JP2003151355A - Transparent conductive board and pigment sensitized solar battery - Google Patents

Transparent conductive board and pigment sensitized solar battery

Info

Publication number
JP2003151355A
JP2003151355A JP2001350105A JP2001350105A JP2003151355A JP 2003151355 A JP2003151355 A JP 2003151355A JP 2001350105 A JP2001350105 A JP 2001350105A JP 2001350105 A JP2001350105 A JP 2001350105A JP 2003151355 A JP2003151355 A JP 2003151355A
Authority
JP
Japan
Prior art keywords
transparent conductive
titanium oxide
dye
sensitized solar
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001350105A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
一夫 佐藤
Makoto Fukawa
真 府川
Mika Kanbe
美花 神戸
Naoki Taneda
直樹 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001350105A priority Critical patent/JP2003151355A/en
Publication of JP2003151355A publication Critical patent/JP2003151355A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pigment sensitized solar battery having more improved conversion efficiency than a conventional pigment sensitized solar battery, and a transparent conductive board to be used for the same. SOLUTION: The transparent conductive board comprises a transparent board, a transparent conductive film on the transparent board, and a titanium oxide film having a thickness of 5-50 nm on the transparent conductive film. The pigment sensitized solar battery comprises the transparent conductive board, a titanium oxide particulate layer on the titanium oxide film of the transparent conductive board, a pigment supported by the titanium oxide particulate layer, a charge transportation layer contacting the pigment, and a board having a counter electrode contacting the charge transportation layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透明導電性基板お
よびそれを用いた色素増感型太陽電池に関する。
TECHNICAL FIELD The present invention relates to a transparent conductive substrate and a dye-sensitized solar cell using the same.

【0002】[0002]

【従来の技術】近年、n型酸化物半導体として比較的安
価な材料であるチタン酸化物の微粒子を用い、この表面
に可視域の波長の光を吸収することを可能とするために
色素を担持させることにより、変換効率が高く、しかも
安価に製造することができる色素増感型太陽電池の開発
が行われている。
2. Description of the Related Art In recent years, fine particles of titanium oxide, which is a relatively inexpensive material, have been used as an n-type oxide semiconductor, and a dye is carried on the surface of the fine particles of titanium oxide to enable absorption of light in the visible wavelength range. By doing so, a dye-sensitized solar cell that has high conversion efficiency and can be manufactured at low cost has been developed.

【0003】この従来の色素増感型太陽電池の断面模式
図を図2に示す。図2に示すように、従来の色素増感型
太陽電池20は、透明導電膜12を有する透光性基板
(第1の基板)11と、透明導電膜12上に設けられた
チタン酸化物微粒子13と、チタン酸化物微粒子13の
表面に担持された色素14と、色素14に接する電荷輸
送層15と、透光性基板上に電荷輸送層15に接するよ
うに、スペーサ16によって支持されて設けられた対向
電極17aを有する基板(第2の基板)17とを具備す
る。
FIG. 2 shows a schematic sectional view of this conventional dye-sensitized solar cell. As shown in FIG. 2, the conventional dye-sensitized solar cell 20 includes a transparent substrate (first substrate) 11 having a transparent conductive film 12 and titanium oxide fine particles provided on the transparent conductive film 12. 13, a dye 14 carried on the surface of the titanium oxide fine particles 13, a charge transport layer 15 in contact with the dye 14, and a spacer 16 supported on the transparent substrate so as to be in contact with the charge transport layer 15. A substrate (second substrate) 17 having the opposite electrode 17a formed thereon.

【0004】色素増感型太陽電池20の作用を説明す
る。色素増感型太陽電池20の透光性基板11の側から
太陽光が入射すると、光は透光性基板11および透明導
電膜12を通過し、チタン酸化物微粒子13に当たって
散乱する。また、太陽光が透光性基板11の側および対
向電極17aの側の両方から入射する構造となっている
場合もあり、その場合も同様に、光はチタン酸化物微粒
子13に当たって散乱する。散乱した光のうち可視光
は、チタン酸化物微粒子13によってはほとんど吸収さ
れず、色素14に吸収される。そして、色素14の存在
するチタン酸化物微粒子13の表面において、正孔と電
子との対が生成する。生成した正孔は電荷輸送層15を
通じて対向電極17aに移動し、一方で、生成した電子
はチタン酸化物微粒子13の層を通じて透光性基板11
に移動する。このようにして、起電力が生じる。例え
ば、電荷輸送層15にI- /I3 - の酸化還元対が含ま
れている場合、生成した電子がチタン酸化物微粒子13
に注入され、外部回路を通じて対向電極17aに移動
し、電荷輸送層15中のI3 - と反応してI- を生じる
(1/2I3 - +e- →3/2I- )。この反応で生じ
たI- と電子を失った色素とが反応してI3 - を生じて
元の状態に戻る。このようにして回路が形成され、持続
的な発電が行われる。
The operation of the dye-sensitized solar cell 20 will be described.
It From the transparent substrate 11 side of the dye-sensitized solar cell 20
When sunlight is incident, the light is transmitted through the transparent substrate 11 and the transparent conductive substrate 11.
After passing through the electrolytic film 12, hitting the titanium oxide fine particles 13
Scatter. In addition, sunlight is exposed to the side of the translucent substrate 11 and the pair.
The structure is such that light enters from both sides of the counter electrode 17a.
In some cases, and in the same way, the light is titanium oxide fine particles.
Scatter on the child 13. Visible light out of scattered light
Is almost absorbed by the titanium oxide fine particles 13.
Instead, it is absorbed by the dye 14. And the presence of pigment 14
On the surface of the titanium oxide fine particles 13
A pair with a child is generated. The generated holes pass through the charge transport layer 15.
And move to the counter electrode 17a through the
Is a transparent substrate 11 through a layer of titanium oxide fine particles 13.
Move to. In this way, electromotive force is generated. example
For example, the charge transport layer 15 has an I-/ I3 -Redox couple of
If the electrons are generated, the generated electrons are titanium oxide fine particles 13
Is injected into the electrode and moves to the counter electrode 17a through an external circuit.
And I in the charge transport layer 153 -Reacting with I-Produce
(1 / 2I3 -+ E-→ 3 / 2I-). This reaction occurs
I-Reacts with the dye that has lost an electron, I3 -Causing
Return to the original state. In this way the circuit is formed and
Electricity is generated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の色素
増感型太陽電池よりも変換効率の優れる色素増感型太陽
電池およびそれに用いられる透明導電性基板を提供する
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a dye-sensitized solar cell having a higher conversion efficiency than conventional dye-sensitized solar cells and a transparent conductive substrate used therein.

【0006】[0006]

【課題を解決するための手段】本発明者は、従来の色素
増感型太陽電池20においては、電荷輸送層15と透明
導電膜12とが直接接触する部分があり、その部分でリ
ーク電流が流れ、これにより変換効率が低くなるという
ことを見出した。即ち、従来の色素増感型太陽電池20
においては、n型酸化物半導体として、入射する太陽光
を効率よく散乱させ、かつ、多くの色素を担持するため
に、多孔質のチタン酸化物微粒子13が用いられるの
で、電荷輸送層15がチタン酸化物微粒子13の層の微
粒子間に浸透し、透明導電膜12と直接接触してしまう
部分が生じることを見出したのである。
The present inventor has found that the conventional dye-sensitized solar cell 20 has a portion where the charge transport layer 15 and the transparent conductive film 12 are in direct contact with each other, and a leak current is generated in that portion. It has been found that the flow rate, which lowers the conversion efficiency. That is, the conventional dye-sensitized solar cell 20
In the above, since the porous titanium oxide fine particles 13 are used as the n-type oxide semiconductor to efficiently scatter incident sunlight and carry a large amount of dye, the charge transport layer 15 is made of titanium. It has been found that there is a portion that penetrates between the particles of the layer of oxide particles 13 and comes into direct contact with the transparent conductive film 12.

【0007】従来の色素増感型太陽電池20には、屋根
の上等で実際に使用した場合に、その温度が100℃以
上になって、製造する際に封止材として用いられる樹脂
が溶解し、電荷輸送層15として用いられる液体が漏洩
するという問題がある。したがって、この問題を解決す
るために、電荷輸送層15として用いられる液体の粘性
を高くしたり、電荷輸送層15として擬似固体または固
体を用いたりすることにより、樹脂による封止を必要と
しない方法が盛んに研究されている。本発明者は、電荷
輸送層15として粘性の高い液体や、擬似固体または固
体を用いると、電子伝導による電荷移動が起こりやすく
なり、荷電粒子のリークが起こりやすくなって、特に変
換効率に重大な影響を与えるという問題があることも見
出した。
In the conventional dye-sensitized solar cell 20, when it is actually used on a roof or the like, the temperature thereof rises to 100 ° C. or higher, and the resin used as the encapsulant at the time of manufacture is dissolved. However, there is a problem that the liquid used as the charge transport layer 15 leaks. Therefore, in order to solve this problem, by increasing the viscosity of the liquid used as the charge transport layer 15 or using a pseudo solid or a solid as the charge transport layer 15, a method that does not require sealing with a resin is used. Is being actively researched. The inventor of the present invention uses a highly viscous liquid, a pseudo solid, or a solid as the charge transport layer 15 to easily cause charge transfer due to electron conduction and easily cause leakage of charged particles, which is particularly important for conversion efficiency. We also found that there is a problem of affecting.

【0008】本発明者は、上記知見に基づき鋭意研究し
た結果、透明導電膜上にチタン酸化物の薄膜を設けるこ
とにより、電荷輸送層と透明導電膜とが直接接触するこ
とを防止し、色素増感型太陽電池、特に電荷輸送層とし
て粘性の高い液体や、擬似固体または固体を用いる色素
増感型太陽電池の変換効率を向上させることができるこ
とを見出し、本発明を完成した。
As a result of earnest research based on the above findings, the present inventor provided a thin film of titanium oxide on a transparent conductive film to prevent the charge transport layer from directly contacting the transparent conductive film, and The present invention has been completed by discovering that the conversion efficiency of a sensitized solar cell, particularly a highly viscous liquid as a charge transport layer, or a dye-sensitized solar cell using a pseudo solid or a solid can be improved.

【0009】即ち、本発明は、以下の(1)〜(4)を
提供する。
That is, the present invention provides the following (1) to (4).

【0010】(1)透光性基板と、該透光性基板上の透
明導電膜と、該透明導電膜上の厚さ5〜50nmのチタ
ン酸化物膜とを具備する透明導電性基板。
(1) A transparent conductive substrate comprising a transparent substrate, a transparent conductive film on the transparent substrate, and a titanium oxide film having a thickness of 5 to 50 nm on the transparent conductive film.

【0011】(2)前記透明導電膜が酸化スズ膜である
上記(1)に記載の透明導電性基板。
(2) The transparent conductive substrate according to the above (1), wherein the transparent conductive film is a tin oxide film.

【0012】(3)前記酸化スズ膜が、フッ素を酸化ス
ズに対し0.01〜4mol%含有し、電導電子密度が
5×1019〜4×1020cm-3である上記(2)に記載
の透明導電性基板。
(3) In the above (2), the tin oxide film contains 0.01 to 4 mol% of fluorine with respect to tin oxide and has an electric conductor density of 5 × 10 19 to 4 × 10 20 cm −3. The transparent conductive substrate described.

【0013】(4)上記(1)〜(3)のいずれかに記
載の透明導電性基板と、該透明導電性基板の前記チタン
酸化物膜上のチタン酸化物微粒子層と、該チタン酸化物
微粒子層に担持された色素と、該色素に接する電荷輸送
層と、該電荷輸送層に接する対向電極を有する基板とを
具備する色素増感型太陽電池。
(4) The transparent conductive substrate according to any one of (1) to (3) above, a titanium oxide fine particle layer on the titanium oxide film of the transparent conductive substrate, and the titanium oxide. A dye-sensitized solar cell comprising a dye carried on a fine particle layer, a charge transport layer in contact with the dye, and a substrate having a counter electrode in contact with the charge transport layer.

【0014】[0014]

【発明の実施の形態】以下、本発明の透明導電性基板お
よびそれを用いた色素増感型太陽電池を添付図面に示す
好適実施形態に基づいて詳細に説明する。図1は、本発
明の透明導電性基板およびそれを用いた色素増感型太陽
電池の実施形態の構成の断面模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION The transparent conductive substrate of the present invention and the dye-sensitized solar cell using the same are described in detail below with reference to the preferred embodiments shown in the accompanying drawings. FIG. 1 is a schematic cross-sectional view of the configuration of an embodiment of a transparent conductive substrate of the present invention and a dye-sensitized solar cell using the same.

【0015】初めに、本発明の透明導電性基板について
説明する。本発明の透明導電性基板9は、図1に示すよ
うに、透光性基板(第1の基板)1と、該透光性基板1
上の透明導電膜2と、透明導電膜2上の厚さ5〜50n
mのチタン酸化物膜8とを具備する。透光性基板1は、
特に限定されないが、透明性、光学的特性、耐久性、電
気的特性等の点で、ソーダライムシリケートガラス板、
アルミノシリケートガラス板、ホウケイ酸塩ガラス板、
リチウムアルミノシリケートガラス板等のアルカリ含有
ガラス板;低アルカリ含有ガラス板;無アルカリガラス
板;石英ガラス板が好ましい。場合によっては、フッ素
系樹脂、ポリカーボネート、ポリメチルペンテン等のプ
ラスチックを用いた、透明性プラスチック板や透明性プ
ラスチックフィルムを使用することもできる。
First, the transparent conductive substrate of the present invention will be described. As shown in FIG. 1, a transparent conductive substrate 9 of the present invention includes a transparent substrate (first substrate) 1 and the transparent substrate 1
The upper transparent conductive film 2 and the thickness of the transparent conductive film 2 of 5 to 50 n
m titanium oxide film 8. The transparent substrate 1 is
Although not particularly limited, in terms of transparency, optical characteristics, durability, electrical characteristics, soda lime silicate glass plate,
Aluminosilicate glass plate, borosilicate glass plate,
Alkali-containing glass plates such as lithium aluminosilicate glass plates; low-alkali content glass plates; non-alkali glass plates; quartz glass plates are preferred. Depending on the case, a transparent plastic plate or a transparent plastic film using a plastic such as a fluororesin, polycarbonate, or polymethylpentene can also be used.

【0016】透明導電膜2としては、太陽電池に一般に
用いられている、酸化スズ膜(特に、フッ素ドープ酸化
スズ膜)、ITO膜、酸化亜鉛膜を用いることができ
る。中でも、化学的耐性に優れ、後述する電荷輸送層に
用いられる液体等により腐食しない点で、酸化スズ膜が
好ましい。特に、フッ素を酸化スズに対し0.01〜4
mol%含有し、電導電子密度が5×1019〜4×10
20cm-3である酸化スズ膜が好ましい。酸化スズ膜が、
フッ素を上記範囲で含有し、電導電子密度が上記範囲で
あると、高透明かつ低抵抗となり、太陽電池用として優
れた透明導電膜となる。
As the transparent conductive film 2, a tin oxide film (particularly, a fluorine-doped tin oxide film), an ITO film, or a zinc oxide film, which is commonly used in solar cells, can be used. Among them, the tin oxide film is preferable because it has excellent chemical resistance and is not corroded by the liquid used for the charge transport layer described later. Particularly, fluorine is added to tin oxide in an amount of 0.01 to 4
Mol% content, electric conductor density 5 × 10 19 to 4 × 10
A tin oxide film of 20 cm -3 is preferred. Tin oxide film
When the fluorine content is within the above range and the electric conductor density is within the above range, the transparent conductive film has high transparency and low resistance, and is excellent for solar cells.

【0017】透明導電膜2の厚さは、電極として十分な
厚さであれば特に限定されないが、500nm以上であ
るのが好ましく、700nm以上であるのがより好まし
く、また、1200nm以下であるのが好ましく、10
00nm以下であるのがより好ましい。
The thickness of the transparent conductive film 2 is not particularly limited as long as it is a sufficient thickness as an electrode, but it is preferably 500 nm or more, more preferably 700 nm or more, and 1200 nm or less. Is preferred and 10
It is more preferably 00 nm or less.

【0018】透明導電膜2を製膜する方法は、特に限定
されず、例えば、CVD法、スプレー法、塗布法等の化
学的方法;スパッタ法、真空蒸着法等の物理的方法が挙
げられる。中でも、CVD法が好ましい。CVD法とし
ては、常圧(大気圧)で行われる、常圧CVD法が好ま
しい。
The method for forming the transparent conductive film 2 is not particularly limited, and examples thereof include chemical methods such as a CVD method, a spray method and a coating method; and physical methods such as a sputtering method and a vacuum deposition method. Of these, the CVD method is preferable. As the CVD method, a normal pressure CVD method performed at normal pressure (atmospheric pressure) is preferable.

【0019】チタン酸化物膜8を構成する材料はチタン
酸化物であり、チタン酸化物としては、例えば、TiO
2 (チタニア)、チタニアより還元されているTiOx
(xは0より大きく2未満の数、好ましくは1.8〜
1.95);これらに不純物を添加したものが挙げられ
る。
The material forming the titanium oxide film 8 is titanium oxide, and examples of the titanium oxide include TiO 2.
2 (titania), TiO x reduced from titania
(X is a number greater than 0 and less than 2, preferably 1.8 to
1.95); those to which impurities are added can be mentioned.

【0020】チタン酸化物膜8は、厚さが5nm以上、
かつ、50nm以下である。厚さが5nm以上である
と、透明導電膜2と電荷輸送層5の液体等とが接するこ
とがないので好ましい。また、厚さが50nm以下であ
ると、生成した電子を効率よく透明導電膜2へ移動させ
ることができる。厚さが10nm以上であるのが好まし
く、また、30nm以下であるのが好ましい。
The titanium oxide film 8 has a thickness of 5 nm or more,
And it is 50 nm or less. The thickness of 5 nm or more is preferable because the transparent conductive film 2 and the liquid of the charge transport layer 5 do not come into contact with each other. Moreover, when the thickness is 50 nm or less, the generated electrons can be efficiently moved to the transparent conductive film 2. The thickness is preferably 10 nm or more, and preferably 30 nm or less.

【0021】チタン酸化物膜8の製膜方法は、特に限定
されず、例えば、常圧CVD法、スパッタ法、真空蒸着
法、湿式法、印刷法が挙げられる。中でも、常圧CVD
法、スパッタ法、真空蒸着法が好ましい。これらは、従
来公知の方法で用いることができる。常圧CVD法とし
ては、例えば、原料に四塩化チタン、エトキシチタン等
を用い、水または酸素を混合する方法が挙げられる。ス
パッタ法としては、例えば、TiターゲットまたはTi
2 を主成分とするターゲットを有するチャンバー中に
アルゴンと酸素の混合ガスまたは酸素ガスを導入し、D
CまたはRF電力を印加する方法が挙げられる。真空蒸
着法としては、例えば、TiO2 を原料としてEB蒸着
する方法が挙げられる。
The method for forming the titanium oxide film 8 is not particularly limited, and examples thereof include atmospheric pressure CVD method, sputtering method, vacuum vapor deposition method, wet method and printing method. Above all, atmospheric pressure CVD
Method, sputtering method, and vacuum deposition method are preferable. These can be used by a conventionally known method. Examples of the atmospheric pressure CVD method include a method in which titanium tetrachloride, ethoxytitanium, or the like is used as a raw material and water or oxygen is mixed. As the sputtering method, for example, Ti target or Ti
A mixed gas of argon and oxygen or an oxygen gas is introduced into a chamber having a target containing O 2 as a main component, and D
The method of applying C or RF electric power is mentioned. Examples of the vacuum vapor deposition method include a method of EB vapor deposition using TiO 2 as a raw material.

【0022】チタン酸化物膜8は、連続層であり、完全
に透明導電膜2の表面を被覆しているので、電荷輸送層
5の液体等が浸透せず、リーク電流が生じるのを防止す
る。なお、チタン酸化物膜8に細かい空間等の不連続部
分が残っていても、リーク電流が生じるのを実質的に防
止することができる範囲であれば、許容される。
Since the titanium oxide film 8 is a continuous layer and completely covers the surface of the transparent conductive film 2, the liquid or the like of the charge transport layer 5 does not permeate and prevents a leak current from occurring. . Note that even if a discontinuous portion such as a small space remains in the titanium oxide film 8, it is acceptable as long as it can substantially prevent a leak current from occurring.

【0023】チタン酸化物膜8は、本発明の透明導電性
基板9が後述する本発明の色素増感型太陽電池10に用
いられた場合に、透明導電膜2と電荷輸送層5とが接触
することを防止する役割を果たす。そのような役割を果
たす膜の材料としてチタン酸化物を用いる理由として
は、可視光に吸収が少なく、後述する色素4の太陽光吸
収の妨げにならないこと、化学的耐性に優れること、後
述するチタン酸化物微粒子3との親和性がよいこと、比
較的安価であること、取扱いが容易であること等が挙げ
られる。
The titanium oxide film 8 contacts the transparent conductive film 2 and the charge transport layer 5 when the transparent conductive substrate 9 of the present invention is used in the dye-sensitized solar cell 10 of the present invention described later. Play a role in preventing The reason why titanium oxide is used as the material of the film that plays such a role is that it has little absorption of visible light, does not interfere with the solar absorption of the dye 4 described below, has excellent chemical resistance, and titanium described below. It has good affinity with the oxide fine particles 3, is relatively inexpensive, and is easy to handle.

【0024】つぎに、本発明の色素増感型太陽電池につ
いて説明する。本発明の色素増感型太陽電池10は、図
1に示すように、上述した透明導電性基板9と、透明導
電性基板9のチタン酸化物膜8上のチタン酸化物微粒子
3の層と、チタン酸化物微粒子3の層に担持された色素
4と、色素4に接する電荷輸送層5と、電荷輸送層5に
接する対向電極7aを有する基板(第2の基板)7とを
具備する。
Next, the dye-sensitized solar cell of the present invention will be described. As shown in FIG. 1, the dye-sensitized solar cell 10 of the present invention includes the transparent conductive substrate 9 described above, a layer of titanium oxide fine particles 3 on the titanium oxide film 8 of the transparent conductive substrate 9, and It comprises a dye 4 supported on a layer of titanium oxide fine particles 3, a charge transport layer 5 in contact with the dye 4, and a substrate (second substrate) 7 having a counter electrode 7a in contact with the charge transport layer 5.

【0025】チタン酸化物微粒子3を構成する材料はチ
タン酸化物であり、チタン酸化物としては、例えば、T
iO2 (チタニア)、チタニアより還元されているTi
x(xは0より大きく2未満の数、好ましくは1.8
〜1.95);これらに不純物を添加したものが挙げら
れる。チタン酸化物膜8を構成するチタン酸化物と、チ
タン酸化物微粒子3を構成するチタン酸化物とは、同じ
であってもよく、異なっていてもよい。
The material forming the titanium oxide fine particles 3 is titanium oxide, and as the titanium oxide, for example, T
iO 2 (titania), Ti reduced from titania
O x (x is a number greater than 0 and less than 2, preferably 1.8)
˜1.95); those added with impurities are mentioned. The titanium oxide forming the titanium oxide film 8 and the titanium oxide forming the titanium oxide fine particles 3 may be the same or different.

【0026】チタン酸化物微粒子3は、粒径10nm以
上であるのが好ましく、また、30nm以下であるのが
好ましい。
The titanium oxide fine particles 3 preferably have a particle size of 10 nm or more, and preferably 30 nm or less.

【0027】チタン酸化物微粒子3の製造方法は、特に
限定されず、従来公知の方法を用いることができる。例
えば、ブレイクダウン法、ゾルゲル法が挙げられる。ゾ
ルゲル法は、色素の吸着に好適なヒドロキシ基を表面に
多く存在させることができる点で好ましい。
The method for producing the titanium oxide fine particles 3 is not particularly limited, and a conventionally known method can be used. For example, a breakdown method and a sol-gel method can be mentioned. The sol-gel method is preferable because many hydroxy groups suitable for adsorbing a dye can be present on the surface.

【0028】チタン酸化物微粒子3の層の厚さは、5μ
m以上であるのが好ましく、また、12μm以下である
のが好ましい。
The layer thickness of the titanium oxide fine particles 3 is 5 μm.
It is preferably m or more and 12 μm or less.

【0029】チタン酸化物微粒子3の層の形成方法は、
特に限定されず、従来公知の方法を用いることができ
る。チタン酸化物微粒子3をブレイクダウン法で合成し
て粉末として得た場合には、例えば、チタン酸化物微粒
子3の粉末の等電位点を考慮して、酸等でpHを調製し
ながら純水とともに混練し、更に界面活性剤を添加して
安定化したペーストを調製し、このペーストを透明導電
性基板9のチタン酸化物膜8上に塗布し乾燥させること
により、チタン酸化物微粒子3の層を形成させることが
できる。塗布方法としては、スキージ印刷法、スクリー
ン印刷法等を用いることができる。乾燥方法としては、
400℃以上で熱処理するのが好ましい。ただし、熱処
理の温度が高すぎると、チタン酸化物微粒子3の焼結が
進みすぎて多孔質とならなくなり、表面積が少なくなる
ので、担持されうる色素の量が減少し、太陽電池の変換
効率が低くなる。熱処理の温度は、チタン酸化物微粒子
3の色素が担持されうる部分の表面積が、投影面積の2
0倍以上となる温度であるのが好ましく、100倍以上
となる温度であるのがより好ましい。
The method for forming the layer of titanium oxide fine particles 3 is as follows.
There is no particular limitation, and a conventionally known method can be used. When the titanium oxide fine particles 3 are obtained as a powder by synthesizing by the breakdown method, for example, in consideration of the equipotential point of the powder of the titanium oxide fine particles 3, while adjusting the pH with an acid or the like, together with pure water. By kneading and further adding a surfactant to prepare a stabilized paste, the paste is applied onto the titanium oxide film 8 of the transparent conductive substrate 9 and dried to form a layer of the titanium oxide fine particles 3. Can be formed. As a coating method, a squeegee printing method, a screen printing method or the like can be used. As a drying method,
It is preferable to perform heat treatment at 400 ° C. or higher. However, if the temperature of the heat treatment is too high, the titanium oxide fine particles 3 are excessively sintered and become non-porous, and the surface area is reduced, so that the amount of the dye that can be supported is reduced and the conversion efficiency of the solar cell is reduced. Get lower. The heat treatment temperature is set such that the surface area of the portion of the titanium oxide fine particles 3 on which the dye can be carried is 2 times the projected area.
The temperature is preferably 0 times or more, more preferably 100 times or more.

【0030】また、チタン酸化物微粒子3をゾルゲル法
で合成してゾルとして得た場合には、例えば、チタン酸
化物微粒子3のゾルの粘度を溶媒の量等により調整し、
これを透明導電性基板9のチタン酸化物膜8上に塗布し
乾燥させることにより、チタン酸化物微粒子3の層を形
成させることができる。塗布方法および乾燥方法は、上
記と同様である。
When the titanium oxide fine particles 3 are synthesized by the sol-gel method to obtain a sol, for example, the viscosity of the sol of the titanium oxide fine particles 3 is adjusted by the amount of the solvent, etc.
By coating this on the titanium oxide film 8 of the transparent conductive substrate 9 and drying it, a layer of the titanium oxide fine particles 3 can be formed. The coating method and the drying method are the same as above.

【0031】色素4は、入射光を吸収して励起状態とな
り内部に正孔と電子との対を生じさせるものであれば特
に限定されないが、太陽光の波長域の吸収特性が良好な
ものが好ましい。また、チタン酸化物微粒子3に電子を
効率よく伝達するためには、色素4の最低空準位(LU
MO準位)がチタン酸化物微粒子3の伝導帯準位以上で
あるのが好ましい。具体的には、ルテニウム−トリス
型、ルテニウム−ビス型、オスミウム−トリス型、オス
ミニウム−ビス型の遷移金属錯体(例えば、ルテニウム
−シス−ビピリジル錯体);フタロシアニン;ポルフィ
リン;多環芳香族が挙げられる。中でも、チタン酸化物
微粒子3への吸着特性に優れる点で、色素4の配位子の
末端にカルボキシル基を有するものが好ましい。
The dye 4 is not particularly limited as long as it absorbs incident light and enters an excited state to generate a pair of holes and electrons inside, but one that has good absorption characteristics in the wavelength range of sunlight is used. preferable. Further, in order to efficiently transfer electrons to the titanium oxide fine particles 3, the lowest empty level (LU
The MO level) is preferably equal to or higher than the conduction band level of the titanium oxide fine particles 3. Specific examples include ruthenium-tris type, ruthenium-bis type, osmium-tris type, osmium-bis type transition metal complexes (for example, ruthenium-cis-bipyridyl complex); phthalocyanines; porphyrins; polycyclic aromatics. . Among them, those having a carboxyl group at the end of the ligand of the dye 4 are preferable in terms of excellent adsorption properties to the titanium oxide fine particles 3.

【0032】色素4をチタン酸化物微粒子3に担持させ
る方法は、特に限定されないが、例えば、色素4をアル
コール等の有機溶剤に溶解させて得られる溶液に、チタ
ン酸化物微粒子3の層を有する本発明の透明導電性基板
9を浸せきさせ、所定時間保持し、その後、乾燥させる
方法が挙げられる。また、浸せき後、還流装置に入れて
還流処理を施す方法も挙げられる。還流処理を施すこと
により、単に溶液に浸せきさせて保持するのに比べて、
短時間で十分な量の色素4をチタン酸化物微粒子3に吸
着させることができる。なお、色素4の一部がチタン酸
化物膜8の上に担持されても問題はない。
The method of supporting the dye 4 on the titanium oxide fine particles 3 is not particularly limited, but for example, a solution obtained by dissolving the dye 4 in an organic solvent such as alcohol has a layer of the titanium oxide fine particles 3. A method of immersing the transparent conductive substrate 9 of the present invention, holding it for a predetermined time, and then drying it can be mentioned. In addition, a method in which the material is immersed in a reflux apparatus and subjected to a reflux treatment is also exemplified. By performing a reflux treatment, compared to simply holding it by immersing it in a solution,
A sufficient amount of the dye 4 can be adsorbed on the titanium oxide fine particles 3 in a short time. There is no problem even if a part of the dye 4 is carried on the titanium oxide film 8.

【0033】色素4に接する電荷輸送層5は、イオン伝
導性物質またはそれを含有する材料であれば、液体、擬
似固体および固体のいずれであってもよい。ここで、
「擬似固体」とは、見かけ上流動性が少なく固体状に見
えるが、その電荷輸送特性は比較的液体に近い材料であ
り、例えば、ゲル化材料、溶融塩が挙げられる。イオン
伝導性物質としては、例えば、ヨウ化物、臭化物、キノ
ン錯体、TCNQ錯体等を含有する電解液;架橋ポリア
クリル樹脂誘導体、架橋ポリアクリロニトリル誘導体等
をマトリックスとして電解液を含浸させた高分子ゲル電
解質;ポリアルキレンオキサイド、シリコーン樹脂類等
に電解液を溶解させた高分子電解質;イミダゾリウム
塩、ピリジニウム塩等の高分子アンモニウム塩である溶
融塩電解質が挙げられる。また、固体ホール、電子伝導
材料等を用いることもできる。更に、各種金属フタロシ
アニン、ペリレンテトラカルボン酸、ペリレン、コロネ
ン等の多環芳香族、テトラチアフルバレン、テトラシア
ノキノジメタン等の電荷移動錯体等の結晶性材料、ジア
ミン系導電性高分子、オキサジアゾール系導電性高分
子、ポリピロール、ポリアニリン、ポリフェニレンビニ
レン等のアモルファス導電性高分子を用いることができ
る。
The charge transport layer 5 in contact with the dye 4 may be a liquid, a pseudo solid or a solid as long as it is an ion conductive substance or a material containing it. here,
The “pseudo-solid” is a material that has a low fluidity and looks like a solid, but its charge transport property is relatively close to a liquid, and examples thereof include gelling materials and molten salts. As the ion conductive substance, for example, an electrolytic solution containing iodide, bromide, quinone complex, TCNQ complex or the like; polymer gel electrolyte impregnated with the electrolytic solution using a crosslinked polyacrylic resin derivative, crosslinked polyacrylonitrile derivative or the like as a matrix A polymer electrolyte obtained by dissolving an electrolytic solution in a polyalkylene oxide, a silicone resin or the like; a molten salt electrolyte which is a polymer ammonium salt such as an imidazolium salt or a pyridinium salt. Alternatively, a solid hole, an electron conductive material, or the like can be used. Further, various metal phthalocyanines, perylene tetracarboxylic acids, polycyclic aromatic compounds such as perylene and coronene, crystalline materials such as charge transfer complexes such as tetrathiafulvalene and tetracyanoquinodimethane, diamine-based conductive polymers, and oxadiene. Amorphous conductive polymers such as azole-based conductive polymers, polypyrrole, polyaniline, and polyphenylene vinylene can be used.

【0034】電解液の場合は、十分な空孔率を有するシ
リカ、アルミナ、チタニア等の絶縁性で多孔質のセラミ
ックス;ポリフッ化ビニリデン等の有機物質の多孔質体
に含浸させた状態で用いることもできる。
In the case of an electrolytic solution, an insulating and porous ceramic having sufficient porosity such as silica, alumina, and titania; used in a state of being impregnated with a porous body of an organic substance such as polyvinylidene fluoride. You can also

【0035】電荷輸送層5が粘性が高い液体や、擬似固
体または固体である場合には、チタン酸化物膜8による
リーク電流の発生の防止の効果が大きくなる。電荷輸送
層5が電解液である場合、電解液中の電荷移動はイオン
伝導であるため、荷電粒子のリークが起こりにくい。一
方、電荷輸送層5が粘性が高い液体や、擬似固体または
固体である場合は、電子伝導による電荷移動が起こりや
すくなり、荷電粒子のリークが起こりやすくなる。した
がって、電荷輸送層5としてもともとリークが起こりや
すい、粘性が高い液体や、擬似固体または固体を用いる
際には、チタン酸化物膜微粒子3の層による透明導電膜
2の被覆が、リーク電流の防止の観点から、有用性がよ
り高くなるのである。
When the charge transport layer 5 is a highly viscous liquid, a pseudo solid, or a solid, the effect of preventing the generation of the leak current by the titanium oxide film 8 becomes great. When the charge transport layer 5 is an electrolytic solution, charge transfer in the electrolytic solution is ionic conduction, so that leakage of charged particles does not easily occur. On the other hand, when the charge transport layer 5 is a highly viscous liquid, a pseudo solid, or a solid, charge transfer due to electron conduction is likely to occur, and leakage of charged particles is likely to occur. Therefore, when a highly viscous liquid or pseudo solid or solid that originally tends to leak is used as the charge transport layer 5, coating the transparent conductive film 2 with the layer of the titanium oxide film fine particles 3 prevents leakage current. From the viewpoint of, the utility becomes higher.

【0036】対向電極7aを構成する導電膜としては、
その導電性等の観点から、白金、金、銀等の貴金属材
料;銅、アルミニウム等の金属材料を用いることができ
る。透過性を考慮すると、透明導電性材料を用いること
もできる。長期にわたる信頼性確保の観点から見れば、
白金、金、銀等の貴金属材料が好ましい。また、ITO
膜、フッ素ドープ酸化スズ膜等の透明導電膜を用いるこ
ともできる。また、この対向電極7aが形成される基板
7は、製造工程上要求される耐熱性、耐薬品性等を満足
するものであれば特に限定されないが、入射光をより多
く取り入れるためには、ガラス製、プラスチック製等の
透光性基板が好ましい。
As the conductive film forming the counter electrode 7a,
From the viewpoint of the conductivity and the like, a noble metal material such as platinum, gold and silver; a metal material such as copper and aluminum can be used. In consideration of transparency, a transparent conductive material can also be used. From the perspective of ensuring long-term reliability,
Noble metal materials such as platinum, gold and silver are preferred. Also, ITO
A transparent conductive film such as a film or a fluorine-doped tin oxide film can also be used. The substrate 7 on which the counter electrode 7a is formed is not particularly limited as long as it satisfies heat resistance, chemical resistance, etc. required in the manufacturing process. A light-transmissive substrate made of, for example, plastic or plastic is preferable.

【0037】本発明の色素増感型太陽電池10の製造方
法を以下に例示する。まず、透明導電性基板9のチタン
酸化物膜8上に、上述した方法によりチタン酸化物微粒
子3の層を形成させ、その後、上述した方法により色素
4をチタン酸化物微粒子3に担持させる。この後、電荷
輸送層5として液体を用いる場合には、対向電極7aを
有する基板7を配置した後に電荷輸送層5を注入し、電
荷輸送層5として擬似固体または固体を用いる場合に
は、電荷輸送層5を配置した後、対向電極7aを有する
基板7を配置する。
A method for manufacturing the dye-sensitized solar cell 10 of the present invention will be exemplified below. First, the layer of titanium oxide fine particles 3 is formed on the titanium oxide film 8 of the transparent conductive substrate 9 by the above-described method, and then the dye 4 is supported on the titanium oxide fine particles 3 by the above-described method. After that, when a liquid is used as the charge transport layer 5, the charge transport layer 5 is injected after disposing the substrate 7 having the counter electrode 7a, and when the charge transport layer 5 is a pseudo solid or a solid, After disposing the transport layer 5, the substrate 7 having the counter electrode 7a is disposed.

【0038】電荷輸送層5として液体を用いる場合に
は、スペーサ6を透明導電性基板9の周囲に配置しエポ
キシ系樹脂等で接着させた後、対向電極7aを有する基
板7を対向させて配置し、周囲を一部を除いてエポキシ
系樹脂等で封止する。更に、透明導電性基板9と対向電
極7aを有する基板7との間に、液体の電荷輸送層5を
注入する。この場合、あらかじめ調製した液体の電荷輸
送層5を入れた容器と、周囲を一部を除いて封止した透
明導電性基板9および対向電極7aを有する基板7と
を、ともに脱気容器内で、十分に脱気を行い、つぎに容
器内の透明導電性基板9および対向電極7aを有する基
板7の未封止の部分を液体の電荷輸送層5に接触させ
る。その後、脱気容器の真空を破って電解液を未封止の
部分から中に注入させる。十分に電解液の注入が完了し
た後、未封止の部分をエポキシ樹脂等で封止して、本発
明の色素増感型太陽電池10が得られる。
When a liquid is used as the charge transport layer 5, the spacer 6 is arranged around the transparent conductive substrate 9 and adhered with epoxy resin or the like, and then the substrate 7 having the counter electrode 7a is arranged so as to face it. Then, the periphery is partially removed and sealed with epoxy resin or the like. Further, the liquid charge transport layer 5 is injected between the transparent conductive substrate 9 and the substrate 7 having the counter electrode 7a. In this case, the container containing the liquid charge transport layer 5 prepared in advance and the transparent conductive substrate 9 and the substrate 7 having the counter electrode 7a which are sealed except for a part of the periphery thereof are both placed in a deaeration container. After sufficiently degassing, the transparent conductive substrate 9 in the container and the unsealed portion of the substrate 7 having the counter electrode 7a are brought into contact with the liquid charge transport layer 5. After that, the vacuum of the deaeration container is broken and the electrolytic solution is injected into the inside from the unsealed portion. After the injection of the electrolytic solution is sufficiently completed, the unsealed portion is sealed with an epoxy resin or the like to obtain the dye-sensitized solar cell 10 of the present invention.

【0039】また、電荷輸送層5として擬似固体または
固体を用いる場合には、スペーサ6を透明導電性基板9
の周囲に配置しエポキシ系樹脂等で接着させた後、色素
4を担持したチタン酸化物微粒子3の層の上に擬似固体
または粉末状、粒状もしくは板状の固体の電荷輸送層5
を常圧下または減圧下で適量配置する。その上に対向電
極7aを有する基板7を配置した後、その時点で常圧で
ある場合には脱気を行い、減圧下でガラス転移温度また
は融点以上の温度まで加熱しながら擬似固体または固体
の電荷輸送層5を溶融させ、チタン酸化物微粒子3の層
の内部に電解質を含浸させた後、大気圧に戻し冷却す
る。これにより、電荷輸送層5とチタン酸化物微粒子3
の層との良好な接合を実現することができる。なお、脱
気容器中で加熱し電解質を溶融している間、適当な荷重
をかけてもよい。最後に、周囲をエポキシ系樹脂等で封
止して、本発明の色素増感型太陽電池10が得られる。
When a pseudo solid or solid is used as the charge transport layer 5, the spacer 6 is used as the transparent conductive substrate 9.
And is adhered with an epoxy resin or the like on the periphery thereof, and then a pseudo solid or powdery, granular or plate-like solid charge transport layer 5 is formed on the layer of the titanium oxide fine particles 3 carrying the dye 4.
Is placed under normal pressure or reduced pressure. After arranging the substrate 7 having the counter electrode 7a thereon, if atmospheric pressure is present at that time, deaeration is performed, and heating is performed under reduced pressure to a glass transition temperature or a temperature equal to or higher than the melting point, and a pseudo solid or solid After the charge transport layer 5 is melted and the inside of the layer of the titanium oxide fine particles 3 is impregnated with the electrolyte, it is returned to atmospheric pressure and cooled. Thereby, the charge transport layer 5 and the titanium oxide fine particles 3
It is possible to achieve a good bond with the layer. An appropriate load may be applied while the electrolyte is melted by heating in a degassing container. Finally, the periphery is sealed with epoxy resin or the like to obtain the dye-sensitized solar cell 10 of the present invention.

【0040】なお、電荷輸送層5として液体を用いる場
合にも、擬似固体または固体を用いる場合と同様の方法
を用いて、本発明の色素増感型太陽電池10を得てもよ
い。
Even when a liquid is used as the charge transport layer 5, the dye-sensitized solar cell 10 of the present invention may be obtained by using the same method as in the case of using a pseudo solid or a solid.

【0041】本発明の透明導電性基板9を用いた本発明
の色素増感型太陽電池10においては、チタン酸化物膜
8により透明導電膜2の表面を被覆しているので、透明
導電膜2と電荷輸送層5とが接触することなく、従来の
色素増感型太陽電池で生じていたリーク電流を抑制する
ことができる。したがって、本発明の色素増感型太陽電
池10においては、Jsc(短絡電流密度)、Voc
(開放端子電圧)およびFF(フィルファクター)がい
ずれも増大し、その結果、変換効率が向上する。
In the dye-sensitized solar cell 10 of the present invention using the transparent conductive substrate 9 of the present invention, since the surface of the transparent conductive film 2 is covered with the titanium oxide film 8, the transparent conductive film 2 The leak current generated in the conventional dye-sensitized solar cell can be suppressed without making contact with the charge transport layer 5. Therefore, in the dye-sensitized solar cell 10 of the present invention, Jsc (short circuit current density), Voc
Both (open terminal voltage) and FF (fill factor) increase, and as a result, conversion efficiency improves.

【0042】このリーク電流を抑制する効果は、電荷輸
送層5が無機系またはポリマー系の完全固体電解質であ
る場合に、特に重要性が大きい。透明導電膜2からヨウ
素系電解液等への荷電粒子リークは、p型半導体である
完全固体電解質のような正孔輸送層では容易に起こり得
るからである。
The effect of suppressing the leak current is particularly important when the charge transport layer 5 is an inorganic or polymer perfect solid electrolyte. This is because leakage of charged particles from the transparent conductive film 2 to the iodine-based electrolytic solution or the like can easily occur in a hole transport layer such as a completely solid electrolyte that is a p-type semiconductor.

【0043】本発明の透明導電性基板9を用いた本発明
の色素増感型太陽電池10は、上述したように、従来の
色素増感型太陽電池よりも変換効率が高いうえ、従来の
色素増感型太陽電池と同様に、簡易に安価で製造するこ
とができる。
As described above, the dye-sensitized solar cell 10 of the present invention using the transparent conductive substrate 9 of the present invention has a higher conversion efficiency than the conventional dye-sensitized solar cell and the conventional dye. Like the sensitized solar cell, it can be easily manufactured at low cost.

【0044】以上、本発明の好適な実施態様である透明
導電性基板および色素増感型太陽電池について説明した
が、本発明は、以上の例には限定されず、本発明の要旨
を逸脱しない範囲において、各種の改良や変更を行って
もよい。
Although the transparent conductive substrate and the dye-sensitized solar cell which are the preferred embodiments of the present invention have been described above, the present invention is not limited to the above examples and does not depart from the gist of the present invention. Various improvements and changes may be made within the range.

【0045】[0045]

【実施例】(実施例1) 1.透明導電性基板の製造 アルカリバリアー層(基板からのアルカリ成分の拡散を
防止する層)として厚さ約50nmのシリカ膜が形成さ
れたソーダライムガラス基板(30cm×40cm×
1.1mm)を用意し、十分に洗浄を行った後、常圧C
VD法により四塩化スズと水との加水分解反応を行っ
て、酸化スズ透明導電膜(フッ素ドープ酸化スズ膜)を
形成させた。具体的には、以下の手順で行った。四塩化
スズを55℃に保持したバブラータンクに入れ、ボンベ
から窒素を導入して気化させた。水は100℃以上に保
持したボイラーから供給した。両者をそれぞれ150℃
に加熱した後、150℃に保温した導管を経由して、イ
ンジェクター本体に輸送し、混合させた。混合比(mo
l比)は、四塩化スズ/水=1/10とした。インジェ
クター本体の温度は熱媒体(油)により約150℃に保
持した。混合したガスをインジェクター吐出部から約5
00℃のガラス基板に吐出させ、ガラス基板表面に酸化
スズ透明導電膜を形成させた。
[Example] (Example 1) 1. Production of transparent conductive substrate Soda lime glass substrate (30 cm x 40 cm x) on which a silica film having a thickness of about 50 nm was formed as an alkali barrier layer (a layer for preventing diffusion of alkali components from the substrate).
1.1 mm) is prepared and thoroughly washed, and then atmospheric pressure C
A hydrolysis reaction of tin tetrachloride and water was performed by the VD method to form a tin oxide transparent conductive film (fluorine-doped tin oxide film). Specifically, the procedure was as follows. Tin tetrachloride was placed in a bubbler tank kept at 55 ° C., and nitrogen was introduced from a cylinder to vaporize it. Water was supplied from a boiler maintained at 100 ° C or higher. 150 ° C for both
After heating to 100 ° C., it was transported to the injector body via a conduit kept at 150 ° C. and mixed. Mixing ratio (mo
The ratio (l ratio) was tin tetrachloride / water = 1/10. The temperature of the injector main body was kept at about 150 ° C. by the heat medium (oil). Approximately 5 mixed gas from the injector discharge part
It was discharged onto a glass substrate at 00 ° C. to form a tin oxide transparent conductive film on the surface of the glass substrate.

【0046】得られた酸化スズ透明導電膜は、フッ素含
有量が酸化スズに対し1.0mol%であり、電導電子
濃度が1.8×1020cm-3であり、比抵抗が5.8×
10 -4Ω・cmであった。なお、フッ素含有量は、酸化
スズ透明導電膜を亜鉛を含有する塩酸に溶解させ、ガス
クロマトグラフィーにより定量分析を行うことによって
得た。また、電導電子密度および比抵抗は、ホール効果
(van der Pauw法)の測定により求めた。
The obtained transparent conductive film of tin oxide contains fluorine.
The content is 1.0 mol% with respect to tin oxide,
Concentration is 1.8 × 1020cm-3And the specific resistance is 5.8 ×
10 -FourIt was Ω · cm. The fluorine content is
Dissolve tin transparent conductive film in hydrochloric acid containing zinc,
By performing a quantitative analysis by chromatography
Obtained. In addition, the electron conductor density and the specific resistance depend on the Hall effect.
(Van der Pauw method).

【0047】ついで、ガラス基板の透明導電膜上に、ス
パッタ法により、チタン酸化物膜であるチタニア膜(T
iO2 膜)を形成させ、透明導電性基板を得た。具体的
には以下の手順で行った。真空装置をあらかじめ排気し
て内部圧力を10-5Torr(1.33×10-3Pa)
以下にした後、Ar/O2 ガス(mol比50/50)
を導入して内部圧力を0.01Torr(1.33P
a)にした。その後、チタンターゲットに1W/cm2
の電力を印加して、スパッタリングを行い、チタニア膜
を形成させた。電源としては直流電源を用いた。チタニ
ア膜の膜厚は、スパッタ時間を調整して10nmとし
た。なお、チタニア膜の膜厚の測定は、触針式膜厚計を
用いて行った。また、得られた膜の表面分析を光電子分
光法により行い、Tiのピーク位置からチタニアの存在
を確認した。
Then, a titania film (T), which is a titanium oxide film, is formed on the transparent conductive film of the glass substrate by a sputtering method.
An iO 2 film) was formed to obtain a transparent conductive substrate. Specifically, the procedure was as follows. The vacuum device was evacuated in advance and the internal pressure was 10 −5 Torr (1.33 × 10 −3 Pa).
After the following, Ar / O 2 gas (molar ratio 50/50)
Was introduced to adjust the internal pressure to 0.01 Torr (1.33P
a). After that, apply 1 W / cm 2 to the titanium target.
Power was applied to perform sputtering to form a titania film. A DC power supply was used as the power supply. The thickness of the titania film was set to 10 nm by adjusting the sputtering time. The thickness of the titania film was measured with a stylus type film thickness meter. The surface of the obtained film was analyzed by photoelectron spectroscopy, and the presence of titania was confirmed from the peak position of Ti.

【0048】2.色素増感型太陽電池の製造 濃度25質量%のポリエチレングリコール(PEG)水
溶液に、平均粒径24nmのチタニア微粒子と平均粒径
11nmのチタニア微粒子とを、質量比が8:2となる
ように添加してチタニアペーストを得た。チタン酸化物
微粒子としてチタニア微粒子を含有する上記チタニアペ
ーストを、上記で得られた透明導電性基板のチタニア膜
上に、塗布厚が約100μmとなるように塗布した。そ
の後、室温で乾燥させ、更に、450℃で30分間焼結
処理を行い、チタニア微粒子層を形成させた。焼結後の
チタニア微粒子層の厚さは約10μmであった。その
後、チタニア結晶粒子の点接触部分を補強し、かつ、短
絡点を被覆する目的でチタニア微粒子層をターシャリー
ブチルピリジンにて処理した。その後、ルテニウム−ビ
ス型錯体〔Ru(4,4′−ジカルボキシル−2,2′
−ビピリジン)2 (NCS)2 〕の乾燥エタノール溶液
(3×10-4mol/L)に12時間浸せきさせた後、
アルゴン気流中で引き上げることにより、チタニア微粒
子層の表面にルテニウム−ビス型錯体を担持させた。
2. Production of dye-sensitized solar cell To a polyethylene glycol (PEG) aqueous solution having a concentration of 25% by mass, fine particles of titania having an average particle diameter of 24 nm and fine particles of titania having an average particle diameter of 11 nm were added in a mass ratio of 8: 2. Then, a titania paste was obtained. The titania paste containing the titania fine particles as titanium oxide fine particles was applied onto the titania film of the transparent conductive substrate obtained above so that the application thickness was about 100 μm. Then, it was dried at room temperature and further sintered at 450 ° C. for 30 minutes to form a titania fine particle layer. The thickness of the titania fine particle layer after sintering was about 10 μm. Then, the titania fine particle layer was treated with tertiary butyl pyridine for the purpose of reinforcing the point contact portion of the titania crystal particles and covering the short-circuit point. Then, a ruthenium-bis type complex [Ru (4,4'-dicarboxyl-2,2 '
-Bipyridine) 2 (NCS) 2 ] in a dry ethanol solution (3 × 10 -4 mol / L) for 12 hours,
The ruthenium-bis type complex was supported on the surface of the titania fine particle layer by pulling it up in an argon stream.

【0049】更に、直径50μmのガラススペーサ(ハ
イミラン、Dupont社製)をチタニア膜上のチタニ
ア微粒子層のない部分に配置し、その上から対向電極を
有する基板を対向させて配置し、周囲を一部を除いてエ
ポキシ系樹脂で封止した。なお、対向電極を有する基板
としては、ガラス基板上に厚さ1μmのITO膜を形成
させ、その上に厚さ100nmの白金をスパッタ法によ
り形成させた、シート抵抗が10Ω/□以下の導電膜付
き基板を用いた。更に、透明導電性基板と対向電極を有
する基板との間に、下記電解液Aを注入した。この際、
あらかじめ調製した電解液Aを入れた容器と、周囲を一
部を除いて封止した透明導電性基板および対向電極を有
する基板とを、ともに脱気容器内で、十分に脱気を行
い、つぎに容器内の透明導電性基板および対向電極を有
する基板の未封止の部分を電解液Aに接触させた。その
後、脱気容器の真空を破って電解液Aを未封止の部分か
ら中に注入させた。十分に電解液Aの注入が完了した
後、未封止の部分をエポキシ樹脂で封止して、色素増感
型太陽電池を得た。
Further, a glass spacer having a diameter of 50 μm (Himilan, manufactured by Dupont) is arranged on a portion of the titania film where there is no titania fine particle layer, and a substrate having a counter electrode is arranged on the titania film so as to face it, and the periphery is made uniform. It was sealed with an epoxy resin except for the part. As a substrate having a counter electrode, a conductive film having a sheet resistance of 10 Ω / □ or less, which is formed by forming an ITO film having a thickness of 1 μm on a glass substrate and forming platinum having a thickness of 100 nm on the ITO film by a sputtering method. The attached substrate was used. Further, the following electrolytic solution A was injected between the transparent conductive substrate and the substrate having the counter electrode. On this occasion,
A container containing the electrolytic solution A prepared in advance and a substrate having a transparent conductive substrate and a counter electrode, the periphery of which was sealed except for a part thereof, were sufficiently deaerated in a deaeration container, and then The unsealed portions of the transparent conductive substrate and the substrate having the counter electrode in the container were brought into contact with the electrolytic solution A. After that, the vacuum of the deaeration container was broken and the electrolytic solution A was injected into the inside from the unsealed portion. After the injection of the electrolytic solution A was sufficiently completed, the unsealed portion was sealed with an epoxy resin to obtain a dye-sensitized solar cell.

【0050】<電解液A> 溶媒:アセトニトリル ヨウ素:45mmol/L ヨウ化リチウム:30mmol/L 1,2−ジメチル−3−ヘキシルイミダゾリウムアイオ
ダイド(DMHImI):330mmol/L
<Electrolytic Solution A> Solvent: Acetonitrile Iodine: 45 mmol / L Lithium iodide: 30 mmol / L 1,2-Dimethyl-3-hexylimidazolium iodide (DMHImI): 330 mmol / L

【0051】3.色素増感型太陽電池の性能評価 上記で得られた色素増感型太陽電池に、キセノン照射装
置を用いてAM1.5の擬似太陽光を82mW/cm2
の強度で照射して、Jsc、VocおよびFFを求め、
変換効率を算出した。
3. Performance evaluation of dye-sensitized solar cell To the dye-sensitized solar cell obtained above, a simulated sunlight of AM1.5 was used at 82 mW / cm 2 using a xenon irradiation device.
Irradiation with the intensity of Jsc, Voc and FF,
The conversion efficiency was calculated.

【0052】(実施例2)電解液Aの代わりに下記電解
液Bを用いた以外は、実施例1と同様の方法により、色
素増感型太陽電池を得た。その後、実施例1と同様の方
法により、性能評価を行った。 <電解液B> 溶媒:アセトニトリルと炭酸プロピレンの混合溶媒(ア
セトニトリル/炭酸プロピレン=2/8) ヨウ素:60mmol/L テトラプロピルアンモニウムヨーダイド:460mmo
l/L
(Example 2) A dye-sensitized solar cell was obtained in the same manner as in Example 1 except that the electrolytic solution B described below was used instead of the electrolytic solution A. Then, the performance evaluation was performed in the same manner as in Example 1. <Electrolytic solution B> Solvent: Mixed solvent of acetonitrile and propylene carbonate (acetonitrile / propylene carbonate = 2/8) Iodine: 60 mmol / L Tetrapropylammonium iodide: 460 mmo
l / L

【0053】(実施例3)初めに、チタニア膜の膜厚を
30nmとした以外は、実施例1と同様の方法により、
透明導電性基板を得た。ついで、実施例1と同様の方法
により、チタニア微粒子層を形成させ、更に、チタニア
微粒子層の表面にルテニウム−ビス型錯体を担持させ
た。更に、直径50μmのガラススペーサ(ハイミラ
ン、Dupont社製)をチタニア膜上のチタニア微粒
子層のない部分に配置し、エポキシ系樹脂で接着させ
た。その後、ルテニウム−ビス型錯体を担持するチタン
酸化物微粒子の層の上に電解液Cを減圧下で配置した。
その上に、実施例1と同様の対向電極を有する基板を配
置した後、エポキシ樹脂で封止して、色素増感型太陽電
池を得た。その後、実施例1と同様の方法により、性能
評価を行った。なお、電解液Cは固体電解質に近く、熱
的安定性に優れる。 <電解液C> EMI−I(エチルメチルイミダゾリウムアイオダイ
ド):I2 =4:1(2mol/L)の室温溶融塩電解
質(イオン性液体)
(Example 3) First, the same method as in Example 1 was repeated except that the thickness of the titania film was changed to 30 nm.
A transparent conductive substrate was obtained. Then, a titania fine particle layer was formed by the same method as in Example 1, and further a ruthenium-bis type complex was supported on the surface of the titania fine particle layer. Further, a glass spacer having a diameter of 50 μm (Himilan, manufactured by Dupont) was placed on a portion of the titania film where the titania fine particle layer was not present, and was bonded with an epoxy resin. Then, the electrolytic solution C was placed under reduced pressure on the layer of titanium oxide fine particles supporting the ruthenium-bis type complex.
A substrate having a counter electrode similar to that of Example 1 was placed thereon and then sealed with an epoxy resin to obtain a dye-sensitized solar cell. Then, the performance evaluation was performed in the same manner as in Example 1. The electrolytic solution C is close to a solid electrolyte and is excellent in thermal stability. <Electrolytic Solution C> EMI-I (ethylmethylimidazolium iodide): I 2 = 4: 1 (2 mol / L) room temperature molten salt electrolyte (ionic liquid)

【0054】(比較例1〜3)チタン酸化物膜を製膜し
なかった以外は、実施例1〜3と同様の方法により、色
素増感型太陽電池を得た。その後、実施例1と同様の方
法により、性能評価を行った。
Comparative Examples 1 to 3 Dye-sensitized solar cells were obtained in the same manner as in Examples 1 to 3 except that the titanium oxide film was not formed. Then, the performance evaluation was performed in the same manner as in Example 1.

【0055】各色素増感型太陽電池の性能評価の結果を
第1表に示す。本発明の透明導電性基板を用いた本発明
の色素増感型太陽電池(実施例1〜3)は、それぞれ同
じ電解液を用いた、チタン酸化物膜を有しない従来の色
素増感型太陽電池(比較例1〜3)と比べて、変換効率
が高いことが分かる。チタン酸化物膜を設けることによ
りJsc、VocおよびFFが増大したことから、チタ
ン酸化物膜には透明導電膜から電荷輸送層へのリーク電
流を抑制する効果があることが分かる。特に、電解液と
して粘性が高いイオン性液体を用いた場合(実施例3お
よび比較例3)において、チタン酸化物膜の効果がより
顕著に見られた。これは電解液の濃度が高く粘性が高い
ために、電子伝導による電荷移動が起こりやすくなり、
荷電粒子のリークが起こりやすくなるからであると考え
られる。
The results of the performance evaluation of each dye-sensitized solar cell are shown in Table 1. The dye-sensitized solar cells of the present invention (Examples 1 to 3) using the transparent conductive substrate of the present invention are conventional dye-sensitized solar cells that do not have a titanium oxide film and use the same electrolytic solution. It can be seen that the conversion efficiency is higher than that of the batteries (Comparative Examples 1 to 3). Since Jsc, Voc, and FF were increased by providing the titanium oxide film, it can be seen that the titanium oxide film has an effect of suppressing the leak current from the transparent conductive film to the charge transport layer. In particular, when an ionic liquid having high viscosity was used as the electrolytic solution (Example 3 and Comparative Example 3), the effect of the titanium oxide film was more remarkable. This is because the concentration of the electrolyte is high and the viscosity is high, so that charge transfer due to electron conduction easily occurs,
It is considered that this is because leakage of charged particles is likely to occur.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【発明の効果】本発明の色素増感型太陽電池は、従来の
色素増感型太陽電池よりも変換効率が高く、極めて有用
である。また、本発明の色素増感型太陽電池は、容易に
安価で製造することができる。本発明の透明導電性基板
は、本発明の色素増感型太陽電池に好適に用いられる。
The dye-sensitized solar cell of the present invention has a higher conversion efficiency than conventional dye-sensitized solar cells and is extremely useful. Further, the dye-sensitized solar cell of the present invention can be easily manufactured at low cost. The transparent conductive substrate of the present invention is suitably used for the dye-sensitized solar cell of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の透明導電性基板を用いた本発明の色
素増感型太陽電池の一態様の断面模式図である。
FIG. 1 is a schematic sectional view of an embodiment of the dye-sensitized solar cell of the present invention using the transparent conductive substrate of the present invention.

【図2】 従来の色素増感型太陽電池の断面模式図であ
る。
FIG. 2 is a schematic sectional view of a conventional dye-sensitized solar cell.

【符号の説明】 1、11 透光性基板 2、12 透明導電膜 3、13 チタン酸化物微粒子 4、14 色素 5、15 電荷輸送層 6、16 スペーサ 7、17 基板 7a、17a 対向電極 8 チタン酸化物膜 9 透明導電性基板 10、20 色素増感型太陽電池[Explanation of symbols] 1, 11 translucent substrate 2,12 transparent conductive film 3,13 Titanium oxide fine particles 4,14 dye 5, 15 Charge transport layer 6, 16 spacer 7, 17 substrate 7a, 17a Counter electrode 8 Titanium oxide film 9 Transparent conductive substrate 10, 20 Dye-sensitized solar cell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神戸 美花 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 (72)発明者 種田 直樹 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 5F051 AA01 FA03 GA03 GA06 5G307 FA03 FB01 FC10 5H032 AA06 AS16 EE16 HH01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kobe Mika             1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa             Asahi Glass Co., Ltd. (72) Inventor Naoki Taneda             1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa             Asahi Glass Co., Ltd. F-term (reference) 5F051 AA01 FA03 GA03 GA06                 5G307 FA03 FB01 FC10                 5H032 AA06 AS16 EE16 HH01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】透光性基板と、該透光性基板上の透明導電
膜と、該透明導電膜上の厚さ5〜50nmのチタン酸化
物膜とを具備する透明導電性基板。
1. A transparent conductive substrate comprising a transparent substrate, a transparent conductive film on the transparent substrate, and a titanium oxide film having a thickness of 5 to 50 nm on the transparent conductive film.
【請求項2】前記透明導電膜が酸化スズ膜である請求項
1に記載の透明導電性基板。
2. The transparent conductive substrate according to claim 1, wherein the transparent conductive film is a tin oxide film.
【請求項3】前記酸化スズ膜が、フッ素を酸化スズに対
し0.1〜4mol%含有し、電導電子密度が5×10
19〜4×1020cm-3である請求項2に記載の透明導電
性基板。
3. The tin oxide film contains fluorine in an amount of 0.1 to 4 mol% with respect to tin oxide, and has an electric conductor density of 5 × 10 5.
The transparent conductive substrate according to claim 2, having a size of 19 to 4 × 10 20 cm −3 .
【請求項4】請求項1〜3のいずれかに記載の透明導電
性基板と、該透明導電性基板の前記チタン酸化物膜上の
チタン酸化物微粒子層と、該チタン酸化物微粒子層に担
持された色素と、該色素に接する電荷輸送層と、該電荷
輸送層に接する対向電極を有する基板とを具備する色素
増感型太陽電池。
4. The transparent conductive substrate according to claim 1, a titanium oxide fine particle layer on the titanium oxide film of the transparent conductive substrate, and a support on the titanium oxide fine particle layer. Dye-sensitized solar cell comprising the dye, a charge transport layer in contact with the dye, and a substrate having a counter electrode in contact with the charge transport layer.
JP2001350105A 2001-11-15 2001-11-15 Transparent conductive board and pigment sensitized solar battery Withdrawn JP2003151355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350105A JP2003151355A (en) 2001-11-15 2001-11-15 Transparent conductive board and pigment sensitized solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350105A JP2003151355A (en) 2001-11-15 2001-11-15 Transparent conductive board and pigment sensitized solar battery

Publications (1)

Publication Number Publication Date
JP2003151355A true JP2003151355A (en) 2003-05-23

Family

ID=19162679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350105A Withdrawn JP2003151355A (en) 2001-11-15 2001-11-15 Transparent conductive board and pigment sensitized solar battery

Country Status (1)

Country Link
JP (1) JP2003151355A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112057A1 (en) * 2003-06-17 2004-12-23 Nippon Sheet Glass Company, Limited Transparent conductive substrate, process for producing the same and photoelectric converter
JP2006032227A (en) * 2004-07-20 2006-02-02 Kyushu Institute Of Technology Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
KR100987468B1 (en) 2008-03-25 2010-10-13 재단법인서울대학교산학협력재단 Transparent conductive multilayer, method of manufacturing the same, and solar cell, water decomposition device, photo-catalyst device and low-emissive glass using the same
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2013047244A1 (en) * 2011-09-29 2013-04-04 国立大学法人大阪大学 Substrate with conductive layer
JP2016517187A (en) * 2013-05-06 2016-06-09 グレートセル ソーラー エス.エー. Organic-inorganic perovskite solar cells
JP2016530703A (en) * 2013-07-01 2016-09-29 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Solar cell and manufacturing method thereof
JP2016207697A (en) * 2015-04-15 2016-12-08 シャープ株式会社 Solar charger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423136C (en) * 2003-06-17 2008-10-01 日本板硝子株式会社 Transparent conductive substrate, process for producing the same and photoelectric converter
US7585567B2 (en) 2003-06-17 2009-09-08 Nippon Sheet Glass Company, Limited Transparent conductive substrate, method of manufacturing the same, and photoelectric conversion element
WO2004112057A1 (en) * 2003-06-17 2004-12-23 Nippon Sheet Glass Company, Limited Transparent conductive substrate, process for producing the same and photoelectric converter
JP2006032227A (en) * 2004-07-20 2006-02-02 Kyushu Institute Of Technology Dye-sensitized solar cell
KR100987468B1 (en) 2008-03-25 2010-10-13 재단법인서울대학교산학협력재단 Transparent conductive multilayer, method of manufacturing the same, and solar cell, water decomposition device, photo-catalyst device and low-emissive glass using the same
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2013047244A1 (en) * 2011-09-29 2013-04-04 国立大学法人大阪大学 Substrate with conductive layer
JP2016517187A (en) * 2013-05-06 2016-06-09 グレートセル ソーラー エス.エー. Organic-inorganic perovskite solar cells
JP2016530703A (en) * 2013-07-01 2016-09-29 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Solar cell and manufacturing method thereof
JP2016207697A (en) * 2015-04-15 2016-12-08 シャープ株式会社 Solar charger

Similar Documents

Publication Publication Date Title
US20070095390A1 (en) Solar cell and manufacturing method thereof
Wang et al. Highly efficient poly (3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode
KR101166018B1 (en) Method for modifying surface of a counter electrode and surface-modified counter electrode
US20050016578A1 (en) Photoelectric conversion device fabrication method, photoelectric conversion device, electronic apparatus manufacturing method, electronic apparatus, metal film formation method and layer structure, and semiconductor fine particle layer and layer structure
US20100116340A1 (en) Dye sensitized photoelectric conversion device and manufacturing method thereof, electronic equipment, and semiconductor electrode and manufacturing method thereof
US20100255632A1 (en) Photoelectric conversion device, its manufacturing method, electronic apparatus, its manufacturing method, semiconductor layer, and its manufacturing method
US20110132461A1 (en) Dye-sensitized photoelectric conversion element and method for manufacturing the same and electronic apparatus
US20080210296A1 (en) Dye-Sensitized Photovoltaic Device, Method for Making the Same, Electronic Device, Method for Making the Same, and Electronic Apparatus
WO2005112183A1 (en) Photoelectric conversion element and semiconductor electrode
JP2001093591A (en) Photoelectric conversion device
CN102150322A (en) Photoelectric conversion element, method of manufacturing therefor, and electronic device
CN102194576A (en) Photoelectric conversion element and method of manufacturing the same, and electronic apparatus
JP3544888B2 (en) Photosensitized solar cell
US20140174524A1 (en) Photoelectric conversion element, method for manufacturing the same, electronic apparatus, counter electrode for photoelectric conversion element, and architecture
JP2003151355A (en) Transparent conductive board and pigment sensitized solar battery
JP2003297443A (en) Photoelectric conversion oxide semiconductor electrode and dye-sensitized solar battery
JP3505400B2 (en) Photochemical battery and method of manufacturing the same
WO2012041010A1 (en) Solar cell electrolyte and application thereof
JP2003257506A (en) Electrolyte composition, photoelectric transducer and photoelectric cell
JP2004319130A (en) Manufacturing method of photoelectric transfer device, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of semiconductor particulate layer and laminate structure
JP2004319131A (en) Manufacturing method of photoelectric transfer element, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of metal membrane and laminate structure
Li et al. Synergistic passivation with multi-dentate 2, 6-pyridinedicarboxylic acid for high-performance perovskite solar cells
JP2003297442A (en) Photoelectric conversion oxide semiconductor electrode and dye-sensitized solar battery
JP2002184477A (en) Optical semiconductor electrode, its method of manufacture, and photoelectric conversion element using the same
JP4819373B2 (en) Electrolyte composition, dye-sensitized solar cell and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060831

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060831