JP2003154603A - Aluminum material for resin film coating excellent in film adhesion, and resin film coated aluminum material - Google Patents

Aluminum material for resin film coating excellent in film adhesion, and resin film coated aluminum material

Info

Publication number
JP2003154603A
JP2003154603A JP2001358608A JP2001358608A JP2003154603A JP 2003154603 A JP2003154603 A JP 2003154603A JP 2001358608 A JP2001358608 A JP 2001358608A JP 2001358608 A JP2001358608 A JP 2001358608A JP 2003154603 A JP2003154603 A JP 2003154603A
Authority
JP
Japan
Prior art keywords
film
oxide film
mass
aluminum material
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001358608A
Other languages
Japanese (ja)
Other versions
JP3898039B2 (en
Inventor
Akira Tajiri
田尻彰
Rikizo Baba
馬場力三
Masahiro Kurata
倉田正裕
Shinichi Hasegawa
長谷川真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP2001358608A priority Critical patent/JP3898039B2/en
Publication of JP2003154603A publication Critical patent/JP2003154603A/en
Application granted granted Critical
Publication of JP3898039B2 publication Critical patent/JP3898039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum material for resin film coating made excellent in film adhesion by substrate treatment not containing a harmful heavy metal such as Cr or the like, and a resin film coated aluminum material. SOLUTION: An oxide film, of which the maximum concentration in a depth wise direction up to the interface of uppermost surface-oxide film/aluminum is not more than 5 mass % in Mg and not more than 10 mass % in H, and which has a thickness of 1-200 nm and based on Al and O, is provided on the surface of the aluminum material, and this oxide film is coated with a resin film. The content of C of the uppermost surface of the oxide film is preferably not more than 50 mass %.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は樹脂フィルム被覆ア
ルミニウム材、特にポリプロピレン、ポリエチレン、ポ
リエステル、ポリアミド等の熱可塑性樹脂フィルムを被
覆したフィルム密着性に優れたアルミニウム材に関す
る。なお、本明細書でフィルム密着性とは、フィルム積
層後加工を受けない部分の密着性だけでなく加工後や加
熱後の過酷な条件でのフィルム密着性も含む意味で用い
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin film-coated aluminum material, and more particularly to an aluminum material coated with a thermoplastic resin film such as polypropylene, polyethylene, polyester or polyamide and having excellent film adhesion. In the present specification, the term "film adhesion" is used to mean not only the adhesion of a portion that is not subjected to processing after film lamination but also the film adhesion under severe conditions after processing and after heating.

【0002】[0002]

【従来の技術】アルミニウム材は軽量で、適度な機械的
特性を有し、かつ美感、成形加工性、耐食性等に優れた
特徴を有しているため、各種容器類等に広く使われてい
る。例えば、食品等のアルミニウム容器は、アルミニウ
ムの優れた成形加工性を利用して、樹脂塗装やフィルム
被覆を行った後絞り加工する等の方法により成形されて
いる。その場合、成形加工を受けてもアルミニウム材表
面と塗膜やフィルムとの間の密着性を優れたものとする
ために、アルミニウム材表面に密着性向上効果の大きい
下地皮膜を予め施しておくことが一般的に行われてい
る。このため従来は、リン酸、クロム酸およびフッ酸を
主成分とする化成処理液でアルミニウム板材を処理す
る、クロメート処理が施されてきた。例えば特開平3−
177580号には下地皮膜としてクロム付着量を7〜
25mg/mとしたリン酸クロメート皮膜層を設けた
樹脂被覆材が提案されている。このようなクロメート処
理は、製造工程管理が容易でコストが安く、しかも性能
が安定するため、広く用いられてきた。
2. Description of the Related Art Aluminum materials are widely used in various containers because they are lightweight, have appropriate mechanical properties, and have excellent aesthetics, moldability and corrosion resistance. . For example, an aluminum container for food or the like is formed by a method such as applying a resin coating or film coating and then drawing it by utilizing the excellent formability of aluminum. In that case, in order to make the adhesion between the aluminum material surface and the coating film or film excellent even if subjected to molding processing, a precoating film having a great effect of improving the adhesion property should be applied in advance on the aluminum material surface. Is generally done. Therefore, conventionally, a chromate treatment has been performed in which an aluminum plate material is treated with a chemical conversion treatment liquid containing phosphoric acid, chromic acid and hydrofluoric acid as main components. For example, JP-A-3-
No. 177580 has a chromium coating amount of 7-
A resin coating material having a phosphoric acid chromate coating layer of 25 mg / m 2 has been proposed. Such chromate treatment has been widely used because the manufacturing process is easy to control, the cost is low, and the performance is stable.

【0003】[0003]

【発明が解決しようとする課題】しかし近年、環境汚
染、環境破壊、健康に対する安全性、エネルギー需給等
への関心が急激に高まっている。リン酸クロメート皮膜
自体から有害な6価クロム等が溶出することは無く、リ
ン酸クロメート皮膜自体が環境汚染や健康被害をまねく
ことは無いとされている。しかし、その製造工程では、
無水クロム酸等の有害な6価クロムを含有する化成液を
使っており、化成液廃液およびリンス工程で発生する6
価クロムを含有する排水等を処理し、無害化しなければ
ならない。このような処理には多大な人力およびエネル
ギー、高価な廃液処理設備等を必要とするため、製品の
コストアップが避けられない。近年は規制が益々強化さ
れる方向にあり、廃液処理によるコストは従来以上に高
まる傾向にある。
However, in recent years, interest in environmental pollution, environmental destruction, health safety, energy supply and demand, etc. has been rapidly increasing. It is said that harmful hexavalent chromium and the like do not elute from the phosphoric acid chromate film itself, and the phosphoric acid chromate film itself does not lead to environmental pollution or health damage. However, in the manufacturing process,
A chemical conversion liquid containing harmful hexavalent chromium such as chromic anhydride is used, and it is generated in the chemical conversion liquid waste liquid and rinse process.
Wastewater containing valent chromium must be treated to render it harmless. Such processing requires a great deal of human power and energy, expensive waste liquid processing equipment, and the like, so that an increase in product cost cannot be avoided. In recent years, regulations are being tightened more and more, and the cost of waste liquid treatment tends to be higher than before.

【0004】このような課題を克服するために、クロム
等の有害な金属イオンを含まない化成処理液を塗布また
はスプレー等でアルミニウム材表面に付着させた、いわ
ゆるノンクロメート皮膜と言われる下地処理アルミニウ
ム材が提案されている。特開平10−317162号に
はリン酸またはその塩、ジルコニウム塩、フッ化物、亜
リン酸またはその塩、硝酸またはその塩を含む表面処理
浴で処理する方法、また特公平7−84665号にはリ
ン酸イオン、アルミニウムキレート化剤および界面活性
剤を含むアルカリ脱脂剤で洗浄処理後、ジルコニウムイ
オン、リン酸イオンおよびフッ素イオンを含む化成処理
剤で処理し、ジルコニウムを含む下地処理皮膜を形成す
る方法、あるいはさらにバナジウムイオンを含む化成処
理液で処理して、ジルコニウムおよびバナジウムを含む
下地処理皮膜を形成する方法、特開平7−310189
号にはリン酸イオン、ジルコニウム化合物、フッ化物お
よび酸化剤を含む処理液で処理する方法等が開示されて
いる。これらの処理液は有害な6価クロムを含まないこ
とから、環境汚染や健康被害といった問題が著しく軽減
されている。しかし、これらの皮膜は成形加工後の被覆
樹脂の密着性やレトルト処理といった苛酷な条件下での
耐食性に問題を残しており、リン酸クロメート皮膜の性
能レベルに達していない。
In order to overcome such a problem, a so-called non-chromate film, which is a so-called non-chromate film, is applied to the surface of an aluminum material by applying or spraying a chemical conversion solution containing no harmful metal ions such as chromium. Wood is proposed. JP-A-10-317162 discloses a method of treating with a surface treatment bath containing phosphoric acid or a salt thereof, zirconium salt, fluoride, phosphorous acid or a salt thereof, nitric acid or a salt thereof, and JP-B-7-84665. A method of forming an underlying treatment film containing zirconium by washing with an alkaline degreasing agent containing a phosphate ion, an aluminum chelating agent and a surfactant, and then treating with a chemical conversion treatment agent containing a zirconium ion, a phosphate ion and a fluorine ion. Alternatively, a method for forming an undercoating film containing zirconium and vanadium by treatment with a chemical conversion treatment liquid containing vanadium ions, JP-A-7-310189.
Japanese Patent Laid-Open No. 2000-242242 discloses a method of treating with a treatment liquid containing a phosphate ion, a zirconium compound, a fluoride and an oxidizing agent. Since these treatment liquids do not contain harmful hexavalent chromium, problems such as environmental pollution and health damage have been significantly reduced. However, these coatings still have problems with the adhesion of the coating resin after molding and the corrosion resistance under severe conditions such as retort treatment, and have not reached the performance level of the phosphate chromate coating.

【0005】このような性能上の問題を解決するため
に、特開平7−331276号にはリン酸イオン、ジル
コニウム化合物またはチタン化合物、フッ化物および水
溶性ポリアミドを含有する処理液で処理する方法、特開
平11−115098にはリン酸イオン、縮合リン酸イ
オンおよびフェノール系水溶性重合体からなる表面被覆
層を設ける方法等、いわゆる有機−無機複合タイプの化
成処理剤が、特開平10−46101号にはフェノー
ル、ナフトールまたはビスフェノール−ホルムアルデヒ
ド樹脂からなる被覆層を設けるといった有機皮膜タイプ
の下地処理層を設ける方法が開示されている。これらに
よれば加工後の密着性は高まり、酸性の液に対する耐食
性も向上するなど性能上の向上が認められる場合があ
る。しかし、下地処理皮膜中に樹脂を含むため、下地処
理皮膜上に被覆する樹脂の種類によっては相性が悪い場
合が生じ、所定の性能が出ない等の不具合が起こること
がある。その上、廃液処理の際に、一旦金属成分と有機
物とを予め分離することが必要で、さらに分離した有機
物をBOD処理等で別途処理しなければならないため、
工程が増し、廃液処理コストが増加する。特開平4−2
31120号には100〜2000オングストロームの
リン酸または硫酸陽極酸化皮膜を設けた下地処理材が提
案されている。しかし、この方法では電力を必要とする
ために設備のイニシャルコストおよびランニングコスト
が高いので、製品に求められている低コスト要求に応え
られない。ところで、アルミニウム板表面には圧延油等
の有機物が付着している。そのため、上記の各種下地処
理を施す際には、前処理として、アルカリ性液体による
脱脂・エッチング工程、さらには酸洗等も付加して表面
の汚れを除去する操作を行う。この前処理が不十分また
は不適切であると、アルミニウム材表面に多量の有機物
層が残留したまま下地処理を施すことになる。
In order to solve such performance problems, JP-A-7-331276 discloses a method of treating with a treatment liquid containing a phosphate ion, a zirconium compound or a titanium compound, a fluoride and a water-soluble polyamide, Japanese Patent Laid-Open No. 11-115098 discloses a so-called organic-inorganic composite type chemical conversion treatment agent such as a method of providing a surface coating layer composed of a phosphate ion, a condensed phosphate ion and a phenolic water-soluble polymer. Discloses a method of providing an organic film type undercoating layer such as providing a coating layer made of phenol, naphthol or bisphenol-formaldehyde resin. According to these, the adhesion after processing may be enhanced, and the improvement in performance may be recognized such that the corrosion resistance to an acidic liquid is also improved. However, since the undercoating film contains a resin, the compatibility may be poor depending on the type of the resin coated on the undercoating film, which may cause a problem such that predetermined performance is not obtained. In addition, when treating the waste liquid, it is necessary to first separate the metal component and the organic matter in advance, and the separated organic matter must be separately treated by BOD treatment or the like.
The number of processes is increased, and the waste liquid treatment cost is increased. Japanese Patent Laid-Open No. 4-2
No. 31120 proposes a surface treatment material provided with a 100 to 2000 angstrom phosphoric acid or sulfuric acid anodized film. However, since this method requires electric power, the initial cost and running cost of the equipment are high, so that it is not possible to meet the low cost requirement for the product. By the way, organic substances such as rolling oil adhere to the surface of the aluminum plate. Therefore, when performing the above-mentioned various base treatments, as a pretreatment, a degreasing / etching step using an alkaline liquid, and an operation such as pickling to remove stains on the surface are performed. If this pretreatment is inadequate or inadequate, the base treatment is performed with a large amount of the organic material layer remaining on the surface of the aluminum material.

【0006】こうした事情から、Cr等の有害重金属を
含まず、フィルムの密着性に優れた、樹脂フィルム被覆
アルミニウム材が求められていた。
Under these circumstances, there has been a demand for a resin film-coated aluminum material which does not contain harmful heavy metals such as Cr and has excellent film adhesion.

【0007】[0007]

【課題を解決するための手段】発明者らは上記課題を解
決すべく、クロメート皮膜、ジルコニウム皮膜等の化成
下地処理を行わず、アルミニウム酸化皮膜に直接樹脂被
覆する方法の検討を続けた。その結果、アルミニウム酸
化皮膜の厚みおよび構成成分を的確に制御し、かつその
最表面を管理することによって、必ずしも重金属を含む
化成皮膜を付与しなくとも、優れたフィルム密着性を有
する材料を提供できることを突きとめた。
In order to solve the above-mentioned problems, the inventors have continued to study a method for directly coating an aluminum oxide film with a resin without performing a chemical conversion base treatment such as a chromate film or a zirconium film. As a result, by accurately controlling the thickness and constituent components of the aluminum oxide film and controlling the outermost surface thereof, it is possible to provide a material having excellent film adhesion without necessarily providing a conversion film containing a heavy metal. I found out.

【0008】すなわち、請求項1の発明は、表面に、厚
さ=1〜200nmで、かつ最表面〜酸化皮膜/アルミ
界面までの深さ方向での最大濃度がMgで5mass%
以下、Hで10mass%以下のAlおよびOを主成分
とする酸化皮膜を設けたことを特徴とするフィルム密着
性に優れた樹脂フィルム被覆用アルミニウム材である。
また請求項2の発明は、請求項1の要件にさらに、最表
面のC濃度が50mass%以下のAlおよびOを主成
分とする酸化皮膜を設けるという要件が加わったもので
ある。さらに、請求項3,4は、請求項1,2のアルミ
ニウム材にフィルムを被覆した樹脂フィルム被覆アルミ
ニウム材である。
That is, in the invention of claim 1, the thickness is 1 to 200 nm on the surface, and the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is 5 mass% in Mg.
An aluminum material for coating a resin film, which is excellent in film adhesion, is characterized in that an oxide film containing H and 10 mass% or less of Al and O as main components is provided.
The invention of claim 2 further adds the requirement of claim 1 to the provision of an oxide film mainly composed of Al and O having a C concentration of 50 mass% or less on the outermost surface. Further, claims 3 and 4 are resin film-covered aluminum materials obtained by coating the aluminum materials of claims 1 and 2 with a film.

【0009】[0009]

【発明の実施の形態】電気電子部品、建材、飲料缶、自
動車部品等の種々用途に用いられているアルミニウム材
にはJIS1100、3004、3104、5021、
5052、5082、5182などがあり、これらアル
ミニウム材のうち1100以外には、機械的強度、加工
性を向上させるために0.8〜5mass%程度のMg
が添加されている。これらの材料は、加熱−塑性加工
(圧延・押出等)時にアルミニウム材マトリクス中のM
gが表面に偏析濃化することが知られている。従来、そ
の酸化皮膜構造は、最表面にMg酸化物層があり、その
下にアルミニウム酸化物層があるという2層構造モデル
で示されていた。また、Cの分布状態に関する考察はほ
とんどなされてこなかった。本発明者らはGDS(グロ
ー放電発光スペクトル)、オージェといった解析機器を
用い、酸化皮膜の深さ方向の元素分布、いわゆるデプス
プロファイルを詳細に調査した。なお、この際に測定対
象とした元素は、H,C,O,Mg,Al,Mn,S
i,Fe,Zn,CrおよびZrであり、以後、元素の
mass%は、この11元素を母集団として議論する
が、これらはアルミニウム材表面のほとんど全てを網羅
していると考えられるため、議論の一般性を何ら損なう
ものではない。また、その深さの測定結果は、1nmの
精度が十分に保証されるものである。その結果、Mgは
酸化皮膜全体に均一に存在するわけではなく、最表面よ
りやや深い部位に最も濃化していること、また必ずしも
明確な層を形成しておらず、いわば濃度勾配を有して分
布していることを確認した。
BEST MODE FOR CARRYING OUT THE INVENTION According to JIS 1100, 3004, 3104, 5021, aluminum materials used for various applications such as electric / electronic parts, building materials, beverage cans, automobile parts, etc.
5052, 5082, 5182, etc., and in addition to 1100 among these aluminum materials, Mg of about 0.8 to 5 mass% is added to improve mechanical strength and workability.
Has been added. These materials are M in the aluminum matrix during heat-plastic working (rolling, extrusion, etc.).
It is known that g segregates and concentrates on the surface. Conventionally, the oxide film structure has been shown by a two-layer structure model in which a Mg oxide layer is on the outermost surface and an aluminum oxide layer is below the Mg oxide layer. Further, almost no consideration has been given to the distribution state of C. The present inventors have investigated in detail the element distribution in the depth direction of the oxide film, the so-called depth profile, using analysis equipment such as GDS (glow discharge emission spectrum) and Auger. The elements to be measured at this time are H, C, O, Mg, Al, Mn, and S.
i, Fe, Zn, Cr and Zr, and hereinafter, the mass% of elements will be discussed with the 11 elements as a population, but it is considered that they cover almost all of the surface of the aluminum material. Does not undermine the generality of. In addition, the measurement result of the depth sufficiently guarantees the accuracy of 1 nm. As a result, Mg does not exist uniformly in the entire oxide film, it is most concentrated in a portion slightly deeper than the outermost surface, and a clear layer is not always formed, so to speak, it has a concentration gradient. It was confirmed that it was distributed.

【0010】この時、最表面〜酸化皮膜/アルミ界面ま
での深さ方向でのMgの最大濃度が5mass%以下と
なるよう調製した酸化皮膜は、被覆樹脂フィルムとアル
ミニウム板材との密着性、特に、板厚減少を伴う強加工
後のフィルム密着性が十分高いのに対し、最大濃度が5
mass%を超えていると、加工後のフィルム密着性が
著しく低下することを見出した。その理由として、Mg
化合物は純粋なアルミ酸化膜との親和性に乏しく、Mg
化合物/アルミ酸化膜の界面から剥離しやすいためと考
えられる。また、Mg化合物は水への溶解度が高いの
で、多量に存在すると密着性を低下させる原因となる。
そしてそれらの悪影響は、深さ方向でのMgの最大濃度
が5mass%を超えた時に顕著に現れる。
At this time, the oxide film prepared so that the maximum concentration of Mg in the depth direction from the outermost surface to the oxide film / aluminum interface is 5 mass% or less is the adhesion between the coating resin film and the aluminum plate material, especially , The film adhesion after strong processing accompanied by a decrease in plate thickness is sufficiently high, while the maximum density is 5
It has been found that when the content is more than mass%, the film adhesion after processing is significantly reduced. The reason is Mg
The compound has a poor affinity with pure aluminum oxide film,
It is considered that it is easy to peel from the interface of the compound / aluminum oxide film. Further, since the Mg compound has a high solubility in water, if it is present in a large amount, it causes a decrease in adhesion.
And, these adverse effects become remarkable when the maximum concentration of Mg in the depth direction exceeds 5 mass%.

【0011】また、主に水酸化物由来のHも、Mgと同
様、深さ方向に傾斜構造を有していた。そして、最表面
〜酸化皮膜/アルミ界面までの深さ方向での最大濃度が
10mass%以下となるよう調製した時、樹脂フィル
ムとアルミニウム板材の加工後の密着性が十分高いのに
対し、最大濃度が10mass%を超えていると、加工
後の密着性が低下することを見出した。その理由とし
て、Hを含む化合物(水酸化Al,水酸化Mg,他)は
もろいので、曲げ、深絞り等の強加工を行うと、Hを含
む化合物を起点にして酸化皮膜が破壊されるためと考え
られる。そしてその悪影響は、Hの最大濃度が10ma
ss%を超えた時に顕著に現れる。なお、上記のMgと
Hの効果はどちらも大きいので、その最大濃度は同時に
規制されるべきであり、どちらか片方を規制しただけで
は十分なフィルム密着性を発揮することはできない。
H, which is mainly derived from hydroxide, also has a graded structure in the depth direction like Mg. When the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is adjusted to 10 mass% or less, the adhesiveness after processing of the resin film and the aluminum plate is sufficiently high, whereas the maximum concentration is It has been found that when the value exceeds 10 mass%, the adhesion after processing decreases. The reason for this is that H-containing compounds (Al hydroxide, Mg hydroxide, etc.) are brittle, so when strong processing such as bending or deep drawing is performed, the oxide film is destroyed starting from the H-containing compound. it is conceivable that. And the adverse effect is that the maximum concentration of H is 10 ma.
Remarkably appears when it exceeds ss%. Since the above-mentioned effects of Mg and H are both large, the maximum concentrations thereof should be regulated at the same time, and sufficient regulation of either one cannot exert sufficient film adhesion.

【0012】さらに、発明者らはこれらに加え、有機物
に由来するCの検討を行った。その結果、上記の酸化皮
膜におけるCは、例外なく皮膜最表面において最大値を
示したのであるが、このC濃度が50mass%以下で
あれば、良好なフィルム密着性が発揮されることを見出
した。一方、皮膜最表面のC濃度が50mass%を超
えると、密着性は急激に低下した。これは、Mgおよび
Hを規定した酸化皮膜の好影響と、表面残存有機物の悪
影響が相殺し合う領域が、C濃度に換算して50mas
s%であるためと考えられる。
Further, in addition to these, the inventors examined C derived from an organic substance. As a result, C in the above oxide film showed the maximum value without exception on the outermost surface of the film, but it was found that good film adhesion is exhibited when the C concentration is 50 mass% or less. . On the other hand, when the C concentration on the outermost surface of the coating exceeded 50 mass%, the adhesiveness sharply decreased. This is because the region where the favorable effect of the oxide film that defines Mg and H and the adverse effect of the surface-remaining organic matter cancel each other out is 50mass in terms of C concentration.
It is considered that this is because it is s%.

【0013】以上のように、MgおよびH濃度、必要に
応じてC濃度をそれぞれ規制した酸化皮膜をアルミニウ
ム板材表面に形成することにより、CrやZrといった
重金属を含む化成処理下地処理皮膜を付与しなくとも、
優れた樹脂フィルムの密着性が得られる。なお、この酸
化皮膜全体の厚みは1〜200nmであることが必要で
ある。1nm未満では十分な密着性が得られず、200
nmを超えると加工時に酸化皮膜にマイクロクラックが
発生し、フィルム密着性低下を引き起こすためである。
As described above, by forming an oxide film on which the Mg and H concentrations and, if necessary, the C concentration are regulated, on the surface of the aluminum plate material, a chemical conversion pretreatment film containing a heavy metal such as Cr or Zr is provided. Without
Excellent resin film adhesion is obtained. The total thickness of the oxide film needs to be 1 to 200 nm. If it is less than 1 nm, sufficient adhesion cannot be obtained, and
This is because if the thickness exceeds nm, micro cracks are generated in the oxide film during processing, and film adhesion is deteriorated.

【0014】これらの発明の範囲を図示すると、図1の
とおりである。
The scope of these inventions is illustrated in FIG.

【0015】優れた樹脂フィルムの密着性が得られるメ
カニズムは以下のように推定される。金属材料表面にこ
の様な酸化皮膜を有するアルミニウム材と樹脂フィルム
との密着力は、水素結合(化学的結合力)と機械的結合
力(アンカー効果)およびファンデアワールス力等の分
子間力によるものと考えられる。ここで水素結合は樹脂
フィルムや接着剤中の−COOH、−OH、−CONH
等の極性基と酸化皮膜中の酸素または水素原子による結
合である。したがって、強固な密着力を得るためには、
酸化皮膜中の酸素および水素は必須元素である。しか
し、樹脂フィルムの持つ加工性の良さを十分に発揮させ
るためには、加工による密着性の低下をもたらす水酸化
Alや水酸化Mg等のもろい化合物、また純粋なアルミ
酸化膜との親和性に乏しいMg化合物は極力少なくしな
ければならない。これらのことから本願アルミニウム発
明では酸化皮膜中のMgの最大濃度と水酸化物量の指標
となるHの最大濃度とを同時に規制する。機械的結合力
は樹脂フィルムや接着剤を加熱溶融させ、板材表面の微
細な凹部に進入させることにより得られる結合力であ
る。またファンデアワールス力の寄与はごく僅かと考え
られている。
The mechanism by which excellent adhesion of the resin film is obtained is presumed as follows. The adhesion between the aluminum film having such an oxide film on the surface of the metal material and the resin film depends on intermolecular force such as hydrogen bond (chemical bond), mechanical bond (anchor effect) and van der Waals force. It is considered to be a thing. Here, hydrogen bonding is caused by -COOH, -OH, -CONH in the resin film or adhesive.
It is a bond by a polar group such as and oxygen or hydrogen atom in the oxide film. Therefore, to obtain a strong adhesion,
Oxygen and hydrogen in the oxide film are essential elements. However, in order to fully demonstrate the good workability of the resin film, it is necessary to improve the affinity with brittle compounds such as Al hydroxide and Mg hydroxide, which bring about a decrease in adhesion due to processing, and pure aluminum oxide film. Poor Mg compounds should be minimized. Therefore, in the aluminum invention of the present application, the maximum concentration of Mg in the oxide film and the maximum concentration of H, which is an index of the amount of hydroxide, are simultaneously regulated. The mechanical binding force is a binding force obtained by heating and melting a resin film or an adhesive and allowing the resin film or the adhesive to enter into minute recesses on the surface of the plate material. The contribution of van der Waals forces is considered to be negligible.

【0016】ところで、請求項1を満たす酸化皮膜を得
るには、一例として、エッチング量が50〜200mg
/mに達するアルカリ脱脂を行った後、pHが4.0
以下かつAl,Mgイオン濃度がそれぞれ1mass%
以下である酸(コスト面から希硫酸が使いやすい)にて
酸洗を行う方法を挙げることができる。エッチング量が
50mg/m未満では均質な酸化皮膜が形成されず、
エッチング量が200mg/mを超えるとアルミニウ
ム板厚の精度に悪影響を及ぼす。また、酸洗がMgの低
減に寄与することは、主に自動車用アルミニウム板材の
分野において公知であるが、pHが4.0を超えるとそ
の効果が半減する。さらに本発明の特徴である酸化皮膜
中のMgおよびH濃度の規定にあたって、酸洗浴中のA
lイオン濃度が1mass%を超えると表面に水酸化A
l等が残存し、Hが酸化皮膜中に濃縮するので好ましく
ない。またMgイオン濃度が1mass%を超えると表
面にMg化合物が析出し、Mgが酸化皮膜中に濃縮する
ので好ましくない。加えて、請求項2を満足させるため
には、さらにアルカリ脱脂浴および酸洗浴の油汚染を3
mass%以下に制御すればよい。これは、いずれの浴
の油分も表面に残存しやすく、酸化皮膜最表面のCに影
響を及ぼすためであり、油汚染が3mass%を超える
と、Cが急激に増加するため好ましくない。もちろん、
これ以外の方法で得られた酸化皮膜でも、請求項記載の
範囲さえ満たしていれば、本発明の好ましい効果を享受
できるのは当然である。
By the way, in order to obtain an oxide film satisfying claim 1, as an example, the etching amount is 50 to 200 mg.
After performing alkaline degreasing to reach / m 2 , the pH is 4.0.
Below and Al and Mg ion concentration is 1 mass% each
The method of performing pickling with the following acids (dilute sulfuric acid is easy to use from the viewpoint of cost) can be mentioned. When the etching amount is less than 50 mg / m 2 , a uniform oxide film is not formed,
When the etching amount exceeds 200 mg / m 2 , the precision of the aluminum plate thickness is adversely affected. It is known that pickling contributes to the reduction of Mg, mainly in the field of aluminum plate materials for automobiles, but when the pH exceeds 4.0, the effect is halved. Further, in defining the Mg and H concentrations in the oxide film, which is a feature of the present invention, A in the pickling bath is specified.
If the l-ion concentration exceeds 1 mass%, the surface will be hydroxide A
1 and the like remain, and H is concentrated in the oxide film, which is not preferable. Further, when the Mg ion concentration exceeds 1 mass%, the Mg compound is deposited on the surface and Mg is concentrated in the oxide film, which is not preferable. In addition, in order to satisfy the second aspect, the oil contamination of the alkaline degreasing bath and the pickling bath is further increased to 3
It may be controlled to a mass% or less. This is because oil in any of the baths is likely to remain on the surface and affects C on the outermost surface of the oxide film. When the oil contamination exceeds 3 mass%, C rapidly increases, which is not preferable. of course,
It is natural that the oxide film obtained by a method other than this can enjoy the preferable effects of the present invention as long as the scope of the claims is satisfied.

【0017】[0017]

【実施例】以下、実験例に基づいて、本発明を具体的に
説明する。各例における下地処理条件を表1に、下地処
理後の板材表面をGDSで測定した結果を表2に示す。 (実施例1)JIS5052合金板(板厚0.50m
m)を常法によりアルカリ脱脂(エッチング量=約10
0mg/m)した後、50℃の1%硫酸(当社酸洗ラ
インにて一週間使用した液)に5秒間浸漬し、常温の純
水にて5秒間洗浄した。これを150℃の熱風で3秒間
乾燥させた。その後厚さ20μmのポリエステル系フィ
ルムを積層した。積層条件としては、アルミニウム板材
の片面にフィルムを重ねて、表面温度が180℃に加熱
された1対のロールにより仮圧着し、その後265℃ま
での再加熱により、フィルムを溶融密着後直ちに水令し
た。 (実施例2)JIS5182合金板(板厚0.30m
m)に対し、実施例1と同様の操作を行った。 (実施例3)JIS5052合金板(板厚0.50m
m)を常法によりアルカリ脱脂(エッチング量=約10
0mg/m)した後、50℃の1%硫酸(当社酸洗ラ
インにて一週間使用した液)に5秒間浸漬し、常温の純
水にて5秒間洗浄した。これを常温の強風にて3秒間乾
燥させ、実施例1と同様にポリエステル系フィルムを積
層した。 (実施例4)JIS5052合金板(板厚0.50m
m)を常法によりアルカリ脱脂(エッチング量=約10
0mg/m)した後、50℃の1%硫酸(当社酸洗ラ
インにて一週間使用した液)に5秒間浸漬し、常温の純
水にて5秒間洗浄した。これを350℃の熱風で1分間
乾燥させ、実施例1と同様にポリエステル系フィルムを
積層した。 (実施例5)JIS5052合金板(板厚0.50m
m)を常法によりアルカリ脱脂(エッチング量=約10
0mg/m)した後、50℃の1%硫酸(当社酸洗ラ
インにて一週間使用後、圧延油1mass%を追加した
液)に5秒間浸漬し、常温の純水にて5秒間洗浄した。
実施例1と同様にポリエステル系フィルムを積層した。 (実施例6)JIS5052合金板(板厚0.50m
m)を常法によりアルカリ脱脂(エッチング量=約10
0mg/m)した後、50℃の1%硫酸(当社酸洗ラ
インにて一週間使用後、圧延油5mass%を追加した
液)に5秒間浸漬し、常温の純水にて5秒間洗浄した。
これを150℃の熱風で3秒間乾燥させ、実施例1と同
様にポリエステル系フィルムを積層した。 (実施例7)JIS3004合金板(板厚0.30m
m)を常法によりアルカリ脱脂(エッチング量=約10
0mg/m)した後、50℃の1%硫酸(当社酸洗ラ
インにて一週間使用した液)に5秒間浸漬し、常温の純
水にて5秒間洗浄した。これを150℃の熱風で3秒間
乾燥させた。その後厚さ20μmのポリプロピレン系フ
ィルムを積層した。積層条件としては、アルミニウム板
材の片面に変性ポリプロピレン系の熱溶融型接着フィル
ムを間に挟んで重ね合わせ、表面温度が180℃に加熱
された1対のロールにより加熱圧着した。 (比較例1)JIS5052合金板(板厚0.50m
m)を常法によりアルカリ脱脂(エッチング量=約10
0mg/m)した後、常温の純水にて5秒間洗浄し
た。これを150℃の熱風で3秒間乾燥させ、実施例1
と同様にポリエステル系フィルムを積層した。 (比較例2)JIS5052合金板(板厚0.50m
m)を常法によりアルカリ脱脂(エッチング量=約10
0mg/m)した後、50℃の1%硫酸(当社酸洗ラ
インにて一ヶ月使用した液)に5秒間浸漬し、常温の純
水にて5秒間洗浄した。これを150℃の熱風で3秒間
乾燥させ、実施例1と同様にポリエステル系フィルムを
積層した。 (比較例3)JIS5052合金板(板厚0.50m
m)を常法によりアルカリ脱脂(エッチング量=約10
0mg/m)した後、50℃の1%硫酸(当社酸洗ラ
インにて一週間使用した液)に5秒間浸漬し、常温の純
水にて5秒間洗浄した。これを350℃の熱風で60分
間乾燥させ、実施例1と同様にポリエステル系フィルム
を積層した。 (従来例)JIS5052合金板(板厚0.50mm)
を常法によりアルカリ脱脂(エッチング量=約100m
g/m)した後、常法によりリン酸クロメート処理
(Cr付着量=20mg/m)した。その上に、実施
例1と同様にポリエステル系フィルムを積層した。
EXAMPLES The present invention will be specifically described below based on experimental examples. Table 1 shows the base treatment conditions in each example, and Table 2 shows the results of the GDS measurement of the surface of the plate material after the base treatment. (Example 1) JIS5052 alloy plate (plate thickness 0.50 m
m) is alkali degreased by a conventional method (etching amount = about 10
After 0 mg / m 2 ), it was immersed in 1% sulfuric acid at 50 ° C. (solution used for one week in our pickling line) for 5 seconds and washed with pure water at room temperature for 5 seconds. This was dried with hot air at 150 ° C. for 3 seconds. Then, a polyester film having a thickness of 20 μm was laminated. The lamination conditions are as follows: a film is laminated on one side of an aluminum plate material, temporarily pressure-bonded by a pair of rolls whose surface temperature is heated to 180 ° C, and then reheated up to 265 ° C to melt the film immediately after water adhesion. did. (Example 2) JIS5182 alloy plate (plate thickness 0.30 m
For m), the same operation as in Example 1 was performed. (Example 3) JIS5052 alloy plate (plate thickness 0.50 m
m) is alkali degreased by a conventional method (etching amount = about 10
After 0 mg / m 2 ), it was immersed in 1% sulfuric acid at 50 ° C. (solution used for one week in our pickling line) for 5 seconds and washed with pure water at room temperature for 5 seconds. This was dried with strong wind at room temperature for 3 seconds, and a polyester film was laminated in the same manner as in Example 1. (Example 4) JIS5052 alloy plate (plate thickness 0.50 m
m) is alkali degreased by a conventional method (etching amount = about 10
After 0 mg / m 2 ), it was immersed in 1% sulfuric acid at 50 ° C. (solution used for one week in our pickling line) for 5 seconds and washed with pure water at room temperature for 5 seconds. This was dried with hot air at 350 ° C. for 1 minute, and a polyester film was laminated in the same manner as in Example 1. (Example 5) JIS5052 alloy plate (plate thickness 0.50 m
m) is alkali degreased by a conventional method (etching amount = about 10
0 mg / m 2 ) and then soaked in 1% sulfuric acid at 50 ° C (liquid used by our pickling line for 1 week and then added with 1% by mass of rolling oil) for 5 seconds and washed with pure water at room temperature for 5 seconds. did.
A polyester film was laminated in the same manner as in Example 1. (Example 6) JIS5052 alloy plate (plate thickness 0.50 m
m) is alkali degreased by a conventional method (etching amount = about 10
0 mg / m 2 ) and then soaked in 50% 1% sulfuric acid (using our pickling line for 1 week and then adding 5 mass% rolling oil) for 5 seconds and washed with pure water at room temperature for 5 seconds. did.
This was dried with hot air at 150 ° C. for 3 seconds, and a polyester film was laminated in the same manner as in Example 1. (Example 7) JIS3004 alloy plate (plate thickness 0.30 m
m) is alkali degreased by a conventional method (etching amount = about 10
After 0 mg / m 2 ), it was immersed in 1% sulfuric acid at 50 ° C. (solution used for one week in our pickling line) for 5 seconds and washed with pure water at room temperature for 5 seconds. This was dried with hot air at 150 ° C. for 3 seconds. Then, a polypropylene film having a thickness of 20 μm was laminated. The lamination conditions were as follows: a modified polypropylene-based hot-melt adhesive film was sandwiched on one side of an aluminum plate material, and the layers were superposed and thermocompression-bonded by a pair of rolls heated to a surface temperature of 180 ° C. (Comparative Example 1) JIS5052 alloy plate (plate thickness 0.50 m
m) is alkali degreased by a conventional method (etching amount = about 10
0 mg / m 2 ) and then washed with pure water at room temperature for 5 seconds. This was dried with hot air at 150 ° C. for 3 seconds, and
A polyester film was laminated in the same manner as in. (Comparative Example 2) JIS5052 alloy plate (plate thickness 0.50 m
m) is alkali degreased by a conventional method (etching amount = about 10
After 0 mg / m 2 ), it was dipped in 1% sulfuric acid at 50 ° C. (solution used for one month in our pickling line) for 5 seconds and washed with pure water at room temperature for 5 seconds. This was dried with hot air at 150 ° C. for 3 seconds, and a polyester film was laminated in the same manner as in Example 1. (Comparative Example 3) JIS5052 alloy plate (plate thickness 0.50 m
m) is alkali degreased by a conventional method (etching amount = about 10
After 0 mg / m 2 ), it was immersed in 1% sulfuric acid at 50 ° C. (solution used for one week in our pickling line) for 5 seconds and washed with pure water at room temperature for 5 seconds. This was dried with hot air at 350 ° C. for 60 minutes, and a polyester film was laminated in the same manner as in Example 1. (Conventional example) JIS5052 alloy plate (plate thickness 0.50 mm)
Alkaline degreasing (etching amount = approx. 100 m
g / m 2 ), and then phosphoric acid chromate treatment (Cr deposition amount = 20 mg / m 2 ) was performed by a conventional method. A polyester film was laminated thereon in the same manner as in Example 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】これらのサンプルを、非加工部の評価とし
て積層のまま、加熱後の評価として沸騰水5時間浸漬
後、および加工後の評価として30%、50%圧延後、
それぞれ碁盤目剥離試験により密着性を調べた。結果を
表3に示す。碁盤目剥離試験はカッターナイフで1mm
角で100個の碁盤目を切りセロハンテープで剥離試験
を行った。剥離した碁盤目の数が10個以下を○、10
個を越えて50個以下を△、50個を越えたものは×と
した。
These samples were laminated as they were for evaluation of the non-processed part, immersed in boiling water for 5 hours as an evaluation after heating, and after 30% and 50% rolling as evaluations after processing.
The adhesiveness was examined by a cross-cut peeling test. The results are shown in Table 3. Cross-cut peeling test is 1 mm with a cutter knife
100 squares were cut at the corners and a peeling test was performed with cellophane tape. The number of peeled grids is 10 or less ○, 10
If more than 50 pieces and less than 50 pieces are marked with Δ, and if more than 50 pieces are marked with x.

【0021】[0021]

【表3】 [Table 3]

【0022】表3から明らかなように、本発明条件を満
足する実施例1〜5および7は、いずれの条件でも現在
広く用いられているリン酸クロメートによる従来例4同
等の良好な密着性を示した。実施例1〜6は当然Crを
使用しておらず、環境破壊や健康被害の観点から優位性
は明確である。実施例6は油分の多い浴を用いて酸洗し
たため請求項2のC濃度の要件を満たしておらず、厳し
い加工において密着性がやや劣る結果となった。このよ
うに厳しい加工用途においては請求項2を適用するのが
望ましい。一方、アルカリ脱脂後に酸洗を施さないため
Mgの最大濃度が高い比較例1、酸洗ラインで1ヶ月と
いう長期間使用した浴を用いて酸洗したためHの最大濃
度が高い比較例2、酸洗後の乾燥条件を高温・長時間に
したため酸化膜が厚い比較例3は、いずれも密着性が劣
る。特に加熱後や加工後の密着性が悪い。
As is clear from Table 3, in Examples 1 to 5 and 7 satisfying the conditions of the present invention, under all of the conditions, the same good adhesion as that of Conventional Example 4 by the widely used phosphoric acid chromate is obtained. Indicated. Examples 1 to 6 naturally do not use Cr, and the superiority is clear from the viewpoint of environmental damage and health damage. Example 6 did not meet the C concentration requirement of claim 2 because it was pickled using a bath containing a large amount of oil, and the adhesion was slightly inferior in severe processing. It is desirable to apply claim 2 in such severe processing applications. On the other hand, Comparative Example 1 in which the maximum concentration of Mg is high because the pickling is not performed after alkali degreasing, Comparative Example 2 in which the maximum concentration of H is high due to the pickling using a bath used for a long period of 1 month in the pickling line, the acid Since the drying condition after washing was set to high temperature for a long time, Comparative Example 3 in which the oxide film was thick had poor adhesion. In particular, the adhesion after heating or after processing is poor.

【0023】[0023]

【発明の効果】以上のように、本発明によれば、Cr等
の有害重金属を含まないで、現行の化成クロメートと同
等の優れたフィルム密着性を有する樹脂フィルム被覆用
アルミニウム材および樹脂フィルム被覆アルミニウム材
を提供することができ、有害物質による環境破壊や人体
の健康被害を防止する効果が得られる。
As described above, according to the present invention, an aluminum material for resin film coating and a resin film coating which do not contain harmful heavy metals such as Cr and have excellent film adhesion equivalent to that of the current chemical chromate chromate are provided. It is possible to provide aluminum materials, and it is possible to obtain the effect of preventing environmental damage and human health damage due to harmful substances.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の元素の分布を示す模式図である。FIG. 1 is a schematic view showing distribution of elements of the present invention.

【符号の説明】[Explanation of symbols]

Mg マグネシウム濃度 H 水素濃度 C 炭素濃度 Mg magnesium concentration H hydrogen concentration C carbon concentration

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川真一 東京都墨田区錦糸1丁目2番1号 スカイ アルミニウム株式会社内 Fターム(参考) 4F100 AB09A AB10A AK01B BA02 BA07 EJ12A GB16 GB23 JL11 YY00A    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinichi Hasegawa             1-2-1 Kinshi, Sumida-ku, Tokyo Sky             Aluminum Co., Ltd. F-term (reference) 4F100 AB09A AB10A AK01B BA02                       BA07 EJ12A GB16 GB23                       JL11 YY00A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面に、厚さ=1〜200nmで、かつ
最表面〜酸化皮膜/アルミ界面までの深さ方向での最大
濃度がMgで5mass%以下、Hで10mass%以
下のAlおよびOを主成分とする酸化皮膜を設けたこと
を特徴とするフィルム密着性に優れた樹脂フィルム被覆
用アルミニウム材。
1. Al and O having a thickness of 1 to 200 nm and a maximum concentration in the depth direction from the outermost surface to an oxide film / aluminum interface of 5 mass% or less for Mg and 10 mass% or less for H on the surface. An aluminum material for coating a resin film, which is excellent in film adhesion and is characterized by having an oxide film containing as a main component.
【請求項2】 表面に、厚さ=1〜200nmで、かつ
最表面〜酸化皮膜/アルミ界面までの深さ方向での最大
濃度がMgで5mass%以下、Hで10mass%以
下、かつ最表面のC濃度が50mass%以下のAlお
よびOを主成分とする酸化皮膜を設けたことを特徴とす
るフィルム密着性に優れた樹脂フィルム被覆用アルミニ
ウム材。
2. The surface has a thickness of 1 to 200 nm, and the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is 5 mass% or less for Mg, 10 mass% or less for H, and the outermost surface. An aluminum material for coating a resin film having excellent film adhesion, characterized in that an oxide film containing Al and O as main components having a C concentration of 50 mass% or less is provided.
【請求項3】 表面に、厚さ=1〜200nmで、かつ
最表面〜酸化皮膜/アルミ界面までの深さ方向での最大
濃度がMgで5mass%以下、Hで10mass%以
下のAlおよびOを主成分とする酸化皮膜を設けたアル
ミニウム材に、樹脂フィルムが被覆されていることを特
徴とするフィルム密着性に優れた樹脂フィルム被覆アル
ミニウム材。
3. Al and O having a thickness of 1 to 200 nm and a maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface of 5 mass% or less for Mg and 10 mass% or less for H on the surface. A resin film-coated aluminum material having excellent film adhesion, characterized in that an aluminum material having an oxide film containing as a main component is coated with a resin film.
【請求項4】 表面に、厚さ=1〜200nmで、かつ
最表面〜酸化皮膜/アルミ界面までの深さ方向での最大
濃度がMgで5mass%以下、Hで10mass%以
下、かつ最表面のC濃度が50mass%以下のAlお
よびOを主成分とする酸化皮膜を設けたアルミニウム材
に、樹脂フィルムが被覆されていることを特徴とする、
フィルム密着性に優れた樹脂フィルム被覆アルミニウム
材。
4. The thickness of the surface is 1 to 200 nm, and the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is 5 mass% or less for Mg, 10 mass% or less for H, and the outermost surface. Characterized in that a resin film is coated on an aluminum material provided with an oxide film mainly composed of Al and O having a C concentration of 50 mass% or less.
Resin film coated aluminum material with excellent film adhesion.
JP2001358608A 2001-11-26 2001-11-26 Aluminum material for resin film coating excellent in film adhesion and resin film coated aluminum material Expired - Fee Related JP3898039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358608A JP3898039B2 (en) 2001-11-26 2001-11-26 Aluminum material for resin film coating excellent in film adhesion and resin film coated aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358608A JP3898039B2 (en) 2001-11-26 2001-11-26 Aluminum material for resin film coating excellent in film adhesion and resin film coated aluminum material

Publications (2)

Publication Number Publication Date
JP2003154603A true JP2003154603A (en) 2003-05-27
JP3898039B2 JP3898039B2 (en) 2007-03-28

Family

ID=19169759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358608A Expired - Fee Related JP3898039B2 (en) 2001-11-26 2001-11-26 Aluminum material for resin film coating excellent in film adhesion and resin film coated aluminum material

Country Status (1)

Country Link
JP (1) JP3898039B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157967A (en) * 2014-02-21 2015-09-03 株式会社神戸製鋼所 Aluminum alloy sheet, conjugate and automotive member
JP2016137625A (en) * 2015-01-27 2016-08-04 株式会社Uacj Resin coated aluminum material and manufacturing method therefor, aluminum resin conjugation material and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157967A (en) * 2014-02-21 2015-09-03 株式会社神戸製鋼所 Aluminum alloy sheet, conjugate and automotive member
JP2016137625A (en) * 2015-01-27 2016-08-04 株式会社Uacj Resin coated aluminum material and manufacturing method therefor, aluminum resin conjugation material and manufacturing method therefor

Also Published As

Publication number Publication date
JP3898039B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP5093797B2 (en) Steel plate for containers with excellent can processability
TWI500816B (en) Steel sheet for container and method for production thereof
KR100993431B1 (en) Steel sheet for containers
WO2012036199A1 (en) Steel plate for containers and manufacturing method for same
JP2010013728A (en) Steel sheet for container which has excellent organic coating film performance, and method of manufacturing the same
JP2009249691A (en) Steel sheet for vessel having excellent weldability, appearance and adhesion in can making
WO2010140711A1 (en) Steel sheet for containers which exhibits excellent performance for organic layers and process for production thereof
JP4668063B2 (en) Resin-coated aluminum plate and method for producing the same
JP4897818B2 (en) Steel plate for container and manufacturing method thereof
JP4915068B2 (en) Aluminum alloy can lid with excellent corrosion resistance and adhesion and method for producing the same
JP2002355921A (en) Steel panel for container excellent in adhesion and corrosion resistance
CA2417668C (en) An acid pretreatment method to improve adhesion to aluminum alloys
JP3850253B2 (en) Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance
JP2003154603A (en) Aluminum material for resin film coating excellent in film adhesion, and resin film coated aluminum material
WO2000073535A1 (en) Phosphate-treated electrogalvanized steel sheet excellent in corrosion resistance and coating suitability
JP2003003281A (en) Polyester resin-coated tinned steel sheet
JPS6017704B2 (en) Composite resin coated metal body
JP2004018906A (en) Surface-treated aluminum material, manufacturing method therefor, formed aluminum article, and aluminum can
JP2007203615A (en) Resin-coated aluminum sheet and its manufacturing method
JP2003231975A (en) Surface treatment method for aluminum alloy material, and surface-coated aluminum alloy material
JP3893964B2 (en) Polyethylene film coated tin alloy plated steel sheet
JP2009046752A (en) Steel sheet for container material with less load on environment and its manufacturing method, and laminate steel sheet for container material with less load on environment and pre-coat steel sheet for container material using the same
JP2008266663A (en) Aluminum material for laminate, resin-coated aluminum material, and manufacturing method of the sames
JP3229511B2 (en) Surface treated aluminum alloy composite plate for cans
JPH091734A (en) Plate material such as resin-coated aluminum and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Ref document number: 3898039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees