JP2003132888A - Manufacturing method of carbonaceous anode material for lithium secondary battery and lithium secondary battery using the carbonaceous anode material - Google Patents

Manufacturing method of carbonaceous anode material for lithium secondary battery and lithium secondary battery using the carbonaceous anode material

Info

Publication number
JP2003132888A
JP2003132888A JP2001331300A JP2001331300A JP2003132888A JP 2003132888 A JP2003132888 A JP 2003132888A JP 2001331300 A JP2001331300 A JP 2001331300A JP 2001331300 A JP2001331300 A JP 2001331300A JP 2003132888 A JP2003132888 A JP 2003132888A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
carbonaceous
electrode material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001331300A
Other languages
Japanese (ja)
Inventor
Takanobu Kawai
隆伸 河井
Akira Urano
章 浦野
Takashi Wakizaka
敬 脇阪
Kenichi Motokawa
健一 本川
Minoru Wakayama
実 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP2001331300A priority Critical patent/JP2003132888A/en
Publication of JP2003132888A publication Critical patent/JP2003132888A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a carbonaceous anode material for a secondary battery having advantage in a high bulk density, minimum use of a binder having no direct contribution to a charge-discharge capacity, and a rapid charge-discharge characteristic, and a lithium secondary battery using the carbonaceous anode material produced by the manufacturing method. SOLUTION: The manufacturing method of the carbonaceous anode material for the secondary battery comprises a metal or semimetal oxide powder of 1-25 pts.wt. is added to and mixed with the carbonaceous material substantially having no softening point of 100 pts.wt., a resultant mixture is calcined in a nonoxidizing atmosphere, further graphitization is carried out at 2800-3200 deg.C to obtain the carbonaceous anode material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話、パソコ
ン等の可搬型機器類などに用いられるリチウム系二次電
池用炭素質負極材の製造方法及び該製造方法により得ら
れる炭素質負極材を用いたリチウム系二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbonaceous negative electrode material for a lithium secondary battery used in portable devices such as mobile phones and personal computers, and a carbonaceous negative electrode material obtained by the production method. The lithium-based secondary battery used.

【0002】[0002]

【従来の技術】リチウムイオン二次電池はハイパワーで
かつ高容量の二次電池として携帯電話、パーソナルコン
ピューター等の可搬型機器類に多く使用され、今後もそ
の需要が更に高くなると予想されている。このような可
搬型機器類の小型化への流れを受け、リチウムイオン二
次電池も小型・軽量化の要請を受けている。そのため、
リチウムイオン二次電池を構成するパーツや材料も高性
能化の動きが活発になっている。したがって、電池の性
能を左右するカーボン系負極材についても例外ではな
い。
2. Description of the Related Art Lithium-ion secondary batteries are widely used as high-power and high-capacity secondary batteries in portable devices such as mobile phones and personal computers, and the demand for them is expected to increase further in the future. . In response to such a trend toward miniaturization of portable devices, lithium ion secondary batteries are also required to be compact and lightweight. for that reason,
The parts and materials that make up lithium-ion secondary batteries are also becoming increasingly sophisticated. Therefore, the carbon-based negative electrode material that influences the battery performance is no exception.

【0003】カーボン系負極材については放電容量の増
加、容量ロスの低減、急速充放電が可能であることはも
ちろんのこと、電池内により多くの負極材を詰めるため
に高嵩密度であること、負極材を互いに及び銅箔上に結
着させるために用いるバインダーの使用量の低減化の要
求がある。
Regarding the carbon-based negative electrode material, it goes without saying that the discharge capacity can be increased, the capacity loss can be reduced, and rapid charging / discharging can be performed, and that it has a high bulk density in order to pack more negative electrode material in the battery. There is a need to reduce the amount of binder used to bind the negative electrode materials to each other and to the copper foil.

【0004】一般に負極材は、大きく2つのタイプに分
けられる。1つはメソフェーズピッチ、イソフェーズピ
ッチを出発原料とするもの及びこれらのピッチを主構成
成分として天然黒鉛微粉や人造黒鉛微粉を含有させたも
のを出発原料とした黒鉛質負極材である。この負極材は
嵩密度が1.2〜1.5g/cm3 と高く高充填性に優
れ、比表面積が0.4〜1.2m2/gと小さい。
Negative electrode materials are generally classified into two types. One is a mesophase pitch, a material using isophase pitch as a starting material, and a graphite negative electrode material using these pitches as a main constituent and containing natural graphite fine powder or artificial graphite fine powder as a starting material. This negative electrode material has a high bulk density of 1.2 to 1.5 g / cm 3 and is excellent in high filling property, and has a small specific surface area of 0.4 to 1.2 m 2 / g.

【0005】他のタイプは、天然黒鉛粉末、該天然黒鉛
粉末を賦形(造粒)した粉末、人造黒鉛ブロックを粉砕
・整粒したタイプで、これらの負極材の急速充放電特性
は前記ピッチ系のタイプに比べ劣っている。
Another type is a natural graphite powder, a powder obtained by shaping (granulating) the natural graphite powder, and a type in which an artificial graphite block is crushed and sized. It is inferior to the type of system.

【0006】一方、電極材料を結着するために用いるバ
インダーは、従来からポリフッ化ビニリデン(PVD
F)が多用されてきた。
On the other hand, the binder used for binding the electrode material has conventionally been polyvinylidene fluoride (PVD).
F) has been heavily used.

【0007】一般にPVDFを使用する場合には、負極
材の比表面積は1m2/g程度以下、好ましくは0.8
2/g以下であるが、この場合PVDFの使用量は、
負極材100重量部に対し、6〜10重量部が好適とさ
れている。PVDFが6重量部に満たないと銅箔との密
着性が低く、また10重量部よりも多いと電極の抵抗値
が上がり、導電性の低下を招き好ましくない。
In general, when PVDF is used, the specific surface area of the negative electrode material is about 1 m 2 / g or less, preferably 0.8
m 2 / g or less, but in this case, the amount of PVDF used is
6 to 10 parts by weight is suitable for 100 parts by weight of the negative electrode material. When PVDF is less than 6 parts by weight, the adhesion to the copper foil is low, and when it is more than 10 parts by weight, the resistance value of the electrode is increased and the conductivity is lowered, which is not preferable.

【0008】近年、PVDFに代わって水系バインダ
ー、即ちスチレンブタジエンゴム(SBR)、ポリテト
ラフルオロエチレン(PTFE)、アクリル樹脂のディ
スパージョン等が使用されるようになってきた。これら
の内、負極材用には、特にSBRと分散・増粘作用を受
け持つカルボキシメチルセルロース(CMC)を併用す
る方式が目立つ。
In recent years, instead of PVDF, an aqueous binder, that is, styrene-butadiene rubber (SBR), polytetrafluoroethylene (PTFE), a dispersion of acrylic resin, etc. has come to be used. Among these, for the negative electrode material, a method in which SBR and carboxymethyl cellulose (CMC) which has a dispersing / thickening effect are used in combination is particularly conspicuous.

【0009】バインダーにSBRを使用する場合は、負
極材の比表面積はPVDFを使用する場合と比べて大き
な2〜5m2/g程度が良いとされている。バインダー
にSBRを用いれば、負極材100重量部に対し、SB
RはCMCを併用して合計で1.5〜4重量部程度であ
り、PVDFを使用する場合と比べて使用量を大きく軽
減できる。このため、実電池では、バインダーの軽減分
の負極材を詰めることができ、電池容量を高めることが
可能となる。
When SBR is used as the binder, the specific surface area of the negative electrode material is said to be about 2-5 m 2 / g, which is larger than that when PVDF is used. If SBR is used as the binder, the amount of SB
R is about 1.5 to 4 parts by weight in total when CMC is used in combination, and the amount used can be greatly reduced compared to the case where PVDF is used. Therefore, in the actual battery, the negative electrode material for reducing the binder can be packed, and the battery capacity can be increased.

【0010】ところが、水系バインダーであるSBRを
使用する場合には、用いる負極材の比表面積の大きさに
よって併用するCMCの分子量や、SBRとの配合量を
変える等のテクニックが必要となってくる。逆に言え
ば、使用するSBRバインダーシステムに従って、負極
材の比表面積を変える必要があるということになる。
However, when SBR, which is an aqueous binder, is used, it is necessary to use a technique such as changing the molecular weight of CMC used in combination or the amount of SBR mixed with SBR depending on the size of the specific surface area of the negative electrode material used. . Conversely, it means that it is necessary to change the specific surface area of the negative electrode material according to the SBR binder system used.

【0011】[0011]

【発明が解決しようとする課題】高容量電池の開発のた
めには、電池内により多量の負極材を詰められるよう
に、高嵩密度で、充放電容量に直接寄与しないバインダ
ーの使用量が極力抑えられる、SBRに代表されるよう
な水系バインダーに対応するように比表面積がコントロ
ールされ、しかも急速充放電特性の良い負極材を開発す
る必要がある。
In order to develop a high-capacity battery, it is necessary to use as much binder as possible, which has a high bulk density and does not directly contribute to charge / discharge capacity, so that a large amount of negative electrode material can be packed in the battery. It is necessary to develop a negative electrode material whose specific surface area is controlled so as to correspond to a water-based binder represented by SBR, which is suppressed, and which has good rapid charge / discharge characteristics.

【0012】従って、本発明の目的は、急速充放電特性
等の優れたリチウム系二次電池に用いることができる炭
素質負極材料の製造方法を提供することである。また、
本発明の別の目的は、上記本発明の製造方法により得ら
れた炭素質負極材料を用いた急速充放電特性等の優れた
リチウム系二次電池を提供することである。
Therefore, an object of the present invention is to provide a method for producing a carbonaceous negative electrode material which can be used in a lithium-based secondary battery having excellent rapid charge / discharge characteristics. Also,
Another object of the present invention is to provide a lithium-based secondary battery that uses the carbonaceous negative electrode material obtained by the above-described production method of the present invention and is excellent in rapid charge / discharge characteristics and the like.

【0013】[0013]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために種々検討した結果、ピッチ系黒鉛質負
極材の焼成前の前駆体に金属または半金属酸化物粉末を
適宜添加混合した後、非酸化性雰囲気下の所定の温度で
焼成し、2800〜3200℃の温度で黒鉛化すること
により、目的とするリチウム系二次電池用負極材が得ら
れること、また、該製造方法により得られた炭素質負極
材料をリチウム系二次電池に用いることにより、急速充
放電特性等の優れた高容量電池が得られることを見い出
し、本発明を完成するに至った。
Means for Solving the Problems As a result of various investigations for solving the above problems, the present inventors have appropriately added a metal or semimetal oxide powder to a precursor of a pitch-based graphite negative electrode material before firing. After mixing, firing at a predetermined temperature in a non-oxidizing atmosphere and graphitizing at a temperature of 2800 to 3200 ° C. to obtain the target negative electrode material for a lithium secondary battery, and the production thereof. By using the carbonaceous negative electrode material obtained by the method for a lithium-based secondary battery, it was found that a high-capacity battery excellent in rapid charge / discharge characteristics and the like was obtained, and the present invention was completed.

【0014】すなわち、本発明のリチウム系二次電池用
炭素質負極材料の製造方法は、実質的に軟化点を有しな
い炭素質材料100重量部に対し、金属または半金属の
酸化物粉末を1〜25重量部添加・混合し、非酸化性雰
囲気下で焼成後、更に2800〜3200℃で黒鉛化処
理してなることを特徴とするものである。また、本発明
のリチウム系二次電池は、上記本発明の製造方法により
得られた炭素質負極材料を用いたことを特徴とするもの
である。
That is, in the method for producing a carbonaceous negative electrode material for a lithium secondary battery according to the present invention, 1 part of metal or metalloid oxide powder is added to 100 parts by weight of carbonaceous material having substantially no softening point. Up to 25 parts by weight are added and mixed, the mixture is baked in a non-oxidizing atmosphere, and then graphitized at 2800 to 3200 ° C. The lithium secondary battery of the present invention is characterized by using the carbonaceous negative electrode material obtained by the production method of the present invention.

【0015】以下に、本発明のリチウム系二次電池用炭
素質負極材料の製造方法及び該製造方法により得られた
炭素質負極材料を用いたリチウム系二次電池について詳
細に説明する。
The method for producing the carbonaceous negative electrode material for a lithium secondary battery according to the present invention and the lithium secondary battery using the carbonaceous negative electrode material obtained by the production method will be described in detail below.

【0016】1.基材:本発明において炭素質負極材料
を製造するための基材として用いられる炭素質材料は、
実質的に軟化点を有しない炭素質材料が好ましく用いら
れ、例えば、生コークス、不融化処理されたバルクメソ
フェーズピッチ粉末及びイソフェーズピッチ粉末、該メ
ソフェーズピッチまたはイソフェーズピッチに天然黒鉛
微粉及び/又は人造黒鉛微粉を含有させた後不融化処理
した炭素質材料が好ましく用いられる。生コークスは、
これを粉砕し、整粒した粉末が用いられる。生コークス
の場合は、ニードルタイプは、粉砕によりアスペクト比
が3以上になり、これから得られた黒鉛系負極材は電池
とした時のサイクル特性に問題が出るので、好ましくな
い。バルクメソフェーズピッチは、これを粉砕し、整粒
した粉末が用いられる。軟化点を有する場合は、粉砕
後、空気中280〜320℃で酸化処理を行い、不融化
し、これを整粒して用いる。イソフェーズピッチの場合
は、軟化点が200℃以上のものを用い、これを粉砕
後、空気中280〜320℃で酸化処理を行って不融化
し、これを整粒して用いる。メソフェーズピッチまたは
イソフェーズピッチに天然黒鉛微粉や人造黒鉛微粉を含
有させる場合は、該フィラーをこれらのピッチに溶融分
散させ、放冷固化させた後、粉砕し、更に空気中280
〜320℃で酸化処理を行って不融化し、これを整粒し
て用いる。不融化処理温度が280℃未満では不融化が
十分ではなく、また、320℃を越えて処理しても不融
化の効率は変わらず、不経済だからである。また、不融
化処理時間は昇温速度及び不融化処理温度との関係で適
宜変えることができ、0.5〜2時間が好ましい。天然
黒鉛微粉および人造黒鉛微粉の配合割合は、メソフェー
ズピッチまたはイソフェーズピッチ100重量部に対
し、5〜25重量部が好ましい。天然黒鉛微粉または人
造黒鉛微粉の配合割合が5重量部未満では効果が少な
く、また、25重量部を越えると嵩密度の低下が大きく
好ましくない。
1. Substrate: The carbonaceous material used as a substrate for producing the carbonaceous negative electrode material in the present invention is
A carbonaceous material having substantially no softening point is preferably used, and examples thereof include raw coke, infusibilized bulk mesophase pitch powder and isophase pitch powder, natural graphite fine powder and / or the mesophase pitch or isophase pitch. A carbonaceous material which is made infusible after containing artificial graphite fine powder is preferably used. Raw coke
A powder obtained by crushing this and sizing is used. In the case of raw coke, the needle type has an aspect ratio of 3 or more due to pulverization, and the graphite-based negative electrode material obtained from this has a problem in cycle characteristics when used as a battery, which is not preferable. As the bulk mesophase pitch, a powder obtained by pulverizing and sizing this is used. When it has a softening point, it is pulverized and then subjected to an oxidation treatment in air at 280 to 320 ° C. to make it infusible, and then this is sized and used. In the case of isophase pitch, one having a softening point of 200 ° C. or higher is used, and after being pulverized, it is infusibilized by being subjected to an oxidation treatment in air at 280 to 320 ° C., and this is sized and used. When the fine powder of natural graphite or the fine powder of artificial graphite is contained in the mesophase pitch or the isophase pitch, the filler is melt-dispersed in these pitches, allowed to cool and solidify, and then ground, and further 280 in air.
It is infusibilized by performing an oxidation treatment at ˜320 ° C., and this is sized and used. This is because if the infusibilizing treatment temperature is less than 280 ° C., the infusibilization is not sufficient, and if the treatment is performed at more than 320 ° C., the infusibilization efficiency does not change and it is uneconomical. The infusibilizing treatment time can be appropriately changed depending on the relationship between the temperature rising rate and the infusibilizing treatment temperature, and is preferably 0.5 to 2 hours. The blending ratio of the natural graphite fine powder and the artificial graphite fine powder is preferably 5 to 25 parts by weight with respect to 100 parts by weight of mesophase pitch or isophase pitch. If the compounding ratio of the natural graphite fine powder or the artificial graphite fine powder is less than 5 parts by weight, the effect is small, and if it exceeds 25 parts by weight, the bulk density is lowered, which is not preferable.

【0017】2.基材粒度:基材の粒度は特に限定され
ないが、一般に本用途に用いられる粒度であれば差し支
えない。すなわち、平均粒径で5〜50μmが好まし
い。また、2μm以下の微粉や、100μmを越える粗
粉は、ロスの増大や、電極シート作成上好ましくないの
で、含有しない方が良い。このため予め整粒を行った方
が好ましい。
2. Base material particle size: The particle size of the base material is not particularly limited, but may be any particle size generally used for this purpose. That is, the average particle size is preferably 5 to 50 μm. Further, fine powder of 2 μm or less and coarse powder of more than 100 μm are not preferable because they increase loss and are not preferable in forming an electrode sheet. For this reason, it is preferable to perform sizing in advance.

【0018】3.添加剤:炭素質材料に添加される材料
は、金属および半金属の酸化物が好ましい。例を挙げる
ならば、二酸化珪素、酸化鉄、酸化アルミニウム、酸化
チタン、二酸化マンガン等であるが、ここに挙げた物に
特に限定されるものではない。これらの添加剤の純度
は、炭素質材料の焼成及び黒鉛化工程を通して最終的に
金属または半金属のカーバイドとして系外に除かれるた
め、特に限定されるものではないが、得られる炭素質負
極材料の高得率のためには、95%以上の純度が好まし
い。
3. Additive: The material added to the carbonaceous material is preferably a metal or semimetal oxide. Examples thereof include silicon dioxide, iron oxide, aluminum oxide, titanium oxide, manganese dioxide, and the like, but are not particularly limited to those listed here. The purity of these additives is not particularly limited because they are finally removed from the system as metal or semimetal carbides through the firing and graphitization steps of the carbonaceous material, and thus the obtained carbonaceous negative electrode material. In order to obtain a high yield of, a purity of 95% or more is preferable.

【0019】4.添加剤粒度:添加剤の粒度は特に限定
されないが、基材粒度と同等以下である方が、基材中へ
の混合・分散を考慮したときに好ましい。
4. Additive particle size: The particle size of the additive is not particularly limited, but it is preferable that it is equal to or smaller than the particle size of the base material in consideration of mixing / dispersion in the base material.

【0020】5.配合割合:添加剤の配合割合は、炭素
質材料100重量部に対し、酸化物粉末を1〜25重量
部が好ましく、炭素質材料に添加・混合し、均一分散さ
せて用いる。酸化物粉末の添加量が1重量部未満では、
添加による効果が十分に得られない。また、25重量部
を越えると、添加物は焼成・黒鉛化を経て全て分解気化
し、系外に出てしまうため、製品得率が大きく下がり、
コストアップとなり、好ましくない。更には、ある一定
量以上の添加では、生成された製品の比表面積は、ある
一定値に近づくだけで大きな効果が得られず、逆に嵩密
度の低下が大きくなり無意味である。
5. Blending ratio: The blending ratio of the additive is preferably 1 to 25 parts by weight of the oxide powder with respect to 100 parts by weight of the carbonaceous material. If the amount of oxide powder added is less than 1 part by weight,
The effect of addition cannot be sufficiently obtained. On the other hand, if it exceeds 25 parts by weight, all the additives are decomposed and vaporized through firing and graphitization, and go out of the system, resulting in a large decrease in product yield.
This is not preferable because it increases the cost. Furthermore, when a certain amount or more is added, the specific surface area of the produced product does not have a great effect only when it approaches a certain value, and conversely, the bulk density is greatly reduced, which is meaningless.

【0021】6.焼成温度:焼成は、被処理物の酸化減
耗を防ぐために炭酸ガス、窒素ガスなどの非酸化性雰囲
気下で行うのが好ましく、焼成温度は、700℃以上で
あれば良いが、1200℃以下が好ましい。焼成温度が
700℃未満では炭素化の点で熱分解が十分ではなく、
また、1200℃を越える温度では炉の耐久性、製造コ
ストの点で現実的ではない。
6. Firing temperature: Firing is preferably performed in a non-oxidizing atmosphere such as carbon dioxide gas or nitrogen gas in order to prevent oxidative wear of the object to be treated. The firing temperature may be 700 ° C or higher, but 1200 ° C or lower. preferable. If the firing temperature is lower than 700 ° C, thermal decomposition is insufficient in terms of carbonization,
Further, if the temperature exceeds 1200 ° C., the durability of the furnace and the manufacturing cost are not realistic.

【0022】7.黒鉛化温度:このように非酸化性雰囲
気下で焼成して得られた炭素質材料を、次に2800〜
3200℃の範囲で黒鉛化する。2800℃以下では、
黒鉛の結晶化が十分に進まず、また添加剤種によっては
製品中に一部残留する恐れがあるので、好ましくない。
3200℃より高温では実質上処理できない。
7. Graphitization temperature: The carbonaceous material obtained by firing in a non-oxidizing atmosphere in this way
Graphitize in the range of 3200 ° C. Below 2800 ° C,
Crystallization of graphite does not proceed sufficiently, and some additives may remain in the product, which is not preferable.
Substantially no treatment is possible at temperatures above 3200 ° C.

【0023】このようにして本発明の製造方法により得
られる炭素質負極材料は、前記酸化物粉末の混合割合
と、黒鉛化処理温度を変えることにより、粒度分布を変
えずに比表面積を0.4〜4m2/g、また、嵩密度を
0.7〜1.5g/cm3の間でそれぞれ任意に変える
ことができる。
In this way, the carbonaceous negative electrode material obtained by the production method of the present invention has a specific surface area of 0. 0 without changing the particle size distribution by changing the mixing ratio of the oxide powder and the graphitization temperature. 4 to 4 m 2 / g, and the bulk density can be arbitrarily changed between 0.7 to 1.5 g / cm 3 .

【0024】[0024]

【作用】炭素質材料の焼成及び黒鉛化工程を通して、添
加された金属または半金属の酸化物が分解して気化する
際に、基材表面の炭素と反応してCO、CO2 等の炭酸
ガスや金属または半金属のカーバイドとして系外に除か
れる。この時に基材表面の炭素が、反応により浸食され
た形となり、得られた黒鉛粉末の表面が荒れて比表面積
を増加させる。従って、金属または半金属の酸化物の添
加量が多いほど、得られる黒鉛粉末の比表面積は大きく
なる。また、黒鉛化温度は、高いほど反応が進行するた
め、比表面積が大きくなる。
[Function] When the added metal or metalloid oxide is decomposed and vaporized through the steps of firing and graphitizing the carbonaceous material, it reacts with carbon on the surface of the base material and carbon dioxide gas such as CO and CO 2 It is removed from the system as a metal or metalloid carbide. At this time, carbon on the surface of the base material is eroded by the reaction, and the surface of the obtained graphite powder is roughened to increase the specific surface area. Therefore, the larger the amount of the metal or semi-metal oxide added, the larger the specific surface area of the obtained graphite powder. Further, the higher the graphitization temperature, the more the reaction proceeds, so the specific surface area increases.

【0025】[0025]

【実施例】以下、実施例及び比較例により本発明を詳細
に説明する。実施例1 平均粒径23μmを有する生コークス100重量部に対
して、粒径1μmの市販のアルミナ粉末(和光純薬工業
(株)製、純度99%)を5重量部添加混合し、均一分
散させた。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples. Example 1 To 100 parts by weight of raw coke having an average particle size of 23 μm, 5 parts by weight of a commercially available alumina powder having a particle size of 1 μm (manufactured by Wako Pure Chemical Industries, Ltd., purity 99%) was added and mixed, and uniformly dispersed. Let

【0026】次に、窒素気流中で1000℃にて2時間
焼成を行った後、アチソン炉にて3000℃で処理して
黒鉛化を実施した。得られた黒鉛粉末について、(株)
セイシン企業製の粒度分布測定機LMS−30及びマイ
クロメリティックス社製の比表面積測定機ASAP−2
400を用いてそれぞれ平均粒径及び比表面積を測定し
た結果、平均粒径は23μm及び比表面積は2.40m
2/gであった。嵩密度は、タッピング法を用いて測定
した結果、1.21g/cm3 であった。
Next, after firing at 1000 ° C. for 2 hours in a nitrogen stream, it was treated at 3000 ° C. in an Acheson furnace for graphitization. About the obtained graphite powder,
Particle size distribution measuring device LMS-30 manufactured by Seishin Enterprise and specific surface area measuring device ASAP-2 manufactured by Micromeritics
As a result of measuring the average particle diameter and the specific surface area using 400, respectively, the average particle diameter is 23 μm and the specific surface area is 2.40 m.
It was 2 / g. The bulk density was 1.21 g / cm 3 as a result of measurement using the tapping method.

【0027】実施例2 平均粒径18μm、軟化点365℃のバルクメソフェー
ズピッチ粉末をトンネル炉を用いて、空気中で最高温度
300℃にて1時間処理して不融化し、酸素量4.2%
の酸化ピッチ粉末を得た。この粉末100重量部に対し
て、粒径1μmの市販のアルミナ粉末(和光純薬工業
(株)製、純度99%)を5重量部添加混合し、均一分
散させた。
Example 2 Bulk mesophase pitch powder having an average particle size of 18 μm and a softening point of 365 ° C. was infusibilized by treating it in the air at a maximum temperature of 300 ° C. for 1 hour using a tunnel furnace to obtain an oxygen content of 4.2. %
Oxidized pitch powder of was obtained. To 100 parts by weight of this powder, 5 parts by weight of a commercially available alumina powder having a particle size of 1 μm (manufactured by Wako Pure Chemical Industries, Ltd., purity 99%) was added and mixed, and uniformly dispersed.

【0028】次に、窒素気流中で1000℃にて2時間
焼成を行った後、タンマン炉にて3000℃で0.5時
間処理して黒鉛化を実施した。得られた黒鉛粉末につい
て、実施例1とまったく同様に平均粒径及び比表面積を
それぞれ測定した結果、平均粒径は17μm及び比表面
積は2.72m2/gであった。嵩密度も実施例1とま
ったく同様に測定した結果、1.33g/cm 3 であっ
た。
Next, in a nitrogen stream at 1000 ° C. for 2 hours
After firing, in a Tammann furnace at 3000 ° C for 0.5 hours
And then graphitized. About the obtained graphite powder
Then, the average particle size and the specific surface area were measured in exactly the same manner as in Example 1.
As a result of each measurement, the average particle size is 17 μm and the specific surface
Product is 2.72m2/ G. The bulk density was also as in Example 1.
As a result of the same measurement, 1.33 g / cm 3 And
It was

【0029】比較例1 実施例2において用いた基材を不融化後、添加剤を何ら
添加することなく、そのまま実施例2とまったく同様に
窒素気流中で1000℃にて2時間焼成を行った後、タ
ンマン炉にて3000℃で0.5時間処理して黒鉛化を
実施した。得られた黒鉛粉末について、実施例2とまっ
たく同様に平均粒径及び比表面積を測定した結果、平均
粒径は17μm及び比表面積は0.6m2/gであっ
た。また嵩密度は、1.40g/cm3 であった。
Comparative Example 1 After the substrate used in Example 2 was made infusible, it was fired at 1000 ° C. for 2 hours in a nitrogen stream in the same manner as in Example 2 without adding any additives. Then, graphitization was carried out by treating in a Tammann furnace at 3000 ° C. for 0.5 hour. The average particle diameter and the specific surface area of the obtained graphite powder were measured in exactly the same manner as in Example 2. As a result, the average particle diameter was 17 μm and the specific surface area was 0.6 m 2 / g. The bulk density was 1.40 g / cm 3 .

【0030】実施例3 アルミナ粉末を基材100重量部に対し、10重量部添
加して焼成及び黒鉛化した他は、実施例2とまったく同
様に焼成及び黒鉛化を行った。得られた黒鉛粉末につい
て、実施例2とまったく同様に平均粒径及び比表面積を
測定した結果、平均粒径は16μm、比表面積は4.9
4m2/gであった。また嵩密度は、1.10g/cm3
であった。
Example 3 Firing and graphitization were carried out in exactly the same manner as in Example 2 except that 10 parts by weight of alumina powder was added to 100 parts by weight of the base material, followed by firing and graphitization. The average particle diameter and the specific surface area of the obtained graphite powder were measured in exactly the same manner as in Example 2. As a result, the average particle diameter was 16 μm and the specific surface area was 4.9.
It was 4 m 2 / g. The bulk density is 1.10 g / cm 3.
Met.

【0031】比較例2 実施例2において用いたアルミナ粉末の代わりに市販の
炭化珪素粉末(昭和電工(株)製、品番GC−300
0、純度99.5%)を10重量部用いて実施例2とま
ったく同様に焼成及び黒鉛化を行い黒鉛粉末を得た。得
られた黒鉛粉末について、実施例2とまったく同様に平
均粒径及び比表面積を測定した結果、平均粒径は17μ
m、比表面積は0.57m2/gで比表面積増加の効果
は見られなかった。また嵩密度は、1.39g/cm3
であった。
Comparative Example 2 Instead of the alumina powder used in Example 2, a commercially available silicon carbide powder (Showa Denko KK, product number GC-300) was used.
Graphite powder was obtained by firing and graphitizing in exactly the same manner as in Example 2 using 10 parts by weight of 0, purity 99.5%). The obtained graphite powder was measured for average particle diameter and specific surface area in exactly the same manner as in Example 2. As a result, the average particle diameter was 17 μm.
m, the specific surface area was 0.57 m 2 / g, and the effect of increasing the specific surface area was not observed. The bulk density is 1.39 g / cm 3.
Met.

【0032】実施例4 軟化点200℃のイソフェーズピッチ(光学的等方性ピ
ッチ)を粉砕して平均粒径20μmの粉末を得た。これ
をトンネル炉を用いて、空気中で最高温度300℃にて
1時間不融化処理し、この酸化ピッチ粉末100重量部
に対して粒径0.5μmの酸化鉄(川崎製鐵(株)製、
純度99.5%)5重量部を添加混合し、窒素気流中で
1000℃で3時間焼成し、アチソン炉において300
0℃で黒鉛化を順次行った。得られた黒鉛粉末につい
て、実施例2とまったく同様に平均粒径及び比表面積を
測定した結果、平均粒径は18μm、比表面積は2.2
2/gであった。また嵩密度は、1.16g/cm3
であった。
Example 4 Isophase pitch (optically isotropic pitch) having a softening point of 200 ° C. was pulverized to obtain a powder having an average particle size of 20 μm. Using a tunnel furnace, this was infusibilized in air at a maximum temperature of 300 ° C. for 1 hour, and 100 parts by weight of this oxidized pitch powder had an iron oxide particle size of 0.5 μm (made by Kawasaki Iron and Steel Co., Ltd.). ,
(Purity 99.5%) 5 parts by weight are added and mixed, and the mixture is baked in a nitrogen stream at 1000 ° C. for 3 hours, and then heated in an Acheson furnace to 300
Graphitization was performed sequentially at 0 ° C. The obtained graphite powder was measured for average particle diameter and specific surface area in exactly the same manner as in Example 2. As a result, the average particle diameter was 18 μm and the specific surface area was 2.2.
It was m 2 / g. The bulk density is 1.16 g / cm 3.
Met.

【0033】実施例5 実施例4におけるイソフェーズピッチ100重量部に、
更に市販の平均粒径3μmの天然黒鉛粉末((株)中越
黒鉛工業所製、品番CX−10000、配分0.5%)
を20重量部加え、溶融混合を行った。放冷後粉砕して
平均粒径24μmとした。トンネル炉で不融化処理した
酸化ピッチ100重量部に、実施例4で用いた酸化鉄を
10重量部添加混合後、窒素気流中800℃で3時間処
理し、更にアチソン炉で3000℃で黒鉛化した。得ら
れた黒鉛粉末について、実施例2とまったく同様に平均
粒径及び比表面積を測定した結果、平均粒径は22μ
m、比表面積は2.4m2/gであった。また嵩密度
は、1.20g/cm3 であった。
Example 5 In 100 parts by weight of the isophase pitch in Example 4,
Furthermore, a commercially available natural graphite powder having an average particle size of 3 μm (manufactured by Chuetsu Graphite Industry Co., Ltd., product number CX-10000, distribution 0.5%)
20 parts by weight were added and melt-mixed. After allowing to cool, it was pulverized to have an average particle size of 24 μm. 10 parts by weight of the iron oxide used in Example 4 was added and mixed with 100 parts by weight of oxide pitch which was infusibilized in a tunnel furnace, and then treated at 800 ° C. for 3 hours in a nitrogen stream, and further graphitized at 3000 ° C. in an Acheson furnace. did. The average particle diameter and the specific surface area of the obtained graphite powder were measured in exactly the same manner as in Example 2. As a result, the average particle diameter was 22 μm.
m, the specific surface area was 2.4 m 2 / g. The bulk density was 1.20 g / cm 3 .

【0034】実施例6 実施例2で用いた酸素量4.2%の酸化ピッチ100重
量部に対し、酸化鉄をそれぞれ0、2、5、10、20
重量部添加混合し、窒素気流中で1000℃にて4時間
焼成し、更に、2900、3000、3200℃の各温
度にて0.5時間の黒鉛化をして得られた結果を図1及
び図2にそれぞれ示す。
Example 6 Iron oxide was added to each of 0, 2, 5, 10, and 20 parts by weight of 100 parts by weight of the oxidized pitch having an oxygen content of 4.2% used in Example 2.
1 part by weight was added and mixed, and the mixture was calcined in a nitrogen stream at 1000 ° C. for 4 hours, and graphitized at 2900, 3000, and 3200 ° C. for 0.5 hours. Each is shown in FIG.

【0035】実施例7〜11、比較例3〜4 実施例1〜5及び比較例1〜2でそれぞれ得られた黒鉛
粉末とバインダー(SBR、PVDF及びCMC)か
ら、表1に示した添加量でペーストを作り、これを銅箔
上に塗工して直径12mmの電極を作った。対極にリチ
ウム金属を用いてコイン型電池を作り、これらの電池に
ついて初期容量、効率および放電負荷特性を測定した。
これらの実施例及び比較例により得られた結果を表1に
まとめて示す。
Examples 7-11, Comparative Examples 3-4 From the graphite powders and binders (SBR, PVDF and CMC) obtained in Examples 1-5 and Comparative Examples 1-2, respectively, the addition amounts shown in Table 1 were obtained. To prepare a paste, which was coated on a copper foil to form an electrode having a diameter of 12 mm. A coin type battery was made using lithium metal as the counter electrode, and the initial capacity, efficiency and discharge load characteristics of these batteries were measured.
The results obtained by these Examples and Comparative Examples are summarized in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】表1中、2C/0.2Cレート特性は2
C:1/2時間放電=30分放電における容量、即ち、
0.2C:5時間放電における容量を示し、2C/0.
2Cレート特性は、その比を示す。2C/0.2Cの値
が1であれば、5時間放電から30分放電しても容量変
化がないことを示す。図1、2及び表1中の実施例及び
比較例により得られた結果から、以下のような本発明の
利点が明らかになる。
In Table 1, the 2C / 0.2C rate characteristic is 2
C: 1/2 hour discharge = capacity at 30 minutes discharge, that is,
0.2C: shows the capacity in 5 hours discharge, 2C / 0.
The 2C rate characteristic shows the ratio. If the value of 2C / 0.2C is 1, it means that there is no capacity change even after discharging for 5 hours to 30 minutes. The following advantages of the present invention become apparent from the results obtained by the examples and comparative examples in FIGS. 1 and 2 and Table 1.

【0038】(1)図1、2の実施例により得られた結
果から、金属酸化物粉末を添加して処理して得られた比
表面積は、金属酸化物粉末の添加量の増加と共に増加
し、一方、嵩密度は、金属酸化物粉末の添加量の増加と
共に減少することがわかる。 (2)表1から、実施例7〜11では、本発明において
バインダーとして用いたSBRが、従来から当該分野で
バインダーとして用いられてきたPVDFバインダーに
対して、初期容量および効率において大きくなっている
ことがわかる。また、SBRについての初期容量および
効率を比較すると、実施例7〜11は比較例3及び4よ
り改善されていることがわかる。 (3)本発明の製造方法によれば、水系バインダーSB
Rの使用量を従来からのバインダーPVDFに比べて少
なくできることがわかる。 (4)2C/0.2Cレート特性の値から、金属酸化物
粉末を添加して処理をした場合でも電池特性に悪影響を
与えないことがわかる。
(1) From the results obtained in the examples of FIGS. 1 and 2, the specific surface area obtained by adding and treating the metal oxide powder increases as the addition amount of the metal oxide powder increases. On the other hand, it can be seen that the bulk density decreases with an increase in the amount of the metal oxide powder added. (2) From Table 1, in Examples 7 to 11, the SBR used as the binder in the present invention is larger in initial capacity and efficiency than the PVDF binder conventionally used as the binder in the field. I understand. Also, comparing the initial capacities and efficiencies of SBR, Examples 7 to 11 are found to be improved over Comparative Examples 3 and 4. (3) According to the production method of the present invention, the aqueous binder SB
It can be seen that the amount of R used can be reduced as compared with the conventional binder PVDF. (4) From the value of 2C / 0.2C rate characteristics, it is understood that the battery characteristics are not adversely affected even when the treatment is performed by adding the metal oxide powder.

【0039】[0039]

【発明の効果】以上説明したように、本発明の製造方法
によれば、リチウム系二次電池用として優れた炭素質負
極材料が得られ、また、本発明の製造方法で得られた炭
素質負極材料をリチウム系二次電池用として用いた場
合、急速充放電特性などの特性に優れた電池が得られ、
携帯電話、パソコン等の可搬型機器類などに用いること
ができる。
As described above, according to the production method of the present invention, an excellent carbonaceous negative electrode material for a lithium secondary battery can be obtained, and the carbonaceous material obtained by the production method of the present invention can be obtained. When the negative electrode material is used for a lithium secondary battery, a battery having excellent characteristics such as rapid charge / discharge characteristics can be obtained.
It can be used for portable devices such as mobile phones and personal computers.

【図面の簡単な説明】[Brief description of drawings]

【図1】 各黒鉛化温度での酸化鉄添加量に対する比表
面積の変化を示す図である。
FIG. 1 is a diagram showing changes in specific surface area with respect to the amount of iron oxide added at each graphitization temperature.

【図2】 各黒鉛化温度での酸化鉄添加量に対する嵩密
度の変化を示す図である。
FIG. 2 is a diagram showing changes in bulk density with respect to the amount of iron oxide added at each graphitization temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本川 健一 滋賀県近江八幡市桜宮町210−1 (72)発明者 若山 実 滋賀県近江八幡市鷹飼町490−3 Fターム(参考) 5H029 AJ02 AK11 AL06 AL07 CJ02 CJ08 CJ28 DJ16 DJ17 DJ18 EJ04 EJ05 HJ01 HJ14 5H050 AA02 BA17 CA17 CB07 CB08 FA17 FA19 FA20 GA02 GA10 GA27 HA01 HA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenichi Honkawa             210-1 Sakuramiyacho, Omihachiman City, Shiga Prefecture (72) Inventor Minoru Wakayama             490-3 Takakaicho, Omihachiman City, Shiga Prefecture F term (reference) 5H029 AJ02 AK11 AL06 AL07 CJ02                       CJ08 CJ28 DJ16 DJ17 DJ18                       EJ04 EJ05 HJ01 HJ14                 5H050 AA02 BA17 CA17 CB07 CB08                       FA17 FA19 FA20 GA02 GA10                       GA27 HA01 HA14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 実質的に軟化点を有しない炭素質材料1
00重量部に対し、金属または半金属の酸化物粉末を1
〜25重量部添加・混合し、非酸化性雰囲気下で焼成
後、更に2800〜3200℃で黒鉛化処理してなるこ
とを特徴とするリチウム系二次電池用炭素質負極材料の
製造方法。
1. A carbonaceous material 1 having substantially no softening point.
1 part of metal or semi-metal oxide powder to 100 parts by weight
-25 parts by weight are added and mixed, the mixture is baked in a non-oxidizing atmosphere, and then graphitized at 2800 to 3200 ° C, and a method for producing a carbonaceous negative electrode material for a lithium-based secondary battery.
【請求項2】 前記実質的に軟化点を有しない炭素質材
料が生コークス、不融化処理されたバルクメソフェーズ
ピッチ粉末またはイソフェーズピッチ粉末、天然黒鉛及
び/又は若しくは人造黒鉛粉末を含有するバルクメソフ
ェーズピッチまたはイソフェーズピッチ粉末を不融化処
理したものよりなる郡から選ばれる少なくとも1種であ
ることを特徴とする請求項1に記載のリチウム系二次電
池用炭素質負極材料の製造方法。
2. A bulk mesophase in which the carbonaceous material having substantially no softening point contains raw coke, infusibilized bulk mesophase pitch powder or isophase pitch powder, natural graphite and / or artificial graphite powder. The method for producing a carbonaceous negative electrode material for a lithium-based secondary battery according to claim 1, wherein the carbonaceous negative electrode material is at least one selected from the group consisting of infusibilized pitch or isophase pitch powder.
【請求項3】 前記金属または半金属の酸化物粉末が二
酸化珪素、酸化鉄、酸化アルミニウム、酸化チタンおよ
び二酸化マンガンよりなる郡から選ばれる少なくとも1
種であることを特徴とする請求項1に記載のリチウム系
二次電池用炭素質負極材料の製造方法。
3. The metal or metalloid oxide powder is at least one selected from the group consisting of silicon dioxide, iron oxide, aluminum oxide, titanium oxide and manganese dioxide.
It is a seed, The manufacturing method of the carbonaceous negative electrode material for lithium secondary batteries of Claim 1 characterized by the above-mentioned.
【請求項4】 前記非酸化性雰囲気下での焼成が700
℃〜1200℃の温度で行われることを特徴とする請求
項1から3のいずれか1項に記載のリチウム系二次電池
用炭素質負極材料の製造方法。
4. The firing in the non-oxidizing atmosphere is 700.
The method for producing a carbonaceous negative electrode material for a lithium secondary battery according to any one of claims 1 to 3, wherein the method is performed at a temperature of ℃ to 1200 ℃.
【請求項5】 請求項1から4のいずれか1項に記載の
製造方法により得られた炭素質負極材料を用いたことを
特徴とするリチウム系二次電池。
5. A lithium-based secondary battery using the carbonaceous negative electrode material obtained by the manufacturing method according to any one of claims 1 to 4.
JP2001331300A 2001-10-29 2001-10-29 Manufacturing method of carbonaceous anode material for lithium secondary battery and lithium secondary battery using the carbonaceous anode material Pending JP2003132888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331300A JP2003132888A (en) 2001-10-29 2001-10-29 Manufacturing method of carbonaceous anode material for lithium secondary battery and lithium secondary battery using the carbonaceous anode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331300A JP2003132888A (en) 2001-10-29 2001-10-29 Manufacturing method of carbonaceous anode material for lithium secondary battery and lithium secondary battery using the carbonaceous anode material

Publications (1)

Publication Number Publication Date
JP2003132888A true JP2003132888A (en) 2003-05-09

Family

ID=19146903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331300A Pending JP2003132888A (en) 2001-10-29 2001-10-29 Manufacturing method of carbonaceous anode material for lithium secondary battery and lithium secondary battery using the carbonaceous anode material

Country Status (1)

Country Link
JP (1) JP2003132888A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529634A (en) * 2007-06-12 2010-08-26 エルジー・ケム・リミテッド Non-aqueous electrolyte and secondary battery using the same
JP2010530118A (en) * 2007-06-15 2010-09-02 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device including the same
US8323833B2 (en) 2006-07-28 2012-12-04 Lg Chem, Ltd. Anode for improving storage performance at a high temperature and lithium secondary battery comprising the same
US8741473B2 (en) 2008-01-02 2014-06-03 Lg Chem, Ltd. Pouch-type lithium secondary battery
WO2016181960A1 (en) * 2015-05-11 2016-11-17 昭和電工株式会社 Method for producing graphite powder for negative electrode materials for lithium ion secondary batteries
US9735422B2 (en) 2011-05-30 2017-08-15 National University Corporation Gunma University Lithium ion secondary cell
CN111653739A (en) * 2020-04-28 2020-09-11 万向一二三股份公司 Method for preparing high-cycle-performance SiO negative electrode material of lithium battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323833B2 (en) 2006-07-28 2012-12-04 Lg Chem, Ltd. Anode for improving storage performance at a high temperature and lithium secondary battery comprising the same
JP2010529634A (en) * 2007-06-12 2010-08-26 エルジー・ケム・リミテッド Non-aqueous electrolyte and secondary battery using the same
US8673506B2 (en) 2007-06-12 2014-03-18 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery having the same
JP2010530118A (en) * 2007-06-15 2010-09-02 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device including the same
US8741473B2 (en) 2008-01-02 2014-06-03 Lg Chem, Ltd. Pouch-type lithium secondary battery
US9735422B2 (en) 2011-05-30 2017-08-15 National University Corporation Gunma University Lithium ion secondary cell
WO2016181960A1 (en) * 2015-05-11 2016-11-17 昭和電工株式会社 Method for producing graphite powder for negative electrode materials for lithium ion secondary batteries
US10388984B2 (en) 2015-05-11 2019-08-20 Showa Denko K.K Method for producing graphite powder for negative electrode materials for lithium ion secondary batteries
CN111653739A (en) * 2020-04-28 2020-09-11 万向一二三股份公司 Method for preparing high-cycle-performance SiO negative electrode material of lithium battery
CN111653739B (en) * 2020-04-28 2021-05-18 万向一二三股份公司 Method for preparing high-cycle-performance SiO negative electrode material of lithium battery

Similar Documents

Publication Publication Date Title
JP6193798B2 (en) Method for producing negative electrode material for lithium ion secondary battery
WO2002071515A1 (en) Graphite material for negative pole of lithium secondary battery, method of manufacturing the graphite material, and lithium secondary battery
JP4747607B2 (en) Anode material for non-aqueous secondary battery and method of manufacturing
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP5603589B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP2003173774A (en) Anode material for lithium ion secondary battery and its manufacturing method and lithium ion secondary battery using same anode material
JP2003297357A (en) Negative electrode material for lithium secondary battery and manufacturing method for negative electrode material
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
JP2003132888A (en) Manufacturing method of carbonaceous anode material for lithium secondary battery and lithium secondary battery using the carbonaceous anode material
WO2015059859A1 (en) Powder for negative electrodes of lithium ion secondary batteries
JP2015149208A (en) Negative electrode material for lithium ion secondary batteries, manufacturing method thereof, negative electrode, and lithium ion secondary battery
JP5603590B2 (en) Negative electrode active material for lithium secondary battery and in-vehicle lithium secondary battery using the same
JP2003176115A (en) Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP3915072B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and battery using the same
JP2005200276A (en) Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
JP2010257982A (en) Anode active material for lithium secondary battery, and lithium secondary battery including the same
TWI520420B (en) A negative electrode active material for a lithium battery, a negative electrode electrode for a lithium secondary battery, a lithium battery for a vehicle for use, and a method for producing a negative electrode active material for a lithium battery
JP6408639B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006164570A (en) Method of manufacturing graphite material for lithium secondary battery anode, and lithium secondary battery
JPH10223223A (en) Anode material for lithium secondary battery and manufacture thereof
JP3645215B2 (en) Method for producing negative electrode material for high performance lithium ion secondary battery
JP2003100291A (en) Negative electrode material of high performance lithium secondary battery
JP3588354B2 (en) Method for producing negative electrode material for high performance lithium secondary battery
JP2000215896A (en) Electrode material composition for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050608