JP2003154390A - Method and apparatus for treating ammonia-containing sewage - Google Patents

Method and apparatus for treating ammonia-containing sewage

Info

Publication number
JP2003154390A
JP2003154390A JP2001357969A JP2001357969A JP2003154390A JP 2003154390 A JP2003154390 A JP 2003154390A JP 2001357969 A JP2001357969 A JP 2001357969A JP 2001357969 A JP2001357969 A JP 2001357969A JP 2003154390 A JP2003154390 A JP 2003154390A
Authority
JP
Japan
Prior art keywords
ammonia
tank
anaerobic
slurry
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001357969A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Toshihiro Tanaka
俊博 田中
Kiyomi Arakawa
清美 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001357969A priority Critical patent/JP2003154390A/en
Publication of JP2003154390A publication Critical patent/JP2003154390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for removing ammonia by effectively oxidizing it to nitrogen gas without performing complicated control. SOLUTION: In this method and apparatus for treating ammonia-containing sewage, ammonia-containing sewage is supplied to the anaerobic biological reaction tank in which fine particles having ammonia adsorption capacity are suspended to be stagnated under an anaerobic microorganism present condition while adsorbing ammonia and ammonia is biologically reacted with nitrous acid to be converted to the nitrogen gas. A part of the outflow slurry in the anaerobic tank is subjected to solid-liquid separation treatment and separated water is taken out as treated water while separated sludge and the remainder of the outflow slurry of the anaerobic tank are supplied to an aerobic tank to oxidize ammoniacal nitrogen to nitrite nitrogen while suspended and fluidized. The outflow slurry of the aerobic tank is returned to the anaerobic tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機性廃水のUA
SBなどのメタン発酵処理槽からの処理水、有機性汚泥
の嫌気性硝化脱離液、有機性汚泥の脱水分離水などのア
ンモニア性窒素を含有する汚水から、極めて省資源、省
エネルギー的にアンモニア性窒素を除去する方法及び装
置に関する。
TECHNICAL FIELD The present invention relates to an organic wastewater UA.
From wastewater containing ammonia nitrogen such as treated water from methane fermentation treatment tank such as SB, anaerobic nitrification desorption liquid of organic sludge, dehydrated separation water of organic sludge, etc., extremely resource-saving and energy-saving ammoniacal A method and apparatus for removing nitrogen.

【0002】[0002]

【従来の技術】従来、アンモニアを多量に含有し、有機
炭素(BOD)源をほとんど含まない工場廃水(製鉄工
場から排出される安水が代表例)、あるいは下水汚泥の
嫌気性硝化脱離液等を生物学的に脱窒素するには、先ず
原水を生物学的硝酸化槽に導いて、生物学的にアンモニ
アを硝酸性窒素に酸化した後、該処理水にメタノールな
どの有機炭素(BOD)源を、(BOD/窒素)濃度比
が約3以上になるように添加して、嫌気的な生物学的脱
窒素槽において脱窒素菌によって硝酸性窒素を窒素ガス
に還元する方法が、最も合理的とされ実施されてきた。
2. Description of the Related Art Conventionally, a factory wastewater containing a large amount of ammonia and containing almost no organic carbon (BOD) source (typically, is an anodized water discharged from a steelmaking plant), or an anaerobic nitrification desorbing solution of sewage sludge. In order to biologically denitrify water etc., first, raw water is introduced into a biological nitrification tank to biologically oxidize ammonia to nitrate nitrogen, and then the treated water is treated with organic carbon (BOD) such as methanol. ) Source is added so that the (BOD / nitrogen) concentration ratio is about 3 or more, and the method of reducing nitrate nitrogen to nitrogen gas by a denitrifying bacterium in an anaerobic biological denitrification tank is most preferable. It has been rational and has been implemented.

【0003】[0003]

【発明が解決しようとする課題】しかし、この従来技術
は、メタノールなどの有機炭素源を多量に添加しないと
生物学的脱窒素が進行しないので、ランニングコストが
高額であるという大きな問題点があった。また、水中に
ガスを吹き込んでストリップさせてアンモニアを気中に
放出させるアンモニアストリップ法は、装置が複雑で、
ストリップエネルギーが多く必要で実用的でなかった。
さらに、ゼオライト系鉱物のアンモニア吸着能を利用し
てアンモニアを除去する方法は、ゼオライト系鉱物のア
ンモニア吸着容量が小さく、アンモニアを飽和吸着した
ゼオライト系鉱物の再生、再生廃液の処分も面倒で、や
はり実用的でなかった。
However, this prior art has a big problem that the running cost is high because biological denitrification does not proceed unless a large amount of an organic carbon source such as methanol is added. It was In addition, the ammonia stripping method in which gas is blown into water and stripped to release ammonia into the air has a complicated device,
It requires a lot of strip energy and is not practical.
Furthermore, the method of removing ammonia by utilizing the ammonia adsorbing ability of the zeolite-based minerals has a small ammonia-adsorbing capacity of the zeolite-based minerals, and it is troublesome to regenerate the zeolite-based minerals saturatedly adsorbing ammonia and to dispose of the reclaimed waste liquid. It wasn't practical.

【0004】本発明は、このような従来の問題点を根本
的に解決可能な新技術を提供する。すなわち、生物学的
硝化脱窒素法における有機炭素源の添加が不要になり、
顕著な省資源効果が得られる新技術を提供するものであ
る。本発明は、従来公知の生物学的硝化窒素法が適用困
難な、(BOD/窒素)濃度比が3以下であるアンモニ
ア含有水の処理において、非常に好適である。
The present invention provides a new technique capable of fundamentally solving such a conventional problem. That is, it becomes unnecessary to add an organic carbon source in the biological nitrification denitrification method,
It is intended to provide a new technology that can achieve a remarkable resource saving effect. INDUSTRIAL APPLICABILITY The present invention is very suitable for treatment of ammonia-containing water having a (BOD / nitrogen) concentration ratio of 3 or less, which is difficult to apply the conventionally known biological nitrification method.

【0005】本出願人らは、先に特開平8−19218
5において、アンモニアが次式のような嫌気性微生物が
関与する反応によって、有機炭素源(言い換えるとBO
D成分である水素供与体)を必要とすることなく、窒素
ガスに酸化されることを見出している。 NH4 ++ NO2 - → N2+2H2O ・・・・・(1)
The applicants of the present invention previously disclosed in Japanese Patent Laid-Open No. 19218/1996.
In 5, the reaction of ammonia with an organic carbon source (in other words, BO
It has been found that it can be oxidized to nitrogen gas without requiring a hydrogen donor (D component). NH 4 + + NO 2 - → N 2 + 2H 2 O ····· (1)

【0006】また、オランダのデルフト工科大学のMi
ke S,Mらは、文献(Theanaerobic
oxidation of ammonium; FE
MS Microbiology Reviews 2
2(1999) pp421−437)において、同様
な知見を報告している。この反応を、彼らはANAMM
OX(ANaerobic AMMoniumOXid
ation)と名づけている。
[0006] Also, Mi of the Delft University of Technology in the Netherlands
ke S, M et al., in the literature (Theanaerobic
oxidation of ammonium; FE
MS Microbiology Reviews 2
2 (1999) pp421-437), the same findings are reported. This reaction, they are ANAMM
OX (ANAerobic AMMoniumOXid
ation).

【0007】ANAMMOX反応は、式(1)から判る
ように、アンモニアを嫌気性微生物によって酸化するた
めの酸化剤として亜硝酸が不可欠であるが、亜硝酸を供
給するために、亜硝酸ナトリウムなどの薬品を添加する
ことは省資源の目的に反する。したがって、ANAMM
OX反応を省資源的に進行させるためには、原水中のア
ンモニアを好気性微生物によって酸化して亜硝酸を生成
させる方法が最も合理的である。
In the ANAMMOX reaction, as can be seen from the formula (1), nitrite is indispensable as an oxidizing agent for oxidizing ammonia by anaerobic microorganisms, but in order to supply nitrite, sodium nitrite and the like are used. Adding chemicals defeats the purpose of resource saving. Therefore, ANAMM
The most rational method is to oxidize ammonia in raw water by aerobic microorganisms to produce nitrite in order to proceed the OX reaction in a resource-saving manner.

【0008】本発明の目的は、ゼオライトなどのアンモ
ニア吸着物質を巧みに利用することによって複雑な制御
を行うことなく、アンモニアをANNAMOX反応によ
って効果的に窒素ガスに酸化して除去する方法を提供す
ることである。
An object of the present invention is to provide a method for effectively oxidizing and removing ammonia into nitrogen gas by an ANNAMOX reaction without performing complicated control by skillfully utilizing an ammonia adsorbing substance such as zeolite. That is.

【0009】[0009]

【課題を解決するための手段】本発明は、下記の手段に
より前記の課題を解決した。 (1)アンモニア含有汚水を、アンモニア吸着能を有す
る微粒子の懸濁嫌気槽に供給し、アンモニアを吸着しつ
つ嫌気性微生物存在条件で滞留させ、アンモニアと亜硝
酸を生物学的に反応させて窒素ガスに転換せしめたの
ち、前記嫌気槽の流出スラリの一部を固液分離し、該分
離水を処理水として取り出すとともに、分離された汚泥
と前記嫌気槽の流出スラリの残部とを好気槽に供給し、
懸濁流動させながらアンモニア性窒素を生物学的に亜硝
酸性窒素に酸化し、該好気槽流出スラリを前記嫌気槽に
返流させることを特徴とするアンモニア含有汚水の処理
方法。 (2)前記アンモニア吸着性能を有する微粒子が、ゼオ
ライト微粒子であることを特徴とする前記(1)記載の
処理方法。
The present invention has solved the above-mentioned problems by the following means. (1) Ammonia-containing wastewater is supplied to a suspension anaerobic tank of fine particles having an ability to adsorb ammonia, and is allowed to stay in the presence of anaerobic microorganisms while adsorbing ammonia, whereby ammonia and nitrite are biologically reacted to produce nitrogen. After being converted to gas, a part of the outflow slurry of the anaerobic tank is subjected to solid-liquid separation, and the separated water is taken out as treated water, and the separated sludge and the rest of the outflow slurry of the anaerobic tank are aerobatic tanks. Supply to
A method for treating ammonia-containing wastewater, which comprises biologically oxidizing ammonia nitrogen to nitrite nitrogen while suspending and flowing, and returning the slurry discharged from the aerobic tank to the anaerobic tank. (2) The treatment method according to (1) above, wherein the fine particles having the ammonia adsorption performance are zeolite fine particles.

【0010】(3)アンモニア含有汚水を導入し、生成
窒素ガスを排出する、アンモニア吸着能を有する微粒子
を懸濁させた密閉型嫌気的生物反応槽と、前記生物反応
槽からの流出スラリの一部を固液分離し、該分離水を処
理水として排出し、かつ分離汚泥を排出する固液分離装
置と、前記分離汚泥と前記生物反応槽からの流出スラリ
の残部とを導入し、酸素含有ガスの供給管を備えた好気
的亜硝酸化槽、及び前記好気的亜硝酸化槽からの流出ス
ラリを前記嫌気的生物反応槽へ返送する返送配管とを有
することを特徴とするアンモニア含有汚水の処理装置。
(3) One of a closed type anaerobic biological reaction tank in which ammonia-containing wastewater is introduced and the produced nitrogen gas is discharged and in which fine particles having an ammonia adsorbing ability are suspended, and a slurry discharged from the biological reaction tank. A solid-liquid separation device for solid-liquid separation, discharging the separated water as treated water, and discharging separated sludge, and introducing the separated sludge and the rest of the outflow slurry from the biological reaction tank to contain oxygen. Ammonia-containing, characterized by having an aerobic nitrite tank equipped with a gas supply pipe, and a return pipe for returning the effluent slurry from the aerobic nitrite tank to the anaerobic biological reaction tank. Sewage treatment equipment.

【0011】[0011]

【発明の実施の形態】図面により本発明の実施の形態を
説明する。図1は本発明の一実施例のフローを示したも
のであり、この図1を参照しながら本発明を詳しく説明
する。アンモニア含有汚水(原水)1を、天然ゼオライ
ト微粒子(平均粒径7ミクロン)3を懸濁させた嫌気的
生物反応槽2に供給し、滞留させたのち、固液分離し、
分離水を処理水7として取り出すとともに、ゼオライト
微粒子を含んだ分離汚泥8を、好気的亜硝酸化槽10に
流入させ、酸素含有ガス11を供給しながら滞留させ
る。当然の事柄であるが、ゼオライト以外にアンモニア
吸着能力のある他の物質(モルデナイト、クリノプチラ
イト)などを使用して差し支えない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a flow of an embodiment of the present invention, and the present invention will be described in detail with reference to FIG. Ammonia-containing sewage (raw water) 1 is supplied to an anaerobic biological reaction tank 2 in which natural zeolite fine particles (average particle size 7 microns) 3 are suspended and allowed to stay, and then solid-liquid separated,
The separated water is taken out as the treated water 7, and the separated sludge 8 containing the zeolite fine particles is caused to flow into the aerobic nitrite tank 10 and retained while supplying the oxygen-containing gas 11. As a matter of course, in addition to zeolite, other substances capable of adsorbing ammonia (mordenite, clinoptite) and the like may be used.

【0012】好気的亜硝酸化槽10からの流出スラリ1
2は嫌気的生物反応槽2に循環する。このような運転を
続けると、次のような反応が進む。すなわち、嫌気的生
物反応槽2において原水1中のアンモニウムイオンが、
ゼオライトのアンモニアに対するイオン交換作用によっ
て吸着されて液側から除去される(工程A)。
Outflow slurry 1 from aerobic nitrite tank 10
2 circulates in the anaerobic biological reaction tank 2. Continuing such driving leads to the following reactions. That is, the ammonium ions in the raw water 1 in the anaerobic biological reaction tank 2 are
It is adsorbed and removed from the liquid side by the ion exchange action of zeolite with respect to ammonia (step A).

【0013】該工程Aからの流出スラリ5の一部5aを
沈殿、膜分離、ダイナミックろ過などの固液分離装置6
で固液分離する。分離水にはアンモニアが含まれないの
で、これを処理水7とする。なお、増殖亜硝酸菌は余剰
汚泥9として適宜排泥するが、増殖速度は小さいので余
剰汚泥量は少ない。
A part 5a of the outflow slurry 5 from the step A is a solid-liquid separation device 6 for precipitation, membrane separation, dynamic filtration, etc.
Solid-liquid separation with. Since the separated water does not contain ammonia, this is designated as treated water 7. In addition, although the multiplied nitrites are appropriately discharged as excess sludge 9, the amount of excess sludge is small because the multiplication rate is low.

【0014】次に、工程Aからの流出スラリ5の残部5
b及び、アンモニアを吸着したゼオライト含有分離汚泥
8を亜硝酸化槽10に供給し、好気性条件下で滞留させ
る。工程Aからの流出スラリ5の残部5bを亜硝酸化槽
10に供給することは非常に重要であり、工程Aからの
スラリの残部5bに含まれるアルカリ度成分が亜硝酸化
槽10に供給されることによって、亜硝酸化反応によっ
て生成する水素イオンを中和でき、亜硝酸化反応でのp
H低下を防止できる効果がある。アンモニアを吸着した
ゼオライト含有分離汚泥8だけを亜硝酸化槽10に供給
すると、アルカリ度が不足になりpHが低下しすぎて、
亜硝酸化反応が円滑に進まない。
Next, the remaining portion 5 of the slurry 5 discharged from the process A
b and the zeolite-containing separated sludge 8 having adsorbed ammonia are supplied to the nitrite tank 10 and retained under aerobic conditions. It is very important to supply the remaining portion 5b of the slurry 5 discharged from the process A to the nitrite tank 10, and the alkalinity component contained in the remaining portion 5b of the slurry from the process A is supplied to the nitrite tank 10. By doing so, the hydrogen ions generated by the nitrite reaction can be neutralized, and p in the nitrite reaction can be neutralized.
It has the effect of preventing a decrease in H. If only the zeolite-containing separated sludge 8 that has adsorbed ammonia is supplied to the nitrite tank 10, the alkalinity becomes insufficient and the pH drops too much,
The nitrite reaction does not proceed smoothly.

【0015】このような操作を行うと、興味深いことに
ゼオライト粒子の表面に、硝化菌(ニトロバクタ)より
も亜硝酸菌(ニトロゾモナス)が優先的に増殖し付着
し、原水1中のアンモニアが硝酸まで酸化されることな
く、式(2)の反応にしたがって大部分が亜硝酸の段階
でとどまることが実験的に見出された。 2NH4 ++ 3O2→ 2NO2 -+ 4H++ 2H2O ・・・(2)
When such an operation is carried out, interestingly, nitrite bacteria (nitrozomonas) preferentially grow and adhere to the surface of the zeolite particles rather than nitrifying bacteria (nitrobacta), and ammonia in the raw water 1 reaches nitric acid. It has been found experimentally that the majority stays in the nitrite stage according to the reaction of equation (2) without being oxidized. 2NH 4 + + 3O 2 → 2NO 2 - + 4H + + 2H 2 O ··· (2)

【0016】式(2)の亜硝酸化反応が優先的に進行す
る原因は、アンモニアが高濃度にゼオライトに吸着され
るので、アンモニア濃度が高くなると活性が低下する性
質がある硝酸菌(ニトロバクタ)が、増殖しにくいため
ではないかと推定される。この反応が進む結果、ゼオラ
イトに吸収されていたアンモニアが脱離するのでゼオラ
イトのアンモニア吸着能が再生される。
The reason why the nitrite reaction of the formula (2) preferentially proceeds is that nitric acid bacteria (nitrobacter) have a property that the activity is lowered when the ammonia concentration becomes high because the ammonia is adsorbed on the zeolite at a high concentration. However, it is presumed that it is difficult to grow. As a result of the progress of this reaction, the ammonia absorbed by the zeolite is desorbed and the ammonia adsorption capacity of the zeolite is regenerated.

【0017】再生されたゼオライトは、嫌気的生物反応
槽2に循環され、原水1中のアンモニアを吸着する。同
時に亜硝酸を含有するスラリ12が嫌気槽2に供給され
るので、亜硝酸と原水1中のアンモニアが、有機炭素源
(水素供与体)がなくても、式(1)の生物反応(いわ
ゆるアナモックス反応)によって反応し、窒素ガス4に
転換されて除去される。 NH4 ++ NO2 -→ N2+ 2H2O ・・・・・(1) なお、嫌気的生物反応槽2、好気的亜硝酸化槽10内
に、生物付着担体(紐状の繊維材、粒状担体など)を装
填しておくことも非常に好適な実施態様である。
The regenerated zeolite is circulated in the anaerobic biological reaction tank 2 and adsorbs ammonia in the raw water 1. At the same time, the slurry 12 containing nitrous acid is supplied to the anaerobic tank 2, so that the nitrous acid and the ammonia in the raw water 1 can react with the biological reaction of the formula (1) (so-called, so-called “biological reaction” (so-called) even if there is no organic carbon source (hydrogen donor). Anammox reaction), converted into nitrogen gas 4 and removed. NH 4 + + NO 2 - → N 2 + 2H 2 O ····· (1) Incidentally, anaerobic biological reactor 2, the aerobic nitritation tank 10, bioadhesive carrier (string-like fibers Loading materials, granular carriers, etc.) is also a very preferred embodiment.

【0018】以上まとめると、嫌気的生物反応槽2で
は、ゼオライトへのアンモニアの吸着と亜硝酸とアンモ
ニアの生物反応による窒素ガス4の生成が同時に進行
し、好気的亜硝酸化槽10では、ゼオライトに吸着した
アンモニアに亜硝酸化反応、ゼオライト生物再生の両者
の反応が進む。
In summary, in the anaerobic bioreaction tank 2, the adsorption of ammonia on zeolite and the production of nitrogen gas 4 by the biological reaction of nitrous acid and ammonia simultaneously proceed, and in the aerobic nitrite tank 10, Both the nitrite reaction and the zeolite bioregeneration proceed to the ammonia adsorbed on the zeolite.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例により何等制限されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0020】実施例1 アンモニア含有水(水道水に重炭素アンモニウムを添加
したもので、アンモニア性窒素濃度を500mg/リッ
トル、BODをゼロに調整した液)を対象に本発明の実
証試験を行った。
Example 1 A demonstration test of the present invention was carried out on ammonia-containing water (a solution obtained by adding ammonium heavy carbon to tap water, having an ammoniacal nitrogen concentration of 500 mg / liter and a BOD adjusted to zero). .

【0021】(試験条件) 1.原水の条件 供給流量:60リットル/d、 水温:35℃、 pH:8.2。(Test conditions) 1. Raw water conditions Supply flow rate: 60 liters / d, Water temperature: 35 ℃, pH: 8.2.

【0022】2.各槽の条件 (1)嫌気的生物反応槽 ・原水60リットル/dと亜硝酸化槽からの流出液12
0リットル/dを供給した。 ・粉末ゼオライト(平均粒径6ミクロン)を70000
mg/リットルの濃度で懸濁流動した。 ・攪拌方法:機械攪拌、 ・滞留時間:10時間。
2. Conditions of each tank (1) Anaerobic biological reaction tank, raw water 60 liter / d and effluent from nitrite tank 12
0 liter / d was supplied.・ 70,000 powdered zeolite (average particle size 6 microns)
Suspension flow was performed at a concentration of mg / liter. -Agitation method: mechanical agitation-Retention time: 10 hours.

【0023】(2)固液分離槽 ・流出スラリ5を流量120リットル/dで供給した。 ・MF膜(孔径1ミクロン)による膜分離。 ・フラックス:1m/d。 (3)亜硝酸化槽 ・膜分離汚泥の全量20リットル/d及び嫌気槽流出ス
ラリのうち100リットルを供給。 ・空気供給量:槽内溶存酸素1〜2mg/リットルにな
るように供給。 ・攪拌方法 :機械攪拌と空気攪拌を併用。 ・滞留時間 :8時間。
(2) The solid-liquid separation tank / outflow slurry 5 was supplied at a flow rate of 120 liter / d.・ Membrane separation with MF membrane (pore size 1 micron). -Flux: 1 m / d. (3) Nitrite tank ・ Supply 20 liters / d of membrane separation sludge and 100 liters of anaerobic tank outflow slurry. -Air supply amount: Supply oxygen so that dissolved oxygen in the tank is 1 to 2 mg / liter. -Agitation method: Both mechanical agitation and air agitation are used. -Dwell time: 8 hours.

【0024】(処理結果)処理結果を第1表に示す。(Processing Result) The processing result is shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】この処理結果から、複雑な制御を行うこと
なく、安定して亜硝酸化優先型の硝化が行われ、原水の
アンモニア中の大部分が亜硝酸に変化し、嫌気槽におい
て有機性炭素(水素供与体)不存在下で、アンモニアと
亜硝酸が生物学的に反応して窒素が効果的に除去され
た。
From the results of this treatment, nitrification with priority to nitrite is stably performed without complicated control, most of the ammonia in the raw water is converted to nitrite, and organic carbon is removed in the anaerobic tank. In the absence of (hydrogen donor), ammonia and nitrous acid biologically reacted to effectively remove nitrogen.

【0027】[0027]

【発明の効果】本発明のアンモニア含有汚水の処理方法
及び処理装置によれば、以下に示す顕著な効果が得られ
る。 (1)アンモニア吸着能を有するゼオライト系鉱物粒子
の表面に、亜硝酸菌が優占して固定化されるため、複雑
な制御を行うことなく亜硝酸化反応を優先的に起こすこ
とができる。 (2)亜硝酸を安定して嫌気槽に供給できるので、アナ
モックス反応を効果的に起こすことができる。従ってB
ODが存在しないか又は少ないアンモニア含有原水か
ら、メタノールなどの有機炭素源(水素供与体)を添加
することなく、アンモニアを効果的に窒素ガスに酸化除
去できる。
According to the method and apparatus for treating wastewater containing ammonia of the present invention, the following remarkable effects can be obtained. (1) Since the nitrite bacterium is predominantly immobilized on the surface of the zeolite-based mineral particles having an ammonia adsorption ability, the nitrite reaction can be preferentially caused without complicated control. (2) Since nitrous acid can be stably supplied to the anaerobic tank, the anammox reaction can be effectively caused. Therefore B
Ammonia can be effectively oxidized and removed to nitrogen gas from ammonia-containing raw water having no or little OD without adding an organic carbon source (hydrogen donor) such as methanol.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアンモニア含有汚水の処理装置の1例
を説明するフロー図である。
FIG. 1 is a flow diagram illustrating an example of a treatment device for ammonia-containing wastewater of the present invention.

【符号の説明】[Explanation of symbols]

1 アンモニア含有汚水(原水) 2 ゼオライト共存嫌気的生物反応槽 3 ゼオライト微粒子 4 生成窒素ガス 5 流出スラリ 5a 流出スラリ一部 5b 流出スラリ残部 6 固液分離装置 7 処理水 8 分離汚泥 9 余剰汚泥 10 好気的亜硝酸化槽 11 酸素含有ガス 12 亜硝酸、ゼオライト含有スラリ 1 Ammonia-containing wastewater (raw water) 2 Zeolite coexisting anaerobic bioreactor 3 Zeolite fine particles 4 Generated nitrogen gas 5 Outflow slurry 5a Part of outflow slurry 5b Remaining outflow slurry 6 Solid-liquid separator 7 treated water 8 Separation sludge 9 surplus sludge 10 Aerobic nitrite tank 11 Oxygen-containing gas 12 Slurry containing nitrous acid and zeolite

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒川 清美 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D024 AA04 AA10 AB13 BA07 BB01 BC04 DB15 DB16 4D040 BB05 BB12 BB57    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kiyomi Arakawa             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION F-term (reference) 4D024 AA04 AA10 AB13 BA07 BB01                       BC04 DB15 DB16                 4D040 BB05 BB12 BB57

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア含有汚水を、アンモニア吸着
能を有する微粒子の懸濁嫌気槽に供給し、アンモニアを
吸着しつつ嫌気性微生物存在条件で滞留させ、アンモニ
アと亜硝酸を生物学的に反応させて窒素ガスに転換せし
めたのち、前記嫌気槽の流出スラリの一部を固液分離
し、該分離水を処理水として取り出すとともに、分離さ
れた汚泥と前記嫌気槽の流出スラリの残部とを好気槽に
供給し、懸濁流動させながらアンモニア性窒素を生物学
的に亜硝酸性窒素に酸化し、該好気槽流出スラリを前記
嫌気槽に返流させることを特徴とするアンモニア含有汚
水の処理方法。
1. Ammonia-containing wastewater is supplied to a suspension anaerobic tank of fine particles having an ability to adsorb ammonia, and is allowed to stay under the conditions of anaerobic microorganisms while adsorbing ammonia to biologically react ammonia and nitrous acid. After converting it into nitrogen gas, a part of the slurry flowing out of the anaerobic tank is subjected to solid-liquid separation, the separated water is taken out as treated water, and the separated sludge and the rest of the slurry flowing out of the anaerobic tank are preferable. Ammonia-containing wastewater, which is characterized in that it is supplied to an air tank and is subjected to suspension flow to biologically oxidize ammonia nitrogen to nitrite nitrogen, and the aerobic tank outflow slurry is returned to the anaerobic tank. Processing method.
【請求項2】 前記アンモニア吸着性能を有する微粒子
が、ゼオライト微粒子であることを特徴とする請求項1
記載の処理方法。
2. The fine particles having the ammonia adsorption performance are zeolite fine particles.
The processing method described.
【請求項3】 アンモニア含有汚水を導入し、生成窒素
ガスを排出する、アンモニア吸着能を有する微粒子を懸
濁させた密閉型嫌気的生物反応槽と、前記生物反応槽か
らの流出スラリの一部を固液分離し、該分離水を処理水
として排出し、かつ分離汚泥を排出する固液分離装置
と、前記分離汚泥と前記生物反応槽からの流出スラリの
残部とを導入し、酸素含有ガスの供給管を備えた好気的
亜硝酸化槽、及び前記好気的亜硝酸化槽からの流出スラ
リを前記嫌気的生物反応槽へ返送する返送配管とを有す
ることを特徴とするアンモニア含有汚水の処理装置。
3. A closed type anaerobic biological reaction tank, in which ammonia-containing wastewater is introduced and produced nitrogen gas is discharged, in which fine particles having an ammonia adsorbing ability are suspended, and a part of slurry discharged from the biological reaction tank. Solid-liquid separation, the separated water is discharged as treated water, and a solid-liquid separator for discharging the separated sludge, and the separated sludge and the rest of the outflow slurry from the biological reaction tank are introduced, and an oxygen-containing gas And an aerobic nitrite tank equipped with a supply pipe for the same, and a return pipe for returning the outflow slurry from the aerobic nitrite tank to the anaerobic biological reaction tank. Processing equipment.
JP2001357969A 2001-11-22 2001-11-22 Method and apparatus for treating ammonia-containing sewage Pending JP2003154390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357969A JP2003154390A (en) 2001-11-22 2001-11-22 Method and apparatus for treating ammonia-containing sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357969A JP2003154390A (en) 2001-11-22 2001-11-22 Method and apparatus for treating ammonia-containing sewage

Publications (1)

Publication Number Publication Date
JP2003154390A true JP2003154390A (en) 2003-05-27

Family

ID=19169231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357969A Pending JP2003154390A (en) 2001-11-22 2001-11-22 Method and apparatus for treating ammonia-containing sewage

Country Status (1)

Country Link
JP (1) JP2003154390A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2006088092A (en) * 2004-09-27 2006-04-06 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing liquid
JP2008155085A (en) * 2006-12-21 2008-07-10 Ihi Corp Waste water treatment method and apparatus
JP2009213978A (en) * 2008-03-07 2009-09-24 Kyowa Exeo Corp Process for wet methane fermentation of organic waste with high fat and oil content
JP2012501845A (en) * 2008-09-12 2012-01-26 ツィクラー−シュトゥルツ・アップヴァッサーテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ammonium-containing wastewater treatment method
CN104211168A (en) * 2013-05-30 2014-12-17 智利圣地亚哥大学 Process to anaerobic digestion of wastewater with high concentration of ammonia nitrogen or protein, in upflow anaerobic digester and sludge blanket, with immobilization of microorganisms and inhibition by ammonium controlled using zeolite-clinoptilolite, and optional production of biofertilizer
CN104529068A (en) * 2014-12-17 2015-04-22 卓勒(上海)环境工程有限公司 Low-energy-consumption sustainable sewage treatment system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP4613474B2 (en) * 2003-01-28 2011-01-19 栗田工業株式会社 Method for treating ammonia-containing water
JP2006088092A (en) * 2004-09-27 2006-04-06 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing liquid
JP4691938B2 (en) * 2004-09-27 2011-06-01 栗田工業株式会社 Nitrogen-containing liquid processing method and apparatus
JP2008155085A (en) * 2006-12-21 2008-07-10 Ihi Corp Waste water treatment method and apparatus
JP2009213978A (en) * 2008-03-07 2009-09-24 Kyowa Exeo Corp Process for wet methane fermentation of organic waste with high fat and oil content
JP2012501845A (en) * 2008-09-12 2012-01-26 ツィクラー−シュトゥルツ・アップヴァッサーテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Ammonium-containing wastewater treatment method
CN104211168A (en) * 2013-05-30 2014-12-17 智利圣地亚哥大学 Process to anaerobic digestion of wastewater with high concentration of ammonia nitrogen or protein, in upflow anaerobic digester and sludge blanket, with immobilization of microorganisms and inhibition by ammonium controlled using zeolite-clinoptilolite, and optional production of biofertilizer
CN104211168B (en) * 2013-05-30 2018-05-29 智利圣地亚哥大学 The method for carrying out anaerobic digestion to waste water in upflow type anaerobic digester and Sludge Bed using zeolite-clinoptilolite
CN104529068A (en) * 2014-12-17 2015-04-22 卓勒(上海)环境工程有限公司 Low-energy-consumption sustainable sewage treatment system

Similar Documents

Publication Publication Date Title
JP4104845B2 (en) Method and apparatus for treatment of water containing phosphorus / ammonia
JP2002263689A (en) Method for treating ammonia-containing waste water and device
JP3089297B2 (en) Post-treatment equipment for anaerobic sewage treatment
JP2003154393A (en) Biological method for removing nitrogen and apparatus therefor
JP2003154390A (en) Method and apparatus for treating ammonia-containing sewage
JP2008155085A (en) Waste water treatment method and apparatus
JP2992692B2 (en) Sewage purification method and apparatus
JPS586299A (en) Purification of water containing organic pollutants
JP3358388B2 (en) Treatment method for selenium-containing water
JPS585118B2 (en) Yuukiseihaisuino
CN113233588A (en) Method for removing carbon by nitrosation, denitrification and denitrification of sewage with low carbon-nitrogen ratio
JP3837757B2 (en) Method for treating selenium-containing water
JP3769772B2 (en) Method for treating selenium-containing water
JP3799634B2 (en) Method for treating selenium-containing water
JP3837760B2 (en) Treatment method of flue gas desulfurization waste water
JP3555812B2 (en) Advanced treatment method for organic wastewater
JPH09122687A (en) Treatment of selenium-containing water
JP3222015B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JP3658802B2 (en) Method for treating selenium-containing water
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
JP3837763B2 (en) Method for treating selenium-containing water
JP2003094096A (en) Method for treating organic waste, apparatus therefor, and sludge
JP3755167B2 (en) Method for treating selenium-containing water
JPS586558B2 (en) Sewage treatment method