JP2003137656A - Boron carbide-titanium diboride sintered compact, and production method therefor - Google Patents

Boron carbide-titanium diboride sintered compact, and production method therefor

Info

Publication number
JP2003137656A
JP2003137656A JP2001341205A JP2001341205A JP2003137656A JP 2003137656 A JP2003137656 A JP 2003137656A JP 2001341205 A JP2001341205 A JP 2001341205A JP 2001341205 A JP2001341205 A JP 2001341205A JP 2003137656 A JP2003137656 A JP 2003137656A
Authority
JP
Japan
Prior art keywords
boron carbide
powder
titanium diboride
sintered body
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001341205A
Other languages
Japanese (ja)
Other versions
JP3686029B2 (en
Inventor
Kiyoshi Hirao
喜代司 平尾
Shuji Sakaguchi
修司 阪口
Yukihiko Yamauchi
幸彦 山内
Shuzo Kanzaki
修三 神崎
Suzuya Yamada
鈴弥 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001341205A priority Critical patent/JP3686029B2/en
Application filed by Fine Ceramics Research Association, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fine Ceramics Research Association
Priority to EP02780026.7A priority patent/EP1452509B9/en
Priority to CN02822179.6A priority patent/CN1256301C/en
Priority to EP07023698A priority patent/EP1892227B1/en
Priority to PCT/JP2002/011577 priority patent/WO2003040060A1/en
Priority to US10/493,222 priority patent/US20050059541A1/en
Publication of JP2003137656A publication Critical patent/JP2003137656A/en
Application granted granted Critical
Publication of JP3686029B2 publication Critical patent/JP3686029B2/en
Priority to US11/477,433 priority patent/US20060247120A1/en
Priority to US11/618,020 priority patent/US7442661B2/en
Priority to US11/927,024 priority patent/US7417002B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a boron carbide-titanium diboride sintered compact which has high four point bending strength, and to provide a production method therefor. SOLUTION: The boron carbide-titanium diboride sintered compact is obtained by sintering a powdery mixture of boron carbide (B4 C) powder, titanium dioxide (TiO2 ) powder, and carbon (C) powder while they are reacted under the compacting condition. The sintered compact consists of 95 to 70 mol% boron carbide and 5 to 30 mol% titanium diboride, and the maximum grain diameter of the boron carbide is <=5 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高い強度を有する
炭化硼素系焼結体、及びその製造方法に関するものであ
り、更に詳しくは、高い密度を有し、従来得られなかっ
た高い四点曲げ強さを有すると共に、二硼化チタン粒子
が、炭化硼素マトリックス中に均一に分散し、二硼化チ
タン粒子の凝集・分散状態が均質で良好であり、破壊靱
性が改善された炭化硼素−二硼化チタン焼結体、及びそ
れを効率よく製造する方法に関するものである。本発明
の炭化硼素−二硼化チタン焼結体は、炭化硼素系焼結体
の幅広い用途を実現することを可能にするものとして有
用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boron carbide-based sintered body having high strength, and a method for producing the same, and more specifically, it has high density and high four-point bending which has not been obtained conventionally. In addition to having strength, the titanium diboride particles are uniformly dispersed in the boron carbide matrix, the titanium diboride particles are in a uniform and good state of aggregation and dispersion, and the fracture toughness is improved. The present invention relates to a titanium boride sintered body and a method for efficiently producing the same. INDUSTRIAL APPLICABILITY The boron carbide-titanium diboride sintered body of the present invention is useful as a material that makes it possible to realize a wide range of applications for boron carbide-based sintered bodies.

【0002】[0002]

【従来の技術】一般に、炭化硼素焼結体は、軽量で高い
硬度を有し、耐摩耗性や耐腐食性に優れた材料として、
その幅広い用途が期待されているものであり、現状で
は、例えば、サンドブラストノズル、線引きダイス、押
し出しダイス等に使用されている。しかしながら、一方
では、この炭化硼素焼結体は、低強度であるという欠点
を有している。例えば、K. A. Schwetz, J. Solid Stat
e Chemistry, 133, 177-81(1997) では、様々な焼結条
件にて炭化硼素焼結体をHIP処理により作製している
が、600MPa以上の曲げ強さを持つ炭化硼素焼結体
は得られていない。また、V.Skorokhod, J. Material S
cience Letter, 19, 237-239 (2000) では、炭化硼素
(B4 C)粉末と二酸化チタン(TiO2 )粉末と炭素
(C)粉末との混合物を、ホットプレス法を用いた加圧
条件下で、炭化硼素の一部を、二酸化チタン及び炭素と
反応(以下の反応式参照)させながら焼結を行って、炭
化硼素−二硼化チタン焼結体を作製し、621MPaの
四点曲げ強さを得ている。
2. Description of the Related Art Generally, a boron carbide sintered body is a material that is lightweight, has high hardness, and is excellent in wear resistance and corrosion resistance.
It is expected to have a wide range of uses, and is currently used, for example, in sandblast nozzles, wire drawing dies, extrusion dies and the like. However, on the other hand, this boron carbide sintered body has the drawback of low strength. For example, KA Schwetz, J. Solid Stat
e Chemistry, 133, 177-81 (1997) produced a boron carbide sintered body by HIP treatment under various sintering conditions, but a boron carbide sintered body having a bending strength of 600 MPa or more was obtained. Has not been done. Also, V. Skorokhod, J. Material S
cience Letter, 19, 237-239 (2000), a mixture of boron carbide (B 4 C) powder, titanium dioxide (TiO 2 ) powder, and carbon (C) powder was pressed under hot press method. Then, a part of the boron carbide is sintered while reacting with titanium dioxide and carbon (see the following reaction formula) to produce a boron carbide-titanium diboride sintered body, and a four-point bending strength of 621 MPa is obtained. Is gaining

【0003】反応式: B4 C+2TiO2 +3C→2
TiB2 +4CO しかしながら、幅広い用途で炭化硼素系焼結体を使用す
ることを実現可能にするためには、更に高い四点曲げ強
さを有する炭化硼素系焼結体の出現が望まれるが、前記
した通り、従来の方法では621MPaを超える高い四
点曲げ強さを有する炭化硼素系焼結体は得られていなか
ったというのが実情である。
Reaction formula: B 4 C + 2TiO 2 + 3C → 2
TiB 2 + 4CO However, in order to make it possible to use the boron carbide based sintered body in a wide range of applications, it is desired to develop a boron carbide based sintered body having a higher four-point bending strength. As described above, the actual situation is that the conventional method has not yielded a boron carbide-based sintered body having a high four-point bending strength exceeding 621 MPa.

【0004】[0004]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、上記621
MPaの四点曲げ強さよりも高い四点曲げ強さを有する
と共に、その幅広い用途を実現可能にする新しい炭化硼
素系焼結体を開発することを目標として鋭意研究を積み
重ねた結果、特定の原料を選択し、特定の組成で、かつ
特定の温度条件で焼結処理することにより所期の目的を
達成し得ることを見出し、本発明を完成するに至った。
即ち、本発明は、700MPa以上の四点曲げ強さを有
することを特徴とする炭化硼素−二硼化チタン焼結体、
更には800MPa以上の四点曲げ強さを有し、かつ
3.0MPam1/2 以上の破壊靭性値を有する炭化硼素
−二硼化チタン焼結体を提供することを目的とするもの
である。また、本発明は、高い密度を有し、炭化硼素の
最大粒子径は5μm以下であって、二硼化チタン粒子
が、炭化硼素マトリックス中に均一に分散し、二硼化チ
タン粒子の凝集・分散状態が均質で良好であり、破壊靱
性が改善された炭化硼素−二硼化チタン焼結体を製造す
ることを可能とする炭化硼素−二硼化チタン焼結体の新
しい製造方法を提供することを目的とするものである。
更に、本発明は、上記特性を有する炭化硼素−二硼化チ
タン焼結体を効率よく製造する方法を提供することを目
的とするものである。
Under these circumstances, the present inventors have taken the above-mentioned conventional technology into consideration in view of the above-mentioned prior art.
As a result of earnest research conducted with the goal of developing a new boron carbide-based sintered body that has a four-point bending strength higher than the MPa of four-point bending strength and that can realize a wide range of applications, specific raw materials were obtained. The inventors have found that the desired object can be achieved by selecting No. 1 and performing sintering treatment with a specific composition and under a specific temperature condition, and have completed the present invention.
That is, the present invention has a four-point bending strength of 700 MPa or more, a boron carbide-titanium diboride sintered body,
Furthermore, it is an object of the present invention to provide a boron carbide-titanium diboride sintered body having a four-point bending strength of 800 MPa or more and a fracture toughness value of 3.0 MPam 1/2 or more. Further, the present invention has a high density, the maximum particle size of boron carbide is 5 μm or less, the titanium diboride particles are uniformly dispersed in the boron carbide matrix, and the titanium diboride particles are aggregated. Disclosed is a new method for producing a boron carbide-titanium diboride sintered body, which makes it possible to produce a boron carbide-titanium diboride sintered body having a homogeneous dispersion state and good fracture toughness. That is the purpose.
A further object of the present invention is to provide a method for efficiently producing a boron carbide-titanium diboride sintered body having the above characteristics.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の態様は、炭化硼素(B4 C)粉末と二酸化チ
タン(TiO2 )粉末と炭素(C)粉末との混合粉末を
加圧条件下で反応させながら焼結して得られる炭化硼素
−二硼化チタン焼結体であって、炭化硼素95〜70m
ol%と二硼化チタン5〜30mol%とからなり、前
記炭化硼素の最大粒子径が5μm以下であることを特徴
とする炭化硼素−二硼化チタン焼結体であり、本発明の
好ましい態様は、四点曲げ強さが700MPa以上であ
ることを特徴とする前記の炭化硼素−二硼化チタン焼結
体であり、更に好ましくは、四点曲げ強さが800MP
a以上であり、破壊靭性値が3.0MPam1/2 以上で
あることを特徴とする前記の炭化硼素−二硼化チタン焼
結体である。
The embodiment of the present invention for solving the above problems is to add a mixed powder of boron carbide (B 4 C) powder, titanium dioxide (TiO 2 ) powder and carbon (C) powder. A boron carbide-titanium diboride sintered body obtained by sintering while reacting under pressure conditions, wherein the boron carbide is 95 to 70 m.
It is a boron carbide-titanium diboride sintered body, characterized in that the maximum particle diameter of the boron carbide is 5 μm or less, and is composed of 5 to 30 mol% of titanium diboride, and a preferred embodiment of the present invention. Is a boron carbide-titanium diboride sintered body having a four-point bending strength of 700 MPa or more, more preferably a four-point bending strength of 800 MP.
The aforesaid boron carbide-titanium diboride sintered body is characterized by having a fracture toughness value of 3.0 MPa m 1/2 or more.

【0006】また、本発明の他の態様は、最大粒子径が
5μm以下、平均粒径が1μm以下、比表面積値が10
2 /g以上の炭化硼素粉末に、平均粒径が1μm未満
の二酸化チタン粉末と、平均粒径が1μm未満の炭素粉
末とを混合し、1900〜2100℃の温度範囲で、加
圧条件下で反応させながら焼結することを特徴とする炭
化硼素−二硼化チタン焼結体の製造方法であり、本発明
の好ましい態様は、炭化硼素粉末の比表面積値が16m
2 /g以上であり、二酸化チタン粉末と炭素粉末の平均
粒径が何れも0. 1μm未満であることを特徴とする前
記の炭化硼素−二硼化チタン焼結体の製造方法である。
In another aspect of the present invention, the maximum particle size is 5 μm or less, the average particle size is 1 μm or less, and the specific surface area value is 10 μm.
m 2 / g or more of boron carbide powder was mixed with titanium dioxide powder having an average particle size of less than 1 μm and carbon powder having an average particle size of less than 1 μm, and the mixture was heated under a temperature range of 1900 to 2100 ° C. under pressure conditions. Is a method for producing a boron carbide-titanium diboride sintered body, wherein the specific surface area of the boron carbide powder is 16 m.
It is 2 / g or more, and the average particle diameter of both the titanium dioxide powder and the carbon powder is less than 0.1 μm, which is the method for producing a boron carbide-titanium diboride sintered body.

【0007】[0007]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明は、特定性状の炭化硼素粉末、二酸化
チタン粉末及び炭素粉末とを特定組成で混合し、特定の
温度範囲で、加圧条件下で、炭化硼素粉末の一部を二酸
化チタン粉末及び炭素粉末と、次の反応式に従って、反
応させながら焼結することにより得られる炭化硼素−二
硼化チタン焼結体に関するものである。 B4 C+2TiO2 +3C→2TiB2 +4CO 本発明者らは、前記反応を利用しながら炭化硼素を焼結
する方法について、種々実験的な検討を行った結果、特
定の原料を選択し、特定の組成で、かつ特定の温度条件
下で焼結処理したときに、高い密度を有し、炭化硼素の
最大粒子径が5μm以下であり、二硼化チタン粒子が、
炭化硼素マトリックス中に均一に分散し、二硼化チタン
粒子の凝集・分散状態が均質で良好である、特定の微構
造を有する炭化硼素−二硼化チタン焼結体が得られ、し
かも、その焼結体が、従来得られることの無かった70
0MPa以上の四点曲げ強さを有し、高い強度特性を有
しているとの知見を得て、本発明に至ったものである。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail. The present invention mixes a boron carbide powder, a titanium dioxide powder and a carbon powder having specific properties with a specific composition and, under a pressure condition under a specific temperature range, part of the boron carbide powder is a titanium dioxide powder and a carbon powder. And a boron carbide-titanium diboride sintered body obtained by sintering while reacting according to the following reaction formula. B 4 C + 2TiO 2 + 3C → 2TiB 2 + 4CO The present inventors have conducted various experimental studies on a method of sintering boron carbide while utilizing the above reaction, and as a result, selected a specific raw material and selected a specific composition. And having a high density and a maximum particle size of boron carbide of 5 μm or less, and titanium diboride particles,
A boron carbide-titanium diboride sintered body having a specific microstructure, in which the titanium diboride particles are uniformly dispersed and the agglomeration / dispersion state of the titanium diboride particles is uniform and good, is obtained. A sintered body has never been obtained 70
The present invention has been achieved based on the finding that it has a four-point bending strength of 0 MPa or more and high strength characteristics.

【0008】即ち、本発明の炭化硼素−二硼化チタン焼
結体は、炭化硼素(B4 C)粉末と二酸化チタン(Ti
2 )粉末と炭素(C)粉末との混合粉末を、特定の温
度範囲で、加圧条件下で反応させながら焼結して得られ
る炭化硼素−二硼化チタン焼結体であって、炭化硼素9
5〜70mol%と二硼化チタン5〜30mol%とか
らなり、しかも、前記炭化硼素の最大粒子径が5μm以
下であることを特徴とする炭化硼素−二硼化チタン焼結
体である。炭化硼素と二硼化チタンの組成割合を前記範
囲に特定したのは、炭化硼素−二硼化チタン焼結体中に
存在する二硼化チタンが5mol%未満である場合に
は、十分な強度改善効果が得られないからであり、ま
た、30mol%より多い場合には、焼結体の密度が
3. 0g/cm3 よりも高くなり、炭化硼素系焼結体の
軽量性の特徴が損なわれると共に、その硬度も低下する
からである。また、前記組成割合の範囲内であっても、
焼結体中の炭化硼素の最大粒子径が5μmを超えるもの
では、高い強度のものを得ることが困難である。前記し
た特定の組成範囲と特定の微構造の両者が共に満足され
るとき、はじめて、充分に高い強度を有する炭化硼素−
二硼化チタン焼結体を得ることが可能となる。
That is, the boron carbide-titanium diboride sintered body of the present invention comprises boron carbide (B 4 C) powder and titanium dioxide (Ti).
A boron carbide-titanium diboride sintered body obtained by sintering a mixed powder of O 2 ) powder and carbon (C) powder in a specific temperature range while reacting under pressure conditions, Boron carbide 9
A boron carbide-titanium diboride sintered body comprising 5 to 70 mol% of titanium diboride and 5 to 30 mol% of titanium diboride, and having a maximum particle diameter of the boron carbide of 5 μm or less. The composition ratio of boron carbide and titanium diboride was specified in the above range because the strength of titanium diboride in the boron carbide-titanium diboride sintered body was less than 5 mol%. This is because the improvement effect cannot be obtained, and when it is more than 30 mol%, the density of the sintered body becomes higher than 3.0 g / cm 3, and the characteristic of the lightweight property of the boron carbide-based sintered body is impaired. This is because the hardness is also reduced. Further, even within the range of the composition ratio,
If the maximum particle size of boron carbide in the sintered body exceeds 5 μm, it is difficult to obtain high strength. Only when both the specific composition range and the specific microstructure described above are satisfied, does the boron carbide-having sufficiently high strength appear.
It is possible to obtain a titanium diboride sintered body.

【0009】本発明の焼結体は、前記した条件を満足す
るときに、四点曲げ強さが700MPa以上の高い強度
を示すが、更に、本発明者らの検討結果に基づけば、原
料に用いる炭化硼素粉末、二酸化チタン粉末及び炭素粉
末の粒度について、より細かい粒度のものを選定するこ
と等の好ましい条件を選択することで、800MPa以
上の四点曲げ強さを有し、しかも、破壊靭性値が3.0
MPam1/2 以上である高い強度特性を有する炭化硼素
−二硼化チタン焼結体を得ることが可能となる。本発明
の焼結体は、従来のサンドブラスト、線引きダイス、押
出しダイス等に適用したときにその長寿命化に効果的で
あり、また、従来適用できなかった幅広い用途へも好適
に適用できるという従来の炭化硼素系焼結体では期待し
得ない格別の特徴を有している。
The sintered body of the present invention has a high four-point bending strength of 700 MPa or more when the above-mentioned conditions are satisfied. The boron carbide powder, titanium dioxide powder and carbon powder to be used have a four-point bending strength of 800 MPa or more and fracture toughness by selecting preferable conditions such as selecting finer particle sizes. Value is 3.0
It is possible to obtain a boron carbide-titanium diboride sintered body having a high strength characteristic of MPa m 1/2 or more. The sintered body of the present invention is effective in prolonging its life when applied to conventional sandblasting, wire drawing die, extrusion die and the like, and can be suitably applied to a wide range of applications which could not be conventionally applied. It has special characteristics that cannot be expected with the boron carbide-based sintered body.

【0010】次に、本発明の焼結体の製造方法について
詳述する。本発明の焼結体の製造方法は、原料として、
特定の物性を有する炭化硼素粉末、二酸化チタン粉末及
び炭素粉末を用い、これらを混合し、特定の温度領域
で、ホットプレス法等の加圧条件下で反応させながら焼
結を行うことを特徴とするものであり、それにより、炭
化硼素−二硼化チタン焼結体中の炭化硼素粒子及び二硼
化チタン粒子の粒子径、最大粒子径、凝集状態、分散状
態を制御することによって、高い密度を有し、炭化硼素
の最大粒子径が5μm以下であり、二硼化チタン粒子
が、炭化硼素マトリックス中に均一に分散し、二硼化チ
タン粒子の凝集・分散状態が均質で良好であり、破壊靱
性が改善された、前記特徴を有する炭化硼素−二硼化チ
タン焼結体を得ることを可能とするものである。
Next, the method for producing the sintered body of the present invention will be described in detail. The method for producing a sintered body of the present invention, as a raw material,
It is characterized by using boron carbide powder, titanium dioxide powder and carbon powder having specific physical properties, mixing them, and performing sintering in a specific temperature range while reacting under pressure conditions such as a hot pressing method. By controlling the particle size, the maximum particle size, the agglomerated state, and the dispersed state of the boron carbide particles and the titanium diboride particles in the boron carbide-titanium diboride sintered body. And the maximum particle size of boron carbide is 5 μm or less, the titanium diboride particles are uniformly dispersed in the boron carbide matrix, and the titanium diboride particles are in a uniform and good state of aggregation, It is possible to obtain a boron carbide-titanium diboride sintered body having the above-mentioned characteristics, which has an improved fracture toughness.

【0011】本発明で用いる炭化硼素粉末は、レーザー
回折散乱分析計(マイクロトラック) により測定した平
均粒径(D50) が1μm以下、最大粒子径が5μm以
下のものである。平均粒径(D50)が1μmより大き
いと、焼結性が劣り、1900〜2100℃の温度範囲
では緻密な焼結体が得らず、これを緻密化するためには
粒成長が起こり易いより高い焼結温度にする必要があ
り、その結果、得られる焼結体中の炭化硼素粒子の最大
径が5μmを超えてしまい、高い四点曲げ強さを有する
焼結体を得ることが難しくなる。また、炭化硼素粉末の
比表面積値(BET) については、好適には、その焼結
性が良好であることから、10m2 /g以上の炭化硼素
粉末が選択される。
The boron carbide powder used in the present invention has an average particle size (D50) of 1 μm or less and a maximum particle size of 5 μm or less as measured by a laser diffraction scattering analyzer (Microtrac). If the average particle size (D50) is larger than 1 μm, the sinterability is poor, and a dense sintered body cannot be obtained in the temperature range of 1900 to 2100 ° C. It is necessary to set a high sintering temperature, and as a result, the maximum diameter of the boron carbide particles in the obtained sintered body exceeds 5 μm, which makes it difficult to obtain a sintered body having a high four-point bending strength. . Regarding the specific surface area value (BET) of the boron carbide powder, it is preferable to select boron carbide powder having a specific surface area value (BET) of 10 m 2 / g or more because of its good sinterability.

【0012】本発明で用いる二酸化チタン粉末及び炭素
粉末については、焼結中に均一な反応を行うために、微
細な粉末を用いることが必要であり、レーザー回折散乱
分析計(マイクロトラック) により測定した平均粒径
(D50) が1μm未満のものである。平均粒径(D5
0) が1μm以上であると、焼結体中に大きな二硼化チ
タン粒子が形成され、これが破壊起点となるために高い
四点曲げ強さの焼結体が得られなくなる。なお、平均粒
径が0.1μm未満の場合、レーザー回折散乱分析計に
よる測定中に粉末が凝集するために正確な測定を行うの
が難しくなる。そこで、比表面積の値より計算したBE
T平均粒径を用いてもよい。更に、二酸化チタンは、ル
チル型、アナターゼ型、及びブルッカイト型の結晶系が
存在するが、何れのものも使用可能である。
With respect to the titanium dioxide powder and the carbon powder used in the present invention, it is necessary to use a fine powder in order to carry out a uniform reaction during sintering, which is measured by a laser diffraction scattering analyzer (Microtrack). The average particle size (D50) is less than 1 μm. Average particle size (D5
When 0) is 1 μm or more, large titanium diboride particles are formed in the sintered body, and this serves as a starting point of fracture, so that a sintered body having a high four-point bending strength cannot be obtained. If the average particle size is less than 0.1 μm, the powder agglomerates during the measurement by the laser diffraction scattering analyzer, which makes it difficult to perform accurate measurement. Therefore, BE calculated from the value of specific surface area
You may use T average particle diameter. Further, titanium dioxide has crystal systems of rutile type, anatase type, and brookite type, but any of them can be used.

【0013】前記した物性を有する炭化硼素粉末、二酸
化チタン粉末及び炭素粉末は、いずれについても、ふる
い分け、沈降分離、粉砕等の手段によって調製して得る
ことができるが、前記した物性を有するものであれば、
市販品を入手して使用してもよい。本発明においては、
作製される炭化硼素−二硼化チタン焼結体の組成が、炭
化硼素95〜70mol%と二硼化チタンを5〜30m
ol%となるように、平均粒径が1μm以下で、最大粒
子径が5μm以下であり、しかも、比表面積が10m2
/g以上である炭化硼素粉末に、平均粒径が1μm未満
の二酸化チタン粉末と平均粒径が1μm未満の炭素粉末
を、好適には、二酸化チタン粉末4.5〜19モル%、
炭素粉末/二酸化チタン粉末のモル比1.4〜1.7の
配合割合で配合し、混合する。次いで、必要に応じて、
これを成形し、その後、1900〜2100℃の温度範
囲で、真空中あるいはAr等の不活性ガス雰囲気中で、
前記混合粉末あるいは成形体を加圧条件下で反応させな
がら焼結して、炭化硼素粒子の間に二硼化チタン粒子を
生成させて、相対密度98%以上の緻密な炭化硼素−二
硼化チタン焼結体を作製する。
The boron carbide powder, titanium dioxide powder and carbon powder having the above-mentioned physical properties can be prepared by any means such as sieving, sedimentation separation, pulverization, etc., but they have the above-mentioned physical properties. if there is,
You may obtain and use a commercial item. In the present invention,
The composition of the produced boron carbide-titanium diboride sintered body is such that the boron carbide is 95 to 70 mol% and the titanium diboride is 5 to 30 m.
ol%, the average particle size is 1 μm or less, the maximum particle size is 5 μm or less, and the specific surface area is 10 m 2
Titanium dioxide powder having an average particle size of less than 1 μm and carbon powder having an average particle size of less than 1 μm, preferably 4.5 to 19 mol% of titanium dioxide powder.
The carbon powder / titanium dioxide powder is mixed and mixed at a mixing ratio of 1.4 to 1.7. Then, if necessary,
This is molded, and then, in a temperature range of 1900 to 2100 ° C., in a vacuum or in an inert gas atmosphere such as Ar,
The mixed powder or compact is sintered while being reacted under pressure to generate titanium diboride particles between the boron carbide particles, and a dense boron carbide diboride having a relative density of 98% or more. A titanium sintered body is produced.

【0014】ここで、炭化硼素粉末、二酸化チタン粉末
及び炭素粉末の混合粉末を、特定の温度範囲で、加圧条
件下で反応させながら焼結して炭化硼素−二硼化チタン
焼結体を得る方法においては、本発明者らが検討したと
ころによれば、作製した炭化硼素−二硼化チタン焼結体
中の二硼化チタン粒子は、反応の過程で凝集して大きな
凝集塊を形成し易いという技術上の課題があり、そし
て、二硼化チタン凝集塊や5μmより大きな粗大な炭化
硼素粒子が存在すると、これらが破壊起点として作用
し、四点曲げ強さの劣化を招くという問題があった。
Here, a mixed powder of boron carbide powder, titanium dioxide powder and carbon powder is sintered in a specific temperature range while being reacted under a pressurized condition to obtain a boron carbide-titanium diboride sintered body. In the method of obtaining, according to the studies made by the present inventors, the titanium diboride particles in the produced boron carbide-titanium diboride sintered body aggregate in the course of the reaction to form a large aggregate. There is a technical problem that it is easy to do, and if there are titanium diboride agglomerates and coarse boron carbide particles larger than 5 μm, these act as fracture starting points, leading to deterioration of four-point bending strength. was there.

【0015】本発明によれば、特定の物性の炭化硼素粉
末を使用することで、炭化硼素粉末自体の焼結性が良好
であるために、二硼化チタン粒子の生成に比べて炭化硼
素粒子間の焼結が優先して進む結果、二硼化チタン粒子
は、炭化硼素マトリックス中に均一に分散し、二硼化チ
タン粒子の凝集・分散状態が均質、かつ良好となり、そ
の結果として、二硼化チタンの凝集粒子はほとんど存在
しないようにすることができる。また、炭化硼素の最大
粒子径は、5μm以下であり、元々粗大な炭化硼素粒子
は存在しない。その結果、本発明によると、得られる炭
化硼素−二硼化チタン焼結体は、前記した通り、700
MPa以上の高い四点曲げ強さを有する。
According to the present invention, by using the boron carbide powder having specific physical properties, the sinterability of the boron carbide powder itself is good, so that the boron carbide particles are better than the titanium diboride particles. As a result of preferential sintering during the period, the titanium diboride particles are uniformly dispersed in the boron carbide matrix, and the titanium diboride particles have a uniform and good agglomeration / dispersion state. Few agglomerated particles of titanium boride can be present. Further, the maximum particle diameter of boron carbide is 5 μm or less, and originally, there are no coarse boron carbide particles. As a result, according to the present invention, the obtained boron carbide-titanium diboride sintered body is 700
It has a high four-point bending strength of at least MPa.

【0016】加えて、本発明によれば、炭化硼素粉末の
平均粒径が1 μm以下で、最大粒子径が5μm以下であ
り、しかも、比表面積が16m2 /g以上であるものを
使用し、平均粒径が0.1μm未満の二酸化チタン粉末
と平均粒径が0.1μm未満の炭素粉末を用いたとき
に、二硼化チタン粒子の凝集・分散状態が一層均質に良
好となり、炭化硼素粉末の焼結が進んで2〜3μmまで
粒成長する過程で二酸化チタン粉末の粒子が合体したと
しても2〜3μmの二硼化チタン粒子が生成し、しか
も、前記二硼化チタン粒子は全く凝集することなく均一
に分散しており、その結果、二硼化チタンが均一に分散
した特定の微構造を有し、高い強度を有する炭化硼素−
二硼化チタン焼結体が得られる。
In addition, according to the present invention, a boron carbide powder having an average particle size of 1 μm or less, a maximum particle size of 5 μm or less, and a specific surface area of 16 m 2 / g or more is used. When a titanium dioxide powder having an average particle size of less than 0.1 μm and a carbon powder having an average particle size of less than 0.1 μm are used, the agglomeration / dispersion state of the titanium diboride particles becomes more uniform and the boron carbide Even if the particles of the titanium dioxide powder are coalesced in the process where the powder is sintered and grows to a particle size of 2 to 3 μm, titanium diboride particles of 2 to 3 μm are produced, and the titanium diboride particles are completely aggregated. Boron carbide having a specific microstructure in which titanium diboride is uniformly dispersed and having high strength.
A titanium diboride sintered body is obtained.

【0017】即ち、炭化硼素−二硼化チタン焼結体にお
いて、二硼化チタンの熱膨張率が炭化硼素より大きいた
めに、炭化硼素マトリックス中に2〜3μm程度の大き
さの二硼化チタン粒子が存在する場合、破壊の進行時に
炭化硼素マトリックスと二硼化チタン粒子の界面近傍に
て亀裂の伝播の迂回やマイクロクラックが発生すること
によって破壊靭性値が改善されるが、本発明の炭化硼素
−二硼化チタン焼結体の製造方法では、二硼化チタン粒
子の凝集・分散状態が良好であることと破壊靭性値が改
善されることにより、その強度が更に改善され、800
MPa以上の高い曲げ強さを有し、しかも、3.0MP
am1/2 以上の破壊靭性値を有する炭化硼素−二硼化チ
タン焼結体を作製することができる。
That is, in the boron carbide-titanium diboride sintered body, since the thermal expansion coefficient of titanium diboride is larger than that of boron carbide, titanium diboride having a size of about 2 to 3 μm is contained in the boron carbide matrix. When particles are present, the fracture toughness value is improved by bypassing the propagation of cracks and generating microcracks near the interface between the boron carbide matrix and titanium diboride particles during the progress of fracture. In the method for producing a boron-titanium diboride sintered body, the strength of the titanium diboride particles is further improved by the good aggregation / dispersion state of the titanium diboride particles and the improved fracture toughness value.
It has a high bending strength of more than MPa and 3.0MP
A boron carbide-titanium diboride sintered body having a fracture toughness value of am 1/2 or more can be produced.

【0018】本発明において、平均粒径が0.1μm未
満の二酸化チタン粉末としては、前記した要件を満足す
るものであれば、どのようなものでも構わないが、気相
法により作製した真球状の粉末が好適に用いられる。ま
た、炭素粉末としても、平均粒径が0.1μm未満であ
れば、どのようなものでも構わないが、カーボンブラッ
クあるいはアセチレンブラックを好ましく用いることが
できる。
In the present invention, any titanium dioxide powder having an average particle size of less than 0.1 μm may be used as long as it satisfies the above-mentioned requirements. Is preferably used. The carbon powder may be any one as long as it has an average particle size of less than 0.1 μm, but carbon black or acetylene black can be preferably used.

【0019】本発明において、焼結条件については、焼
結温度が1900℃より低い場合には、十分に緻密な炭
化硼素−二硼化チタン焼結体を作製することができず、
また、2100℃より高い焼結温度では、異常粒成長に
より微細な焼結体組織が得られず、曲げ強さの低下を招
くので、好適には、1900〜2100℃の温度範囲が
選択される。また、焼結時の加圧力は、20MPa以
上、100MPa以下であり、好ましくは30MPa以
上60MPa以下であるが、これは、焼結時の加圧力が
20MPaより低い場合には、十分に緻密な焼結体が得
られず、また、加圧力が100MPaより大きい場合に
は、一酸化炭素ガスの外部への放出が妨げられることか
ら、二硼化チタンの生成が阻害されるためである。
In the present invention, regarding the sintering conditions, when the sintering temperature is lower than 1900 ° C., a sufficiently dense boron carbide-titanium diboride sintered body cannot be produced,
Further, at a sintering temperature higher than 2100 ° C., a fine sintered body structure cannot be obtained due to abnormal grain growth, leading to a decrease in bending strength. Therefore, a temperature range of 1900 to 2100 ° C. is preferably selected. . Further, the pressure applied during sintering is 20 MPa or more and 100 MPa or less, preferably 30 MPa or more and 60 MPa or less. This is because when the pressure applied during sintering is lower than 20 MPa, a sufficiently dense firing is performed. This is because if no bound substance is obtained and the applied pressure is greater than 100 MPa, the release of carbon monoxide gas to the outside is hindered, and the production of titanium diboride is hindered.

【0020】[0020]

【作用】一般に、炭化硼素粉末、二酸化チタン粉末及び
炭素粉末の混合粉末を加圧条件下で反応させながら焼結
して炭化硼素−二硼化チタン焼結体を製造する方法で
は、二硼化チタン粒子は、反応の過程で凝集して、大き
な凝集塊を形成し易く、二硼化チタン凝集塊や5μmよ
り大きな粗大な炭化硼素粒子が存在すると、これらが破
壊起点として作用し、四点曲げ強さの劣化を招くことに
なるが、本発明では、所定の性質の原料粉末を用いて、
所定の配合割合で、所定の組成割合の炭化硼素−二硼化
チタン焼結体を作製することにより、二硼化チタン粒子
は、炭化硼素マトリックス中に均一に分散し、その凝集
・分散状態が均質で良好となり、その結果、二硼化チタ
ンが粒子が、炭化硼素マトリックス中に均一に分散した
特定の微構造を有し、高い強度を有する炭化硼素−二硼
化チタン焼結体が得られる。更に、本発明では、平均粒
径が1μm以下で、最大粒子径が5μm以下であり、し
かも、比表面積が16m2 /g以上の炭化硼素粉末を使
用し、平均粒径が0.1μm未満の二酸化チタン粉末と
平均粒径が0.1μm未満の炭素粉末を用いたときに、
二硼化チタン粒子の凝集・分散状態が一層均質で良好と
なり、その結果、二硼化チタンが均一に分散した微構造
を有し、その強度が更に改善された、高い強度を有する
炭化硼素−二硼化チタン焼結体が得られる。
In general, in the method for producing a boron carbide-titanium diboride sintered body by sintering mixed powder of boron carbide powder, titanium dioxide powder and carbon powder while reacting under pressure, Titanium particles tend to agglomerate in the course of the reaction to form large agglomerates, and when titanium diboride agglomerates and coarse boron carbide particles larger than 5 μm are present, these act as fracture starting points and cause four-point bending. Although it will lead to deterioration of strength, in the present invention, by using a raw material powder of a predetermined property,
By producing a boron carbide-titanium diboride sintered body having a predetermined composition ratio at a predetermined mixing ratio, the titanium diboride particles are uniformly dispersed in the boron carbide matrix, and the aggregation / dispersion state is Homogeneous and good, and as a result, a titanium carbide-titanium diboride sintered body having a specific strength in which particles of titanium diboride are uniformly dispersed in a boron carbide matrix and having high strength is obtained. . Further, in the present invention, a boron carbide powder having an average particle size of 1 μm or less, a maximum particle size of 5 μm or less, and a specific surface area of 16 m 2 / g or more is used, and the average particle size is less than 0.1 μm. When using titanium dioxide powder and carbon powder having an average particle size of less than 0.1 μm,
The aggregated and dispersed state of titanium diboride particles becomes more homogeneous and good, and as a result, it has a microstructure in which titanium diboride is uniformly dispersed, and its strength is further improved. A titanium diboride sintered body is obtained.

【0021】[0021]

【実施例】以下、本発明を、実施例及び比較例に基づい
て、より具体的に説明するが、本発明は以下の実施例等
によって何ら限定されるものではない。 〔実施例1〜4〕炭化硼素粉末として、表1に示す物性
を有する特定の炭化硼素粉末A,B,Cを用いた。サブ
ミクロンサイズの二酸化チタン粉末として、平均粒径
(D50/レーザー回折散乱分析計):0.3μm、結
晶相:ルチル型のもの、を用いた。また、ナノサイズの
二酸化チタン粉末として、気相法により作製した真球状
の粉末であり、比表面積(BET):48.5m2
g、平均粒径(BET法):31nm、結晶相:アナタ
ーゼ80%,ルチル20%のもの、を用いた。炭素粉末
として、比表面積(BET):8 8.1 m2 /g、平均
粒径(BET法):30nm、のカーボンブラックを用
いた。
EXAMPLES The present invention will be described more specifically below based on examples and comparative examples, but the present invention is not limited to the following examples. Examples 1 to 4 Specific boron carbide powders A, B and C having the physical properties shown in Table 1 were used as the boron carbide powder. As the submicron size titanium dioxide powder, an average particle size (D50 / laser diffraction / scattering analyzer): 0.3 μm, and a crystal phase: rutile type were used. Further, the nano-sized titanium dioxide powder is a spherical powder produced by a vapor phase method, and has a specific surface area (BET): 48.5 m 2 /
g, average particle diameter (BET method): 31 nm, crystal phase: anatase 80%, rutile 20%. As the carbon powder, carbon black having a specific surface area (BET): 8 8.1 m 2 / g and an average particle diameter (BET method): 30 nm was used.

【0022】[0022]

【表1】 [Table 1]

【0023】炭化硼素粉末にサブミクロンサイズ又はナ
ノサイズの二酸化チタン粉末を14.5モル%、カーボ
ンブラックを21.5モル%配合し、メタノール溶媒を
用いて、炭化珪素(SiC)製遊星ボールミルにより回
転数:270rpm、1時間の混合を行った後、エバポ
レーターで乾燥させ、更に、150℃、24時間の乾燥
を行った後に、開き目250μmのふるいに通して、炭
化硼素−二酸化チタン−炭素混合粉末を調製した。
Boron carbide powder was mixed with submicron-sized or nano-sized titanium dioxide powder in an amount of 14.5 mol% and carbon black in an amount of 21.5 mol%, and a methanol solvent was used to form a silicon carbide (SiC) planetary ball mill. Rotation speed: 270 rpm, after mixing for 1 hour, dried by an evaporator, further dried at 150 ° C. for 24 hours, and then passed through a sieve having openings of 250 μm to mix boron carbide-titanium dioxide-carbon. A powder was prepared.

【0024】次に、黒鉛製ダイス中に、炭化硼素−二酸
化チタン−炭素混合粉末を充填し、7.5MPaで成形
した後、焼成炉に取り付けた。5MPaに加圧した状態
にて、拡散ポンプを用いて2. 0×10-1〜2. 0×1
-2Paの圧力に真空引きをしながら、40℃/min
の昇温速度にて加熱を行った。1000℃に到達した時
に、真空引きを終了して、Arガスを流量:2リットル
/minで導入して、ガス圧力:0. 103MPaの雰
囲気とし、1500℃まで加熱した。1500℃から2
000℃までは10℃/minの昇温速度にて加熱し
た。2000℃に到達した後、圧力を50MPaに上げ
て、1時間保持し、炭化硼素−20mol%二硼化チタ
ン焼結体を作製した。
Next, a graphite die was filled with a boron carbide-titanium dioxide-carbon mixed powder and molded at 7.5 MPa, and then mounted in a firing furnace. With a pressure of 5 MPa, using a diffusion pump, 2.0 × 10 −1 to 2.0 × 1
40 ° C / min while evacuating to a pressure of 0 -2 Pa
Heating was performed at the temperature rising rate of. When the temperature reached 1000 ° C., the evacuation was terminated, Ar gas was introduced at a flow rate of 2 liter / min, and the atmosphere was set to a gas pressure of 0.103 MPa and heated to 1500 ° C. 1500 ° C to 2
Up to 000 ° C, heating was performed at a temperature rising rate of 10 ° C / min. After reaching 2000 ° C., the pressure was raised to 50 MPa and maintained for 1 hour to produce a boron carbide-20 mol% titanium diboride sintered body.

【0025】炭化硼素−二硼化チタン焼結体の四点曲げ
強さ、及び破壊靭性値を、それぞれJIS R160
1、JIS R1607に基づいて測定した。テストピ
ースの表面は、平面研削盤400番にて仕上げた。ま
た、アルキメデス法によりテストピースの密度を測定
し、相対密度を計算した。テストピースの表面をラッピ
ングし、エッチング処理を行った後、SEM観察を行
い、炭化硼素の最大粒子径を求めた。更に、X線回折法
により、焼結体中の結晶相の同定を行った。それらの測
定結果を表2に示す。
The four-point bending strength and the fracture toughness value of the boron carbide-titanium diboride sintered body are measured according to JIS R160, respectively.
1, measured according to JIS R1607. The surface of the test piece was finished with a surface grinder No. 400. Moreover, the density of the test piece was measured by the Archimedes method, and the relative density was calculated. After lapping the surface of the test piece and performing etching treatment, SEM observation was performed to determine the maximum particle size of boron carbide. Further, the crystal phase in the sintered body was identified by the X-ray diffraction method. Table 2 shows the measurement results.

【0026】[0026]

【表2】 [Table 2]

【0027】本発明の実施例1〜4により作製した炭化
硼素−二硼化チタン焼結体は、何れも高い密度を有し、
炭化硼素の最大粒子径は何れも5μm以下であり、70
0MPa以上の高い四点曲げ強さが得られた。殊に、実
施例3及び4については、800MPa以上の四点曲げ
強さが得られると共に、3MPa・m1/2 以上の高い破
壊靭性値が得られた。また、結晶相は、何れの焼結体
も、炭化硼素と二硼化チタンのみ検出され、未反応の二
酸化チタンは検出されなかった。
The boron carbide-titanium diboride sintered bodies produced according to Examples 1 to 4 of the present invention all have a high density,
The maximum particle size of boron carbide is 5 μm or less,
A high four-point bending strength of 0 MPa or more was obtained. In particular, in Examples 3 and 4, a four-point bending strength of 800 MPa or more was obtained and a high fracture toughness value of 3 MPa · m 1/2 or more was obtained. As for the crystal phase, in all the sintered bodies, only boron carbide and titanium diboride were detected, and unreacted titanium dioxide was not detected.

【0028】〔比較例1〜2〕次に、比較例として、表
1に示す炭化硼素粉末Eと実施例1〜4で使用したサブ
ミクロンサイズの二酸化チタン粉末の組合せ、及び表1
に示す炭化硼素粉末Dとナノサイズの二酸化チタン粉末
の組合せ、としたこと以外は、実施例1〜4と同様の手
順により炭化硼素−20mol%二硼化チタン焼結体を
作製した。また、実施例1〜4と同様の手順により、四
点曲げ強さ、破壊靭性値、焼結体の密度及び炭化硼素の
最大粒子径の評価を行った。それらの測定結果を表2に
示す。比較例1〜2の焼結体の四点曲げ強さは、何れも
600MPa以下の低い値であり、炭化硼素の最大粒子
径は5μmより大きい値であった。
[Comparative Examples 1 and 2] Next, as Comparative Examples, a combination of the boron carbide powder E shown in Table 1 and the submicron size titanium dioxide powder used in Examples 1 to 4 and Table 1
A boron carbide-20 mol% titanium diboride sintered body was produced by the same procedure as in Examples 1 to 4 except that the combination of the boron carbide powder D and the nano-sized titanium dioxide powder shown in (4) was used. Further, the four-point bending strength, the fracture toughness value, the density of the sintered body, and the maximum particle size of boron carbide were evaluated by the same procedure as in Examples 1 to 4. Table 2 shows the measurement results. The four-point bending strengths of the sintered bodies of Comparative Examples 1 and 2 were all low values of 600 MPa or less, and the maximum particle diameter of boron carbide was a value larger than 5 μm.

【0029】[0029]

【発明の効果】以上詳述した通り、本発明は、炭化硼素
−二硼化チタン焼結体及びその製造方法に係るものであ
り、本発明により、1)700MPa以上の高い四点曲
げ強さを有する炭化硼素−二硼化チタン焼結体を作製す
ることができる、2)高い密度を有し、炭化硼素の最大
粒子径が5μmであり、二硼化チタン粒子が、炭化硼素
マトリックス中に均一に分散し、二硼化チタン粒子の凝
集・分散状態が均質で良好であり、破壊靱性が改善され
た炭化硼素−二硼化チタン焼結体が得られる、3)本発
明の炭化硼素−二硼化チタン焼結体は、従来の方法では
得られなかった700MPa以上の高い四点曲げ強さを
有しており、摺動部品、切削工具、防弾板や新しい耐摩
耗性部品等、幅広い用途で使用可能であり、産業上有用
である、という格別の効果が奏される。
As described above in detail, the present invention relates to a boron carbide-titanium diboride sintered body and a method for producing the same, and according to the present invention, 1) a high four-point bending strength of 700 MPa or more. It is possible to produce a boron carbide-titanium diboride sintered body having 2) a high density, the maximum particle size of boron carbide is 5 μm, and the titanium diboride particles are contained in a boron carbide matrix. Boron carbide in which titanium diboride particles are evenly dispersed, the agglomeration / dispersion state of titanium diboride particles is uniform, and fracture toughness is improved-a titanium diboride sintered body can be obtained, 3) the boron carbide of the present invention- Titanium diboride sintered compact has a high four-point bending strength of 700 MPa or more, which has not been obtained by conventional methods, and is widely used for sliding parts, cutting tools, bulletproof plates, new wear resistant parts, etc. It is a product that can be used for various purposes and is industrially useful. Effect can be exhibited.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪口 修司 愛知県名古屋市守山区大字下志段味字穴ケ 洞2266−98 独立行政法人産業技術総合研 究所中部センター内 (72)発明者 山内 幸彦 愛知県名古屋市守山区大字下志段味字穴ケ 洞2266−98 独立行政法人産業技術総合研 究所中部センター内 (72)発明者 神崎 修三 愛知県名古屋市守山区大字下志段味字穴ケ 洞2266−98 独立行政法人産業技術総合研 究所中部センター内 (72)発明者 山田 鈴弥 愛知県名古屋市守山区大字下志段味穴ヶ洞 2268−1 志段味ヒューマンサイエンスパ ーク先端技術連携リサーチセンター ファ インセラミックス技術研究組合シナジーセ ラミックス研究所内 Fターム(参考) 4G001 BA13 BA23 BA60 BB23 BB44 BC13 BC42 BC44 BC52 BC55 BD11 BD14 BE21    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shuji Sakaguchi             Ari Prefecture Moriyama-ku, Nagoya             Dong 2266-98 National Institute of Advanced Industrial Science and Technology             Ryusho Chubu Center (72) Inventor Yukihiko Yamauchi             Ari Prefecture Moriyama-ku, Nagoya             Dong 2266-98 National Institute of Advanced Industrial Science and Technology             Ryusho Chubu Center (72) Inventor Shuzo Kanzaki             Ari Prefecture Moriyama-ku, Nagoya             Dong 2266-98 National Institute of Advanced Industrial Science and Technology             Ryusho Chubu Center (72) Inventor Suzuya Yamada             Aichi prefecture Nagoya city Moriyama ward             2268-1 Shidami Human Science Society             Research Center for Advanced Technology             In Ceramics Research Association Synergy             Lamix Institute F-term (reference) 4G001 BA13 BA23 BA60 BB23 BB44                       BC13 BC42 BC44 BC52 BC55                       BD11 BD14 BE21

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭化硼素(B4 C)粉末と二酸化チタン
(TiO2 )粉末と炭素(C)粉末との混合粉末を加圧
条件下で反応させながら焼結して得られる炭化硼素−二
硼化チタン焼結体であって、炭化硼素95〜70mol
%と二硼化チタン5〜30mol%とからなり、前記炭
化硼素の最大粒子径が5μm以下であることを特徴とす
る炭化硼素−二硼化チタン焼結体。
1. A boron carbide- 2 obtained by sintering mixed powder of boron carbide (B 4 C) powder, titanium dioxide (TiO 2 ) powder, and carbon (C) powder while reacting under pressure conditions. Titanium boride sintered body, boron carbide 95-70 mol
% And titanium diboride 5 to 30 mol%, and the maximum particle size of the boron carbide is 5 μm or less, a boron carbide-titanium diboride sintered body.
【請求項2】 四点曲げ強さが700MPa以上である
ことを特徴とする請求項1に記載の炭化硼素−二硼化チ
タン焼結体。
2. The boron carbide-titanium diboride sintered body according to claim 1, which has a four-point bending strength of 700 MPa or more.
【請求項3】 四点曲げ強さが800MPa以上であ
り、破壊靭性値が3.0MPam1/2 以上であることを
特徴とする請求項1に記載の炭化硼素−二硼化チタン焼
結体。
3. The boron carbide-titanium diboride sintered body according to claim 1, which has a four-point bending strength of 800 MPa or more and a fracture toughness value of 3.0 MPam 1/2 or more. .
【請求項4】 最大粒子径が5μm以下、平均粒径が1
μm以下、比表面積値が10m2 /g以上の炭化硼素粉
末に、平均粒径が1μm未満の二酸化チタン粉末と、平
均粒径が1μm未満の炭素粉末とを混合し、1900〜
2100℃の温度範囲で、加圧条件下で反応させながら
焼結することを特徴とする炭化硼素−二硼化チタン焼結
体の製造方法。
4. The maximum particle size is 5 μm or less, and the average particle size is 1.
A boron carbide powder having a specific surface area of 10 m 2 / g or more and a titanium dioxide powder having an average particle size of less than 1 μm and a carbon powder having an average particle size of less than 1 μm are mixed with each other at 1900 to 1900.
A method for producing a boron carbide-titanium diboride sintered body, which comprises sintering while reacting in a temperature range of 2100 ° C. under pressure.
【請求項5】 炭化硼素粉末の比表面積値が16m2
g以上であり、二酸化チタン粉末と炭素粉末の平均粒径
が何れも0. 1μm未満であることを特徴とする請求項
4に記載の炭化硼素−二硼化チタン焼結体の製造方法。
5. The specific surface area value of the boron carbide powder is 16 m 2 /
5. The method for producing a boron carbide-titanium diboride sintered body according to claim 4, wherein the titanium dioxide powder and the carbon powder each have an average particle size of g or more and both are less than 0.1 μm.
JP2001341205A 2001-11-06 2001-11-06 Boron carbide-titanium diboride sintered body and manufacturing method thereof Expired - Lifetime JP3686029B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001341205A JP3686029B2 (en) 2001-11-06 2001-11-06 Boron carbide-titanium diboride sintered body and manufacturing method thereof
CN02822179.6A CN1256301C (en) 2001-11-06 2002-11-06 Boron carbide based sintered compact and method for preparation thereof
EP07023698A EP1892227B1 (en) 2001-11-06 2002-11-06 Process for producing a boron carbide based sintered body
PCT/JP2002/011577 WO2003040060A1 (en) 2001-11-06 2002-11-06 Boron carbide based sintered compact and method for preparation thereof
EP02780026.7A EP1452509B9 (en) 2001-11-06 2002-11-06 Boron carbide based sintered compact and method for preparation thereof
US10/493,222 US20050059541A1 (en) 2001-11-06 2002-11-06 Boron carbide based sintered compact and method for preparation thereof
US11/477,433 US20060247120A1 (en) 2001-11-06 2006-06-30 Boron carbide based sintered compact and method for preparation thereof
US11/618,020 US7442661B2 (en) 2001-11-06 2006-12-29 Boron carbide based sintered compact and method for preparation thereof
US11/927,024 US7417002B2 (en) 2001-11-06 2007-10-29 Boron carbide based sintered compact and method for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341205A JP3686029B2 (en) 2001-11-06 2001-11-06 Boron carbide-titanium diboride sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003137656A true JP2003137656A (en) 2003-05-14
JP3686029B2 JP3686029B2 (en) 2005-08-24

Family

ID=19155272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341205A Expired - Lifetime JP3686029B2 (en) 2001-11-06 2001-11-06 Boron carbide-titanium diboride sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3686029B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143777A (en) * 2007-12-17 2009-07-02 Denki Kagaku Kogyo Kk Boron carbide-titanium diboride sintered compact, and production method therefor
JP2015151323A (en) * 2014-02-18 2015-08-24 学校法人同志社 Boron carbide/titanium boride composite ceramic and method for producing the same
CN108484171A (en) * 2018-04-08 2018-09-04 北京理工大学 A kind of boron carbide-titanium boride diphase ceramic material and its pressureless sintering preparation method
CN114315367A (en) * 2021-12-28 2022-04-12 北京理工大学 Titanium diboride-boron carbide-titanium carbide composite ceramic material and hot-pressing preparation method thereof
CN114394834A (en) * 2022-02-22 2022-04-26 中硼科技(威海)有限公司 Preparation method of boron carbide-based nano composite powder
CN114573351A (en) * 2020-12-02 2022-06-03 中国科学院上海硅酸盐研究所 Boron carbide-based composite material and preparation method thereof
JP7116234B1 (en) 2021-09-24 2022-08-09 美濃窯業株式会社 Manufacturing method of composite ceramics

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009143777A (en) * 2007-12-17 2009-07-02 Denki Kagaku Kogyo Kk Boron carbide-titanium diboride sintered compact, and production method therefor
JP2015151323A (en) * 2014-02-18 2015-08-24 学校法人同志社 Boron carbide/titanium boride composite ceramic and method for producing the same
CN108484171A (en) * 2018-04-08 2018-09-04 北京理工大学 A kind of boron carbide-titanium boride diphase ceramic material and its pressureless sintering preparation method
CN108484171B (en) * 2018-04-08 2021-01-26 北京理工大学 Boron carbide-titanium boride complex phase ceramic material and pressureless sintering preparation method thereof
CN114573351A (en) * 2020-12-02 2022-06-03 中国科学院上海硅酸盐研究所 Boron carbide-based composite material and preparation method thereof
CN114573351B (en) * 2020-12-02 2023-05-09 中国科学院上海硅酸盐研究所 Boron carbide-based composite material and preparation method thereof
JP7116234B1 (en) 2021-09-24 2022-08-09 美濃窯業株式会社 Manufacturing method of composite ceramics
JP2023046932A (en) * 2021-09-24 2023-04-05 美濃窯業株式会社 Manufacturing method of composite ceramic
CN114315367A (en) * 2021-12-28 2022-04-12 北京理工大学 Titanium diboride-boron carbide-titanium carbide composite ceramic material and hot-pressing preparation method thereof
CN114394834A (en) * 2022-02-22 2022-04-26 中硼科技(威海)有限公司 Preparation method of boron carbide-based nano composite powder

Also Published As

Publication number Publication date
JP3686029B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
US7442661B2 (en) Boron carbide based sintered compact and method for preparation thereof
CN109879669B (en) High-entropy ceramic composite material with high strength and preparation method and application thereof
JP4122746B2 (en) Method for producing fine α-alumina powder
JPWO2011081103A1 (en) Method for producing zirconia-alumina composite ceramic material, zirconia-alumina composite granulated powder, zirconia beads
TW201829299A (en) Method for producing high-purity silicon nitride powder
JP2009242181A (en) Tungsten carbide powder and method for producing the same
TW201713606A (en) Cubic boron nitride sintered body, method for producing cubic boron nitride sintered body, tool, and cutting tool
JP2013500226A (en) High toughness ceramic composite material
EP1922354A2 (en) Resistant ceramic material and method for making same
JP2003137656A (en) Boron carbide-titanium diboride sintered compact, and production method therefor
JP4743387B2 (en) Method for producing aluminum nitride powder
WO2018117161A1 (en) Oriented aln sintered body, and production method therefor
JP2001247366A (en) Boron carbide sintered compact and method for producing the same
US7314593B2 (en) Process for preparing improved silicon carbide powder
JP3992474B2 (en) Method for producing boron carbide-aluminum nitride sintered body
JP3926760B2 (en) Boron carbide-chromium diboride sintered body and method for producing the same
JP4082803B2 (en) Method for producing silicon nitride powder
JP3561476B2 (en) Boron carbide-chromium diboride sintered body and method for producing the same
JP3694583B2 (en) Crusher parts
JPH05178657A (en) Alumina group composite sintered body and its production
JP2004292176A (en) Combined ceramic and and method of manufacturing the same
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
JP2004189524A (en) Method of manufacturing silicon carbide fine particles-dispersed ceramic sintered compact
JP2002316876A (en) Silicon nitride based composite powder and production method therefor
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041013

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050601

R150 Certificate of patent or registration of utility model

Ref document number: 3686029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term