JP2001247366A - Boron carbide sintered compact and method for producing the same - Google Patents

Boron carbide sintered compact and method for producing the same

Info

Publication number
JP2001247366A
JP2001247366A JP2000060033A JP2000060033A JP2001247366A JP 2001247366 A JP2001247366 A JP 2001247366A JP 2000060033 A JP2000060033 A JP 2000060033A JP 2000060033 A JP2000060033 A JP 2000060033A JP 2001247366 A JP2001247366 A JP 2001247366A
Authority
JP
Japan
Prior art keywords
boron carbide
sintered body
carbide sintered
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000060033A
Other languages
Japanese (ja)
Inventor
Suzuya Yamada
鈴弥 山田
Masahiro Ibukiyama
正浩 伊吹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000060033A priority Critical patent/JP2001247366A/en
Publication of JP2001247366A publication Critical patent/JP2001247366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a boron carbide sintered compact applicable to various uses, having a high strength and a high toughness. SOLUTION: This boron carbide sintered compact is characterized by having <=3 μm maximum particle size of boron carbide and yet >=600 MPa four-point flexural strength. Preferably the boron carbide sintered compact is characterized by comprising 5-25 atom % of chromium diboride and having >=3.0 MPam1/2 fracture toughness value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い曲げ強度を有
する炭化硼素焼結体、更に、高い曲げ強度と高い破壊靭
性値を兼ね備えた炭化硼素焼結体、並びにその製造方法
に関する。
The present invention relates to a boron carbide sintered body having high bending strength, a boron carbide sintered body having both high bending strength and high fracture toughness, and a method for producing the same.

【0002】[0002]

【従来の技術】炭化硼素焼結体は、軽量で、高い硬度を
有し、耐摩耗性に優れた材料であり、サンドブラストノ
ズル、線引きダイス、押し出しダイス等に使用されてい
るものの、強度が低い、靭性が低いという欠点を有して
おり、前記以外の用途への適用が制限されている問題が
あり、強度を高めたり靱性を改善することが課題となっ
ている。
2. Description of the Related Art A boron carbide sintered body is a material that is lightweight, has high hardness, and is excellent in wear resistance. Although it is used for a sandblast nozzle, a drawing die, an extrusion die, etc., it has low strength. However, there is a drawback that the toughness is low, and there is a problem that the application to other uses is limited, and increasing the strength and improving the toughness have been issues.

【0003】例えば、K.A.Schwetz,J.S
olid State Chemistry 133,
177−81(1997)においては、様々な焼結条件
にて炭化硼素焼結体を作製しているが、600MPa以
上の曲げ強度を持つ炭化硼素焼結体は得られていない。
また、曲げ強度が高いほど破壊靭性値は低下する傾向が
あり、最も高い強度が得られた炭化硼素焼結体では、破
壊靭性値は3MPam1/ 2以下の低い値であり、いろい
ろな用途に適用できる程には充分に強度、靱性が改善さ
れたものではない。
[0003] For example, K. A. Schwetz, J .; S
old State Chemistry 133
In 177-81 (1997), a boron carbide sintered body is produced under various sintering conditions, but a boron carbide sintered body having a bending strength of 600 MPa or more has not been obtained.
Furthermore, the bending strength tends to the higher fracture toughness decreases, the highest intensity is obtained boron carbide sintered body, fracture toughness value is 3MPam 1/2 or less of a low value, in various applications The strength and toughness are not sufficiently improved to be applicable.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、高強
度、高靱性でいろいろな用途に適用できる炭化硼素焼結
体、より具体的には、従来得られなかった600MPa
以上の高強度を有する炭化硼素焼結体、更に、前記高強
度を有しながら3.0MPam1/2以上の破壊靭性値を有
する炭化硼素焼結体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-strength, high-toughness boron carbide sintered body which can be applied to various uses, and more specifically, to a 600 MPa pressure which has not been obtained before.
Another object of the present invention is to provide a boron carbide sintered body having the above high strength, and a boron carbide sintered body having the high strength and a fracture toughness value of 3.0 MPam 1/2 or more.

【0005】[0005]

【課題を解決するための手段】本発明は、炭化硼素の最
大粒子の大きさが3μm以下であり、しかも600MP
a以上の四点曲げ強度を有することを特徴とする炭化硼
素焼結体であり、二ホウ化クロムを5〜25原子%含
み、 3.0MPam1/2以上の破壊靭性値を有すること
を特徴とする前記の炭化硼素焼結体である。
According to the present invention, the maximum particle size of boron carbide is 3 μm or less, and 600 MPa
A boron carbide sintered body characterized by having a four-point bending strength of at least a, containing 5 to 25 atomic% of chromium diboride, and having a fracture toughness of 3.0 MPam 1/2 or more. The boron carbide sintered body described above.

【0006】また、本発明は、平均粒径(D50)が
0.5μm以下、D95が1.2μm以下、しかも最大粒
子径が2.75μm以下の炭化硼素粉を用いて、得られ
る焼結体が600MPa以上の四点曲げ強度を有するよ
うに、1800〜2200℃でホットプレスを行うこと
を特徴とする炭化硼素焼結体の製造方法であり、前記炭
化硼素粉に二ホウ化クロム粉を、二ホウ化クロムが5〜
25原子%となるように添加し、得られる焼結体が3.
0MPam1/2以上の破壊靭性値を有するようにホット
プレスすることを特徴とする前記の炭化硼素焼結体の製
造方法である。
Further, the present invention provides a sintered body obtained by using a boron carbide powder having an average particle diameter (D50) of 0.5 μm or less, a D95 of 1.2 μm or less, and a maximum particle diameter of 2.75 μm or less. Is a hot press at 1800 to 2200 ° C. so as to have a four-point bending strength of 600 MPa or more, a method for producing a boron carbide sintered body, wherein the boron carbide powder is a chromium diboride powder, 5 chromium diboride
25 atomic%, and the obtained sintered body is 3.
The method for producing a boron carbide sintered body described above, wherein hot pressing is performed so as to have a fracture toughness value of 0 MPam 1/2 or more.

【0007】[0007]

【発明の実施の形態】従来の技術では、炭化硼素が難焼
結性であることから極めて高い温度で焼結され、得られ
た焼結体の組織は、粒成長が起こり、その結果、大きな
粒子を含むこととなる。そして炭化硼素焼結体中に大き
な粒子が存在するために、曲げ強度が低くなるという事
態を招いてしまう。本発明者は、特定の粒度分布を有す
る炭化硼素粉を原料粉末に用い、特定の条件下でホット
プレスを行うことにより、炭化硼素焼結体中の炭化硼素
の最大粒子の大きさが3μm以下の極めて微細な組織を
達成することによって、600MPa以上の高い四点曲
げ強度を有している炭化硼素焼結体を得ることができる
という知見を得て、本発明に至ったものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the prior art, boron carbide is sintered at an extremely high temperature due to its difficulty in sintering, and the structure of the obtained sintered body undergoes grain growth. It will contain particles. And, since large particles are present in the boron carbide sintered body, a situation in which the bending strength is reduced is caused. The present inventor uses a boron carbide powder having a specific particle size distribution as a raw material powder and performs hot pressing under a specific condition so that the maximum particle size of boron carbide in the boron carbide sintered body is 3 μm or less. It has been found that by achieving the extremely fine structure of the above, a boron carbide sintered body having a high four-point bending strength of 600 MPa or more can be obtained, and the present invention has been achieved.

【0008】即ち、本発明の炭化硼素焼結体は、炭化硼
素の最大粒子の大きさが3μm以下に制御されており、
その結果、従来得られなかった、四点曲げ強度が600
MPa以上の高強度を有している特徴があるので、サン
ドブラストノズル、線引きダイス、押し出しダイス等の
従来用途に適用できることは勿論のこと、前記以外の用
途にも適用可能である。また、本発明の炭化硼素焼結体
は、密度が3.0g/cm3以下と軽量であり、移動機器
の部品等へも適用可能である。
That is, in the boron carbide sintered body of the present invention, the maximum particle size of boron carbide is controlled to 3 μm or less,
As a result, the four-point bending strength of 600
Since it has the feature of having a high strength of not less than MPa, it can be applied not only to conventional uses such as a sand blast nozzle, a drawing die, and an extrusion die, but also to other uses. Further, the boron carbide sintered body of the present invention has a light weight of 3.0 g / cm 3 or less, and can be applied to parts of mobile equipment.

【0009】更に、本発明の炭化硼素焼結体は、その好
ましい実施態様として、二ホウ化クロムを5〜25原子
%含み、 3.0MPam1/2以上の破壊靭性値を有す
る。本発明者は、前記の高強度炭化硼素焼結体について
更に実験的検討を加え、二ホウ化クロムを所定量存在さ
せるときに、高強度である特性を低下させることなく、
破壊靱性値を向上し得ることを見出し、本発明に至った
ものである。本発明の炭化硼素焼結体は、高強度で、破
壊靱性値が高く、しかも密度が3.0g/cm3以下と
軽量である特徴を有するので、前述のいろいろな用途へ
の適用が一層有利である。
Further, as a preferred embodiment, the boron carbide sintered body of the present invention contains 5 to 25 atomic% of chromium diboride and has a fracture toughness of not less than 3.0 MPam 1/2 . The present inventors have further conducted an experimental study on the high-strength boron carbide sintered body, and when a predetermined amount of chromium diboride is present, without lowering the high-strength properties,
The inventors have found that the fracture toughness can be improved, and have reached the present invention. The boron carbide sintered body of the present invention has the features of high strength, high fracture toughness, and light weight of 3.0 g / cm 3 or less, so that its application to the above-mentioned various applications is more advantageous. It is.

【0010】本発明の炭化硼素焼結体は、最大粒子の大
きさが3μm以下である炭化硼素からなるマトリックス
中に二ホウ化クロムの粒子が分散した組織を有してお
り、炭化硼素粒子と二ホウ化クロム粒子との界面近傍に
亀裂の伝播が迂回する作用が期待され、これにより破壊
靭性値が改善される。
[0010] The boron carbide sintered body of the present invention has a structure in which chromium diboride particles are dispersed in a matrix of boron carbide having a maximum particle size of 3 µm or less. An effect of bypassing the propagation of the crack near the interface with the chromium diboride particles is expected, thereby improving the fracture toughness value.

【0011】二ホウ化クロムの存在量が5原子%未満で
あると、破壊靭性値の改善効果が十分でなく、また25
原子%より多量の場合には、焼結体の密度が3.0g/c
3よりも高くなり、炭化硼素焼結体の軽量性の特徴が
損なわれるので好ましくない。
If the content of chromium diboride is less than 5 atomic%, the effect of improving the fracture toughness is not sufficient, and
When the amount is more than atomic%, the density of the sintered body is 3.0 g / c.
m 3 , which is not preferable because the light weight characteristics of the boron carbide sintered body are impaired.

【0012】本発明の炭化硼素焼結体の製造方法は、特
定の粒度分布を有する炭化硼素粉末を、必要に応じて二
ホウ化クロムを添加して、特定条件下でホットプレスす
ることを特徴としている。本発明の製造方法により、前
記の炭化硼素焼結体を容易に、安定して得ることができ
る。
[0012] The method for producing a boron carbide sintered body of the present invention is characterized in that a boron carbide powder having a specific particle size distribution is hot-pressed under specific conditions by adding chromium diboride as necessary. And According to the production method of the present invention, the above-mentioned boron carbide sintered body can be easily and stably obtained.

【0013】本発明に用いる炭化硼素粉は、レーザー回
折散乱分析計(マイクロトラック)で測定したときに、平
均粒径(D50)が0.5μm以下、D95が1.2μm
以下、最大粒子径が2.75μm以下のものである。こ
こで、D50、D95は、当該粉末の粒度分布におい
て、それぞれ50、95質量%が含まれるときの粒径を
示す。
The boron carbide powder used in the present invention has an average particle size (D50) of 0.5 μm or less and a D95 of 1.2 μm as measured by a laser diffraction scattering analyzer (Microtrac).
Hereinafter, those having a maximum particle size of 2.75 μm or less. Here, D50 and D95 indicate the particle size when 50 and 95% by mass are included in the particle size distribution of the powder, respectively.

【0014】本発明の製造方法に於いて、原料の炭化硼
素粉が前記所定の粒度分布を有することが本質的であ
る。本発明者らの検討結果に拠れば、平均粒径(D5
0)が0.5μmより大きいと、焼結性が不足して、緻
密な焼結体を得る為により高い焼結温度にする必要があ
るが、この場合粒成長が生じやすくなり、本発明の目的
を達成できなくなることがある。
In the production method of the present invention, it is essential that the raw material boron carbide powder has the above-mentioned predetermined particle size distribution. According to the study results of the present inventors, the average particle size (D5
If 0) is larger than 0.5 μm, the sinterability is insufficient, and it is necessary to raise the sintering temperature in order to obtain a dense sintered body. You may not be able to achieve your goals.

【0015】また、D95が1.2μmより大きい場
合、或いは最大粒子径が2.75μmより大きい炭化硼
素粉を原料とする場合にも、焼結中に粒成長を生じやす
く、最大粒子の大きさを3μm以下に制御することが容
易でなく、微細な炭化硼素焼結体組織が得られず、結果
的に、600MPa以上の高い四点曲げ強度を有してい
る炭化硼素焼結体を得られないことがある。
Also, when D95 is larger than 1.2 μm, or when boron carbide powder having a maximum particle size of larger than 2.75 μm is used as a raw material, grain growth tends to occur during sintering, and the maximum particle size Is not easily controlled to 3 μm or less, a fine boron carbide sintered body structure cannot be obtained, and as a result, a boron carbide sintered body having a high four-point bending strength of 600 MPa or more can be obtained. There may not be.

【0016】尚、炭化硼素粉の比表面積(BET)値につ
いては、15m2/g以上の炭化硼素粉が焼結性に優れる
ので好ましいが、20m2/g以上が同じ理由で一層好ま
しい。
The specific surface area (BET) of the boron carbide powder is preferably 15 m 2 / g or more because of its excellent sinterability, but more preferably 20 m 2 / g or more for the same reason.

【0017】上述の粒度分布を有する炭化硼素粉は、従
来公知の方法において、粉砕、ふるい分けや沈降分離等
の条件を調製して得ることができる。また、市販の炭化
硼素粉より、ふるい分けや沈降分離等によって、前記の
所定の粒度分布を有する炭化硼素粉を選別することもで
きる。
The boron carbide powder having the above-mentioned particle size distribution can be obtained by adjusting the conditions such as pulverization, sieving and sedimentation separation by a conventionally known method. Alternatively, boron carbide powder having the above-mentioned predetermined particle size distribution can be selected from commercially available boron carbide powder by sieving or sedimentation.

【0018】ホットプレスは、少なくとも30MPaの
圧力で、真空中或いはAr等の不活性ガス雰囲気中、1
800〜2200℃の焼結温度範囲で行う。焼結温度が
1800℃より低い場合には、十分に緻密な炭化硼素焼
結体が実用上充分な短時間には得ることができず、又2
200℃より高い焼結温度では、炭化硼素の粒成長が生
じることがあり、3μm以下の炭化硼素粒から構成され
た微細な炭化硼素焼結体組織が得られず、その結果高強
度の炭化硼素焼結体が得られないことがある。
The hot press is performed at a pressure of at least 30 MPa in a vacuum or in an atmosphere of an inert gas such as Ar.
The sintering is performed at a sintering temperature range of 800 to 2200C. If the sintering temperature is lower than 1800 ° C., a sufficiently dense boron carbide sintered body cannot be obtained in a sufficiently short time for practical use.
At a sintering temperature higher than 200 ° C., grain growth of boron carbide may occur, and a fine structure of boron carbide sintered body composed of boron carbide particles of 3 μm or less cannot be obtained. As a result, high-strength boron carbide A sintered body may not be obtained.

【0019】尚、本発明に用いる二ホウ化クロム粉は、
平均粒径(D50)が2μm以下、好ましくは1μm以
下のものが使用できる。
The chromium diboride powder used in the present invention is:
Those having an average particle size (D50) of 2 μm or less, preferably 1 μm or less can be used.

【0020】以下、実施例及び比較例に基づいて、本発
明を説明する。
Hereinafter, the present invention will be described based on examples and comparative examples.

【0021】[0021]

【実施例】〔実施例1〕平均粒径(D50)が0.40
μm、D95が1.1μm、最大粒子径が2.3μmの炭
化硼素粉を、黒鉛製ダイス中に充填し、750KPaで
成形した後、焼成炉に取り付けた。10MPaに加圧し
た状態にて、拡散ポンプを用いて2.0×10-2〜2.0
×10-1Paの圧力に減圧しながら、40℃/minの
昇温速度にて加熱を行った。1000℃に到達した時
に、Arガス(流量:2L/min)を導入し、圧力:
0.103MPaの雰囲気中で、昇温速度を10℃/m
inとして2000℃まで加熱した。2000℃に到達
した後、加圧力を50MPaに上昇させ、1時間の保持
を行って炭化硼素焼結体を作製した。
EXAMPLES Example 1 Average particle size (D50) is 0.40
A boron carbide powder having a diameter of μm, a D95 of 1.1 μm and a maximum particle diameter of 2.3 μm was filled in a graphite die, molded at 750 KPa, and then attached to a firing furnace. In a state where the pressure is increased to 10 MPa, 2.0 × 10 −2 to 2.0 using a diffusion pump.
Heating was performed at a heating rate of 40 ° C./min while reducing the pressure to × 10 −1 Pa. When the temperature reached 1000 ° C., Ar gas (flow rate: 2 L / min) was introduced, and the pressure:
In an atmosphere of 0.103 MPa, the temperature was raised at a rate of 10 ° C./m.
Heated to 2000 ° C as in. After the temperature reached 2000 ° C., the pressure was increased to 50 MPa, and the temperature was held for 1 hour to produce a boron carbide sintered body.

【0022】前記の炭化硼素焼結体について、四点曲げ
強度、及び破壊靭性値をそれぞれJIS R1601、
JIS R1607に基づいて測定した。テストピース
の表面は、平面研削盤 400番にて仕上げた。その結
果、675MPaの曲げ強度と2.3MPam1/2の破
壊靭性値を示した。アルキメデス法にて測定したテスト
ピースの密度は、2.49g/cm3(相対密度:98.8
%)であった。また、テストピースの表面をラッピング
し、エッチング処理を行った後にSEM観察を行い、炭
化硼素の最大粒子の大きさをもとめたところ2.4μm
であった。
Regarding the above-mentioned sintered boron carbide, the four-point bending strength and the fracture toughness value were measured according to JIS R1601, respectively.
It was measured based on JIS R1607. The surface of the test piece was finished with a No. 400 surface grinder. As a result, a bending strength of 675 MPa and a fracture toughness value of 2.3 MPam 1/2 were exhibited. The density of the test piece measured by the Archimedes method was 2.49 g / cm 3 (relative density: 98.8)
%)Met. Further, after lapping the surface of the test piece and performing an etching treatment, SEM observation was performed to determine the maximum particle size of boron carbide.
Met.

【0023】〔実施例2〕実施例1で使用した炭化硼素
粉に、平均粒径(D50)が1.5μmの二ホウ化クロ
ム粉を20原子%配合し、メタノールを溶媒として、遊
星ボールミルにて混合した後、エボポレーターで乾燥さ
せ、250メッシュのふるいにとおして、炭化硼素と二
ホウ化クロムの混合粉を調製した。実施例1と同様の手
順にてホットプレス焼結して炭化硼素焼結体を作製し、
評価を行った結果、630MPaの曲げ強度と3.3M
Pam1/2の破壊靭性値を示した。また、テストピース
の密度は、2.89g/cm3(相対密度:99.0%)で
あった。焼結体中の炭化硼素の最大粒子の大きさは、
2.4μmであった。
Example 2 Chromium diboride powder having an average particle diameter (D50) of 1.5 μm was mixed with the boron carbide powder used in Example 1 in an amount of 20 atom%, and the mixture was mixed with methanol as a solvent to form a planet ball mill. After mixing, the mixture was dried with an evaporator and passed through a 250-mesh sieve to prepare a mixed powder of boron carbide and chromium diboride. Hot press sintering was performed in the same procedure as in Example 1 to produce a boron carbide sintered body.
As a result of the evaluation, a bending strength of 630 MPa and 3.3 M
It showed a fracture toughness value of Pam 1/2 . The test piece had a density of 2.89 g / cm 3 (relative density: 99.0%). The maximum particle size of boron carbide in the sintered body is
It was 2.4 μm.

【0024】〔実施例3〕平均粒径(D50)が0.4
3μm、D95が1.2μm、最大粒子径2.4μmの
炭化硼素粉を使用し、実施例1と同じ手順にて2100
℃の温度でホットプレスして炭化硼素焼結体を作製し、
評価した。その結果、640MPaの曲げ強度と2.4
MPam1/2の破壊靭性値を示した。また、テストピー
スの密度は、2.51g/cm3(相対密度:99.6%)
であった。焼結体中の炭化硼素の最大粒子の大きさは、
2.6μmであった。
Example 3 The average particle size (D50) was 0.4
Using boron carbide powder having a diameter of 3 μm, a D95 of 1.2 μm, and a maximum particle diameter of 2.4 μm, the same procedure as in Example 1 was applied to 2100
Hot press at a temperature of ℃ to produce a boron carbide sintered body,
evaluated. As a result, a bending strength of 640 MPa and 2.4 were obtained.
It showed a fracture toughness value of MPam 1/2 . The test piece had a density of 2.51 g / cm 3 (relative density: 99.6%).
Met. The maximum particle size of boron carbide in the sintered body is
It was 2.6 μm.

【0025】〔比較例〕平均粒径(D50)が0.54
μm、D95が3.1μm、最大粒子径が5.5μmの炭
化硼素粉を用いて、実施例1と同様の条件にて作製した
炭化硼素焼結体の曲げ強度と破壊靭性値は、それぞれ3
90MPaおよび2.0MPam1/2であった。また、テ
ストピースの密度は2.19g/cm3(相対密度:86.
9%)であった。焼結体中の炭化硼素の最大粒子の大き
さは、6.2μmであった。
Comparative Example The average particle size (D50) was 0.54.
The bending strength and fracture toughness of a boron carbide sintered body produced under the same conditions as in Example 1 using boron carbide powder having a μm, D95 of 3.1 μm, and a maximum particle diameter of 5.5 μm are 3 respectively.
It was 90 MPa and 2.0 MPam 1/2 . The test piece had a density of 2.19 g / cm 3 (relative density: 86.
9%). The maximum particle size of boron carbide in the sintered body was 6.2 μm.

【0026】[0026]

【発明の効果】本発明の炭化硼素焼結体は、高強度で、
靭性が高く機械的特性が優れ、しかも軽量であるので、
摺動部品,切削工具や新しい耐摩耗性部品等、いろいろ
な用途で用いられることができ、産業上有用である。
Industrial Applicability The boron carbide sintered body of the present invention has high strength,
High toughness, excellent mechanical properties, and lightweight,
It can be used in various applications such as sliding parts, cutting tools and new wear-resistant parts, and is industrially useful.

【0027】本発明の炭化硼素焼結体の製造方法は、高
強度で、靭性が高く機械的特性が優れ、しかも軽量であ
る炭化硼素焼結体を、容易に、安定して得ることがで
き、産業上有用である。
The method for producing a boron carbide sintered body of the present invention makes it possible to easily and stably obtain a boron carbide sintered body having high strength, high toughness, excellent mechanical properties, and light weight. , Industrially useful.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】焼結体中の炭化硼素の最大粒子の大きさが
3μm以下であり、しかも600MPa以上の四点曲げ
強度を有することを特徴とする炭化硼素焼結体。
1. A boron carbide sintered body characterized in that the maximum particle size of boron carbide in the sintered body is 3 μm or less and has a four-point bending strength of 600 MPa or more.
【請求項2】二ホウ化クロムを5〜25原子%含み、
3.0MPam1/2以上の破壊靭性値を有することを特徴
とする請求項1記載の炭化硼素焼結体。
2. A chromium diboride containing 5 to 25 atomic%,
2. The boron carbide sintered body according to claim 1, which has a fracture toughness value of 3.0 MPam 1/2 or more.
【請求項3】平均粒径(D50)が0.5μm以下、D
95が1.2μm以下、しかも最大粒子径が2.75μm
以下の炭化硼素粉を用いて、得られる焼結体が600M
Pa以上の四点曲げ強度を有するように、1800〜2
200℃でホットプレスを行うことを特徴とする炭化硼
素焼結体の製造方法。
3. The method according to claim 1, wherein the average particle size (D50) is 0.5 μm or less.
95 is 1.2 μm or less, and the maximum particle size is 2.75 μm
Using the following boron carbide powder, the obtained sintered body is 600M
1800-2 so as to have a four-point bending strength of Pa or more.
A method for producing a boron carbide sintered body, wherein hot pressing is performed at 200 ° C.
【請求項4】前記炭化硼素分に二ホウ化クロム粉を、二
ホウ化クロムが5〜25原子%となるように添加し、得
られる焼結体が3.0MPam1/2以上の破壊靭性値を有
するようにホットプレスすることを特徴とする請求項3
記載の炭化硼素焼結体の製造方法。
4. The chromium diboride powder is added to the boron carbide so that the chromium diboride is 5 to 25 atomic%, and the resulting sintered body has a fracture toughness of 3.0 MPam 1/2 or more. 4. The hot pressing to have a value.
The method for producing a boron carbide sintered body according to the above.
JP2000060033A 2000-03-06 2000-03-06 Boron carbide sintered compact and method for producing the same Pending JP2001247366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060033A JP2001247366A (en) 2000-03-06 2000-03-06 Boron carbide sintered compact and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060033A JP2001247366A (en) 2000-03-06 2000-03-06 Boron carbide sintered compact and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001247366A true JP2001247366A (en) 2001-09-11

Family

ID=18580409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060033A Pending JP2001247366A (en) 2000-03-06 2000-03-06 Boron carbide sintered compact and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001247366A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040060A1 (en) * 2001-11-06 2003-05-15 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
JP2007230787A (en) * 2006-02-27 2007-09-13 Kyocera Corp Boron carbide sintered compact and protective member using the same
JP2009221103A (en) * 2003-06-12 2009-10-01 Georgia Tech Research Corp Boron carbide component
CN106348779A (en) * 2016-08-26 2017-01-25 桐城市明丽碳化硼制品有限公司 Boron carbide-calcium fluoride composite ceramic nozzle
CN106380216A (en) * 2016-08-26 2017-02-08 桐城市明丽碳化硼制品有限公司 Boron carbide-aluminum nitride composite ceramic nozzle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003040060A1 (en) * 2001-11-06 2003-05-15 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
EP1452509A4 (en) * 2001-11-06 2007-06-27 Aist Boron carbide based sintered compact and method for preparation thereof
US7417002B2 (en) 2001-11-06 2008-08-26 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
US7442661B2 (en) 2001-11-06 2008-10-28 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
JP2009221103A (en) * 2003-06-12 2009-10-01 Georgia Tech Research Corp Boron carbide component
JP2007230787A (en) * 2006-02-27 2007-09-13 Kyocera Corp Boron carbide sintered compact and protective member using the same
CN106348779A (en) * 2016-08-26 2017-01-25 桐城市明丽碳化硼制品有限公司 Boron carbide-calcium fluoride composite ceramic nozzle
CN106380216A (en) * 2016-08-26 2017-02-08 桐城市明丽碳化硼制品有限公司 Boron carbide-aluminum nitride composite ceramic nozzle

Similar Documents

Publication Publication Date Title
US7442661B2 (en) Boron carbide based sintered compact and method for preparation thereof
JP6871173B2 (en) Fragile ceramic bonded diamond composite particles and their manufacturing method
KR20110077154A (en) Manufacturing method of zirconium diboride-silicon carbide composite
CN104926309B (en) A kind of without boron or the preparation method of the compact silicon carbide ceramic of rare earth element
JP2013500226A (en) High toughness ceramic composite material
CN110183231B (en) Preparation method of high-strength high-toughness boron carbide-based ceramic material and ceramic material thereof
JP5076044B2 (en) Composite wear-resistant member and manufacturing method thereof
JP2001247366A (en) Boron carbide sintered compact and method for producing the same
JP3686029B2 (en) Boron carbide-titanium diboride sintered body and manufacturing method thereof
WO2020133585A1 (en) Hard transition metal boride material and preparation method therefor
CN107267836A (en) A kind of twin crystal hard alloy and preparation method thereof
JP5909804B1 (en) Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same
CN102159743A (en) Carbide body and method for production thereof
JP3561476B2 (en) Boron carbide-chromium diboride sintered body and method for producing the same
WO2014123153A1 (en) Alumina sintered body, abrasive grains, grindstone, polishing cloth, and method for manufacturing alumina sintered body
JP3992474B2 (en) Method for producing boron carbide-aluminum nitride sintered body
JP3672476B2 (en) Silicon iron nitride powder and refractory
JP3111709B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JP2014141359A (en) Sialon-base sintered compact
JP7437570B1 (en) Silicon nitride powder and method for producing the same, and method for producing silicon nitride sintered body
JP3926760B2 (en) Boron carbide-chromium diboride sintered body and method for producing the same
JP2815686B2 (en) Composite sintered cutting tool material with excellent chipping resistance and its manufacturing method
JP2000143351A (en) High-toughness silicon nitride-based sintered compact
WO2021200864A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body
JPH09295869A (en) Sialon ceramic excellent in impact resistance and its production