JP2018059579A - Friction transmission device - Google Patents

Friction transmission device Download PDF

Info

Publication number
JP2018059579A
JP2018059579A JP2016197796A JP2016197796A JP2018059579A JP 2018059579 A JP2018059579 A JP 2018059579A JP 2016197796 A JP2016197796 A JP 2016197796A JP 2016197796 A JP2016197796 A JP 2016197796A JP 2018059579 A JP2018059579 A JP 2018059579A
Authority
JP
Japan
Prior art keywords
roller
friction transmission
transmission device
rollers
driven roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016197796A
Other languages
Japanese (ja)
Other versions
JP6794754B2 (en
Inventor
勝彦 山藤
Katsuhiko Yamafuji
勝彦 山藤
隆之 黒川
Takayuki Kurokawa
隆之 黒川
山本 建
Ken Yamamoto
建 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2016197796A priority Critical patent/JP6794754B2/en
Publication of JP2018059579A publication Critical patent/JP2018059579A/en
Application granted granted Critical
Publication of JP6794754B2 publication Critical patent/JP6794754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a friction transmission device capable of concurrently suppressing vibration and securing torque responsiveness.SOLUTION: A driving roller 1 and a driven roller 2 satisfy a following conditional expression (1), where Kis a spring constant of an initial preload imparting member for imparting an initial preload to a contact point of both of the rollers, Kis a spring constant of a frame against radial pressing reaction force between the rollers, α is a wedge angle, m is mass of the driven roller 2, ris a radius of the driving roller 1, ris a radius of the driven roller 2, Iis inertia of the driving roller 1, Iis inertia of the driven roller 2, and μ^ is a friction coefficient at an equilibrium point.SELECTED DRAWING: Figure 4

Description

本発明は、摩擦伝動装置に関する。   The present invention relates to a friction transmission device.

特許文献1は、2つのローラを押圧接触させ摩擦伝達力により動力を伝達する摩擦伝動装置において、ローラ回転軸に垂直な並進方向に変位するローラに、並進方向の変位に対して作用するダンパを設け、当該ローラの振動を減衰させる技術を開示する。   In Patent Document 1, in a friction transmission device in which two rollers are pressed and contacted to transmit power by a friction transmission force, a damper that acts on a displacement in a translation direction is provided on a roller that is displaced in a translation direction perpendicular to the roller rotation axis. A technique for providing and dampening the vibration of the roller is disclosed.

国際公開第2009/107543号公報International Publication No. 2009/107543

しかしながら、上記従来技術にあっては、減衰によりローラの並進移動の応答性が悪化し、トルク応答の遅れが大きくなるという問題があった。
本発明の目的の一つは、振動の抑制とトルク応答性の確保とを両立できる摩擦伝動装置を提供することにある。
However, the above prior art has a problem that the response of the translational movement of the roller is deteriorated due to the damping, and the delay of the torque response is increased.
One of the objects of the present invention is to provide a friction transmission device capable of achieving both suppression of vibration and ensuring of torque response.

本発明の一実施形態にかかる摩擦伝動装置は、第1ローラおよび第2ローラが下記の条件式を満たす。

Figure 2018059579
ここで、Kaは両ローラの接触点に初期与圧を付与する初期与圧付与部材のばね定数、Kbは両ローラ間径方向押し付け反力に対するフレームのばね定数、αはくさび角、mは第1ローラの質量、r1は第1ローラの半径、r2は第2ローラの半径、I1は第1ローラのイナーシャ、I2は第2ローラのイナーシャ、μ^は平行点での摩擦係数である。 In the friction transmission device according to the embodiment of the present invention, the first roller and the second roller satisfy the following conditional expression.
Figure 2018059579
Here, K a is the spring constant of the initial pressurization applying member for applying an initial pressurization to a contact point of the two rollers, K b is the spring constant of the frame with respect to the reaction force pressing radially between the rollers, alpha is the wedge angle, m Is the mass of the first roller, r 1 is the radius of the first roller, r 2 is the radius of the second roller, I 1 is the inertia of the first roller, I 2 is the inertia of the second roller, and μ ^ is the parallel point It is a coefficient of friction.

よって、振動の抑制とトルク応答性の確保とを両立できる。   Therefore, both suppression of vibration and securing of torque response can be achieved.

実施形態1の摩擦伝動変速装置の概略図である。1 is a schematic diagram of a friction transmission device according to a first embodiment. 実施形態1の摩擦伝動変速装置の側面図である。1 is a side view of a friction transmission device according to a first embodiment. 従動ローラ2の軸方向断面図である。3 is an axial sectional view of the driven roller 2. FIG. 摩擦伝動装置のモデルである。It is a model of a friction transmission device. 摩擦伝動装置における自励振動の発生を示すタイムチャートである。It is a time chart which shows generation | occurrence | production of the self-excited vibration in a friction transmission apparatus. 実施形態1の自励振動抑制作用を示すタイムチャートである。3 is a time chart showing the self-excited vibration suppressing action of the first embodiment. 実施形態1のカム応答を示すタイムチャートである。3 is a time chart illustrating a cam response according to the first embodiment.

〔実施形態1〕
図1は実施形態1の摩擦伝動変速装置の概略図、図2は実施形態1の摩擦伝動変速装置の側面図である。
実施形態1の摩擦伝動変速装置は、エンジンにより駆動する車両の駆動系に設けた前進3速後進1速の変速装置である。この変速装置は、回転自在に支持された駆動ローラ(第2ローラ)1と従動ローラ(第1ローラ)2とを押圧接触させ、その接触部に生じる摩擦力によって、上記2個のローラ1,2のうち、一方のローラ1または2から他方のローラ2または1に動力を伝達する。両ローラ1,2は、トラクションオイルを介して互いに接触する。
駆動ローラ1は、1速用駆動ローラ11、2速用駆動ローラ12、3速用駆動ローラ13および偏心駆動ローラ軸14を有する。各駆動ローラ11,12,13のローラ径は、1速用駆動ローラ11が最小、3速用駆動ローラ13が最大である。各駆動ローラ11,12,13は、偏心駆動ローラ軸14上に、図1の左から1速用駆動ローラ11、2速用駆動ローラ12、3速用駆動ローラ13の順に並ぶ。
従動ローラ2は、1速用従動ローラ21、2速用従動ローラ22、3速用従動ローラ23および従動ローラ支持軸部17,18を有する。各従動ローラ21,22,23のローラ径は、1速用従動ローラ21が最大、3速用従動ローラ23が最小である。各従動ローラ21,22,23は、両従動ローラ支持軸部17,18間に、図1の左から1速用従動ローラ21、2速用従動ローラ22、3速用従動ローラ23の順に並ぶ。
Embodiment 1
FIG. 1 is a schematic view of the friction transmission transmission according to the first embodiment, and FIG. 2 is a side view of the friction transmission transmission according to the first embodiment.
The friction transmission device according to the first embodiment is a transmission device for three forward speeds and one reverse speed provided in a drive system of a vehicle driven by an engine. In this transmission, a driving roller (second roller) 1 and a driven roller (first roller) 2 that are rotatably supported are brought into pressure contact with each other, and the two rollers 1, 1 are driven by frictional force generated at the contact portion. Power is transmitted from one roller 1 or 2 out of 2 to the other roller 2 or 1. Both rollers 1 and 2 come into contact with each other via traction oil.
The driving roller 1 includes a first speed driving roller 11, a second speed driving roller 12, a third speed driving roller 13, and an eccentric driving roller shaft 14. The roller diameter of each drive roller 11, 12, 13 is minimum for the first speed drive roller 11 and maximum for the third speed drive roller 13. The drive rollers 11, 12, 13 are arranged on the eccentric drive roller shaft 14 in the order of the first speed drive roller 11, the second speed drive roller 12, and the third speed drive roller 13 from the left in FIG.
The driven roller 2 includes a first speed driven roller 21, a second speed driven roller 22, a third speed driven roller 23, and driven roller support shafts 17 and 18. The roller diameter of each of the driven rollers 21, 22, 23 is maximum for the first-speed driven roller 21 and minimum for the third-speed driven roller 23. The driven rollers 21, 22, 23 are arranged between the driven roller support shaft portions 17, 18 in the order of the first-speed driven roller 21, the second-speed driven roller 22, and the third-speed driven roller 23 from the left in FIG. .

3個の駆動ローラ11,12,13は、両端に第1支持軸受け3と第2支持軸受け4を配置した偏心駆動ローラ軸14上に設定すると共に、変速比を異ならせて設定した3つの摩擦伝動装置を切り替え可能である。
3つの摩擦伝動装置は、従動ローラ支持軸部17,18に従動ローラ支持軸受け(回転支持部)5,6を設定し、これら従動ローラ支持軸受け5,6に、フレーム7に設定したカム(カム部材)8を当接させることで、両ローラ1,2間に押し付け力を付与している。
カム8は、駆動ローラ1と従動ローラ2との接触点における接線に対し角度(くさび角)αを持った2つのカム斜面8a,8b(図2参照)を有し、回転方向に応じて、カム斜面8aまたは8bを従動ローラ支持軸受け5,6のカムフォロア5a,6aに当接させることで両ローラ1,2を押圧接触させている。カム斜面8aは、正転トルク(車両前進時に伝達されるトルク)のときカムフォロア5a,6aに当接してローラ対を押圧接触させる正転カム斜面であり、カム斜面8bは、逆転トルク(車両後退時に伝達されるトルク)のときカムフォロア5a,6aに当接させて両ローラ1,2を押圧接触させる逆転カム斜面である。なお、従動ローラ支持軸受け5,6は、外輪としてのカムフォロア5a,6aと、転動体としてのニードル5b,6bとを有する。従動ローラ支持軸受け5とフレーム7との間には、圧縮ばね10を配置する。圧縮ばね10は、両ローラ1,2の接触点に初期与圧を付与する初期与圧付与部材であって、従動ローラ支持軸受け5を図2の右側から左側(逆転カム斜面8b側から正転カム斜面8a側)へ向かって付勢する。圧縮ばね10が従動ローラ2に与える荷重の方向は、押し付け力の方向に対して約90°の角度とする。ここで、初期与圧は、必要初期与圧よりも高くしている。必要初期与圧は、両ローラ間1,2で駆動力を伝達するために必要な最低の与圧であって、具体的には、カム8で設定した設計トラクション係数以上のトラクション力を、ローラ1,2間で得るためのローラ1,2間の物性値に定められた与圧である。
The three drive rollers 11, 12, 13 are set on an eccentric drive roller shaft 14 having a first support bearing 3 and a second support bearing 4 disposed at both ends, and three frictions set with different speed ratios. The transmission can be switched.
The three friction transmission devices have driven roller support bearings (rotating support parts) 5 and 6 set on driven roller support shaft parts 17 and 18, and cams (cams) set on the frame 7 on these driven roller support bearings 5 and 6. By pressing the (member) 8, a pressing force is applied between the rollers 1 and 2.
The cam 8 has two cam slopes 8a and 8b (see FIG. 2) having an angle (wedge angle) α with respect to the tangent at the contact point between the driving roller 1 and the driven roller 2, and depending on the rotational direction, The rollers 1 and 2 are pressed and brought into contact with each other by bringing the cam slope 8a or 8b into contact with the cam followers 5a and 6a of the driven roller support bearings 5 and 6, respectively. The cam inclined surface 8a is a normal rotating cam inclined surface that makes contact with the cam followers 5a and 6a and presses the roller pair when the normal rotating torque (torque transmitted when the vehicle moves forward). The cam inclined surface 8b (Reversely transmitted torque), which is a reverse cam inclined surface that is brought into contact with the cam followers 5a and 6a and presses and contacts the rollers 1 and 2. The driven roller support bearings 5 and 6 have cam followers 5a and 6a as outer rings and needles 5b and 6b as rolling elements. A compression spring 10 is disposed between the driven roller support bearing 5 and the frame 7. The compression spring 10 is an initial pressure applying member that applies an initial pressure to the contact point between the rollers 1 and 2, and the driven roller support bearing 5 is moved from the right side to the left side in FIG. Energize toward the cam slope 8a side. The direction of the load applied to the driven roller 2 by the compression spring 10 is an angle of about 90 ° with respect to the direction of the pressing force. Here, the initial pressurization is higher than the required initial pressurization. The required initial pressurization is the minimum pressurization necessary to transmit the driving force between the rollers 1 and 2, and specifically, the traction force exceeding the design traction coefficient set by the cam 8 This is the pressure determined by the physical property value between the rollers 1 and 2 to obtain between 1 and 2.

3個の駆動ローラ11,12,13は、両端に第1支持軸受け3と第2支持軸受け4とを配置した偏心駆動ローラ軸14上にボール等を介して回転可能に設定すると共に、偏心駆動ローラ軸14を回動させるサーボモータ9を偏心駆動ローラ軸14の一端部に設けている。変速指令時には、サーボモータ9による偏心駆動ローラ軸14の回動により、変速前の変速位置に対応する駆動ローラ回転軸11a,12a,13aのうち1つの軸を従動ローラ回転軸2aから離し、変速後の変速位置に対応する駆動ローラ回転軸11a,12a,13aのうち1つの軸を従動ローラ回転軸2aに近づけることにより、変速比を異ならせて設定した3つの摩擦伝動装置を切り替える。
3つの摩擦伝動装置は、1速用摩擦伝動装置11,21、2速用摩擦伝動装置12,22および3速用摩擦伝動装置13,23であり、駆動ローラ1の両端の支持軸受けを、第1支持軸受け3と第2支持軸受け4としたとき、第1支持軸受け3と第2支持軸受け4との間に、第1支持軸受け3から順に、1速用駆動ローラ11と2速用駆動ローラ12と3速用駆動ローラ13とを並べて配置し、1速用駆動ローラ11と2速用駆動ローラ12と3速用駆動ローラ13とは、第1連結部31と第2連結部32により、径方向は互いに移動可能で、かつ、回転方向は一体に連結している。なお、摩擦伝動変速装置への駆動入力は、2速用駆動ローラ12から径方向あるいは軸方向になされ、摩擦伝動変速装置からの出力は、従動ローラ支持軸部17,18の一方からなされる。
図3は、従動ローラ2の軸方向断面図である。従動ローラ2は、外周部40、軸固定部41および接続部42を有する。外周部40は軸方向に沿って延びる円筒形状を有する。軸固定部41は外周部40の内周側に位置し、外周部40よりも小径の円筒形状を有する。軸固定部41の内周側には、両端が従動ローラ支持軸部17,18となる図外の従動ローラ支持軸が貫通する。従動ローラ2は従動ローラ支持軸と一体に回転する。接続部42は、径方向に延び、外周部40と軸固定部41とを接続する。接続部42の両側面(軸方向両側面)には、軸方向から見て環状の肉抜き部42a,42bを形成する。両肉抜き部42a,42bは同一形状である。つまり、従動ローラ2は、両側面が均等に肉抜きされた(切り欠かれた)肉抜き構造を有する。
The three driving rollers 11, 12, 13 are set on an eccentric driving roller shaft 14 having a first support bearing 3 and a second support bearing 4 arranged at both ends so as to be rotatable via a ball or the like, and are also driven eccentrically. A servo motor 9 for rotating the roller shaft 14 is provided at one end of the eccentric drive roller shaft 14. When the shift command is issued, the rotation of the eccentric drive roller shaft 14 by the servo motor 9 causes one of the drive roller rotation shafts 11a, 12a, and 13a corresponding to the shift position before the shift to be separated from the driven roller rotation shaft 2a to change the speed. By bringing one of the drive roller rotation shafts 11a, 12a, and 13a corresponding to the subsequent shift position closer to the driven roller rotation shaft 2a, the three friction transmission devices set with different gear ratios are switched.
The three friction transmission devices are the first-speed friction transmission devices 11 and 21, the second-speed friction transmission devices 12 and 22, and the third-speed friction transmission devices 13 and 23. When the first support bearing 3 and the second support bearing 4 are used, the first-speed drive roller 11 and the second-speed drive roller are arranged between the first support bearing 3 and the second support bearing 4 in order from the first support bearing 3. 12 and the third-speed drive roller 13 are arranged side by side, and the first-speed drive roller 11, the second-speed drive roller 12 and the third-speed drive roller 13 are connected by the first connecting portion 31 and the second connecting portion 32, respectively. The radial directions are movable relative to each other, and the rotational directions are integrally connected. The drive input to the friction transmission transmission is made in the radial direction or the axial direction from the second-speed drive roller 12, and the output from the friction transmission transmission is made from one of the driven roller support shaft portions 17 and 18.
FIG. 3 is an axial sectional view of the driven roller 2. The driven roller 2 has an outer peripheral portion 40, a shaft fixing portion 41, and a connecting portion. The outer peripheral portion 40 has a cylindrical shape extending along the axial direction. The shaft fixing portion 41 is located on the inner peripheral side of the outer peripheral portion 40 and has a cylindrical shape having a smaller diameter than the outer peripheral portion 40. On the inner peripheral side of the shaft fixing portion 41, a driven roller support shaft (not shown) having both ends serving as driven roller support shaft portions 17 and 18 penetrates. The driven roller 2 rotates integrally with the driven roller support shaft. The connection part 42 extends in the radial direction and connects the outer peripheral part 40 and the shaft fixing part 41. On both side surfaces (both side surfaces in the axial direction) of the connecting portion 42, annular thinned portions 42a and 42b are formed as viewed from the axial direction. Both the lightening portions 42a and 42b have the same shape. That is, the driven roller 2 has a thinning structure in which both side surfaces are uniformly thinned (notched).

実施形態1の摩擦伝動装置では、駆動ローラ1から従動ローラ2へトルクが伝達されると、駆動ローラ1には伝達力の反力が働く。この伝達力の反力は、従動ローラ支持軸受け5,6のカムフォロア5a,6aとカム斜面8aの当接部で支持されるが、当接部においては接触面に垂直な力しか発生できないので、大きな法線力を生じ、水平方向成分が伝達力の反力と釣り合う。この法線力の垂直方向成分が押し付け力となり両ローラ1,2の接触部に働くことになる。このとき水平方向成分と垂直方向成分、すなわち、伝達力と押し付け力の比は、当接部におけるカム斜面8aの角度(くさび角)αの正接tanαに等しい。くさび角αは一定であるので、伝達力に比例した押し付け力を動力伝達部に加えることができる。これにより、くさびローラやアクチュエータを用いることのない簡単な構成としながら、伝達トルクに比例した押し付け力を与えることにより、寿命と動力伝達効率の向上を達成することができる。   In the friction transmission device according to the first embodiment, when torque is transmitted from the driving roller 1 to the driven roller 2, a reaction force of the transmission force acts on the driving roller 1. The reaction force of this transmission force is supported at the contact portion between the cam followers 5a and 6a of the driven roller support bearings 5 and 6 and the cam inclined surface 8a, but only a force perpendicular to the contact surface can be generated at the contact portion. A large normal force is generated, and the horizontal component is balanced with the reaction force of the transmission force. The vertical component of this normal force acts as a pressing force and acts on the contact portion of both rollers 1 and 2. At this time, the horizontal component and the vertical component, that is, the ratio of the transmission force and the pressing force is equal to the tangent tan α of the angle (wedge angle) α of the cam inclined surface 8a at the contact portion. Since the wedge angle α is constant, a pressing force proportional to the transmission force can be applied to the power transmission unit. As a result, the life and power transmission efficiency can be improved by applying a pressing force proportional to the transmission torque while using a simple configuration without using a wedge roller or an actuator.

図4は、摩擦伝動装置のモデルである。図4において、αはくさび角、mは従動ローラ2の質量、r1は駆動ローラ1の半径、r2は従動ローラ2の半径、Kaは圧縮ばね10のばね定数、Kbは両ローラ1,2間径方向押し付け反力に対するフレーム7のばね定数である。
本願発明者らは、2つのローラを押圧接触させ摩擦伝達力により動力を伝達する摩擦伝動装置において、特定の条件下で図5に示すような自励振動が発生することを発見した。そして、本願発明者らは、下記の条件式(1)を満たすように2つのローラを設計することにより、振動の抑制とトルク応答性の確保との両立を実現できることを見出した。

Figure 2018059579
I1は駆動ローラ1のイナーシャ、I2は従動ローラのイナーシャ、μ^は平行点での摩擦係数である。 FIG. 4 is a model of the friction transmission device. In FIG. 4, alpha is the wedge angle, m is the mass of the driven roller 2, r 1 is the radius of the driving roller 1, r 2 is the driven roller 2 radius, K a is the spring constant of the compression spring 10, K b both rollers This is the spring constant of the frame 7 with respect to the radial direction pressing reaction force between 1 and 2.
The inventors of the present application have found that a self-excited vibration as shown in FIG. 5 occurs under a specific condition in a friction transmission device in which two rollers are pressed and contacted to transmit power by a friction transmission force. The inventors of the present application have found that both suppression of vibration and securing of torque response can be realized by designing two rollers so as to satisfy the following conditional expression (1).
Figure 2018059579
I 1 is the inertia of the driving roller 1, I 2 is the inertia of the driven roller, and μ ^ is the friction coefficient at the parallel point.

以下、条件式(1)の算出方法を説明する。
(i) 運動方程式の導出
図4に示したモデルの運動方程式は、下記の式(2)のように表せる。なお、以降の計算を簡単に行うために、固定フリクション、荷重比例フリクション等の計算式を省くこととする。なお、「'」は1階微分、「"」は2階微分を表す。
mx"+fspx'+Kbxsin2α-Ka(x0-x) = Kbμxsinαcosα
I1・θ1" = M1-Ft・r1
I2・θ2" = ηt・Ft・r2-M2
Ft = μ[ΔV]Kbxsinα
μ[ΔV] =β(r1θ1'-x'cosα-r2θ2') …(2)
ここで、xは従動ローラ2の位置、x0は従動ローラ2の変位量、fspは従動ロ−ラ2の粘性係数、βは駆動ローラ1と従動ローラ2の間のμ?V摩擦特性の傾き(β>0)、ΔVは駆動ローラ1と従動ローラ2の速度差、αはくさび角、M1は駆動ローラ1への入力トルク、M2は従動ローラ3の負荷トルク、r1は駆動ローラ1の半径、r2は従動ローラ2の半径、I1は駆動ローラ1のイナーシャ、I2は従動ローラ2のイナーシャ、ηtは駆動ローラ1から従動ローラ2へのトルク伝達効率、θ1"は駆動ローラ1の角加速度、θ2"は従動ローラ2の角加速度、θ1'は駆動ローラ1の角速度、θ2'は従動ローラの角速度、μは駆動ローラ1および従動ローラ2間の摩擦係数、Ftは駆動ローラ1および従動ローラ2間の摩擦力である。
Hereinafter, a calculation method of conditional expression (1) will be described.
(i) Derivation of equation of motion The equation of motion of the model shown in FIG. 4 can be expressed as the following equation (2). In order to easily perform the subsequent calculations, calculation formulas such as fixed friction and load proportional friction are omitted. Note that “′” represents the first derivative, and ““ ”represents the second derivative.
mx "+ f sp x '+ K b xsin 2 α-K a (x 0 -x) = K b μxsinαcosα
I 1・ θ 1 "= M 1 -F t・ r 1
I 2・ θ 2 ' ' = η t・ F t・ r 2 -M 2
F t = μ [ΔV] K b xsinα
μ [ΔV] = β (r 1 θ 1 '-x'cos α-r 2 θ 2 ')… (2)
Where x is the position of the driven roller 2, x 0 is the displacement amount of the driven roller 2, f sp is the viscosity coefficient of the driven roller 2, and β is the μV friction characteristic between the driving roller 1 and the driven roller 2. (Β> 0), ΔV is the speed difference between the driving roller 1 and the driven roller 2, α is the wedge angle, M 1 is the input torque to the driving roller 1, M 2 is the load torque of the driven roller 3, and r 1 is The radius of the driving roller 1, r 2 is the radius of the driven roller 2, I 1 is the inertia of the driving roller 1, I 2 is the inertia of the driven roller 2, η t is the torque transmission efficiency from the driving roller 1 to the driven roller 2, θ 1 "is the angular acceleration of the driving roller 1, θ 2 " is the angular acceleration of the driven roller 2, θ 1 'is the angular velocity of the driving roller 1, θ 2 ' is the angular velocity of the driven roller, and μ is between the driving roller 1 and the driven roller 2. Ft is a frictional force between the driving roller 1 and the driven roller 2.

(ii) 状態行列の算出
式(2)から状態行列式を算出すると下記の式(3)のような状態変数同士の掛け算が存在する。そこで、代表点周りで1次のテイラー展開を用いて近似を行う。
Ft = μ[ΔV]Kbxsinα =β(r1θ1'-x'cosα-r2θ2')Kbxsinα
=βr1θ1'Kbxsinα-βKbxx'cosαsinα-βr2θ2'Kbxsinα …(3)
1次のテイラー展開より、
f(x,y) = f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)
代表点x=a, x'=b, θ2'=c, θ1'=dとすると
βr1θ1'Kbxsinα =βr1Kbsinα[ac+c(x-a)+a(θ1'-c)]
βKbxx'cosαsinα = βKbsinαcosα[ab+b(x-a)+a(x'-b)]
βr2θ2'Kbxsinα = βr2Kbsinα[ad+d(x-a)+a(θ2'-d)]
となる。したがって、状態行列は、状態変数を[θ11';θ22';x;x']とおき、式(2),(3)より下記の式(4)のようになる。

Figure 2018059579
(ii) Calculation of state matrix When the state determinant is calculated from equation (2), there is multiplication between state variables as in equation (3) below. Therefore, approximation is performed using a first-order Taylor expansion around the representative point.
F t = μ [ΔV] K b xsinα = β (r 1 θ 1 '-x'cosα-r 2 θ 2 ') K b xsinα
= βr 1 θ 1 'K b xsinα-βK b xx'cosαsinα-βr 2 θ 2 ' K b xsinα… (3)
From the first Taylor development,
f (x, y) = f (a, b) + f x (a, b) (xa) + f y (a, b) (yb)
Representative point x = a, x '= b, θ 2 ' = c, θ 1 '= d βr 1 θ 1 ' K b xsinα = βr 1 K b sinα [ac + c (xa) + a (θ 1 '-c)]
βK b xx'cosαsinα = βK b sinαcosα [ab + b (xa) + a (x'-b)]
βr 2 θ 2 'K b xsinα = βr 2 K b sinα [ad + d (xa) + a (θ 2 ' -d)]
It becomes. Therefore, in the state matrix, state variables are set as [θ 1 ; θ 1 '; θ 2 ; θ 2 ';x; x '], and the following equation (4) is obtained from equations (2) and (3). Become.
Figure 2018059579

(iii) 安定化条件式の算出
式(4)より固有値を算出する。
det(SI-P) = I1I2ms6+βKbxsinα(I2mr1 2+I1mr2 2+I1I2cos2α)s5+(I1I2Ka-DI1I2cosα+I1I2Kbsin2α)s4+βKbxsinα(I2Kar1 2+I1Kar2 2+I2Kbr1 2sin2α+I1Kbr2 2sin2α)s3 …(5)
ここで振動要素を持っている状態変数は、x,x'であるため、これらに関わる固有値を安定化できれば自励振動を抑制できることになる。したがって、少なくとも式(5)のs=0の項は全てx,x'とは無関係の項であるため、下記の式(6)のように考えられる。
I1I2ms3+βKbxsinα(I2mr1 2+I1mr2 2+I1I2cos2α)s2+(I1I2Ka-DI1I2cosα+I1I2Kbsin2α)s+βKbxsinα(I2Kar1 2+I1Kar2 2+I2Kbr1 2sin2α+I1Kbr2 2sin2α) …(6)
本来ならば式(6)の解実部にて安定化を判別し虚部にて周波数を算出するのであるが、解が複雑すぎるためラウス・フルビッツの安定化判別法を用いることとする。
多項式、
p(s) = a0sn+a1sn-1+a2sn-2+a3sn-3…+an …(7)
に当てはめると、式(6)のそれぞれは以下のようになる。
a0 = I1I2m
a1 = βKbxsinα(I2mr1 2+I1mr2 2+I1I2cos2α)
a2 = (I1I2Ka-DI1I2cosα+I1I2Kbsin2α)
a3 = βKbxsinα(I2Kar1 2+I1Kar2 2+I2Kbr1 2sin2α+I1Kbr2 2sin2α)
(iii) Calculation of stabilization condition equation Calculate the eigenvalue from equation (4).
det (SI-P) = I 1 I 2 ms 6 + βK b xsinα (I 2 mr 1 2 + I 1 mr 2 2 + I 1 I 2 cos 2 α) s 5 + (I 1 I 2 K a -DI 1 I 2 cosα + I 1 I 2 K b sin 2 α) s 4 + βK b xsinα (I 2 K a r 1 2 + I 1 K a r 2 2 + I 2 K b r 1 2 sin 2 α + I 1 K b r 2 2 sin 2 α) s 3 … (5)
Here, since the state variables having vibration elements are x and x ′, the self-excited vibration can be suppressed if the eigenvalues related to these can be stabilized. Therefore, since at least the terms of s = 0 in the equation (5) are all unrelated to x and x ′, they can be considered as the following equation (6).
I 1 I 2 ms 3 + βK b xsinα (I 2 mr 1 2 + I 1 mr 2 2 + I 1 I 2 cos 2 α) s 2 + (I 1 I 2 K a -DI 1 I 2 cosα + I 1 I 2 K b sin 2 α) s + βK b xsin α (I 2 K a r 1 2 + I 1 K a r 2 2 + I 2 K b r 1 2 sin 2 α + I 1 K b r 2 2 sin 2 α)… (6)
Originally, stabilization is discriminated by the real part of Equation (6) and the frequency is calculated by the imaginary part. However, since the solution is too complex, the Rouss-Fluwitz stabilization discrimination method is used.
Polynomial,
p (s) = a 0 s n + a 1 s n-1 + a 2 s n-2 + a 3 s n-3 … + a n … (7)
When applied to, each of the equations (6) becomes as follows.
a 0 = I 1 I 2 m
a 1 = βK b xsinα (I 2 mr 1 2 + I 1 mr 2 2 + I 1 I 2 cos 2 α)
a 2 = (I 1 I 2 K a -DI 1 I 2 cosα + I 1 I 2 K b sin 2 α)
a 3 = βK b xsin α (I 2 K a r 1 2 + I 1 K a r 2 2 + I 2 K b r 1 2 sin 2 α + I 1 K b r 2 2 sin 2 α)

これより、条件はそれぞれ以下となる。
第1条件
Δ1(p) = a0 = I1I2m > 0
これは常に満たすため無視できる。
第2条件
Δ2(p) = a2a1-a0a3 = (I1I2Ka-DI1I2cosα+I1I2Kbsin2α)βKbxsinα(I2mr1 2+I1mr2 2+I1I2cos2α)-I1I2mβKbxsinα(I2Kar1 2+I1Kar2 2+I2Kbr1 2sin2α+I1Kbr2 2sin2α) > 0
したがって、

Figure 2018059579
両辺にmを乗ずると、条件式(1)が得られる。 Thus, the conditions are as follows.
First condition Δ 1 (p) = a 0 = I 1 I 2 m> 0
This is always true and can be ignored.
The second condition Δ 2 (p) = a 2 a 1 -a 0 a 3 = (I 1 I 2 K a -DI 1 I 2 cosα + I 1 I 2 K b sin 2 α) βK b xsinα (I 2 mr 1 2 + I 1 mr 2 2 + I 1 I 2 cos 2 α) -I 1 I 2 mβK b xsin α (I 2 K a r 1 2 + I 1 K a r 2 2 + I 2 K b r 1 2 sin 2 α + I 1 K b r 2 2 sin 2 α)> 0
Therefore,
Figure 2018059579
If both sides are multiplied by m, conditional expression (1) is obtained.

図6は、実施形態1の自励振動抑制作用を示すタイムチャートである。実施形態1の摩擦伝動装置では、条件式(1)を満足するように駆動ローラ1および従動ローラ2を設計した。条件式(1)は自励振動を発生させない安定化条件式であって、これを満足するように駆動ローラ1および従動ローラ2を設計することにより、図6に示すように自励振動の発生を抑制できる。
また、条件式(1)は減衰項を持たないため、実施形態1の摩擦伝動装置では、自励振動の発生を抑えつつ、素早いトルク応答を実現できる。さらに、ダンパが不要であるから、燃費の悪化やコスト上昇も抑制できる。図7は実施形態1のカム応答を示すタイムチャートである。従来の摩擦伝動装置では、減衰により車両の目標駆動力に応じた目標応答に対し実際のカム応答に大きな遅れが生じているが、実施形態1の摩擦伝動装置では、従来装置よりもカム応答が向上しているのがわかる。
FIG. 6 is a time chart showing the self-excited vibration suppressing action of the first embodiment. In the friction transmission device of Embodiment 1, the driving roller 1 and the driven roller 2 are designed so as to satisfy the conditional expression (1). Conditional expression (1) is a stabilizing conditional expression that does not generate self-excited vibration. By designing the driving roller 1 and the driven roller 2 so as to satisfy this condition, the self-excited vibration is generated as shown in FIG. Can be suppressed.
In addition, since the conditional expression (1) does not have a damping term, the friction transmission device according to the first embodiment can realize a quick torque response while suppressing the occurrence of self-excited vibration. Furthermore, since a damper is not necessary, deterioration of fuel consumption and cost increase can be suppressed. FIG. 7 is a time chart showing the cam response of the first embodiment. In the conventional friction transmission device, the actual cam response is greatly delayed with respect to the target response corresponding to the target driving force of the vehicle due to the damping. However, in the friction transmission device of the first embodiment, the cam response is higher than that of the conventional device. You can see that it has improved.

実施形態1の摩擦伝動装置では、従動ローラ2を肉抜き構造とした。条件式(1)を成立させるためには、条件式(1)の左辺第二項を小さくすればよい。従動ローラ2を肉抜き構造とすることで、半径r2を短くすることなく質量mを小さくできる。ここで、イナーシャI2は質量mに比例すると共に、半径r2の2乗に比例する。つまり、イナーシャI2は質量mよりも半径r2に大きく依存するため、半径r2が長いほどイナーシャI2の低下を抑制できる。よって、従動ローラ2を肉抜き構造とすることにより、質量mを小さく、かつ、イナーシャI2を大きくできる。条件式(1)の左辺第二項は、質量mが小さいほど、またはイナーシャI2が大きいほど小さくなる。よって、従動ローラ2を肉抜き構造とすることにより、軽量かつ安価に条件式(1)を満足する従動ローラ2が得られる。 In the friction transmission device of the first embodiment, the driven roller 2 has a thinning structure. In order to satisfy the conditional expression (1), the second term on the left side of the conditional expression (1) may be reduced. By the driven roller 2 and lightening structures, it is possible to reduce the mass m without shortening the radius r 2. Here, the inertia I 2 is proportional to the mass m and proportional to the square of the radius r 2 . In other words, the inertia I 2 is very dependent on the radius r 2 than the mass m, the radius r 2 can suppress a decrease in longer inertia I 2. Therefore, by making the driven roller 2 have a thinning structure, the mass m can be reduced and the inertia I 2 can be increased. The second term on the left side of the conditional expression (1) decreases as the mass m decreases or the inertia I 2 increases. Therefore, the driven roller 2 satisfying the conditional expression (1) can be obtained at a low weight and at a low cost by making the driven roller 2 have a thinning structure.

また、実施形態1の摩擦伝動装置では、従動ローラ2の両側面を均等に肉抜きした。これにより、外周部40は軸方向中央部分を接続部42により支持されるため、駆動ローラ1に対して片当たりによる磨耗等を生じさせることなく条件式(1)を満足できる。   Further, in the friction transmission device of the first embodiment, the both side surfaces of the driven roller 2 are uniformly thinned. Accordingly, since the outer peripheral portion 40 is supported at the central portion in the axial direction by the connecting portion 42, the conditional expression (1) can be satisfied without causing the drive roller 1 to be worn due to one piece.

さらに、実施形態1の摩擦伝動装置では、圧縮ばね10の初期与圧を、両ローラ1,2間で駆動力を伝達するために必要な最低の与圧である必要初期与圧よりも大きくしてある。条件式(1)を成立させるためには、条件式(1)の左辺第一項を大きくすればよい。圧縮ばね10の初期与圧は、ばね定数Kaに比例する。条件式(1)の左辺第一項は、ばね定数Kaが大きいほど大きくなる。よって、圧縮ばね10の初期与圧を必要初期与圧よりも大きくすることにより、条件式(1)を満足する従動ローラ2が得られる。 Furthermore, in the friction transmission device according to the first embodiment, the initial pressure of the compression spring 10 is made larger than the necessary initial pressure, which is the minimum pressure necessary for transmitting the driving force between the rollers 1 and 2. It is. In order to satisfy the conditional expression (1), the first term on the left side of the conditional expression (1) may be increased. Initial pressurization of the compression spring 10 is proportional to the spring constant K a. Left first term of the condition (1) is increased as the spring constant K a is large. Therefore, the driven roller 2 that satisfies the conditional expression (1) is obtained by making the initial pressure of the compression spring 10 larger than the required initial pressure.

〔他の実施形態〕
以上、本発明を実施するための形態を、実施形態に基づいて説明したが、本発明の具体的な構成は、実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
例えば、実施形態では、従動ローラ2をカム8と当接させる例を示したが、駆動ローラ1をカム8と当接させてもよい。
圧縮ばね10に代えて、初期与圧調整用のねじを設けてもよい。
本発明は、摩擦伝動変速装置以外にも適用可能であり、実施形態と同様の作用効果を奏する。
[Other Embodiments]
As mentioned above, although the form for implementing this invention was demonstrated based on embodiment, the concrete structure of this invention is not limited to embodiment, The design change of the range which does not deviate from the summary of invention And the like are included in the present invention.
For example, in the embodiment, an example in which the driven roller 2 is brought into contact with the cam 8 is shown, but the driving roller 1 may be brought into contact with the cam 8.
Instead of the compression spring 10, an initial pressure adjusting screw may be provided.
The present invention can be applied to devices other than the friction transmission device, and has the same effects as the embodiment.

1 駆動ローラ(第2ローラ)
1a 駆動ローラ回転軸
2 従動ローラ(第1ローラ)
5,6 従動ローラ支持軸受け(回転支持部)
7 フレーム
8 カム(カム部材)
8a 正転カム斜面
8b 逆転カム斜面
10 圧縮ばね(初期与圧付与部材)
11,21 1速用摩擦伝動装置
12,22 2速用摩擦伝動装置
13,23 3速用摩擦伝動装置
1 Drive roller (second roller)
1a Drive roller rotating shaft
2 Followed roller (first roller)
5,6 Driven roller support bearing (rotation support)
7 frames
8 Cam (Cam member)
8a Forward rotation cam slope
8b Reversing cam slope
10 Compression spring (initial pressure application member)
11,21 1-speed friction transmission
12,22 2-speed friction transmission
13,23 3-speed friction transmission

Claims (4)

フレームに回転可能に支持された第1ローラおよび第2ローラと、両ローラの接触点における接線に対し所定のくさび角を持ったカム斜面を有するカム部材とを有し、前記カム斜面を前記第1ローラの回転支持部に当接することでローラ同士を押圧接触させ、前記ローラ間で動力を伝達させる摩擦伝動装置であって、
前記第1ローラおよび前記第2ローラは、下記の条件式、
Figure 2018059579
Ka:両ローラの接触点に初期与圧を付与する初期与圧付与部材のばね定数
Kb:両ローラ間径方向押し付け反力に対するフレームのばね定数
α:くさび角
m:第1ローラの質量
r1:第1ローラの半径
r2:第2ローラの半径
I1:第1ローラのイナーシャ
I2:第2ローラのイナーシャ
μ^:平行点での摩擦係数
を満たす摩擦伝動装置。
A first roller and a second roller rotatably supported by a frame; and a cam member having a cam inclined surface having a predetermined wedge angle with respect to a tangent at a contact point of both rollers, and the cam inclined surface is A friction transmission device that makes the rollers come into pressure contact with each other by abutting against the rotation support portion of one roller, and transmits power between the rollers;
The first roller and the second roller have the following conditional expressions:
Figure 2018059579
K a : Spring constant of the initial pressure applying member that applies the initial pressure to the contact point of both rollers
K b : Frame spring constant with respect to radial pressing reaction force between both rollers α: Wedge angle
m: Mass of the first roller
r 1 : Radius of the first roller
r 2 : Radius of the second roller
I 1 : Inertia of the first roller
I 2 : Second roller inertia μ ^: Friction transmission that satisfies the friction coefficient at the parallel point.
請求項1に記載の摩擦伝動装置において、
前記第2ローラは、肉抜き構造を有する摩擦伝動装置。
The friction transmission device according to claim 1,
The second roller is a friction transmission device having a thinning structure.
請求項2に記載の摩擦伝動装置において、
前記第2ローラは、両側面が均等に肉抜きされている摩擦伝動装置。
The friction transmission device according to claim 2,
The second roller is a friction transmission device in which both side surfaces are uniformly thinned.
請求項1ないし3のいずれかに記載の摩擦伝動装置において、
前記初期与圧は、両ローラ間で駆動力を伝達するために必要な最低の与圧である必要初期与圧よりも大きい摩擦伝動装置。
In the friction transmission device according to any one of claims 1 to 3,
The friction transmission device in which the initial pressurization is larger than a necessary initial pressurization which is a minimum pressurization necessary for transmitting a driving force between both rollers.
JP2016197796A 2016-10-06 2016-10-06 Friction transmission device Active JP6794754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197796A JP6794754B2 (en) 2016-10-06 2016-10-06 Friction transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197796A JP6794754B2 (en) 2016-10-06 2016-10-06 Friction transmission device

Publications (2)

Publication Number Publication Date
JP2018059579A true JP2018059579A (en) 2018-04-12
JP6794754B2 JP6794754B2 (en) 2020-12-02

Family

ID=61908440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197796A Active JP6794754B2 (en) 2016-10-06 2016-10-06 Friction transmission device

Country Status (1)

Country Link
JP (1) JP6794754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188941A1 (en) 2018-03-27 2019-10-03 日本製鉄株式会社 Analysis system, analysis method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188941A1 (en) 2018-03-27 2019-10-03 日本製鉄株式会社 Analysis system, analysis method, and program

Also Published As

Publication number Publication date
JP6794754B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6534589B2 (en) Torque fluctuation suppressing device, torque converter, and power transmission device
JP7210759B2 (en) Torsional vibration damper with rotating shaft for powertrain
WO2021020315A1 (en) Clutch device
KR960014635B1 (en) Tapered bearing isolator
US20090170656A1 (en) Friction drive device and transmission using the friction drive device
US11015674B2 (en) Torque fluctuation inhibiting device, torque converter and power transmission device
TW201809506A (en) Systems and methods for speed based axial force generation
JP4694520B2 (en) Friction transmission
JP2018059579A (en) Friction transmission device
JP5029758B2 (en) Friction transmission transmission and method for controlling pressing force of friction transmission transmission
WO2018096939A1 (en) Electric actuator
WO2014115384A1 (en) Belt-type continuously variable transmission
JP6701901B2 (en) Friction roller reducer
EP2626591B1 (en) Torsional vibration attenuation apparatus
US9695914B2 (en) Toroidal continuously variable transmission and continuously variable transmission apparatus
JP6506115B2 (en) Electric power steering device
JP2011144918A (en) Trapped oil film roller clutch
JP2017150525A (en) Pulley unit
JP2015124817A (en) Belt-type stepless transmission
JP6766382B2 (en) Toroidal continuously variable transmission
JP6757148B2 (en) Power transmission device
WO2018216185A1 (en) Power transmission device
RU2021107945A (en) Device and method for distributing the axial force of the rotor
JP2010216516A (en) Friction transmission device
JP2012251599A (en) Friction wheel type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R151 Written notification of patent or utility model registration

Ref document number: 6794754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151