JP3850253B2 - Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance - Google Patents

Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance Download PDF

Info

Publication number
JP3850253B2
JP3850253B2 JP2001316776A JP2001316776A JP3850253B2 JP 3850253 B2 JP3850253 B2 JP 3850253B2 JP 2001316776 A JP2001316776 A JP 2001316776A JP 2001316776 A JP2001316776 A JP 2001316776A JP 3850253 B2 JP3850253 B2 JP 3850253B2
Authority
JP
Japan
Prior art keywords
aluminum
mass
less
oxide film
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001316776A
Other languages
Japanese (ja)
Other versions
JP2003119570A (en
Inventor
長谷川真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2001316776A priority Critical patent/JP3850253B2/en
Publication of JP2003119570A publication Critical patent/JP2003119570A/en
Application granted granted Critical
Publication of JP3850253B2 publication Critical patent/JP3850253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Description

【0001】
【発明が属する技術分野】
本発明は、飲料缶や食缶の缶蓋用アルミニウム塗装下地処理材および缶蓋用アルミニウム塗装材に関する。特に、クロメート皮膜、ジルコニウム皮膜等の化成下地処理を行わずに樹脂皮膜を塗装した缶蓋用アルミニウム塗装材に関する。
【0002】
【従来の技術】
アルミニウム材は軽量で、適度な機械的特性を有し、かつ美感、成形加工性、耐食性等に優れた特徴を有しているため、各種容器類等に広く使われている。例えば、食品のアルミニウム等容器は、アルミニウムの優れた成形加工性を利用して、樹脂塗装を行った後絞り加工する方法等により成形されている。
その場合、成形加工を受けてもアルミニウム表面と樹脂塗装との間の密着性を優れたものとするために、アルミニウム表面に密着性向上効果の大きい下地皮膜を予め施しておくことが一般的に行われている。
このため従来は、リン酸、クロム酸およびフッ酸を主成分とする化成処理液でアルミニウム材を処理する「クロメート処理」が施されてきた。例えば特開平3−177580号には下地皮膜としてクロム付着量を7〜25mg/m2としたリン酸クロメート皮膜層を設けた樹脂塗装材が提案されている。このようなクロメート処理は、製造工程管理が容易でコストが安く、しかも性能が安定するため、広く用いられてきた。
【0003】
【発明が解決しようとする課題】
しかし近年、環境汚染、環境破壊、健康に対する安全性、エネルギー需給等への関心が急激に高まっている。
リン酸クロメート皮膜自体から有害な6価クロム等が溶出することは無く、リン酸クロメート皮膜自体が環境汚染や健康被害をまねくことは無いとされている。しかし、その製造工程では、無水クロム酸等の有害な6価クロムを含有する化成液を使っており、化成液廃液およびリンス工程で発生する6価クロムを含有する排水等を処理し、無害化しなければならない。このような処理には多大な人力およびエネルギー、高価な廃液処理設備等を必要とするため、製品のコストアップが避けられない。近年は規制が益々強化される方向にあり、廃液処理によるコストは従来以上に高まる傾向にある。
【0004】
このような課題を克服するために、クロム等の有害な金属イオンを含まない化成処理液を塗布またはスプレー等でアルミニウム材表面に付着させた、いわゆるノンクロメート皮膜と言われる下地処理アルミニウム材が提案されている。
特開平10−317162号にはリン酸またはその塩、ジルコニウム塩、フッ化物、亜リン酸またはその塩、硝酸またはその塩を含む表面処理浴で処理する方法、また特公平7−84665号にはリン酸イオン、アルミニウムキレート化剤および界面活性剤を含むアルカリ脱脂剤で洗浄処理後、ジルコニウムイオン、リン酸イオンおよびフッ素イオンを含む化成処理剤で処理し、ジルコニウムを含む下地処理皮膜を形成する方法、あるいはさらにバナジウムイオンを含む化成処理液で処理して、ジルコニウムおよびバナジウムを含む下地処理皮膜を形成する方法、特開平7−310189号にはリン酸イオン、ジルコニウム化合物、フッ化物および酸化剤を含む処理液で処理する方法等が開示されている。
これらの処理液は有害な6価クロムを含まないことから、環境汚染や健康被害といった問題が著しく軽減されている。しかし、これらの皮膜は成形加工後の塗膜密着性やレトルト処理といった苛酷な条件下での耐食性に問題を残しており、リン酸クロメート皮膜の性能レベルに達していない。
【0005】
このような性能上の問題を解決するために、特開平7−331276号にはリン酸イオン、ジルコニウム化合物またはチタン化合物、フッ化物および水溶性ポリアミドを含有する処理液で処理する方法、特開平11−115098にはリン酸イオン、縮合リン酸イオンおよびフェノール系水溶性重合体からなる表面被覆層を設ける方法等、いわゆる有機−無機複合タイプの化成処理剤が、特開平10−46101号にはフェノール、ナフトールまたはビスフェノール−ホルムアルデヒド樹脂からなる被覆層を設けるといった有機皮膜タイプの下地処理層を設ける方法が開示されている。
これらによれば加工後の密着性は高まり、酸性の液に対する耐食性も向上するなど性能上の向上が認められる場合がある。しかし、下地処理皮膜中に樹脂を含むため、下地処理皮膜上に塗布する樹脂の種類によっては相性が悪い場合が生じ、塗工時にハジキを生じたり、所定の性能が出ない等の不具合が起こることがある。その上、廃液処理の際に、一旦金属成分と有機物とを予め分離することが必要で、さらに分離した有機物をBOD処理等で別途処理しなければならないため、工程が増し、廃液処理コストが増加する。
特開平4−231120号には100〜2000Åのリン酸または硫酸陽極酸化皮膜を設けた下地処理材が提案されている。しかし、この方法では電力を必要とするために設備のイニシャルコストおよびランニングコストが高いので、製品に求められている低コスト要求に応えられない。
【0006】
ところで、アルミニウム板表面には圧延油等の有機物が付着している。そのため、上記の各種下地処理を施す際には、前処理として、アルカリ性液体による脱脂・エッチング工程、さらには酸洗等も付加して表面の汚れを除去する操作を行う。この前処理が不十分または不適切であると、アルミニウム板表面に多量の有機物層が残留したまま下地処理を施すことになる。
このような下地では、ときに有機物層が下地最表面に濃縮するため、近年急速に普及してきた水性塗料を塗装する場合、塗工時のハジキおよび密着性不良をまねく危険性が高い。
こうした事実から、水性塗料を用いる際は表面の有機物を極力減らすのが良い、との認識は公知であった。しかし一方で、工業的なスケールにおいて有機物層を完全に除去することは、コスト面で不可能であるため、有機物残存量の実際的な妥協点を見出す必要があった。
【0007】
以上のような事情から、Cr等の有害重金属を含まず、塗料の塗膜密着性、耐食性および耐ハジキ性に優れ、なおかつ低コストで製造できる飲料缶または食缶用のアルミニウム蓋材が強く求められていた。
【0008】
【課題を解決するための手段】
発明者らは上記課題を解決すべく、クロメート皮膜、ジルコニウム皮膜等の化成下地処理を行わず、アルミニウム酸化皮膜に直接塗装する方法の検討を続けた。その結果、アルミニウム酸化皮膜の厚みおよび構成成分を的確に制御し、かつその最表面を管理することによって、必ずしも重金属を含む化成皮膜を付与しなくとも、優れた材料を提供できることを突きとめた。
すなわち、表面に厚さ=1〜200nmで、かつ最表面〜酸化皮膜/アルミ界面までの深さ方向での最大濃度がMgで5mass%以下かつHで10mass%以下である、AlおよびOを主成分とする酸化皮膜を設けることにより、優れた表面処理材が得られることを見出した。
請求項2の発明は、さらに最表面の炭素濃度を規定したものである。
請求項3の発明は、これらの上に樹脂皮膜を設けたものである。
請求項4、5は請求項1、2に関する製造方法である。
より具体的には、請求項1の発明は表面に厚さ=1〜200nmで、かつ最表面から酸化皮膜/アルミ界面までの深さ方向での最大濃度がMg:5mass%以下、H:10mass%以下のAlおよびOを主成分とする酸化皮膜を設けたことを特徴とする塗膜密着性および耐食性に優れた缶蓋用アルミニウム下地処理材である。
また請求項2の発明は、表面に厚さ=1〜200nmで、かつ最表面から酸化皮膜/アルミ界面までの深さ方向での最大濃度がMg:5mass%以下、H:10mass%以下、かつ最表面のC濃度が50mass%以下のAlおよびOを主成分とする酸化皮膜を設けたことを特徴とする水性塗料の塗膜密着性、耐食性および耐ハジキ性に優れた缶蓋用アルミニウム下地処理材である。
さらに請求項3の発明は、請求項1または2のアルミニウム下地処理材の表面に、エポキシ、ポリエステル、塩化ビニルの少なくとも1種を含む樹脂皮膜を設けたことを特徴とする塗膜密着性および耐食性に優れた缶蓋用アルミニウム塗装材である。
また請求項4の発明は、アルミニウム材に対し、エッチング量が50〜200mg/m2のアルカリ脱脂を行った後、pHが4.0以下かつAlイオン濃度、Mgイオン濃度がそれぞれ1mass%以下の酸で酸洗浄を行うことを特徴とする請求項1のアルミニウム下地処理材の製造方法である。
また請求項5の発明は、アルミニウム材に対し、エッチング量が50〜200mg/m2かつ脱脂浴の油分が3mass%以下のアルカリ脱脂を行った後、pHが4.0以下かつAlイオン濃度,Mgイオン濃度がそれぞれ1mass%以下,油分が3mass%以下の酸洗浴で酸洗浄を行うことを特徴とする請求項2のアルミニウム下地処理材の製造方法である。
【0009】
【発明の実施の形態】
缶用塗装材の母材には、機械的強度、加工性を満足させるために2〜5mass%程度のMgを添加したアルミニウム合金(JIS−5021、5052、5082、5182等)が使われており、これらの材料は、加熱−圧延時にアルミニウム材マトリクス中のMgが表面に偏析濃化することが知られている。そして従来、その酸化皮膜構造は、最表面にMg酸化物層があり、その下にアルミニウム酸化物層があるという2層構造モデルで示されていた。そして、C(炭素)の分布状態に関する考察はほとんどなされてこなかった。
発明者らはGDS(グロー放電発光スペクトル)、オージェといった解析機器を用い、酸化皮膜の深さ方向の元素分布、いわゆるデプスプロファイルを詳細に調査した。その結果、各元素は酸化皮膜全体に均一に存在するのではなく、また明確な二層を形成しているのでもなく、各元素ごとの濃度分布が異なることを確認した。
なお、測定対象とした元素は、H,C,O,Mg,Al,Mn,Si,Fe,Zn,CrおよびZrであり、以後、各元素のmass%は、この11元素を母集団として議論するが、これらはアルミニウム材表面のほとんど全てを網羅していると考えられるため、議論の一般性を何ら損なうものではない。また、その深さ方向の測定精度は1nmの精度が十分に保証されるものである。
【0010】
Mgは酸化皮膜全体に均一に存在するわけではなく、また従来の2層構造モデルで示されるような明確な層を形成しておらず、最表面よりやや深い部位が最も濃化した濃度勾配を有して分布している。
この時、最表面〜酸化皮膜/アルミ界面までの深さ方向でのMgの最大濃度が5mass%以下となるよう調製した酸化皮膜は、缶用塗料の塗膜とアルミニウム材の塗膜密着性、特に、板厚減少を伴う強加工後の塗膜密着性が十分高いのに対し、最大濃度が5mass%を超えていると、加工後の塗膜密着性が著しく低下することを見出した。
その理由として、Mg化合物は純粋なアルミ酸化膜との親和性に乏しく、Mg化合物/アルミ酸化膜の界面から塗膜剥離しやすいためと考えられる。また、Mg化合物は水への溶解度が高いので、多量に存在すると耐食性をも低下させる。そしてそれらの悪影響は、深さ方向でのMgの最大濃度が5mass%を超えた時に顕著に現れる。
【0011】
また、主に水酸化物に由来するH(水素)も、Mgと同様に深さ方向に傾斜構造を有していた。そして、最表面〜酸化皮膜/アルミ界面までの深さ方向での最大濃度が10mass%以下となるよう調製した時、塗料の塗膜とアルミニウム材の加工後の塗膜密着性が十分高いのに対し、最大濃度が10mass%を超えていると、加工後の塗膜密着性が低下することを見出した。
その理由として、Hを含む化合物(水酸化Al,水酸化Mg,他)はもろいので、缶蓋のような強加工を行うと、Hを含む化合物を起点にして酸化皮膜が破壊されるためと考えられる。そしてその悪影響は、Hの最大濃度が10mass%を超えた時に顕著に現れる。
なお、上記のMgとHの効果はどちらも大きいので、その最大濃度は同時に規定されるべきであり、どちらか片方を規定しただけでは十分な塗膜密着性を発揮することはできない。
【0012】
これらに加え、有機物に由来するCの検討を行った。発明者らの発見によれば、上記の酸化皮膜におけるCは、例外なく皮膜最表面において最大値を示したのであるが、このC濃度が50mass%以下であれば、水性塗料に対し良好な耐ハジキ性および塗膜密着性が発揮される。一方、皮膜最表面のC濃度が50mass%を超えると、表面有機物が水性塗料をはじいてしまったり、仮に塗布できたとしても塗膜密着性を急激に低下させてしまう。
これは、MgおよびHを規定した酸化皮膜の好影響と、表面残存有機物の悪影響が相殺し合う領域が、C濃度に換算して50mass%であるためと考えられる。
【0013】
以上のように、MgおよびH濃度をそれぞれ規定した酸化皮膜をアルミニウム材表面に形成することにより、CrやZrといった重金属を含む下地処理皮膜を付与しなくとも、優れた塗膜密着性および耐食性が得られる。
また、水性塗料等の耐ハジキ性が要求される場合は、さらにC濃度を規制することにより良好な性能が得られる。
【0014】
なお、この酸化皮膜全体の厚みは1〜200nmが良い。1nm未満では酸化皮膜が少量のため、むき出しのアルミニウム表面が出現するなどで、塗膜密着性および耐食性が十分に発揮されない。一方、200nmを超えると、酸化皮膜が多量のためもろくなり、コイル巻取りなどの材料変形や蓋加工などの強い加工に耐えられず、酸化皮膜自身の微小なひび割れ(マイクロクラック)を引き起こし、やはり塗膜密着性が低下する。
【0015】
これらの発明の範囲を図示すると、図1のとおりである。
【0016】
ところで、請求項1を満たす酸化皮膜を得るには、一例として、エッチング量が50〜200mg/m2のアルカリ脱脂を行った後、pHが4.0以下かつAl,Mgイオン濃度がそれぞれ1mass%以下の酸(コスト面から希硫酸が使いやすい)にて酸洗浄を行う方法を挙げることができる。
アルカリ脱脂によるエッチング量が50mg/m2では均質な酸化皮膜が形成されず、200mg/m2を超えるとアルミニウム板厚の精度に悪影響を及ぼす。また、酸洗がMgの低減に寄与することは、主に自動車用アルミニウム材の分野において公知であるが、pHが4.0を超えるとその効果が半減する。さらに本発明の特徴である酸化皮膜中のMgおよびH濃度の規定にあたって、酸洗浴中のAlイオン濃度が1mass%を超えると表面に水酸化Al等が残存するのでHが、Mgイオン濃度が1mass%を超えると表面にMg化合物が析出するのでMgが、それぞれ酸化皮膜中に濃縮するので好ましくない。
【0017】
加えて、請求項2を満足させるためには、さらにアルカリ脱脂浴および酸洗浴の油分を3mass%以下に制御すればよい。これは、いずれの浴の油分も表面に残存しやすく、酸化皮膜最表面のCに影響を及ぼすためであり、油分が3mass%を超えると、Cが急激に増加するため好ましくない。
【0018】
もちろん、これ以外の方法で得られた酸化皮膜でも、請求項1または2さえ満たしていれば、本発明の好ましい効果を享受できるのは当然である。
この酸化皮膜の上に、エポキシ、ポリエステル、塩ビの少なくとも1種を含む樹脂皮膜を上塗りすると、その優れた塗膜密着性により高い耐食性を有し、さらに塗装ハジキによる品質不良を低減させた飲料缶または食缶用のアルミニウム蓋材を低コストで得ることができる。
【0019】
【実施例】
以下、実験例に基づいて、本発明の好適な実施の形態を具体的に説明する。
表1に示した各合金を常法によりアルカリ脱脂(エッチング量=約100mg/m2)した後、表1に示す成分からなる50℃の1%硫酸酸洗浴に5秒間浸漬し、常温の純水にて5秒間洗浄し、表1に示す乾燥条件で乾燥させ、直ちに塗料を塗布・焼付した。酸洗浴は操業状態を再現するため、1%硫酸にAl−Mg系アルミニウム板を多数回浸漬して浴中の各イオン濃度を調整し、また圧延油を添加して油分の調整した。
なお、従来例は現在広く用いられているリン酸クロメート処理の例で、アルカリ脱脂した後に常法によりリン酸クロメート処理(Cr付着量=20mg/m2)したものである。
また塗料は、エポキシ樹脂を主成分とする水性塗料を塗布量=7g/m2、乾燥温度250℃で塗布・焼付[水性]、または塩化ビニル樹脂を主成分とする溶剤塗料を塗布量=7g/m2、乾燥温度260℃で塗布・焼付[塩ビ]した。
また、塗装前の表面をGDSで測定した結果を表2に示す。
【0020】
【表1】

Figure 0003850253
【0021】
【表2】
Figure 0003850253
【0022】
これらのサンプルに対し、以下のような評価試験を実施した。
[塗料ハジキ] 塗料焼付後、塗料ハジキに由来する塗装ヌケの個数を計数した。
[塗装まま密着性試験] 試験片に対し、JIS−K5400に準拠した1mm角碁盤目試験を行った。
[レトルト密着性試験] 加圧滅菌装置により、試験片を水道水中にて125℃×30分保持した後、JIS−K5400に準拠した1mm角碁盤目試験を行った。
[30%圧延密着性試験] 圧延機により、30%の板厚減少となるまで圧延加工した後、JIS−K5400に準拠した1mm角碁盤目試験を行った。
[モデルジュース耐食性試験] 試験片に×型の切り込み(各辺の長さ40mm)を入れ、1.0mass%クエン酸一水和物+0.5mass%塩化ナトリウムの水溶液に70℃×72時間浸漬し、腐食の発生度合いを評価した。(◎:腐食なし,○:切り込みの一部に1mm以下の腐食,△:切り込みの一部に1〜2mmの腐食,△×:切り込み全面に1〜2mmの腐食,×:切り込み全面に2mm以上の腐食)
【0023】
【表3】
Figure 0003850253
【0024】
表3から明らかなように、本発明条件を満足する発明例1は塗料のハジキがなく耐ハジキ性に優れ、また塗装後だけでなくレトルト処理を施しても圧延加工を施しても塗膜の剥離が皆無であり優れた塗膜密着性を示すとともに耐食性でも従来のクロメート処理材と同等以上の良好な性能を示しており、各評価試験とも優秀な結果となっている。
また、発明例2は発明例1の合金を代えたもの、発明例3は洗浄後の乾燥温度を低くして、常温の強風にて3秒間行ったもの、発明例4は洗浄後の乾燥温度を高くして、350℃の熱風で1分間乾燥させたものであるが、これらの板表面は表2にしめすように本発明条件を満たすもので、いずれも優秀な評価結果となっている。
これに対して、比較例1はアルカリ脱脂後に酸洗を行わずに、常温の純水にて5秒間洗浄したもの、比較例2はAl%,Mg%が本願発明の範囲を超えた酸洗浴を用いたもの、比較例3は洗浄後の乾燥を350℃の熱風で60分間の高温長時間条件で乾燥させたものであるが、これらは請求項1を満たさず、いずれも塗装したままでは剥離は無いものの、レトルト処理を行ったり、加工を施した場合には剥離が生じており、塗膜密着性および耐食性が劣る結果となっている。
また、発明例5は酸洗浴に圧延油1mass%を追加して油分の多い浴を用いたもの、発明例6は酸洗浴に圧延油5mass%を追加して、油分のさらに高い浴を用いたもの、比較例4は乾燥までは発明例6と同じ条件だが、塩ビ系塗料の代わりに水性塗料を用いたものである。発明例5は請求項2の条件を満たし、水性塗料でも良好な結果となっているが、発明例6および比較例4は同じ酸化皮膜であるが、塩ビ系塗料では良好な結果となるが請求項2の条件を満たさないため水性塗料に対してはやや劣る結果となっている。従って水性塗料を用いる場合には請求項2の条件を満たすようにすると良い。
なお、従来例は現在広く用いられているリン酸クロメート処理の例で、アルカリ脱脂した後に常法によりリン酸クロメート処理(Cr付着量=20mg/m2)し、その上にエポキシ樹脂を主成分とする水性塗料を塗布・焼付したものである。
発明例1〜6は30%圧延密着性試験において従来例を上回り、本発明の効果の高さが証明された。また、発明例1〜6は当然Crを使用しておらず、環境破壊や健康被害の観点からも優位性は明確である。
【0025】
【発明の効果】
以上のように、本発明によれば従来行われてきたクロメート処理を行う必要がなく、現行の化成クロメートと同等以上の塗膜密着性、耐食性および耐ハジキ性を持ち、Cr等の有害重金属を含まない飲料缶・食缶用のアルミニウム蓋材を提供することができる。
【図面の簡単な説明】
【図1】本発明の元素の分布を示す模式図である。
【符号の説明】
Mg マグネシウム濃度
H 水素濃度
C 炭素濃度[0001]
[Technical field to which the invention belongs]
The present invention relates to an aluminum coating surface treatment material for can lids of beverage cans and food cans and an aluminum coating material for can lids. In particular, the present invention relates to an aluminum coating material for a can lid in which a resin film is coated without performing a chemical conversion base treatment such as a chromate film or a zirconium film.
[0002]
[Prior art]
Aluminum materials are lightweight, have appropriate mechanical properties, and have excellent characteristics such as aesthetics, moldability, and corrosion resistance, and are therefore widely used in various containers. For example, food containers made of aluminum or the like are molded by a method of drawing after resin coating using the excellent moldability of aluminum.
In that case, in order to improve the adhesion between the aluminum surface and the resin coating even after being subjected to molding, it is generally applied in advance to the aluminum surface with a base film having a large effect of improving adhesion. Has been done.
For this reason, conventionally, “chromate treatment” in which an aluminum material is treated with a chemical conversion treatment liquid containing phosphoric acid, chromic acid and hydrofluoric acid as main components has been performed. For example, Japanese Patent Application Laid-Open No. 3-177580 proposes a resin coating material provided with a phosphate chromate film layer having a chromium adhesion amount of 7 to 25 mg / m 2 as a base film. Such chromate treatment has been widely used because manufacturing process management is easy, cost is low, and performance is stable.
[0003]
[Problems to be solved by the invention]
However, in recent years, interest in environmental pollution, environmental destruction, health safety, energy supply and demand, etc. has increased rapidly.
It is said that no harmful hexavalent chromium or the like is eluted from the phosphate chromate film itself, and the phosphate chromate film itself does not cause environmental pollution or health damage. However, in the manufacturing process, chemical conversion liquid containing harmful hexavalent chromium such as chromic anhydride is used, and wastewater containing hexavalent chromium generated in the chemical conversion liquid waste liquid and rinsing process is treated and rendered harmless. There must be. Such treatment requires a great deal of manpower and energy, expensive waste liquid treatment equipment, and the like, and thus the cost of the product cannot be avoided. In recent years, regulations are increasingly tightened, and the cost of waste liquid treatment tends to be higher than before.
[0004]
In order to overcome these problems, a so-called non-chromate coating called a non-chromate film is proposed, in which a chemical conversion treatment solution that does not contain harmful metal ions such as chromium is applied or sprayed to the surface of the aluminum material. Has been.
Japanese Patent Laid-Open No. 10-317162 discloses a method of treating with a surface treatment bath containing phosphoric acid or a salt thereof, zirconium salt, fluoride, phosphorous acid or a salt thereof, nitric acid or a salt thereof, and Japanese Patent Publication No. 7-84665. A method of forming an undercoat film containing zirconium after washing with an alkaline degreasing agent containing a phosphate ion, an aluminum chelating agent and a surfactant and then treating with a chemical conversion treatment agent containing zirconium ion, phosphate ion and fluorine ion Alternatively, a method of forming a base treatment film containing zirconium and vanadium by treatment with a chemical conversion treatment solution containing vanadium ions, JP-A-7-310189 contains phosphate ions, zirconium compounds, fluorides and oxidizing agents. A method of processing with a processing liquid is disclosed.
Since these treatment liquids do not contain harmful hexavalent chromium, problems such as environmental pollution and health damage are significantly reduced. However, these coatings still have problems in corrosion resistance under severe conditions such as coating adhesion after molding and retort treatment, and have not reached the performance level of phosphate chromate coatings.
[0005]
In order to solve such performance problems, Japanese Patent Application Laid-Open No. 7-33276 discloses a method of treating with a treatment liquid containing phosphate ions, zirconium compound or titanium compound, fluoride and water-soluble polyamide. No.-115098 discloses a so-called organic-inorganic composite type chemical conversion treatment agent such as a method of providing a surface coating layer comprising phosphate ions, condensed phosphate ions and a phenolic water-soluble polymer. A method of providing an organic film type ground treatment layer such as providing a coating layer made of naphthol or bisphenol-formaldehyde resin is disclosed.
According to these, there is a case where improvement in performance such as adhesion after processing is enhanced and corrosion resistance against an acidic liquid is improved. However, since the base treatment film contains a resin, depending on the type of resin applied on the base treatment film, the compatibility may be poor, causing problems such as repellency during coating or failure to achieve the prescribed performance. Sometimes. In addition, it is necessary to separate the metal component from the organic matter in advance during waste liquid treatment, and the separated organic matter must be separately treated by BOD treatment, etc., which increases the number of processes and waste liquid treatment costs. To do.
JP-A-4-231120 proposes a base treatment material provided with a phosphoric acid or sulfuric acid anodized film having a thickness of 100 to 2000 mm. However, since this method requires electric power, the initial cost and running cost of the equipment are high, so it cannot meet the low-cost requirements for products.
[0006]
By the way, organic matter such as rolling oil adheres to the aluminum plate surface. Therefore, when performing the above-mentioned various base treatments, as a pre-treatment, an operation of removing the dirt on the surface by adding a degreasing / etching step with an alkaline liquid and further pickling is performed. If this pretreatment is insufficient or inappropriate, the base treatment is performed with a large amount of organic material layer remaining on the surface of the aluminum plate.
In such a base, the organic layer sometimes concentrates on the outermost surface of the base, and therefore, when applying a water-based paint that has been rapidly spreading in recent years, there is a high risk of causing repelling and poor adhesion during coating.
From these facts, it has been known that when using a water-based paint, it is better to reduce the surface organic matter as much as possible. However, on the other hand, since it is impossible in terms of cost to completely remove the organic layer on an industrial scale, it is necessary to find a practical compromise of the remaining amount of organic matter.
[0007]
For these reasons, there is a strong demand for aluminum cans for beverage cans or food cans that do not contain harmful heavy metals such as Cr, have excellent paint film adhesion, corrosion resistance, and repellency, and can be manufactured at low cost. It was done.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have continued to study a method of directly coating an aluminum oxide film without performing a chemical conversion base treatment such as a chromate film or a zirconium film. As a result, it has been found that an excellent material can be provided by accurately controlling the thickness and components of the aluminum oxide film and managing its outermost surface without necessarily providing a chemical conversion film containing heavy metals.
That is, mainly Al and O having a thickness of 1 to 200 nm on the surface and a maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface are 5 mass% or less for Mg and 10 mass% or less for H. It has been found that an excellent surface treatment material can be obtained by providing an oxide film as a component.
The invention of claim 2 further defines the carbon concentration on the outermost surface.
In the invention of claim 3, a resin film is provided on these.
Claims 4 and 5 are manufacturing methods according to claims 1 and 2.
More specifically, the invention of claim 1 has a thickness of 1 to 200 nm on the surface, and the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is Mg: 5 mass% or less, H: 10 mass. It is an aluminum base treatment material for can lids excellent in coating film adhesion and corrosion resistance, characterized by providing an oxide film containing Al and O as a main component in an amount of 1% or less.
In the invention of claim 2, the thickness is 1 to 200 nm on the surface, and the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is Mg: 5 mass% or less, H: 10 mass% or less, and Aluminum base treatment for can lids with excellent coating adhesion, corrosion resistance and repellency resistance of water-based paints, characterized by providing an oxide film mainly composed of Al and O having a C concentration of 50 mass% or less on the outermost surface It is a material.
Further, the invention according to claim 3 is characterized in that a coating film having at least one of epoxy, polyester, and vinyl chloride is provided on the surface of the aluminum base treatment material according to claim 1 or 2, and adhesion and corrosion resistance are provided. It is an excellent aluminum coating material for can lids.
According to the invention of claim 4, after alkaline degreasing with an etching amount of 50 to 200 mg / m 2 is performed on an aluminum material, the pH is 4.0 or less, and the Al ion concentration and the Mg ion concentration are each 1 mass% or less. 2. The method for producing an aluminum base treatment material according to claim 1, wherein acid cleaning is performed with an acid.
Further, the invention of claim 5 is that the aluminum material is subjected to alkali degreasing with an etching amount of 50 to 200 mg / m 2 and an oil content of the degreasing bath of 3 mass% or less, and then the pH is 4.0 or less and the Al ion concentration, The method for producing an aluminum base treatment material according to claim 2, wherein the acid cleaning is performed in a pickling bath having an Mg ion concentration of 1 mass% or less and an oil content of 3 mass% or less.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As a base material for can coating materials, aluminum alloys (JIS-5021, 5052, 5082, 5182, etc.) added with Mg of about 2-5 mass% are used to satisfy mechanical strength and workability. These materials are known to cause segregation and concentration of Mg in the aluminum matrix on the surface during heating and rolling. Conventionally, the oxide film structure has been shown by a two-layer structure model in which an Mg oxide layer is present on the outermost surface and an aluminum oxide layer is present below the Mg oxide layer. And the consideration regarding the distribution state of C (carbon) has hardly been made.
The inventors investigated in detail the element distribution in the depth direction of the oxide film, so-called depth profile, using analytical equipment such as GDS (glow discharge emission spectrum) and Auger. As a result, it was confirmed that each element does not exist uniformly in the entire oxide film and does not form a clear two-layer, and the concentration distribution for each element is different.
The elements to be measured are H, C, O, Mg, Al, Mn, Si, Fe, Zn, Cr, and Zr. Hereinafter, the mass% of each element will be discussed based on the 11 elements as a population. However, these are considered to cover almost all the surface of the aluminum material, so that the generality of the discussion is not impaired. Further, the measurement accuracy in the depth direction is sufficiently guaranteed to be 1 nm.
[0010]
Mg does not exist uniformly throughout the oxide film, and does not form a clear layer as shown in the conventional two-layer structure model. Have distributed.
At this time, the oxide film prepared so that the maximum concentration of Mg in the depth direction from the outermost surface to the oxide film / aluminum interface is 5 mass% or less is the coating film adhesion of the paint for cans and the coating film of the aluminum material, In particular, it was found that the coating film adhesion after strong processing accompanied by a reduction in the plate thickness is sufficiently high, whereas if the maximum concentration exceeds 5 mass%, the coating film adhesion after processing is significantly reduced.
The reason is considered that the Mg compound has poor affinity with a pure aluminum oxide film, and the coating film is easily peeled off from the interface of the Mg compound / aluminum oxide film. Moreover, since the Mg compound has high solubility in water, if it is present in a large amount, the corrosion resistance is also lowered. These adverse effects are prominent when the maximum Mg concentration in the depth direction exceeds 5 mass%.
[0011]
Moreover, H (hydrogen) mainly derived from hydroxide also has an inclined structure in the depth direction, similar to Mg. And when the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is adjusted to 10 mass% or less, the coating film of the paint and the coating film after processing of the aluminum material are sufficiently high. On the other hand, when the maximum density exceeded 10 mass%, it discovered that the coating-film adhesiveness after a process fell.
The reason for this is that compounds containing H (Al hydroxide, Mg hydroxide, etc.) are fragile, and if the strong process such as can lid is performed, the oxide film is destroyed starting from the compound containing H. Conceivable. The adverse effect is prominent when the maximum concentration of H exceeds 10 mass%.
In addition, since the effect of said Mg and H is large both, the maximum density | concentration should be prescribed | regulated simultaneously, and sufficient coating-film adhesiveness cannot be exhibited only by specifying either one.
[0012]
In addition to these, C derived from organic substances was examined. According to the discovery of the inventors, C in the above oxide film showed the maximum value on the outermost surface of the film without exception, but if this C concentration is 50 mass% or less, it has good resistance to water-based paints. The repellency and coating film adhesion are exhibited. On the other hand, when the C concentration on the outermost surface of the film exceeds 50 mass%, the surface organic matter repels the water-based paint, or even if it can be applied, the coating film adhesion is drastically reduced.
This is presumably because the region where the positive effect of the oxide film defining Mg and H and the adverse effect of the remaining organic matter on the surface cancel each other is 50 mass% in terms of C concentration.
[0013]
As described above, by forming an oxide film that defines Mg and H concentrations on the surface of an aluminum material, excellent coating film adhesion and corrosion resistance can be obtained without providing a ground treatment film containing heavy metals such as Cr and Zr. can get.
Further, when repellency resistance such as water-based paint is required, good performance can be obtained by further regulating the C concentration.
[0014]
The total thickness of the oxide film is preferably 1 to 200 nm. If the thickness is less than 1 nm, the amount of the oxide film is small, so that a bare aluminum surface appears and the coating film adhesion and corrosion resistance are not sufficiently exhibited. On the other hand, when the thickness exceeds 200 nm, the oxide film becomes fragile due to its large amount, and cannot withstand strong deformation such as material deformation such as coil winding and lid processing, causing micro cracks in the oxide film itself. Coating film adhesion is reduced.
[0015]
The scope of these inventions is illustrated in FIG.
[0016]
By the way, in order to obtain an oxide film satisfying claim 1, as an example, after performing alkali degreasing with an etching amount of 50 to 200 mg / m 2 , the pH is 4.0 or less, and the Al and Mg ion concentrations are 1 mass%, respectively. Examples of the acid cleaning method include the following acids (dilute sulfuric acid is easy to use from the viewpoint of cost).
When the etching amount by alkali degreasing is 50 mg / m 2 , a uniform oxide film is not formed, and when it exceeds 200 mg / m 2 , the accuracy of the aluminum plate thickness is adversely affected. Further, it is known that pickling contributes to the reduction of Mg mainly in the field of aluminum materials for automobiles, but when the pH exceeds 4.0, the effect is halved. Further, in defining the Mg and H concentrations in the oxide film, which is a feature of the present invention, if Al ion concentration in the pickling bath exceeds 1 mass%, Al hydroxide and the like remain on the surface, so that H and Mg ion concentration are 1 mass. If it exceeds 50%, an Mg compound is deposited on the surface, so Mg is concentrated in the oxide film.
[0017]
In addition, in order to satisfy claim 2, the oil content of the alkaline degreasing bath and the pickling bath may be further controlled to 3 mass% or less. This is because the oil content of any bath tends to remain on the surface and affects C on the outermost surface of the oxide film. If the oil content exceeds 3 mass%, C increases rapidly, which is not preferable.
[0018]
Of course, even if an oxide film obtained by a method other than this is satisfied with claim 1 or 2, it is natural that the preferred effect of the present invention can be enjoyed.
When a resin film containing at least one of epoxy, polyester, and vinyl chloride is overcoated on this oxide film, it has high corrosion resistance due to its excellent coating film adhesion, and further reduced quality defects due to paint repelling Or the aluminum lid | cover material for food cans can be obtained at low cost.
[0019]
【Example】
Hereinafter, preferred embodiments of the present invention will be specifically described based on experimental examples.
Each alloy shown in Table 1 was degreased by alkali (etching amount = about 100 mg / m 2 ) by a conventional method, and then immersed in a 50% 1% sulfuric acid pickling bath composed of the components shown in Table 1 for 5 seconds. It was washed with water for 5 seconds, dried under the drying conditions shown in Table 1, and immediately applied and baked with paint. In order to reproduce the operating state of the pickling bath, the concentration of each ion in the bath was adjusted by immersing an Al—Mg-based aluminum plate in 1% sulfuric acid many times, and the oil content was adjusted by adding rolling oil.
The conventional example is a phosphoric acid chromate treatment that is widely used at present, and is an alkali degreased and then phosphoric acid chromate treatment (Cr adhesion amount = 20 mg / m 2 ) by a conventional method.
In addition, as for the paint, an aqueous paint mainly composed of epoxy resin is applied amount = 7 g / m 2 , applied and baked at a drying temperature of 250 ° C. [aqueous], or a solvent paint mainly composed of vinyl chloride resin is applied amount = 7 g. / M 2 , coating and baking [PVC] at a drying temperature of 260 ° C.
Table 2 shows the results of measuring the surface before coating with GDS.
[0020]
[Table 1]
Figure 0003850253
[0021]
[Table 2]
Figure 0003850253
[0022]
The following evaluation tests were performed on these samples.
[Paint repellency] After baking the paint, the number of coating spots derived from the paint repellency was counted.
[As-paint adhesion test] The test piece was subjected to a 1 mm square cross cut test based on JIS-K5400.
[Retort Adhesion Test] A test piece was held in tap water at 125 ° C. for 30 minutes with a pressure sterilization apparatus, and then a 1 mm square cross-cut test based on JIS-K5400 was performed.
[30% Rolling Adhesion Test] After rolling with a rolling mill until the plate thickness was reduced by 30%, a 1 mm square grid test in accordance with JIS-K5400 was performed.
[Model Juice Corrosion Resistance Test] X-shaped cuts (length of each side: 40 mm) were put into the test piece, and immersed in an aqueous solution of 1.0 mass% citric acid monohydrate +0.5 mass% sodium chloride at 70 ° C. for 72 hours. The degree of occurrence of corrosion was evaluated. (◎: No corrosion, ○: Corrosion of 1 mm or less in part of the cut, △: Corrosion of 1 to 2 mm in part of the cut, Δ ×: Corrosion of 1 to 2 mm in the entire cut, ×: 2 mm or more in the entire cut Corrosion)
[0023]
[Table 3]
Figure 0003850253
[0024]
As is apparent from Table 3, Invention Example 1 which satisfies the conditions of the present invention has no repellency of paint and excellent repellency, and after coating as well as retort treatment or rolling, There is no peeling and excellent coating film adhesion, and corrosion resistance is as good as or better than that of conventional chromate treatment materials, and each evaluation test is excellent.
Inventive Example 2 was obtained by replacing the alloy of Inventive Example 1, Inventive Example 3 was carried out for 3 seconds with a strong wind at room temperature after lowering the drying temperature after washing, and Inventive Example 4 was the drying temperature after washing. The plate surface was dried for 1 minute with hot air at 350 ° C., but these plate surfaces satisfy the conditions of the present invention as shown in Table 2, and both have excellent evaluation results.
In contrast, Comparative Example 1 was washed with pure water at room temperature for 5 seconds without performing acid pickling after alkaline degreasing, and Comparative Example 2 was a pickling bath in which Al% and Mg% exceeded the scope of the present invention. In Comparative Example 3, drying after washing was performed with hot air at 350 ° C. for 60 minutes at a high temperature for a long time, but these did not satisfy claim 1 and none of them were coated. Although there is no peeling, peeling occurs when retorting or processing is performed, resulting in poor coating adhesion and corrosion resistance.
Inventive Example 5 uses a bath containing a large amount of oil by adding 1% by mass of rolling oil to the pickling bath, and Inventive Example 6 uses a bath having a higher oil content by adding 5% by mass of rolling oil to the pickling bath. Comparative Example 4 was the same as Invention Example 6 until drying, but a water-based paint was used instead of the vinyl chloride paint. Invention Example 5 satisfies the conditions of Claim 2 and gives good results even with water-based paints, while Invention Example 6 and Comparative Example 4 have the same oxide film, but PVC paints give good results. Since the condition of Item 2 is not satisfied, the result is slightly inferior to the water-based paint. Therefore, when the water-based paint is used, the condition of claim 2 should be satisfied.
The conventional example is a phosphoric acid chromate treatment that is widely used at present. After alkaline degreasing, phosphoric acid chromate treatment (Cr adhesion amount = 20 mg / m 2 ) is carried out by an ordinary method, and an epoxy resin is a main component on the chromate treatment. The water-based paint is applied and baked.
Inventive Examples 1 to 6 exceeded the conventional example in the 30% rolling adhesion test, and the high effect of the present invention was proved. Inventive Examples 1 to 6 naturally do not use Cr, and the advantages are clear from the viewpoint of environmental destruction and health damage.
[0025]
【The invention's effect】
As described above, according to the present invention, it is not necessary to carry out the conventional chromate treatment, and it has coating adhesion, corrosion resistance, and repellency resistance equivalent to or better than the current chemical chromate, and is capable of removing harmful heavy metals such as Cr. An aluminum lid for beverage cans / food cans can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the distribution of elements of the present invention.
[Explanation of symbols]
Mg Magnesium concentration H Hydrogen concentration C Carbon concentration

Claims (5)

表面に厚さ=1〜200nmで、かつ最表面から酸化皮膜/アルミ界面までの深さ方向での最大濃度がMg:5mass%以下、H:10mass%以下のAlおよびOを主成分とする酸化皮膜を設けたことを特徴とする塗膜密着性および耐食性に優れた缶蓋用アルミニウム下地処理材。Oxidation with Al and O as main components with thickness = 1 to 200 nm on the surface and maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is Mg: 5 mass% or less, H: 10 mass% or less An aluminum substrate treatment material for can lids having excellent coating film adhesion and corrosion resistance, characterized by providing a coating. 表面に厚さ=1〜200nmで、かつ最表面から酸化皮膜/アルミ界面までの深さ方向での最大濃度がMg:5mass%以下、H:10mass%以下、かつ最表面のC濃度が50mass%以下のAlおよびOを主成分とする酸化皮膜を設けたことを特徴とする水性塗料の塗膜密着性、耐食性および耐ハジキ性に優れた缶蓋用アルミニウム下地処理材。The thickness is 1 to 200 nm on the surface, and the maximum concentration in the depth direction from the outermost surface to the oxide film / aluminum interface is Mg: 5 mass% or less, H: 10 mass% or less, and the C concentration on the outermost surface is 50 mass%. An aluminum base treatment material for can lids having excellent coating film adhesion, corrosion resistance, and repellency resistance of a water-based paint, characterized by providing an oxide film containing Al and O as main components. 請求項1または2のアルミニウム下地処理材の表面に、エポキシ、ポリエステル、塩化ビニルの少なくとも1種を含む樹脂皮膜を設けたことを特徴とする塗膜密着性および耐食性に優れた缶蓋用アルミニウム塗装材。An aluminum coating for can lids having excellent coating film adhesion and corrosion resistance, characterized in that a resin film containing at least one of epoxy, polyester and vinyl chloride is provided on the surface of the aluminum base treatment material of claim 1 or 2. Wood. アルミニウム材に対し、エッチング量が50〜200mg/m2のアルカリ脱脂を行った後、pHが4.0以下かつAlイオン濃度、Mgイオン濃度がそれぞれ1mass%以下の酸で酸洗浄を行うことを特徴とする請求項1のアルミニウム下地処理材の製造方法。After performing alkaline degreasing with an etching amount of 50 to 200 mg / m 2 on an aluminum material, acid cleaning is performed with an acid having a pH of 4.0 or less and an Al ion concentration and an Mg ion concentration of 1 mass% or less, respectively. The method for producing an aluminum base treatment material according to claim 1. アルミニウム材に対し、エッチング量が50〜200mg/m2かつ脱脂浴の油分が3mass%以下のアルカリ脱脂を行った後、pHが4.0以下かつAlイオン濃度,Mgイオン濃度がそれぞれ1mass%以下,油分が3mass%以下の酸洗浴で酸洗浄を行うことを特徴とする請求項2のアルミニウム下地処理材の製造方法。After performing alkaline degreasing with an etching amount of 50 to 200 mg / m 2 and an oil content of the degreasing bath of 3 mass% or less on the aluminum material, the pH is 4.0 or less and the Al ion concentration and the Mg ion concentration are 1 mass% or less respectively. The method for producing an aluminum base treatment material according to claim 2, wherein the acid cleaning is performed in a pickling bath having an oil content of 3 mass% or less.
JP2001316776A 2001-10-15 2001-10-15 Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance Expired - Fee Related JP3850253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316776A JP3850253B2 (en) 2001-10-15 2001-10-15 Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316776A JP3850253B2 (en) 2001-10-15 2001-10-15 Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2003119570A JP2003119570A (en) 2003-04-23
JP3850253B2 true JP3850253B2 (en) 2006-11-29

Family

ID=19134731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316776A Expired - Fee Related JP3850253B2 (en) 2001-10-15 2001-10-15 Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance

Country Status (1)

Country Link
JP (1) JP3850253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008201A (en) * 2004-06-28 2006-01-12 Furukawa Sky Kk Aluminum alloy material for beverage container excellent in resistance to blackening by boiling water
JP2008127625A (en) * 2006-11-21 2008-06-05 Furukawa Sky Kk Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200007A (en) * 2005-01-21 2006-08-03 Furukawa Sky Kk Aluminum alloy sheet for automobile body sheet having excellent water wettability after degreasing and adhesive property
JP5184173B2 (en) * 2008-03-27 2013-04-17 古河スカイ株式会社 Resin-coated aluminum material, resin-coated aluminum material, and production methods thereof
JP5580948B1 (en) 2013-09-27 2014-08-27 日本ペイント株式会社 Surface treatment method for aluminum cans
JP6773434B2 (en) * 2016-03-31 2020-10-21 富士フイルム株式会社 Metal foil, metal foil manufacturing method and current collector for power storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008201A (en) * 2004-06-28 2006-01-12 Furukawa Sky Kk Aluminum alloy material for beverage container excellent in resistance to blackening by boiling water
JP4500115B2 (en) * 2004-06-28 2010-07-14 古河スカイ株式会社 Aluminum alloy material for beverage containers with excellent black water resistance against boiling water
JP2008127625A (en) * 2006-11-21 2008-06-05 Furukawa Sky Kk Aluminum plate for forming cap having excellent resin adhesiveness after forming, and its manufacturing method

Also Published As

Publication number Publication date
JP2003119570A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
KR101431942B1 (en) Method for producing steel sheet for container
JP4886811B2 (en) Steel plate for containers excellent in organic film performance and method for producing the same
US6030710A (en) Copolymer primer for aluminum alloy food and beverage containers
EP1239976B1 (en) Copolymer primer for aluminum alloy food and beverage containers
JP4668063B2 (en) Resin-coated aluminum plate and method for producing the same
JP2001519482A5 (en)
JP3850253B2 (en) Aluminum substrate treatment material with excellent coating adhesion and corrosion resistance
KR20100102619A (en) Zirconium phosphating of metal components, in particular iron
JP2005325401A (en) Surface treatment method for zinc or zinc alloy coated steel
JP2004018992A (en) Nonchromium type aluminum underlayer treatment material having excellent coating film adhesion and acid elution resistance
EA008802B1 (en) Compositions and methods for darkening and imparting corrosion-resistant properties to zink or other active metals
JPH11501366A (en) Chromium-free treatment method to improve paint adhesion after thin layer anodic oxidation
KR20020011874A (en) Hydrophilicizing treatment for metal surface
JPH04231480A (en) Post-washing method of chemical conversion coating
JP3898039B2 (en) Aluminum material for resin film coating excellent in film adhesion and resin film coated aluminum material
JP2007203615A (en) Resin-coated aluminum sheet and its manufacturing method
JP5424555B2 (en) Method for forming corrosion-resistant film on zinc metal surface
JP3625502B2 (en) Method for manufacturing aluminum coating material
JP2004035988A (en) Non-chromium type aluminum substrate treatment material having excellent coating film adhesion
CN1392283A (en) Hot dipping aluminium and aluminium alloy inactivation process of plating
JP5184173B2 (en) Resin-coated aluminum material, resin-coated aluminum material, and production methods thereof
JP2008266663A (en) Aluminum material for laminate, resin-coated aluminum material, and manufacturing method of the sames
JPH04333576A (en) Production of surface-treated steel sheet having excellent adhesive property
Lampman Chemical Conversion Coatings
JP2008240045A (en) Method of manufacturing steel drum can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3850253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150908

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees