roller does not contact the orbit and does not function. Patent No. 26632
The autotensioner of No. 24 is a structure in which a thrust bearing having high rigidity is added as a stopper between the input and output shafts in order to prohibit the approach of the distance between the orbits of a certain amount or more from the configuration of Patent No. 2903325. There is no concept of controlling the traction of the oil film and the plastic deformation speed as well as the existence of the oil film in the range, and the clutch slips only when an excessive torque is applied.

【0004】トルク特性を補正する目的では、ローラの
楔作用を抑制する側に皿ばねを介在した特願平5−21
9344の請求項1,2,4及び平5−221557の
請求項2がある。叉スキュウ角度を任意に変更し粘性速
度を可変にする提案では、特願平4−97525に記載
のローラの両端に係合する一対の保持部材に位相を生ぜ
しめて、スキュウ変更後の保持部材をねじ手段で締結す
るものがあるが、回転中には調整ができない。回転中に
スキュウ可変のものに、ローラの両端に系支する保持部
材を円周に沿って分割してそれぞれを入力軸と出力軸に
摺接させて、その摩擦抵抗で保持部材を反対方向に連れ
回りさせ、ローラの両端を逆方向に変位させて入力軸の
回転に連れて自動的にスキュウが付与されるものがあ
る。この保持部材間に形状記憶ばねを介在し、温度変動
によるばねの伸縮で位相量を自動補正するもの、更には
H5−221557のローラのスキュウ方向を逆転させ
粘性回転の方向を転換するものがある。しかしこれ等に
はスキュウを規制するストッパ機構がなく且つ未実施で
ある。
For the purpose of correcting the torque characteristic, Japanese Patent Application No. 5-21 in which a disc spring is interposed on the side that suppresses the wedge action of the roller.
There are Claims 1, 2, 4 of 9344 and Claim 2 of Hei 5-221557. In the proposal that the cross skew angle is arbitrarily changed to make the viscosity speed variable, a phase is generated in a pair of holding members that engage with both ends of the roller described in Japanese Patent Application No. 4-97525, and the holding member after the skew is changed. Some are fastened with screw means, but cannot be adjusted during rotation. For the skew variable during rotation, divide the holding members that are supported at both ends of the roller along the circumference and slide them into contact with the input and output shafts, and the friction resistance causes the holding members to move in the opposite direction. There is a type in which skew is automatically imparted as the input shaft is rotated by rotating the input shaft in opposite directions by rotating the roller in the opposite direction. There is a type in which a shape memory spring is interposed between the holding members to automatically correct the phase amount by expansion and contraction of the spring due to temperature fluctuation, and a type in which the skew direction of the roller of H5-221557 is reversed to change the viscous rotation direction. . However, these do not have a stopper mechanism for restricting skew and have not been implemented yet.

【0005】[0005]

【発明が解決しようとする課題】本発明はトルクを負荷
した時の粘性回転速度を自在に変化出来ること、更に外
部要因の温度並びに入力回転の速度変化に適切に感応し
て自動で粘性速度が補正されることを目的とする。本装
置のトルクの伝達量を決定する要素は、円すい面のテー
パ角(テーパ角が13°以上ではトルク伝達不能)とロ
ーラの傾斜角(以後スキュウ角とする)並びに潤滑剤の
高圧固化膜のトラクション並びに粘性挙動と接触面圧力
(軌道間距離)の4要素である。
SUMMARY OF THE INVENTION According to the present invention, the viscous rotational speed when torque is applied can be freely changed, and the viscous rotational speed can be automatically adjusted in response to external factors such as temperature and input rotational speed changes. It is intended to be corrected. The factors that determine the torque transmission amount of this device are the taper angle of the conical surface (torque cannot be transmitted when the taper angle is 13 ° or more), the roller inclination angle (hereinafter referred to as skew angle), and the high pressure solidified film of the lubricant. The four elements are traction, viscous behavior, and contact surface pressure (distance between tracks).

【0006】この内テーパ角と潤滑剤の性状を運転中に
機敏に変化させることは困難であるのでローラのスキュ
ウ角の変更と軌道間距離の変更の二つの手段に限られ
る。スキュウ角について述べると、ローラにスキュウを
付与する手段は先に述べた通り公知である。従って最適
なスキュウの量を機敏に得る手段について述べると、先
ずスキュウが0°付近では転がり軸受けに酷似しトルク
伝達は遮断されローラは空転するだけである。
Since it is difficult to change the inner taper angle and the property of the lubricant agilely during operation, it is limited to two means of changing the skew angle of the roller and changing the distance between the tracks. With respect to the skew angle, means for applying a skew to the roller are known as described above. Therefore, as for the means for agilely obtaining the optimum amount of skew, first, when the skew is near 0 °, it closely resembles a rolling bearing, torque transmission is interrupted, and the roller simply idles.

【0007】当装置のスキュウ角度は送りねじのリード
に相当し無潤滑乾燥状態で負荷トルクを一定にしてスキ
ュウ角度(ねじではリード角)を増すと図6の符号26
の線図から28の線図のごとくローラのくさび角(噛み
込角)が大きくなるのでローラの接触面圧は低下し図6
の縦軸δの値の内外輪の軸方向の弾性相対変位量は小さ
くなる。ところが実際には転がり接触下には高圧閉じ込
め油膜が介在するので、油膜によって前記の弾性変位か
ら開放される側に油膜が塑性変形した量だけ相対回転が
始まる。スキュウ角度を小さくすると次第にローラベア
リングの如く粘性回転は速くなる、逆に角度を大きくす
ると遅くなる。その特性は油固有のトラクションと粘性
クリープ速度に依存し且つ温度で変動する。
The skew angle of this device corresponds to the lead of the feed screw. If the skew torque (lead angle for a screw) is increased by keeping the load torque constant in a dry state without lubrication, the reference numeral 26 in FIG.
6 to 28, since the wedge angle (engagement angle) of the roller increases, the contact surface pressure of the roller decreases and FIG.
The amount of elastic relative displacement of the inner and outer rings in the axial direction of the value of the vertical axis δ of becomes smaller. However, in reality, since the high-pressure confining oil film is present under rolling contact, relative rotation starts by the amount of plastic deformation of the oil film on the side released from the elastic displacement by the oil film. If the skew angle is made smaller, the viscous rotation becomes gradually faster like a roller bearing, and conversely, it becomes slower if the angle is made larger. Its properties depend on the oil's inherent traction and viscous creep rate and vary with temperature.

【0008】それに加え接触下の閉じ込め油膜は圧力が
高くなると強力なトラクション(せん断抵抗)を生ずる
反面塑性変形の速度が遅くなる不都合な傾向がある。こ
れを図5の縦軸を当装置の負荷トルク、横軸を粘性回転
速度にしたトルクと速度の関係を示すグラフで説明する
と、スキュウ角を小さくしてもトルクが一定値を越える
と塑性変形による粘性回転は遅くなり38の線の如く期
待した線図39のように速くならず所謂食い込み現象を
生ずる。
In addition, the confined oil film under contact causes strong traction (shear resistance) when the pressure is increased, but on the other hand, the plastic deformation speed tends to be slow. This will be described with reference to a graph showing the relationship between the torque and the speed in which the vertical axis of FIG. 5 is the load torque of the device and the horizontal axis is the viscous rotation speed, and plastic deformation occurs when the torque exceeds a certain value even if the skew angle is reduced. The viscous rotation due to is slowed down, and the so-called biting phenomenon occurs as shown by the line 38 and not as fast as the expected line 39.

【0009】別の手段の軌道間距離を拡縮して速度を変
更する方法では、距離を拡大するとローラの接触面圧は
急激に低下して油膜の粘性速度は増すがトラクションは
低下し弾性流体潤滑域を脱して流体潤滑域に移行しこの
時点で空転する。
According to another method of changing the speed by expanding or contracting the distance between the orbits, when the distance is increased, the contact surface pressure of the roller sharply decreases and the viscous speed of the oil film increases, but the traction decreases and elastohydrodynamic lubrication occurs. It leaves the zone and shifts to the fluid lubrication zone where it spins idle.

【0010】先ずローラのスキュウを変更する時の課題
について述べる。当発明は、上記の諸特性を組み合わせ
て所望のトルク特性を得ることが目的である。ローラの
スキュウ角が変化するとこれに倣うべき相手側軌道面の
双曲面形状も変化する。しかし円錐曲面の形状は製造時
以降に変更できないのでスキュウ角を変更するとローラ
は線接触から点接触に移行する。点接触では面圧が集中
し軌道表面に永久歪の窪みを生じ早期に損傷を招く、従
いこれを防ぐ工夫が課題となる。
First, the problem when changing the skew of the roller will be described. It is an object of the present invention to obtain desired torque characteristics by combining the above characteristics. When the skew angle of the roller changes, the hyperboloid shape of the other raceway surface to follow this also changes. However, since the shape of the conical curved surface cannot be changed after manufacturing, the roller shifts from line contact to point contact when the skew angle is changed. In point contact, surface pressure is concentrated and permanent depressions are generated on the raceway surface, leading to early damage. Therefore, the challenge is to prevent this.

【0011】次の課題に、同じ潤滑剤で同じトルクを負
荷した場合スキュウ角が小さくなると前述の食い込みで
所望の回転速度が得られないといった課題がある。これ
に対して前述の特願平5−219344の軸方向の変位
を皿ばねで抑制する案があるが、当該装置での油膜厚さ
は0.0003mmで、例えばテーパの平均軸径がφ1
5ミリ、ローラ径がφ2.0ミリの場合、軌道間距離が
トルク負荷で狭まる弾性変位量は0.01〜0.3ミリ
の範囲でこれを制御する抑制ばねの寸法の誤差の範囲は
0.01ミリ以下を要する。ところが皿ばねでは、取り
付け誤差、へたり、軸、ハウジング周辺の温度による膨
張収縮の寸法変化、ばねの板厚誤差、ばね定数の変動ば
らつきなど、誤差の累積値は上記レベルを遥かに越える
ので不適である。当部位にはミクロン単位の変化で大き
く且つ高い精度のばね反力を要し、取り付け誤差、使用
中の磨耗、寸法変動等が少なく製作が容易で安価で安定
した高精度の部材が必要となる。
The next problem is that when the same lubricant is applied with the same torque and the skew angle becomes small, the desired rotation speed cannot be obtained due to the aforementioned bite. On the other hand, there is a plan to suppress the axial displacement of the above-mentioned Japanese Patent Application No. 5-219344 with a disc spring, but the oil film thickness in the device is 0.0003 mm, and the average shaft diameter of the taper is φ1.
When the roller diameter is 5 mm and the roller diameter is φ2.0 mm, the elastic displacement amount in which the inter-orbit distance is narrowed by the torque load is in the range of 0.01 to 0.3 mm, and the error range of the size of the restraining spring that controls this is 0. 0.01 mm or less is required. However, disc springs are not suitable because the accumulated error far exceeds the above level due to mounting errors, sag, dimensional changes in expansion and contraction due to temperature around the shaft and housing, errors in spring plate thickness, and variations in spring constant fluctuations. Is. A large and highly accurate spring reaction force is required in this part due to changes in the unit of micron, and there is a need for a stable, highly accurate member that is easy to manufacture, inexpensive, and has little mounting error, wear during use, dimensional variation, etc. .

【0012】更なる課題に、運転中における潤滑剤の温
度の変化でトルク特性が変動する不具合の解消と、入力
軸の回転速度に比例して自動的にローラに依る粘性回転
速度を補正するといった課題がある。当該課題の目的
は、例えば四輪駆動車のプロペラ軸に搭載する駆動力を
自動配分する継ぎ手に使用する場合、その機能はタイト
コーナ走行時に前後輪に回転差を生じ路面とタイヤ間の
トルク循環でブレーキがかかる問題がありこれを防ぐた
めにその差回転を継ぎ手で吸収し、更に直進高速走行で
は差回転を速度に比例して変化させる機能、並びにエン
ジンと変速機を繋ぐ流体継ぎ手に使用する場合、アイド
リングの低速回転ではクリープと称し滑りながら微量の
トルクを伝達し、速くなると自動的に直結に至る機能を
得ることにある。
Further problems include solving the problem that the torque characteristics fluctuate due to changes in the temperature of the lubricant during operation, and automatically correcting the viscous rotation speed depending on the rollers in proportion to the rotation speed of the input shaft. There are challenges. The purpose of the subject is, for example, when used in a joint that automatically distributes the driving force to be mounted on the propeller shaft of a four-wheel drive vehicle, the function is to generate torque difference between the front and rear wheels during tight corner running, and to perform torque circulation between the road surface and tires. There is a problem that the brake is applied and in order to prevent this, the differential rotation is absorbed by the joint, and in the case of straight traveling high speed running, the function to change the differential rotation in proportion to the speed, and when used for the fluid joint connecting the engine and the transmission, When idling at low speed, it is called creep and transmits a small amount of torque while slipping, and when it becomes faster, it automatically obtains a direct connection function.

【0013】[0013]

【課題を解決するための手段】これらの課題を解決する
ために本発明は、請求項1の発明では、スキュウ角を大
きくしてトルクを負荷すると、ローラは軌道間に強力な
面圧で軌道曲面に押し潰されて曲げ応力を伴って転動し
所謂回転曲げ運動で早期に疲労破損する、叉エッジロー
ドと称して軌道エッジ、ローラエッジに早期損傷を招き
この態様は転がり軸受けの世界ではミスアライメントと
し厳禁事項であった。ところが経験則より曲げ応力σを
20Kg/平方ミリ以下に抑えれば疲労破損は生じない
こと又ローラの両端に充分なクラウニング加工と称する
エッジロードを緩和する丸みを設ければこれらの諸問題
を回避できることが分かっている。そこで表面応力値σ
が20kg/平方ミリ以下になるように細くて長いロー
ラを用いればスキュウ角が0〜12度の範囲で自在に変
化しても常に無理なく線接触が保証される。
In order to solve these problems, the present invention relates to the invention of claim 1 in which when the skew angle is increased and a torque is applied, the rollers raceway with a strong surface pressure between the raceways. It is crushed by a curved surface and rolls with bending stress to cause early fatigue damage due to so-called rotary bending motion.This is called a fork edge load, which causes early damage to the raceway edge and roller edge, which is a mistake in the world of rolling bearings. It was strictly prohibited as an alignment. However, as a rule of thumb, if the bending stress σ is kept below 20 Kg / square mm, fatigue damage does not occur, and if both ends of the roller are provided with sufficient rounding to reduce the edge load called crowning, these problems will be avoided. I know I can. Therefore, the surface stress value σ
If a thin and long roller is used so as to be less than or equal to 20 kg / square millimeter, the line contact is always guaranteed even if the skew angle freely changes within the range of 0 to 12 degrees.

【0014】請求項2の発明では、ローラの両端に係支
する一対の保持部材の位相でローラにスキュウを付与す
る場合、構造上一対の保持部材が軌道の長手方向で重な
る箇所を生ずる、薄肉円環で成るニードルベアリングの
保持部材の板厚は経験則からローラの直径の70%程度
に設計しないと加工誤差、熱処理歪などで軌道と干渉す
る問題がある。前述の線接触を得るためにローラの直径
をφ2.0mmにすると保持器の板厚は1.4mmにな
り、二重構造となる箇所ではこれの二分割になるので最
大板厚は0.7mm以下となり、保持部材の強度確保が
困難になる。当課題に対してはローラの片端を軌道の幅
より外側に移して、保持器の二重箇所を軌道の制約を受
けないようにすれば保持部材の厚みは確保できる。
According to the second aspect of the invention, when the skew is applied to the roller at the phase of the pair of holding members that are supported at both ends of the roller, structurally, a pair of holding members has a portion where they overlap in the longitudinal direction of the track, so that a thin wall is formed. According to an empirical rule, the plate thickness of the holding member of the needle bearing formed of an annular ring must be designed to be about 70% of the diameter of the roller, and there is a problem that it interferes with the track due to processing error, heat treatment distortion, and the like. If the diameter of the roller is φ2.0 mm in order to obtain the above-mentioned line contact, the plate thickness of the cage will be 1.4 mm, and the maximum plate thickness will be 0.7 mm because it will be divided into two parts in the double structure. Below, it becomes difficult to secure the strength of the holding member. To solve this problem, the thickness of the holding member can be secured by moving one end of the roller outside the width of the track so that the double points of the cage are not restricted by the track.

【00015】特許請求項3の発明では、これらの要件
を充足する部材に直径がサブミクロンで製造される軸受
用の鋼珠を考察すると、接触面の弾性変位量はヘルツの
接触弾性変位として古くから確立されその公式は広く機
械工学便覧に掲載されている、又転がり接触では磨耗も
殆ど無いのでこれを斜接玉軸受の如く構成し、玉の数、
サイズ、接触角度から軸方向荷重に対する弾性変位量の
値δを求める計算式も軸受け便覧に記載されており、更
にその変位量もミクロン単位で実測管理が容易であって
当目的に好適である。従って前記流体摩擦伝達力制限装
置におけるトルク負荷による内外軌道の接近変位量をこ
の鋼球で構成される部材の弾性変位特性でもって抑制し
過剰な面圧上昇を防いで必要な油膜のトラクションを損
なうことなく適度な塑性変形速度を得ることができる。
In the invention of claim 3, considering a steel ball for a bearing manufactured to have a submicron diameter as a member satisfying these requirements, the elastic displacement of the contact surface has long been considered as Hertzian contact elastic displacement. It has been established and its formula is widely published in mechanical engineering handbooks, and since rolling contact causes almost no wear, it is constructed like a diagonal contact ball bearing, and the number of balls,
A calculation formula for obtaining the value δ of the elastic displacement amount with respect to the axial load from the size and the contact angle is also described in the bearing manual, and the displacement amount can be easily measured and measured in micron units, which is suitable for this purpose. Therefore, the approach displacement amount of the inner and outer raceways due to the torque load in the fluid friction transmission force limiting device is suppressed by the elastic displacement characteristic of the member made of the steel balls to prevent an excessive increase in the surface pressure and impair the required oil film traction. It is possible to obtain a moderate plastic deformation rate.

【0016】特許請求項4の発明では、ローラのスキュ
ウ付与部材の回転方向の位相位置が確実に固定され且つ
容易に可変であること、の課題について、先ず図1の第
一第二保持部材4,5にそれぞれ異なった形状のキー溝
14,15を設け該溝内に共通のキー21を介装してキ
ー21を移動させると保持部4のV溝とキー21との隙
間が変化し保持器の位相量の変化とともにローラのスキ
ュウ角度が変わる。キーのV溝の角度を小さくしキーの
移動距離を長くすると位相を固定するストッパの剛性が
強固になる。
According to the invention of claim 4, the problem that the phase position in the rotation direction of the skew-applying member of the roller is securely fixed and can be easily changed, first, the first and second holding members 4 of FIG. , 5 are provided with differently shaped key grooves 14 and 15, respectively, and when the key 21 is moved by interposing a common key 21 in the grooves, the gap between the V groove of the holding portion 4 and the key 21 is changed and held. The skew angle of the roller changes with the change of the phase amount of the container. If the angle of the V groove of the key is made small and the moving distance of the key is made long, the rigidity of the stopper for fixing the phase becomes strong.

【0017】請求項5の発明では、直接手を触れること
の出来ない回転体内部の機構を自動的に変更制御するに
は、遠心力又は温度依存性のばね力が好適で然も回転物
体であれば極力軸中心に近接した位置で大きな力を自発
する機構が望ましい、当該課題に対して実施例図1に示
す如く軸方向に軸の中心叉は軸の外径に形状記憶のコイ
ルばね12を配置し、ばねの動きをキー部材21に連動
させキーを移動させれば確実に位相を付与し不用意に位
置ずれを生ずることがない。又軸心付近に遠心ウエイト
を装設して(図は省略)高回転時には遠心ウエイトがば
ね反力に勝り半径方向にせり出して変位する、これをカ
ムで軸方向変位に変換して前記の図1のキーリング21
を動かすことでローラのスキュウ量を決めるストッパ位
置を回転速度に比例して変化させる。
In the fifth aspect of the invention, centrifugal force or temperature-dependent spring force is suitable for automatically changing and controlling the mechanism inside the rotating body that cannot be touched directly, and the rotating object is still preferable. If so, a mechanism that spontaneously generates a large force at a position as close as possible to the center of the shaft is desirable. To solve the problem, as shown in FIG. 1, the coil spring 12 having a shape memory at the center of the shaft or at the outer diameter of the shaft is used. Is arranged and the movement of the spring is interlocked with the key member 21 to move the key, the phase is surely given and the position is prevented from being inadvertently displaced. In addition, by installing a centrifugal weight near the shaft center (not shown), the centrifugal weight overcomes the spring reaction force and pushes out in the radial direction during high rotation, and this is converted into an axial displacement by a cam and the above figure is used. 1 key ring 21
By moving, the stopper position that determines the amount of skew of the roller is changed in proportion to the rotation speed.

【0018】[0018]

【実施の形態】本発明の請求項1の発明は、硬さが約H
RC60に焼入れされた鋼で成る円すい状の軸と円すい
の外軌道輪の間に軸受用のローラを軸心に対し三次元に
傾斜させて配置し油膜の作用で軸と外輪間のトルクの伝
達量を制限する特許第2903325号の流体摩擦伝達
力制限装置において、ローラを湾曲に撓ませる手段でス
キュウ角0°〜12°の範囲で軌道母線とローラを確実
に無理なく線接触を成すようにしたもので実施の形体
は、ローラの曲げ応力σが20kg/平方ミリ以下であ
れば加工の容易なストレートテーパ軌道でよく、ローラ
の曲げ剛性が高い時は、スキュウ角度の可変幅の中央に
対応した一葉双曲線にすることでローラの応力を最小化
できる。太いローラを使用する際は図4の如くローラに
細いR溝40を設けて溝部で撓ませるとよい、このとき
溝部の応力は前記σを越えない範囲とし、叉外径の角部
は軸受けローラで一般化されたクラウニンと称する角部
付近のR面形状を外径研磨後にバレル研磨等で施し、エ
ッジロードを防ぐことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention has a hardness of about H.
A bearing roller is placed between the cone-shaped shaft made of steel hardened in RC60 and the outer ring of the cone in a three-dimensional inclination with respect to the shaft center, and the oil film acts to transmit torque between the shaft and the outer ring. In the fluid friction transmission force limiting device of Japanese Patent No. 2903325 for limiting the amount, the means for deflecting the roller to bend so as to surely make line contact between the track busbar and the roller without fail in the range of the skew angle of 0 ° to 12 °. As for the embodiment, if the bending stress σ of the roller is 20 kg / square millimeter or less, a straight taper track that is easy to process is sufficient. When the bending rigidity of the roller is high, it corresponds to the center of the variable width of the skew angle. The stress of the roller can be minimized by using the above-mentioned one-leaf hyperbola. When using a thick roller, it is advisable to provide the roller with a thin R groove 40 as shown in FIG. 4 so that the groove bends. At this time, the stress in the groove does not exceed the above σ, and the corner of the outer diameter is the bearing roller. The edge loading can be prevented by subjecting the R-plane shape near the corners, which is generalized in 1., to the corners by barrel polishing or the like after polishing the outer diameter.

【0019】本発明の請求項2に記載の発明は、1項記
載の流体摩擦伝達力制限装置において、転動体の片端が
内外いずれかの転送面より外側にあることを特徴とした
もので実施の形態は、軸の軌道幅6よりもローラ3の長
さを7の如く延長して軌道から外れた位置で第一と第二
保持器を重ね合わせれば充分な肉厚の強度を確保でき
る。
The invention according to claim 2 of the present invention is the fluid friction transmission force limiting device according to claim 1, characterized in that one end of the rolling element is outside the transfer surface of either the inside or outside. In this form, the length of the roller 3 is extended from the track width 6 of the shaft by 7 and the first and second cages are superposed at a position deviated from the track so that sufficient strength can be secured.

【0020】本発明の請求項3に記載の発明は、特許第
2903325号の流体摩擦伝達力制限装置において、
入出力軸間に複数個の球状転動体を介装しそのヘルツの
接触弾性変位特性を反力ばねにして過度のトラクション
を抑制し粘性速度を調速するものである。実施の形体と
して、先ず当装置の負荷トルクと粘性回転速度の関係を
図5の線39の期待値を得る手段で、図1の入力軸1と
出力側外輪2の間に17と22の円錐面でなる軌道面を
設けこれに図6の29に示す不感帯となる隙間を設けて
ボール8が挟設されている。ボールと軌道が当接しマイ
ナス隙間になるとヘルツの弾性撓みによる図6の線図2
5のカーブを成すばね反力が得られる。負荷トルクが大
きくなると図5の38の如き線図の食い込みを生じ、そ
の際は前記ボールのばね反力が働いて補正された図5の
期待線図39に近づけることが出来る。図6は横軸が当
装置への負荷トルクを示し縦軸は装置の軸方向変位量を
示すグラフで図の符号26はスキュウ角度が小さい時に
は食込みが強く現われ軌道間隔が狭まる。スキュウ角度
が大きいと前記変位量は小さくなる。
The invention according to claim 3 of the present invention is the fluid friction transmission force limiting device according to Japanese Patent No. 2903325.
A plurality of spherical rolling elements are provided between the input and output shafts, and the contact elastic displacement characteristics of the Hertz are used as a reaction force spring to suppress excessive traction and regulate the viscosity speed. As an embodiment, first, the relation between the load torque and the viscous rotation speed of this device is a means for obtaining an expected value of a line 39 of FIG. 5, and a cone of 17 and 22 is provided between the input shaft 1 and the output outer ring 2 of FIG. A ball raceway surface is provided, and the ball 8 is sandwiched between the raceway surfaces with a gap serving as a dead zone shown at 29 in FIG. When the ball comes into contact with the track and a negative gap is formed, the line diagram of FIG.
A spring reaction force forming a curve of 5 is obtained. When the load torque is increased, the line diagram such as 38 in FIG. 5 bites into the line. At that time, the spring reaction force of the ball acts to bring it closer to the corrected expected line diagram 39 in FIG. FIG. 6 is a graph in which the horizontal axis represents the load torque applied to the device and the vertical axis represents the amount of axial displacement of the device. Reference numeral 26 in the drawing shows a strong bite and a narrow track interval when the skew angle is small. The larger the skew angle, the smaller the amount of displacement.

【0021】スキュウ角maxの12°では図6の28
の如くトルクに対する軸方向の変位量が小さい。このた
め図3の円すい角34,35で成る軌道17と22の間
のボール8に初期設定された隙間を埋めるだけの変位に
至らずボール8には接触圧力が生じないので12°に相
当した低速で粘性回転しつつ強大なトルクを伝達する。
逆にスキュウ角度が小さいと同じトルク負荷でも図6の
軸方向の変位量が26に示す如く大きいので早期にボー
ル8と軌道17,22が当接して弾性反力でトラクショ
ンを損なわない範囲でローラの面圧上昇を抑制し粘性回
転の速度を図5の補正線図39の期待値を得ることが出
来る。ボールの保持器9はスベリを伴って転動するロー
ラの保持部材4に対して回転差を生ずるので別体としス
ナップリング33で抜け止めされている。ボールの隙間
は軌道部材のねじ24で最適に調節される。ボールのサ
イズ、個数、軌道22,27のテーパ角度の決定は、図
1の矢印37に示す軸方向の荷重を負荷した時の軸方向
の弾性変位量を実測し、もう一方のトルク負荷による
軸、外輪の軸方向の相対変位を実測し、両者を照合して
図5の求める線39を得る。
When the skew angle max is 12 °, 28 in FIG.
As described above, the amount of displacement in the axial direction with respect to the torque is small. Therefore, the ball 8 between the tracks 17 and 22 having the conical angles 34 and 35 in FIG. 3 is not displaced enough to fill the initially set gap, and no contact pressure is generated on the ball 8 so that it corresponds to 12 °. It transmits a strong torque while viscous rotating at low speed.
On the contrary, if the skew angle is small, the axial displacement in FIG. 6 is large as indicated by 26 even with the same torque load. Therefore, the balls 8 and the tracks 17 and 22 come into contact with each other at an early stage so that the traction is not impaired by the elastic reaction force. It is possible to obtain the expected value of the correction diagram 39 of FIG. 5 for the speed of viscous rotation by suppressing the increase of the surface pressure of No. The retainer 9 for the ball causes a difference in rotation with respect to the retaining member 4 of the roller that rolls with slippage, so that the retainer 9 is a separate body and is retained by the snap ring 33. The clearance between the balls is optimally adjusted by the screw 24 of the race member. The size and number of balls and the taper angles of the tracks 22 and 27 are determined by measuring the elastic displacement in the axial direction when a load in the axial direction shown by the arrow 37 in FIG. , The relative displacement of the outer ring in the axial direction is measured, and the two are compared to obtain the line 39 to be obtained in FIG.

【0022】本発明の請求項4に記載の発明は、特許第
2903325号の保持器を円周に沿って第一と第二保
持器に分割し該保持器に係合するキー又はスプラインを
装設した中間部材を介装しその移動で保持器に位相変位
を生ぜしめるもので、実施の形体は、キーリング21の
突起が第一保持器4のV溝14内に嵌合し更に第二保持
部材5の平行溝15とも嵌合する。キーはV溝の内壁に
当接し位相変位を制限するストッパと成る、V溝14と
キーの隙間はキーリングが軸方向に移動するとストッパ
の位置が変化するのでスキュウ角度の付与量が変化す
る。尚前記キーリングの代わりに中間部材を環状にし
て、内周に突起を、外周に雄のスプラインを設けて、且
つ第一保持器の外周に平行溝を、第二保持器の内径に雌
のスプラインを設けてこの環状の中間部材と嵌合し、こ
れを軸方向に移動するとキーリング同様に第一第二保持
器の位相回転を制限するストッパ機構が得られる。実施
の形態には代表にキーリングの手段を述べたに過ぎず、
円周方向の変位を軸方向に変換する方法には他にカム機
構などがるが記述を省略する。
According to a fourth aspect of the present invention, the retainer of Japanese Patent No. 2903325 is divided into a first retainer and a second retainer along the circumference thereof, and a key or spline for engaging with the retainer is provided. The intermediate member provided is interposed and the movement thereof causes a phase displacement in the retainer. In the embodiment, the projection of the key ring 21 fits into the V groove 14 of the first retainer 4, and the second retainer is further held. The parallel groove 15 of the member 5 is also fitted. The key serves as a stopper that comes into contact with the inner wall of the V groove to limit the phase displacement. In the gap between the V groove 14 and the key, the position of the stopper changes when the key ring moves in the axial direction, so the amount of skew angle applied changes. In place of the key ring, an intermediate member is formed into an annular shape, a protrusion is provided on the inner circumference, a male spline is provided on the outer circumference, a parallel groove is formed on the outer circumference of the first cage, and a female spline is formed on the inner diameter of the second cage. Is provided and is fitted with this annular intermediate member, and when this is moved in the axial direction, a stopper mechanism for limiting the phase rotation of the first and second cages is obtained like the key ring. In the embodiments, only the key ring means is described as a representative,
Other methods for converting the displacement in the circumferential direction into the axial direction include a cam mechanism, but the description is omitted.

【0023】本発明の請求項5に記載の発明は、請求項
4の流体摩擦伝達力制限装置の保持器間に介装の中間部
材21を温度依存性変位部材(形状記憶ばね)に連動し
雰囲気温度に感応してスキュウ角度が自動的に補正され
るものである。温度上昇で形状記憶の第二ばね12に反
力が生まれキーリング21が軌道から離れる側に押され
るとストッパの隙間が増えて大きなスキュウが付与さ
れ、温度が下がるとキーリングは軌道側に寄せられて最
小のスキュウが付与される。
According to a fifth aspect of the present invention, the intermediate member 21 interposed between the cages of the fluid friction transmission force limiting device according to the fourth aspect is interlocked with the temperature dependent displacement member (shape memory spring). The skew angle is automatically corrected in response to the ambient temperature. When the temperature rises, a reaction force is generated in the second shape memory spring 12, and when the key ring 21 is pushed away from the track, the gap between the stoppers increases and a large skew is added, and when the temperature drops, the key ring moves toward the track side. The minimum skew is given.

【0024】回転速度に比例して粘性回転の速度を変え
る手段では、前記筒状の内外周面に平行溝と螺旋スプラ
インを設けた中間部材(図省略)叉は、キーリングを遠
心ウエイトの変位で移動する。(通常の遠心ガバナの原
理の応用であって図省略)遠心力感応の場合は4輪駆動
の自動車の推進軸に搭載する差動制限装置並びに従来の
トルクコンバータの代替に好適である。例えば直結4W
Dの車両がタイトコーナを走破する時に、僅かな前後輪
の回転差でタイヤと路面間にトルク循環を生じてブレー
キ現象を引き起こす不具合があるが、当装置を搭載する
と低速時はスキュウ角度が大きくなるので相対回転が減
りタイトコーナ走行程度の僅かな差回転は吸収し前記の
ブレーキングは解消する。叉高速走行では、車速に比例
してスキュウ角度が小さくなり差回転が速くなるので差
回転の速い高速でもトルクの伝達が適切に行われオンデ
マンド形4W車に適する。トルクコンバータの代替用で
は、継ぎ手の入力軸の回転が低速時ではスキュウ角度を
小さく、高速ではスキュウ角を大きくするとエンジンの
アイドリング時には低回転では滑りながらトルクを伝達
するのでクリープと称する微低速の走行状態に適した僅
かなトルクを伝達する、回転が増すと滑り速度が減り直
結に近づく。
In the means for changing the viscous rotation speed in proportion to the rotation speed, an intermediate member (not shown) or a key ring provided with parallel grooves and spiral splines on the inner and outer peripheral surfaces of the cylinder or a key ring is displaced by the centrifugal weight. Moving. (Application of the principle of a normal centrifugal governor, not shown) In the case of centrifugal force sensitivity, it is suitable as a substitute for a differential limiting device mounted on a propulsion shaft of a four-wheel drive automobile and a conventional torque converter. For example, direct connection 4W
When vehicle D runs through a tight corner, a slight rotation difference between the front and rear wheels causes torque circulation between the tire and the road surface, which causes a braking phenomenon. However, if this device is installed, the skew angle becomes large at low speeds. As a result, the relative rotation is reduced, and a slight differential rotation such as running around tight corners is absorbed and the braking described above is eliminated. In high-speed traveling, the skew angle becomes smaller and the differential rotation becomes faster in proportion to the vehicle speed, so that torque is properly transmitted even at high speed with high differential rotation, which is suitable for an on-demand type 4W vehicle. As an alternative to the torque converter, when the input shaft of the joint rotates at low speeds, the skew angle is small, and at high speeds, when the skew angle is large, torque is transmitted while slipping at low speeds when the engine is idling. It transmits a slight amount of torque suitable for the state, and as the rotation increases, the sliding speed decreases and approaches direct connection.

【0025】[0025]

【実施例】図1は代表的実施例の略視図で図中の符号1
はテーパの入力軸、符号2は出力側の外輪で内径は円す
いの軌道面で1と2の間にローラ3が軸心に対して僅か
に傾斜(スキュウ)角をつけてテーパ面の周上に複数個
等配に介装してある。ローラ3は第一保持部材4の扇形
ポケット18内に収容され片端を第二保持器5のVポケ
ット19に系支し、第一保持器4の外周に第二保持器5
が遊嵌し6°程の相対揺動することによってローラ3の
スキュウ角度がポケットの幅31とローラの外径の差だ
け変化する。前記の位相量の規制は、第一保持器の端部
のV形の溝14の大きい方の溝幅がキーリング21の突
起の幅にローラのスキュウの最大の時の変化量の図の3
1を加えた寸法にしてあるので、第二保持器の平行溝1
5の幅はキーリング21の外径に突き出した突起に遊嵌
する。キーリング21の座面は両側から形状記憶の性質
を有する第二ばねと通常の第一ばねとに挟まれており、
低温では第二ばねの弾性反力が消滅するので第一ばねの
みの反力でキーリングが軌道輪側に寄せられる。雰囲気
温度が設定値より15〜20℃上昇すると第二ばねに反
力が復元し第一ばねの反力よりも勝るので第一ばねは圧
縮されキーリングは軌道輪から遠ざかる側に押される。
第一保持器は外輪2に固定された10に示す摩擦材(実
際はガータスプリングを併用して保持器との接触緊迫力
を安定保持する様にしてある、図省略)に摺接し外輪2
と摩擦力で軽く連れ回りする。第二保持器はばね反力で
押されたキーリングの摺接摩擦で軸1が回転すると軸と
連れ回るようにしてある。入力軸1が回転すると第一と
第二保持器は前記摩擦部材の摺接抵抗でそれぞれ反対方
向に変位し第二保持器のV溝とキーとの隙間だけ相対変
位した後キーがストッパになって停止する。これで入力
軸が回転すると保持器に相対変位が生じローラにはキー
の位置で決められた量のスキュウ角度が付与される。軸
の中心近くに遠心ウエイトを装設し(図省略)ウエイト
がばねに逆らって遠心力で半径方向に変位すると、その
変位がカムで軸方向に変換されて繋いである中間部剤の
内外径に螺旋溝を設けた筒状のスプライン(図省略)叉
は図の21のキーリングを移動する。当装置は潤滑剤を
充満しシールカバーで密封(図省略)してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a typical embodiment and is designated by reference numeral 1 in the drawing.
Is the input shaft of the taper, reference numeral 2 is the outer ring of the output side, and the inner diameter is the conical orbital surface of the cone, and the roller 3 is slightly inclined with respect to the shaft center between 1 and 2 on the circumference of the tapered surface. A plurality of them are evenly arranged. The roller 3 is housed in the fan-shaped pocket 18 of the first holding member 4, one end of which is supported by the V pocket 19 of the second holder 5, and the second holder 5 is attached to the outer periphery of the first holder 4.
By loosely fitting and swinging about 6 °, the skew angle of the roller 3 changes by the difference between the pocket width 31 and the roller outer diameter. The phase amount is regulated as described in FIG. 3 of the amount of change when the larger groove width of the V-shaped groove 14 at the end of the first cage is the maximum of the roller skew relative to the width of the protrusion of the key ring 21.
Since the size is set by adding 1, the parallel groove 1 of the second cage
The width of 5 is loosely fitted to the protrusion protruding to the outer diameter of the key ring 21. The seating surface of the key ring 21 is sandwiched from both sides by a second spring having a shape memory property and an ordinary first spring,
At a low temperature, the elastic reaction force of the second spring disappears, so that the key ring is brought closer to the bearing ring side by the reaction force of only the first spring. When the ambient temperature rises by 15 to 20 ° C. above the set value, the reaction force is restored to the second spring and exceeds the reaction force of the first spring, so that the first spring is compressed and the key ring is pushed away from the bearing ring.
The first cage is slidably contacted with a friction material 10 shown in FIG. 10 fixed to the outer ring 2 (actually, a garter spring is also used so as to stably maintain contact tension force with the cage, not shown).
Friction force is accompanied by light. The second cage is adapted to rotate with the shaft when the shaft 1 rotates due to the sliding contact friction of the key ring pressed by the spring reaction force. When the input shaft 1 rotates, the first and second cages are displaced in opposite directions due to the sliding contact resistance of the friction member, and the key serves as a stopper after the relative displacement by the gap between the V groove of the second cage and the key. Stop. As a result, when the input shaft rotates, a relative displacement occurs in the cage, and the roller is given a skew angle determined by the position of the key. The centrifugal weight is installed near the center of the shaft (not shown). When the weight moves against the spring and is displaced in the radial direction by centrifugal force, the displacement is converted into the axial direction by the cam and the inner and outer diameters of the intermediate agent are connected. A cylindrical spline (not shown) or a key ring 21 shown in the drawing is provided with a spiral groove formed in the. This device is filled with lubricant and sealed with a seal cover (not shown).

【0026】[0026]

【発明の効果】当発明によれば、厚さが0.0003ミ
リの微量の潤滑剤でなる油膜のパッドで極めて簡素で小
型軽量で長寿命の高効率で省エネの動力制御装置を得る
ことが出来る。
According to the present invention, it is possible to obtain a highly efficient and energy-saving power control device which is extremely simple, small and lightweight, has a long service life, and is an oil film pad made of a very small amount of lubricant having a thickness of 0.0003 mm. I can.

【0027】[0027]

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の代表実施例の略視図FIG. 1 is a schematic view of a representative embodiment of the present invention.

【図2】は第一保持器のローラのポケットの形状FIG. 2 shows the shape of the first retainer roller pocket.

【図3】はローラの面圧抑制のボールばねFIG. 3 is a ball spring for suppressing the surface pressure of the roller.

【図4】は撓みを容易にしたローラFIG. 4 is a roller that facilitates bending

【図5】は負荷トルクと粘性回転速度の関係グラフ[Fig. 5] is a relationship graph between load torque and viscous rotation speed.

【図6】は負荷トルクと軸、ローラ、外輪による軸方向
の弾性相対変位とボールと軌道の軸方向の弾性変位グラ
FIG. 6 is a graph of load torque, elastic relative displacement in the axial direction by the shaft, roller, and outer ring, and elastic displacement in the axial direction of the ball and the track.

【符号の説明】[Explanation of symbols]

1・・入力軸 2・・外輪出力軸 3・・ローラ 4・・第一保持器 5・・第二保持器 6・・軌道の幅 7・・ローラの長さ 8・・ボール 9・・ボールの保
持器 10・・摩擦材 11・・第一ばね 12・・第二ばね
(形状記憶ばね) 16・・ボールの外輪 17・・ボールの内軌道面 21・・キーリング 22・・ボールの外軌道輪
1 ・ ・ Input shaft 2 ・ ・ Outer ring output shaft 3 ・ ・ Roller 4 ・ ・ First cage 5 ・ ・ Second cage 6 ・ ・ Track width 7 ・ ・ Roller length 8 ・ ・ Ball 9 ・ ・ Ball Cage 10 ··· Friction material 11 · · First spring 12 · · Second spring (shape memory spring) 16 · Outer ring of ball 17 · · Inner raceway surface 21 of ball · · Key ring 22 · · Outer raceway of ball ring

【手続補正書】[Procedure amendment]

【提出日】平成14年4月1日(2002.4.1)[Submission date] April 1, 2002 (2002.4.1)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】外径が円すいの軸と内径が円すいの外輪の
間にローラを軸心に対して三次元に傾斜させて配置し油
膜の作用で軸と外輪間のトルクの伝達量を制限する特許
第2903325号の流体摩擦伝達力制限装置におい
て、ローラを湾曲に撓ませる手段でスキュウ角0°〜1
2°の範囲で軌道母線とローラが線接触を成す流体摩擦
伝達力制限装置。
1. A roller is arranged between a shaft having a conical outer diameter and an outer ring having a conical inner diameter so as to be inclined three-dimensionally with respect to the shaft center, and the amount of torque transmitted between the shaft and the outer ring is limited by the action of an oil film. In the fluid friction transmission force limiting device of Japanese Patent No. 2903325, the skew angle of 0 ° to 1 is obtained by means of bending the roller in a curved manner.
A fluid friction transmission force limiting device in which the track busbar and the roller make line contact within a range of 2 °.
【請求項2】請求項1に記載の流体摩擦伝達力制限装置
において、転動体の片端が内外いずれかの転送面より外
側にあることを特徴とした流体摩擦伝達力制限装置。
2. The fluid frictional transmission force limiting device according to claim 1, wherein one end of the rolling element is located outside one of the inner and outer transfer surfaces.
【請求項3】特許第2903325号並びに請求項1に
記載の流体摩擦伝達力制限装置において、入出力軸間に
複数個の球状転動体を介装しヘルツの接触弾性変位で過
度のトラクションを抑制し粘性速度を調速する流体摩擦
伝達力制限装置。
3. The fluid frictional transmission force limiting device according to claim 2903325 and claim 1, wherein a plurality of spherical rolling elements are interposed between the input and output shafts to suppress excessive traction by contact elastic displacement of Hertz. A fluid friction transmission force limiting device that regulates the viscous velocity.
【請求項4】請求項1に記載の装置の保持器を円周に沿
って第一と第二保持器に分割し該保持器に係合するキー
又はスプラインを装設した中間部材を介装しその移動で
保持器に位相変位を生ぜしめてローラにスキュウを付与
する流体摩擦伝達力制限装置。
4. An intermediate member provided with a key or a spline for dividing the cage of the apparatus according to claim 1 into a first cage and a second cage along the circumference and engaging with the cage. A fluid friction transmission force limiting device that causes a phase displacement in the retainer by the movement and gives a skew to the roller.
【請求項5】請求項4の流体摩擦伝達力制限装置の保持
器間に介装の中間部材を温度依存性変位部材(形状記憶
ばね)、若しくは遠心ウエイトの変位で駆動する流体摩
擦伝達力制限装置。
5. A fluid frictional transmission force limitation in which an intermediate member interposed between cages of the fluid frictional transmission force limiting device according to claim 4 is driven by a temperature-dependent displacement member (shape memory spring) or displacement of a centrifugal weight. apparatus.
JP2001402748A 2001-12-15 2001-12-15 Device of regulating fluid friction transfer force Pending JP2003184910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001402748A JP2003184910A (en) 2001-12-15 2001-12-15 Device of regulating fluid friction transfer force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001402748A JP2003184910A (en) 2001-12-15 2001-12-15 Device of regulating fluid friction transfer force

Publications (1)

Publication Number Publication Date
JP2003184910A true JP2003184910A (en) 2003-07-03

Family

ID=27605606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001402748A Pending JP2003184910A (en) 2001-12-15 2001-12-15 Device of regulating fluid friction transfer force

Country Status (1)

Country Link
JP (1) JP2003184910A (en)

Similar Documents

Publication Publication Date Title
US8167760B2 (en) Toroidal continuously variable transmission unit and continuously variable transmission
TW201809506A (en) Systems and methods for speed based axial force generation
CA2015041A1 (en) Rolling-contact bearing type clutch
JP2014149075A (en) Roller clutch device
CN101688571A (en) One-way clutch of sprag type
JP3084078B2 (en) Torque absorber
JP2010053883A (en) Pulley unit
US20200166075A1 (en) Cageless bearing and transmission
JP2003184910A (en) Device of regulating fluid friction transfer force
JP4614167B2 (en) Fluid friction transmission force limiter
JP5352769B2 (en) Roller clutch
JP5816895B2 (en) Fluid friction transmission force limiter
EP1199496B1 (en) Power roller for a toroidal continuously variable transmission
JP2011144918A5 (en)
JP2005098316A (en) Conical roller bearing
US20230204078A1 (en) Tripod type constant velocity universal joint
JPH04219528A (en) Rolling fluid frictional bearing
EP1898112B1 (en) One-way clutch and power transmission apparatus
JPS5852092B2 (en) ITSUPOKURATSUCHI
JPH0771485A (en) Roller type rheological oil clutch
JP5340548B2 (en) Fixed constant velocity universal joint
JP2018059579A (en) Friction transmission device
JP2014224597A (en) Roller clutch
JPH09264342A (en) One-way clutch
JP3815054B2 (en) Thrust ball bearing