JP2021077482A - Lead-acid battery and method for manufacturing positive electrode plate for lead-acid battery - Google Patents

Lead-acid battery and method for manufacturing positive electrode plate for lead-acid battery Download PDF

Info

Publication number
JP2021077482A
JP2021077482A JP2019201512A JP2019201512A JP2021077482A JP 2021077482 A JP2021077482 A JP 2021077482A JP 2019201512 A JP2019201512 A JP 2019201512A JP 2019201512 A JP2019201512 A JP 2019201512A JP 2021077482 A JP2021077482 A JP 2021077482A
Authority
JP
Japan
Prior art keywords
positive electrode
lead
electrode plate
silica particles
porous silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019201512A
Other languages
Japanese (ja)
Other versions
JP7049739B2 (en
Inventor
山田 惠造
Keizo Yamada
惠造 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2019201512A priority Critical patent/JP7049739B2/en
Publication of JP2021077482A publication Critical patent/JP2021077482A/en
Application granted granted Critical
Publication of JP7049739B2 publication Critical patent/JP7049739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a novel lead-acid battery having a high utilization rate of a positive electrode active material.SOLUTION: A lead-acid battery includes a cell chamber and an electrode plate group stored in the cell chamber together with an electrolyte. The electrode plate group has a laminate comprising negative electrode plates and positive electrode plates alternatingly arranged and a separator arranged between a negative electrode plate and a positive electrode plate. The positive electrode plates each include a positive electrode mixture that includes a positive electrode active material and a porous silica particle with a silanol group (-SiOH) on the surface thereof. The number of silanol groups included in the positive electrode mixture is less than 9.535×1016 per 1 g of the positive electrode mixture.SELECTED DRAWING: Figure 1

Description

本発明は、鉛蓄電池および鉛蓄電池の正極板の製造方法に関する。 The present invention relates to a lead-acid battery and a method for manufacturing a positive electrode plate of a lead-acid battery.

鉛蓄電池は二次電池の中で最も歴史が長く、現代においても自動車やバックアップ電源等、様々な用途で必要とされている。近年注目されている再生可能エネルギーである太陽電池や風力発電を使ったマイクログリッドのシステムでも鉛蓄電池は使われている。特に車載用途の分野では、内燃機関を有する自動車のエンジン始動用バッテリーとして用いられており、ハイブリッドカーや電気自動車においても車内装置の駆動用電源として使用されている。従来の自動車では、エンジン始動用バッテリーは、エンジン始動からエンジン停止までの間は常時充電される使われ方であった。 Lead-acid batteries have the longest history of secondary batteries, and are still needed in various applications such as automobiles and backup power sources even today. Lead-acid batteries are also used in microgrid systems that use renewable energy such as solar cells and wind power generation, which have been attracting attention in recent years. In particular, in the field of in-vehicle applications, it is used as a battery for starting an engine of an automobile having an internal combustion engine, and is also used as a power source for driving an in-vehicle device in a hybrid car and an electric vehicle. In conventional automobiles, the engine start battery is used to be constantly charged from the start of the engine to the stop of the engine.

近年では、環境問題及び燃費向上の観点から、充電電圧を低くした車両や、ブレーキ時に回生充電する車両、停車時にエンジンを停止させるアイドリングストップシステム(ISS:Idling Stop and Start)を採用した車両(ISS車)、充電制御車(マイクロハイブリッド車など)が普及している。ISS車や充電制御車の鉛蓄電池は、主に、部分充電状態(PSOC:Partial State Of Charge)で使用される。 In recent years, from the viewpoint of environmental issues and improvement of fuel efficiency, vehicles with a low charging voltage, vehicles that regeneratively charge when braking, and vehicles that adopt an idling stop system (ISS: Idling Stop and Start) that stops the engine when the vehicle is stopped (ISS). Vehicles) and charge control vehicles (micro-hybrid vehicles, etc.) are widespread. Lead-acid batteries for ISS vehicles and charge control vehicles are mainly used in a partially charged state (PSOC: Partial State Of Charge).

また、ISS車や充電制御車では、オルタネータによる発電量が少なくなり、鉛蓄電池の充電が間欠的に行われるので、充電が不十分となることが多い。よって、これらの車両用の鉛蓄電池には、短時間の間にできるだけ多くの充電を行うことができる性能、即ち、充電受入れ性を向上させることが要求される。充電受入れ性を向上させる方法としては、電解液に硫酸アルミニウムを添加する方法が有効であるが、システム側が要求するエネルギーを全て充電するには不十分である。
また、充電受入れ性は、一般的に電池の容量が大きい方が良くなる。容量を大きくするためには電池のサイズを大きくするのが簡単であるが、価格が高くなる。価格の上昇を抑えて容量を大きくするための方策としては、活物質利用率の向上がある。
Further, in the ISS vehicle and the charge control vehicle, the amount of power generated by the alternator is reduced and the lead storage battery is charged intermittently, so that the charging is often insufficient. Therefore, these lead-acid batteries for vehicles are required to have the ability to charge as much as possible in a short period of time, that is, to improve the charge acceptability. As a method for improving charge acceptability, a method of adding aluminum sulfate to the electrolytic solution is effective, but it is insufficient to charge all the energy required by the system side.
In addition, the charge acceptability is generally improved when the capacity of the battery is large. It is easy to increase the size of the battery in order to increase the capacity, but the price is high. As a measure to suppress the price increase and increase the capacity, there is an improvement in the active material utilization rate.

特許文献1には、活物質の利用率が高く、長寿命な鉛蓄電池を提供するために、シリカ粉末、ガラス繊維又はガラス粉末などの多孔質な物質の表面にアセチレンブラックやグラファイトなどの導電性物質を担持したものを、鉛蓄電池のペースト式正極板又はペースト式負極板に含有させることが記載されている。
特許文献2には、鉛蓄電池の正極活物質の利用率を向上させるために、カーボンを含む正極活物質材料に多孔質シリカ粒子を含有させて、化成前の正極活物質の嵩密度を大きくすることが記載されている。
Patent Document 1 states that in order to provide a lead-acid battery having a high utilization rate of an active material and a long life, conductivity such as acetylene black or graphite is provided on the surface of a porous material such as silica powder, glass fiber or glass powder. It is described that a substance carrying a substance is contained in a paste-type positive electrode plate or a paste-type negative electrode plate of a lead-acid battery.
In Patent Document 2, in order to improve the utilization rate of the positive electrode active material of the lead storage battery, the positive electrode active material containing carbon contains porous silica particles to increase the bulk density of the positive electrode active material before chemical conversion. It is stated that.

しかし、特許文献1および2には、正極活物質と多孔質シリカ粒子とを含む鉛蓄電池の正極合剤であって、鉛粉と多孔質シリカ粒子と水を含む混練物の乾燥後に化成されたものについて、多孔質シリカ粒子の表面に存在するシラノール基の数と鉛粉との関係は記載されていない。 However, Patent Documents 1 and 2 describe a positive electrode mixture of a lead storage battery containing a positive electrode active material and porous silica particles, which was formed after drying of a kneaded product containing lead powder, porous silica particles and water. For those, the relationship between the number of silanol groups present on the surface of the porous silica particles and the lead powder is not described.

特開2000−251896号公報Japanese Patent Application Laid-Open No. 2000-2518996 WO2009/093464号パンフレットWO2009 / 093464 Pamphlet

本発明の課題は、正極活物質の利用率が高い、新規な鉛蓄電池を提供することである。 An object of the present invention is to provide a novel lead-acid battery having a high utilization rate of a positive electrode active material.

上記課題を解決するために、本発明の第一態様は下記の構成(1)〜(3)を有する鉛蓄電池を提供する。
(1)セル室と、セル室に電解液と共に収納された極板群と、を備え、極板群は、交互に配置された負極板および正極板と、負極板と正極板との間に配置されたセパレータと、からなる積層体を有する。
(2)正極板は、正極活物質と、表面にシラノール基(−SiOH)が存在する多孔質シリカ粒子とを含む正極合剤を備える。
(3)正極合剤に含まれる前記シラノール基の個数は、前記正極合剤1g当たり9.535×1016個未満である。
In order to solve the above problems, the first aspect of the present invention provides a lead storage battery having the following configurations (1) to (3).
(1) A cell chamber and a group of electrode plates stored together with an electrolytic solution in the cell chamber are provided, and the electrode plate group is provided between the alternately arranged negative electrode plates and positive electrode plates, and between the negative electrode plates and the positive electrode plates. It has a laminate composed of an arranged separator and a laminate.
(2) The positive electrode plate includes a positive electrode mixture containing a positive electrode active material and porous silica particles having a silanol group (-SiOH) on the surface.
(3) The number of the silanol groups contained in the positive electrode mixture is less than 9.535 × 10 16 per 1 g of the positive electrode mixture.

本発明の第二態様は、下記の構成(4)(5)を有する鉛蓄電池の正極板の製造方法を提供する。
(4)セル室と、セル室に電解液と共に収納された極板群と、を備え、極板群は、交互に配置された負極板および正極板と、負極板と正極板との間に配置されたセパレータと、からなる積層体を有し、正極板は、正極活物質と多孔質シリカ粒子とを含む正極合剤を有する、鉛蓄電池の正極板の製造方法である。
(5)鉛粉と、表面にシラノール基(−SiOH)が存在する多孔質シリカ粒子と、を含む材料を、シラノール基の個数が鉛粉1g当たり1.228×1017個未満となるように、集電体に保持された状態にする材料保持工程と、この状態の鉛粉を正極活物質に変化させる化成工程と、を含む。
A second aspect of the present invention provides a method for manufacturing a positive electrode plate of a lead storage battery having the following configurations (4) and (5).
(4) A cell chamber and a group of electrode plates stored together with an electrolytic solution in the cell chamber are provided, and the electrode plate group is provided between the alternately arranged negative electrode plates and positive electrode plates and between the negative electrode plates and the positive electrode plates. The positive electrode plate is a method for manufacturing a positive electrode plate of a lead storage battery, which has a laminate composed of an arranged separator and a positive electrode mixture containing a positive electrode active material and porous silica particles.
(5) A material containing lead powder and porous silica particles having silanol groups (-SiOH) on the surface so that the number of silanol groups is less than 1.228 × 10 17 per 1 g of lead powder. It includes a material holding step of holding the lead powder in the current collector and a chemical conversion step of changing the lead powder in this state into a positive electrode active material.

本発明によれば、正極活物質の利用率が高い、新規な鉛蓄電池が提供される。 According to the present invention, a novel lead-acid battery having a high utilization rate of a positive electrode active material is provided.

実施例の試験で得られた、鉛蓄電池の容量増大率(%)と、正極合剤1g当たりのシラノール基の個数と、の関係を示すグラフである。It is a graph which shows the relationship between the capacity increase rate (%) of the lead storage battery and the number of silanol groups per 1 g of a positive electrode mixture obtained in the test of an Example. 実施例の試験で得られた、鉛蓄電池の容量増大率(%)と、正極合剤形成用ペーストに含まれていた鉛粉1g当たりのシラノール基の個数と、の関係を示すグラフである。It is a graph which shows the relationship between the capacity increase rate (%) of the lead storage battery obtained in the test of an Example, and the number of silanol groups per 1 g of lead powder contained in the paste for forming a positive electrode mixture.

以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but these limitations are not essential requirements of the present invention.

[構成]
この実施形態の鉛蓄電池は、モノブロックタイプの電槽と、蓋と、六個の極板群とを有する。電槽は、隔壁により六個のセル室に区画されている。六個のセル室は電槽の長手方向に沿って配列されている。各セル室に一個の極板群が配置されている。各セル室に電解液が注入されている。
各極板群は、交互に配置された複数枚の正極板および負極板と、正極板と負極板との間に配置されたセパレータと、からなる積層体を有する。
[Constitution]
The lead-acid battery of this embodiment has a monoblock type battery case, a lid, and a group of six plates. The battery case is divided into six cell chambers by a partition wall. The six cell chambers are arranged along the longitudinal direction of the battery case. One electrode plate group is arranged in each cell chamber. An electrolytic solution is injected into each cell chamber.
Each electrode plate group has a laminate composed of a plurality of alternately arranged positive electrode plates and negative electrode plates, and separators arranged between the positive electrode plates and the negative electrode plates.

正極板は、正極合剤(正極活物質を含む合剤)が格子状基板(集電体)に保持されている正極基板と、正極基板から上側に突出する耳部とを有する。負極板は、負極合剤(負極活物質を含む合剤)が格子状基板(集電体)に保持されている負極基板と、負極基板から上側に突出する耳部とを有する。複数枚の正極板および負極板は、セパレータを介して交互に配置されている。積層体を構成する負極板の枚数Mは正極板の枚数Mよりも一枚多くても良いし、同じでも良い。
正極合剤は、正極活物質と多孔質シリカ粒子とを含む。多孔質シリカ粒子は、その表面にシラノール基(−SiOH)を有し、シラノール基の個数は、正極合剤1g当たり9.535×1016個未満である。
The positive electrode plate has a positive electrode substrate in which a positive electrode mixture (a mixture containing a positive electrode active material) is held in a grid-like substrate (current collector), and an ear portion protruding upward from the positive electrode substrate. The negative electrode plate has a negative electrode substrate in which a negative electrode mixture (a mixture containing a negative electrode active material) is held in a grid-like substrate (current collector), and an ear portion protruding upward from the negative electrode substrate. A plurality of positive electrode plates and negative electrode plates are alternately arranged via a separator. The number M n of the negative electrode plates constituting the laminated body may be one more than the number M p of the positive electrode plates, or may be the same.
The positive electrode mixture contains a positive electrode active material and porous silica particles. The porous silica particles have silanol groups (-SiOH) on the surface thereof, and the number of silanol groups is less than 9.535 × 10 16 per 1 g of the positive electrode mixture.

負極合剤は、従来品と同様の構成である。具体的には、負極活物質である鉛と、補強繊維などを含む。
負極板は袋状セパレータ内に収納されている。そして、負極板が入った袋状セパレータと正極板とを交互に重ねることで、正極板と負極板との間にセパレータが配置された状態となっている。なお、正極板を袋状セパレータ内に収納して、負極板と交互に重ねてもよい。
The negative electrode mixture has the same structure as the conventional product. Specifically, it contains lead, which is a negative electrode active material, and reinforcing fibers.
The negative electrode plate is housed in a bag-shaped separator. Then, by alternately stacking the bag-shaped separator containing the negative electrode plate and the positive electrode plate, the separator is arranged between the positive electrode plate and the negative electrode plate. The positive electrode plate may be stored in the bag-shaped separator and alternately stacked with the negative electrode plate.

また、各極板群は、積層体の正極板および負極板をそれぞれ幅方向の別の位置で連結する正極ストラップおよび負極ストラップと、正極ストラップおよび負極ストラップからそれぞれ立ち上がる正極中間極柱および負極中間極柱を有する。正極ストラップおよび負極ストラップは、正極板および負極板の耳部をそれぞれ連結している。セル配列方向の両端のセル室に配置された正極ストラップおよび負極ストラップには、それぞれ小片部を介して外部端子となる正極極柱および負極極柱が形成されている。 Further, each electrode plate group includes a positive electrode strap and a negative electrode strap that connect the positive electrode plate and the negative electrode plate of the laminated body at different positions in the width direction, and a positive electrode intermediate pole column and a negative electrode intermediate pole that rise from the positive electrode strap and the negative electrode strap, respectively. Has columns. The positive electrode strap and the negative electrode strap connect the ears of the positive electrode plate and the negative electrode plate, respectively. The positive electrode strap and the negative electrode strap arranged in the cell chambers at both ends in the cell arrangement direction are formed with positive electrode pole columns and negative electrode pole columns serving as external terminals, respectively, via small pieces.

[製法]
実施形態の鉛蓄電池は、従来公知の方法によって、例えば以下の方法で製造することができる。
先ず、化成前の正極板を作製する際に用いる混練物として、鉛粉や補強繊維等の通常添加する材料と水に加えて、多孔質シリカ粒子を含む混練物を作製する。この混練物を作製する前に、添加する多孔質シリカ粒子の表面に存在するシラノール基の個数を把握し、混練物に含まれるシラノール基(−SiOH)の個数が鉛粉1g当たり1.228×1017個未満となるように、多孔質シリカ粒子の添加量を決定する。
[Manufacturing method]
The lead-acid battery of the embodiment can be manufactured by a conventionally known method, for example, by the following method.
First, as a kneaded product used when producing a positive electrode plate before chemical conversion, a kneaded product containing porous silica particles is produced in addition to normally added materials such as lead powder and reinforcing fibers and water. Before preparing this kneaded product, the number of silanol groups present on the surface of the porous silica particles to be added is grasped, and the number of silanol groups (-SiOH) contained in the kneaded product is 1.228 × per 1 g of lead powder. 10 Determine the amount of porous silica particles added so that the number is less than 17.

多孔質シリカ粒子の表面に存在するシラノール基の個数は、カタログ値で把握するか、実際に測定することで把握する。シラノール量の測定方法としては、拡散反射フーリエ変換赤外分光法による方法、自然界の存在比率が少ないケイ素同位体で多孔質シリカ粒子をシラン処理した試料を作製し、この試料のケイ素同位体量をNMR等で定量する方法などが挙げられる。既にシラノール量が分かっている試料がある場合は、その試料を用いて滴定法で簡易的に測定する事もできる。シラノール量の測定に関する記述がある文献としては、例えば米国特許US6800413が挙げられる。 The number of silanol groups present on the surface of the porous silica particles can be grasped by the catalog value or by actually measuring. As a method for measuring the amount of silanol, a method by diffuse reflection Fourier conversion infrared spectroscopy, a sample in which porous silica particles are silane-treated with silicon isotopes having a small abundance ratio in the natural world are prepared, and the amount of silicon isotopes in this sample is measured. Examples thereof include a method of quantifying by NMR and the like. If there is a sample for which the amount of silanol is already known, the sample can be used for simple measurement by the titration method. References that describe the measurement of silanol levels include, for example, US Pat. No. 6,600,143.

次に、作製された混練物を集電体の格子状基板に充填した後に乾燥することで、化成前の正極板を得、得られた化成前の正極板と、通常の方法で作製された化成前の負極板と、セパレータと、を用いて、化成前の積層体を作製する。
つまり、実施形態の正極板の製造方法では、「鉛粉と、表面にシラノール基(−SiOH)が存在する多孔質シリカ粒子と、を含む材料を、シラノール基の個数が鉛粉1g当たり1.228×1017個未満となるように、集電体に保持された状態にする材料保持工程」として、「シラノール基(−SiOH)の個数が鉛粉1g当たり1.228×1017個未満となるように、多孔質シリカ粒子が添加された正極合剤用混練物」を、集電体の格子状基板に充填した後に乾燥する工程を行う。
Next, the produced kneaded product was filled in a grid-like substrate of a current collector and then dried to obtain a positive electrode plate before chemical conversion, which was produced together with the obtained positive electrode plate before chemical conversion by a usual method. A pre-chemical laminate is produced by using the pre-chemical negative electrode plate and the separator.
That is, in the method for producing a positive electrode plate of the embodiment, a material containing "lead powder and porous silica particles having silanol groups (-SiOH) on the surface" is used, and the number of silanol groups is 1. per 1 g of lead powder. 228 × such that less than 10 17, the material holding step "of the state held by the current collector, and the number is 1.228 × 10 smaller than 17 per lead powder 1g of" silanol group (-SiOH) A step of filling the “kneaded product for positive electrode mixture” to which the porous silica particles are added into the lattice-shaped substrate of the current collector and then drying it is performed.

次に、化成前の積層体をCOS(キャストオンストラップ)方式の鋳造装置を用い、正極板の耳部同士を接続した正極ストラップおよび負極板の耳部同士を接続した負極ストラップを形成するとともに、正極中間極柱、負極中間極柱、正極極柱および負極極柱を形成する。それらを形成した後、前記積層体を電槽の各セル室に配置する。
次に、隣接するセル室の正極中間極柱同士または負極中間極柱同士を抵抗溶接することで、隣接するセル間を電気的に直列に接続する。次に、電槽の上面と蓋の下面とを熱で溶かして蓋を電槽に載せ、熱溶着により電槽に蓋を固定する。なお、蓋を電槽に載せる際に、正極極柱および負極極柱を蓋にインサート成型されたブッシングの貫通穴に通す。その後、ブッシングの貫通孔からそれぞれ突出した状態の正極極柱および負極極柱をバーナー等で加熱しブッシングと一体化させることで、正極端子および負極端子を形成する。
Next, a COS (cast-on-strap) casting device was used to form the pre-chemical laminate to form a positive electrode strap connecting the ears of the positive electrode plates and a negative electrode strap connecting the ears of the negative electrode plates. A positive electrode intermediate pole column, a negative electrode intermediate pole column, a positive electrode pole column, and a negative electrode pole column are formed. After forming them, the laminate is placed in each cell chamber of the battery case.
Next, by resistance welding the positive electrode intermediate pole columns or the negative electrode intermediate pole columns of the adjacent cell chambers, the adjacent cells are electrically connected in series. Next, the upper surface of the electric tank and the lower surface of the lid are melted by heat, the lid is placed on the electric tank, and the lid is fixed to the electric tank by heat welding. When the lid is placed on the battery case, the positive electrode pole and the negative electrode pole are passed through the through holes of the bushing insert-molded in the lid. After that, the positive electrode pole and the negative electrode pole pillar protruding from the through hole of the bushing are heated by a burner or the like and integrated with the bushing to form the positive electrode terminal and the negative electrode terminal.

その後、蓋を貫通する穴として設けた注液孔からセル室内に、電解液(硫酸に硫酸アルミニウムを添加することでアルミ二ウムイオンを含んでいる)を注入した後、注液孔を塞ぐことなどの通常の工程を行うことにより、鉛蓄電池の組み立てを完成させる。その後、通常の条件で電槽化成を行うことで鉛蓄電池が得られる。
この電槽化成により、集電体に保持された状態の鉛粉が正極活物質に変化し、正極合剤に含まれるシラノール基の個数が、正極合剤1g当たり9.535×1016個未満となる。
After that, the electrolytic solution (which contains aluminum ions by adding aluminum sulfate to sulfuric acid) is injected into the cell chamber through the liquid injection hole provided as a hole that penetrates the lid, and then the liquid injection hole is closed. The assembly of the lead-acid battery is completed by performing the usual process of. After that, a lead storage battery can be obtained by carrying out the chemical conversion of the electric tank under normal conditions.
Due to this battery formation, the lead powder held in the current collector is changed to the positive electrode active material, and the number of silanol groups contained in the positive electrode mixture is less than 9.535 × 10 16 per 1 g of the positive electrode mixture. It becomes.

[作用、効果]
正極合剤が多孔質シリカ粒子を含むことで、正極合剤中の鉛の密度が低下するとともに、多孔質シリカ粒子が有する多数の孔の存在により正極合剤の比表面積が大きくなる。ただし、多孔質シリカ粒子の表面に存在するシラノール基(−SiOH)は、電解液と反応して電解液の移動を阻害する作用を有する。よって、シラノール基(−SiOH)の個数を少なくする必要があり、本発明者らは、その個数を正極合剤1g当たり9.535×1016個未満とすることで、正極合剤に多孔質シリカ粒子を含まない場合よりも、正極活物質の利用率を高くできることを見出した。
この実施形態の鉛蓄電池によれば、正極合剤に含まれるシラノール基の個数が正極合剤1g当たり9.535×1016個未満であるため、これを満たさないものよりも正極活物質の利用率が高くなり、充電受入性が向上する。
[Action, effect]
When the positive electrode mixture contains porous silica particles, the density of lead in the positive electrode mixture decreases, and the specific surface area of the positive electrode mixture increases due to the presence of a large number of pores of the porous silica particles. However, the silanol group (-SiOH) existing on the surface of the porous silica particles has an action of reacting with the electrolytic solution and inhibiting the movement of the electrolytic solution. Therefore, it is necessary to reduce the number of silanol groups (-SiOH), and the present inventors set the number to less than 9.535 × 10 16 per 1 g of the positive electrode mixture to make the positive electrode mixture porous. It has been found that the utilization rate of the positive electrode active material can be increased as compared with the case where the silica particles are not contained.
According to the lead-acid battery of this embodiment, the number of silanol groups contained in the positive electrode mixture is less than 9.535 × 10 16 per 1 g of the positive electrode mixture, so that the positive electrode active material is used rather than the one that does not satisfy this. The rate is high and the charge acceptability is improved.

[多孔質シリカ粒子の粒径について]
使用する多孔質シリカ粒子の粒径は、正極活物質の細孔径よりも少し大きい程度であることが好ましい。多孔質シリカ粒子の粒径が正極活物質の細孔径よりも大きすぎると、多孔質シリカ粒子が、正極活物質内でのイオンの移動および電子の伝導を阻害する。多孔質シリカ粒子の粒径が正極活物質の細孔径よりも小さいと、正極活物質の細孔内に入り込んで細孔内の電解液保持量を減少させるとともに、細孔内のイオン移動を阻害する。つまり、多孔質シリカ粒子の粒径が正極活物質の細孔径よりも大きすぎても小さくても、電池性能に悪影響を及ぼす。
鉛蓄電池の正極活物質の細孔径は1μm以下であるため、使用する多孔質シリカ粒子の粒径は、1μm以上20μm以下の範囲であることが望ましい。
[About the particle size of porous silica particles]
The particle size of the porous silica particles used is preferably slightly larger than the pore size of the positive electrode active material. If the particle size of the porous silica particles is too large than the pore size of the positive electrode active material, the porous silica particles inhibit the movement of ions and the conduction of electrons in the positive electrode active material. When the particle size of the porous silica particles is smaller than the pore size of the positive electrode active material, it enters the pores of the positive electrode active material, reduces the amount of electrolyte retained in the pores, and inhibits ion movement in the pores. To do. That is, even if the particle size of the porous silica particles is larger or smaller than the pore diameter of the positive electrode active material, the battery performance is adversely affected.
Since the pore size of the positive electrode active material of the lead storage battery is 1 μm or less, it is desirable that the particle size of the porous silica particles used is in the range of 1 μm or more and 20 μm or less.

[多孔質シリカ粒子が天然由来の場合]
多孔質シリカ粒子としては、合成シリカ粒子や天然由来のものが使用できるが、天然由来の多孔質シリカ粒子は、鉛蓄電池の特性を悪化させる金属が吸着している可能性があるため、事前に酸洗いをした上で使用することが望ましい。酸洗いをすることで、吸着サイトに吸着している金属イオンは水素イオンに置換され、金属イオンは洗浄に使われる酸性溶液中に移動する。
酸洗いの方法としては、例えば、管の中に多孔質シリカ粒子を充填し、その管の中に酸性溶液を通す方法や、酸性溶液の入ったタンクに多孔質シリカ粒子を入れ、撹拌後にろ過する方法がある。酸洗いに使用する酸性溶液としては、例えば、1モル/リットルの硫酸水溶液が使用できる。
[When the porous silica particles are of natural origin]
Synthetic silica particles and naturally-derived particles can be used as the porous silica particles, but the naturally-derived porous silica particles may have adsorbed metals that deteriorate the characteristics of the lead-acid battery. It is desirable to use it after pickling. By pickling, the metal ions adsorbed on the adsorption site are replaced with hydrogen ions, and the metal ions move into the acidic solution used for washing.
As a method of pickling, for example, a method of filling a tube with porous silica particles and passing an acidic solution through the tube, or a method of putting the porous silica particles in a tank containing an acidic solution and filtering after stirring. There is a way to do it. As the acidic solution used for pickling, for example, a 1 mol / liter sulfuric acid aqueous solution can be used.

鉛蓄電池の特性を悪化させる金属として代表的なものは鉄であり、自然界に豊富に存在することから、天然由来の多孔質シリカ粒子には鉄が含まれていることが多い。よって、天然由来の多孔質シリカ粒子を使用する場合は、酸洗いをすることにより、鉄の含有率が0.2%未満になっているものを使用することが望ましい。 Iron is a typical metal that deteriorates the characteristics of lead-acid batteries, and since it is abundant in nature, naturally-derived porous silica particles often contain iron. Therefore, when using naturally-derived porous silica particles, it is desirable to use one having an iron content of less than 0.2% by pickling.

〔試験電池の作製〕
実施形態の鉛蓄電池と同じ構造の鉛蓄電池として、サンプルNo.1〜No.5の鉛蓄電池を作製した。具体的には、JIS D5301で規定されるB19サイズの鉛蓄電池であって、動作電圧が12Vの鉛蓄電池を作製した。
[Preparation of test battery]
Sample No. 1 to No. 5 lead-acid batteries were produced as lead-acid batteries having the same structure as the lead-acid batteries of the embodiment. Specifically, a lead-acid battery of B19 size defined by JIS D5301 and having an operating voltage of 12 V was produced.

[正極板(化成前)の作製]
<No.1>
多孔質シリカ粒子として、WACKER社製の微粉末シリカ「HDK(登録商標) H20」を用意した。「HDK(登録商標) H20」は、シランによる疎水性処理(表面に対するSiO2形成)がなされた合成シリカ粒子であって、未処理のものよりも表面に存在するシラノール基の数が50%減少されたものである。この合成シリカ粒子が表面に有するシラノール基の数は、「HDK(登録商標) H20」1g当たり1.7×1020個である。また、「HDK(登録商標) H20」の粒径は、一次粒子の粒径が約5〜30nmであり、一次凝集体の粒径が100〜400nmであり、二次凝集体の粒径が約10μmであり、40μm篩の残分は0.05%未満である。
[Preparation of positive electrode plate (before chemical conversion)]
<No.1>
As the porous silica particles, WACKER's fine powder silica "HDK (registered trademark) H20" was prepared. "HDK® H20" is a synthetic silica particle that has been hydrophobically treated with silane (SiO 2 formation on the surface), and the number of silanol groups present on the surface is reduced by 50% compared to the untreated one. It was done. The number of silanol groups on the surface of the synthetic silica particles is 1.7 × 10 20 per 1 g of “HDK® H20”. Further, the particle size of "HDK (registered trademark) H20" is such that the particle size of the primary particles is about 5 to 30 nm, the particle size of the primary aggregate is 100 to 400 nm, and the particle size of the secondary aggregate is about. It is 10 μm and the residue on the 40 μm sieve is less than 0.05%.

蓄電池用の鉛粉(粒径が数μm〜30数μmである鉛と酸化鉛との混合粉末で、質量比での混合比が鉛:酸化鉛=約25:75)2000gに、「HDK(登録商標) H20」360mg、水267g、ポリエチレンテレフタレート短繊維1.8gを、それぞれ添加して混合した。このようにして得られた混合物に、20℃での比重Dが1.37である硫酸水溶液を286g加えて混練することで、正極合剤形成用ペースト(混練物)を得た。 2000 g of lead powder for storage batteries (a mixed powder of lead and lead oxide having a particle size of several μm to 30 μm, and the mixing ratio by mass ratio is lead: lead oxide = about 25:75), "HDK ( 360 mg of "H20", 267 g of water, and 1.8 g of polyethylene terephthalate short fibers were added and mixed. To the mixture thus obtained, 286 g of an aqueous sulfuric acid solution having a specific gravity D of 1.37 at 20 ° C. was added and kneaded to obtain a paste for forming a positive electrode mixture (kneaded product).

このペーストには鉛粉100g当たり0.018gの「HDK H20」が含まれており、このペーストに含まれる多孔質シリカ粒子のシラノール基の個数は、鉛粉1g当たり3.06×1016個である。
このペーストを、Pb−Ca系の鉛合金から成るBサイズ電池用集電体の格子状基板に充填して、鉛粉と多孔質シリカ粒子とを含む材料を集電体に保持された状態にした(材料保持工程)後、通常の条件による熟成乾燥工程を行い、化成前の正極板を得た。
This paste contains 0.018 g of "HDK H20" per 100 g of lead powder, and the number of silanol groups of the porous silica particles contained in this paste is 3.06 × 10 16 per 1 g of lead powder. is there.
This paste is filled in a grid-like substrate of a current collector for B size batteries made of a Pb-Ca-based lead alloy so that a material containing lead powder and porous silica particles is held in the current collector. After that (material holding step), a aging and drying step was carried out under normal conditions to obtain a positive electrode plate before chemical conversion.

<No.2>
「HDK(登録商標) H20」の添加量を1.80gとした以外はNo.1と同じ方法で、正極合剤形成用ペースト(混練物)を得た。このペーストには鉛粉100g当たり0.090gの「HDK H20」が含まれており、このペーストに含まれる多孔質シリカ粒子のシラノール基の個数は、鉛粉1g当たり1.53×1017個である。
このペーストを用い、No.1と同じ方法で格子状基板への充填および熟成乾燥工程を行って、化成前の正極板を得た。
<No.2>
A paste (kneaded product) for forming a positive electrode mixture was obtained by the same method as No. 1 except that the amount of "HDK (registered trademark) H20" added was 1.80 g. This paste contains 0.090 g of "HDK H20" per 100 g of lead powder, and the number of silanol groups of the porous silica particles contained in this paste is 1.53 x 10 17 per 1 g of lead powder. is there.
Using this paste, the grid-like substrate was filled and aged and dried in the same manner as No. 1 to obtain a positive electrode plate before chemical conversion.

<No.3>
多孔質シリカ粒子として、WACKER社製の「HDK(登録商標) N20」を用意した。「HDK(登録商標) N20」は、疎水性処理がなされていない合成シリカ粒子であって、表面に有するシラノール基の数は、「HDK(登録商標) N20」1g当たり4.0×1020個である。また、「HDK(登録商標) N20」の粒径は、「HDK(登録商標) H20」の粒径とほぼ同じであり、40μm篩の残分は0.03%未満である。
<No.3>
As the porous silica particles, "HDK (registered trademark) N20" manufactured by WACKER Co., Ltd. was prepared. "HDK® N20" is a synthetic silica particle that has not been treated with hydrophobicity, and the number of silanol groups on the surface is 4.0 x 10 20 per gram of "HDK® N20". Is. The particle size of "HDK (registered trademark) N20" is almost the same as the particle size of "HDK (registered trademark) H20", and the residue of the 40 μm sieve is less than 0.03%.

No.1で使用したものと同じ蓄電池用の鉛粉2000gに、「HDK(登録商標) N20」360mg、水267g、ポリエチレンテレフタレート短繊維1.8gを、それぞれ添加して混合した。このようにして得られた混合物に、20℃での比重Dが1.37である硫酸水溶液を286g加えて混練することで、正極合剤形成用ペースト(混練物)を得た。
このペーストには鉛粉100g当たり0.018gの「HDK N20」が含まれており、このペーストに含まれる多孔質シリカ粒子のシラノール基の個数は、鉛粉1g当たり7.20×1016個である。
このペーストを用い、No.1と同じ方法で格子状基板への充填および熟成乾燥工程を行って、化成前の正極板を得た。
To 2000 g of lead powder for storage batteries, which was the same as that used in No. 1, 360 mg of "HDK (registered trademark) N20", 267 g of water, and 1.8 g of polyethylene terephthalate short fibers were added and mixed. To the mixture thus obtained, 286 g of an aqueous sulfuric acid solution having a specific gravity D of 1.37 at 20 ° C. was added and kneaded to obtain a paste for forming a positive electrode mixture (kneaded product).
This paste contains 0.018 g of "HDK N20" per 100 g of lead powder, and the number of silanol groups of the porous silica particles contained in this paste is 7.20 × 10 16 per 1 g of lead powder. is there.
Using this paste, the grid-like substrate was filled and aged and dried in the same manner as No. 1 to obtain a positive electrode plate before chemical conversion.

<No.4>
天然由来の多孔質シリカ粒子として、昭和化学工業株式会社製の「ラヂオライトF」を用意した。「ラヂオライトF」は、珪藻土に融剤を加えて800℃〜1200℃の温度で焼成されたものであり、平均粒径が11.4μmの粉体である。焼成により不純物が除去され、融剤を加えて焼成を行うことで粒子表面が薄くガラスで覆われている。これにより、微量に存在する鉄など、鉛蓄電池に有害な物質が溶出しにくくなっているとともに、イオンの移動を阻害する表面官能基が減少している。「ラヂオライトF」はシリカを約90%含有しており、シリカ表面に存在するシラノール基の数は、「ラヂオライトF」1g当たり8.2×1018個である。
<No.4>
As naturally derived porous silica particles, "Radiolite F" manufactured by Showa Chemical Industry Co., Ltd. was prepared. "Radiolite F" is a powder obtained by adding a flux to diatomaceous earth and firing at a temperature of 800 ° C. to 1200 ° C., and having an average particle size of 11.4 μm. Impurities are removed by firing, and the surface of the particles is thinly covered with glass by adding a flux and firing. This makes it difficult for substances harmful to lead-acid batteries, such as iron, which are present in trace amounts, to elute, and reduces the number of surface functional groups that inhibit the movement of ions. "Radiolite F" contains about 90% of silica, and the number of silanol groups present on the surface of silica is 8.2 × 10 18 per 1 g of “Radiolite F”.

No.1で使用したものと同じ蓄電池用の鉛粉2000gに、「ラヂオライトF」20g、水302g、ポリエチレンテレフタレート短繊維1.8gを、それぞれ添加して混合した。このようにして得られた混合物に、20℃での比重Dが1.37である硫酸水溶液を286g加えて混練することで、正極合剤形成用ペースト(混練物)を得た。
このペーストには鉛粉100g当たり1.0gの「ラヂオライトF」が含まれており、このペーストに含まれる多孔質シリカ粒子のシラノール基の個数は、鉛粉1g当たり8.20×1016個である。
このペーストを、Pb−Ca系の鉛合金から成るBサイズ電池用集電体の格子状基板に充填して、通常の条件による熟成乾燥工程を行い、化成前の正極板を得た。
To 2000 g of lead powder for storage batteries, which was the same as that used in No. 1, 20 g of "Radiolite F", 302 g of water, and 1.8 g of polyethylene terephthalate short fibers were added and mixed. To the mixture thus obtained, 286 g of an aqueous sulfuric acid solution having a specific gravity D of 1.37 at 20 ° C. was added and kneaded to obtain a paste for forming a positive electrode mixture (kneaded product).
This paste contains 1.0 g of "Radiolite F" per 100 g of lead powder, and the number of silanol groups of the porous silica particles contained in this paste is 8.20 x 10 16 per 1 g of lead powder. Is.
This paste was filled in a grid-like substrate of a current collector for a B size battery made of a Pb—Ca-based lead alloy, and aged and dried under normal conditions to obtain a positive electrode plate before chemical conversion.

<No.5>
No.1で使用したものと同じ蓄電池用の鉛粉2000gに、水267g、ポリエチレンテレフタレート短繊維1.8gを、それぞれ添加して混合した。このようにして得られた混合物に、20℃での比重Dが1.37である硫酸水溶液を286g加えて混練することで、正極合剤形成用ペースト(混練物)を得た。つまり、このペーストには多孔質シリカ粒子が含まれていない。
このペーストを用い、No.1と同じ方法で格子状基板への充填および熟成乾燥工程を行って、化成前の正極板を得た。
<No.5>
To 2000 g of lead powder for storage batteries, which was the same as that used in No. 1, 267 g of water and 1.8 g of polyethylene terephthalate short fibers were added and mixed. To the mixture thus obtained, 286 g of an aqueous sulfuric acid solution having a specific gravity D of 1.37 at 20 ° C. was added and kneaded to obtain a paste for forming a positive electrode mixture (kneaded product). That is, this paste does not contain porous silica particles.
Using this paste, the grid-like substrate was filled and aged and dried in the same manner as No. 1 to obtain a positive electrode plate before chemical conversion.

なお、No.1〜5の正極合剤形成用ペーストには添加剤として酸化ビスマスが添加されていても良く、その添加量は、例えば鉛粉2000gに対して1.4gとすることができる。 Bismuth oxide may be added as an additive to the pastes for forming the positive electrode mixture of Nos. 1 to 5, and the amount of the bismuth oxide added can be, for example, 1.4 g with respect to 2000 g of lead powder.

[負極板(化成前)の作製]
正極合剤形成用ペーストの作製で使用したものと同じ蓄電池用の鉛粉2000gに、水400g、ポリエステル繊維(補強用繊維)1.8g、硫酸バリウム20g、導電性カーボン4g、リグニン4gを、それぞれ添加して混合した。このようにして得られた混合物に、20℃での比重Dが1.37である硫酸水溶液を228g加えて混練することで、負極合剤形成用ペースト(混練物)を得た。
このペーストを、Pb−Ca系の鉛合金から成るBサイズ電池用集電体の格子状基板に充填した後、通常の条件による熟成乾燥工程を行い、化成前の負極板を得た。
[Manufacturing of negative electrode plate (before chemical conversion)]
400 g of water, 1.8 g of polyester fiber (reinforcing fiber), 20 g of barium sulfate, 4 g of conductive carbon, and 4 g of lignin were added to 2000 g of lead powder for a storage battery, which was the same as that used for producing the paste for forming a positive electrode mixture. It was added and mixed. To the mixture thus obtained, 228 g of an aqueous sulfuric acid solution having a specific gravity D of 1.37 at 20 ° C. was added and kneaded to obtain a paste for forming a negative electrode mixture (kneaded product).
This paste was filled in a grid-like substrate of a current collector for B size batteries made of a Pb—Ca-based lead alloy, and then aged and dried under normal conditions to obtain a negative electrode plate before chemical conversion.

[鉛蓄電池の組み立て]
先ず、No.1〜No.5の各鉛蓄電池用の極板群を作製するために、上述方法で作製したNo.1〜No.5の化成前の正極板を各30枚と、上述方法で作製した化成前の負極板を180(5×36)枚と、化成前の負極板と同じ数の袋状セパレータを用意した。
次に、化成前の負極板を袋状セパレータ内に収納し、この化成前の負極板入りセパレータ6枚と化成前の正極板5枚を交互に積層することで、化成前の正極板を5枚、化成前の負極板を6枚有する積層体を、サンプルNo.1〜5で六個ずつ得た。
[Assembly of lead-acid battery]
First, in order to prepare a group of electrode plates for each lead storage battery of No. 1 to No. 5, 30 positive electrode plates of No. 1 to No. 5 before chemical formation produced by the above method were used, and the above method was used. 180 (5 × 36) negative electrode plates before chemical conversion and the same number of bag-shaped separators as the negative electrode plates before chemical conversion were prepared.
Next, the negative electrode plate before chemical conversion is housed in a bag-shaped separator, and 6 separators containing the negative electrode plate before chemical conversion and 5 positive electrode plates before chemical conversion are alternately laminated to form 5 positive electrode plates before chemical conversion. Six laminated bodies having six sheets and six negative electrode plates before chemical conversion were obtained in Sample Nos. 1 to 5.

次に、サンプルNo.毎に、得られた六個の積層体をCOS(キャストオンストラップ)方式の鋳造装置を用い、キャビティ内に溶融金属(鉛合金)を供給するとともに、耳部を下側に向けた状態で積層体の耳部を挿入することで、先ず、各耳部同士を接続する正極ストラップおよび負極ストラップを形成した。続いて、配列方向両端のセル室に配置された負極ストラップおよび正極ストラップには小片と極柱を形成し、それ以外の各正極ストラップおよび負極ストラップには、それぞれ正極中間極柱および負極中間極柱を形成した。それらを形成した後、SBA(電池工業会)S0101規格の外形区分Kのポリプロピレン製のモノブロックタイプの電槽の六個のセル室にそれぞれ配置した。 Next, for each sample No., the obtained six laminates were used with a COS (cast-on-strap) casting device to supply molten metal (lead alloy) into the cavity, and the ears were placed on the lower side. By inserting the selvages of the laminated body in a state of facing toward, first, a positive electrode strap and a negative electrode strap for connecting the selvages were formed. Subsequently, small pieces and pole columns are formed on the negative electrode straps and the positive electrode straps arranged in the cell chambers at both ends in the arrangement direction, and the positive electrode intermediate pole columns and the negative electrode intermediate pole columns are formed on the other positive electrode straps and the negative electrode straps, respectively. Was formed. After forming them, they were arranged in six cell chambers of a polypropylene monoblock type battery case of SBA (Battery Industry Association) S0101 standard outer shape classification K.

次に、電槽のセル室同士を仕切る隔壁を挟んで対向する正極中間極柱および負極中間極柱を、隔壁に設けた貫通孔の部分で抵抗溶接することにより接続した。この状態では、電槽の各セル内に化成前の極板群が配置されている。
この状態の電槽と蓋を、実施形態に記載された方法で熱溶着することで、No.1〜No.5の化成前の鉛蓄電池を得た。
Next, the positive electrode intermediate pole pillar and the negative electrode intermediate pole pillar facing each other with the partition wall partitioning the cell chambers of the battery case from each other were connected by resistance welding at the portion of the through hole provided in the partition wall. In this state, a group of electrode plates before chemical conversion is arranged in each cell of the battery case.
The pre-chemical lead-acid batteries No. 1 to No. 5 were obtained by heat-welding the battery case and lid in this state by the method described in the embodiment.

次に、硫酸アルミニウム濃度が20g/リットルである希硫酸電解液を、No.1〜No.5の化成前の鉛蓄電池の蓋の注液孔から、電槽の各セル室内へ注入した。その後、通常の条件で電槽化成を行って、No.1〜No.5の鉛蓄電池を得た。
この電槽化成により、鉛粉が正極活物質に変化し、正極合剤に含まれているシラノール基の個数が、No.1の鉛蓄電池では正極合剤1g当たり2.35×1016個、No.2の鉛蓄電池では正極合剤1g当たり1.18×1017個、No.3の鉛蓄電池では正極合剤1g当たり5.535×1016個、No.4の鉛蓄電池では正極合剤1g当たり6.31×1016個となった。
Next, a dilute sulfuric acid electrolytic solution having an aluminum sulfate concentration of 20 g / liter was injected into each cell chamber of the battery case through the injection holes of the lids of the lead-acid batteries before chemical conversion of No. 1 to No. 5. After that, the battery was chemical-generated under normal conditions to obtain No. 1 to No. 5 lead-acid batteries.
Due to this battery formation, lead powder is transformed into a positive electrode active material, and the number of silanol groups contained in the positive electrode mixture is 2.35 x 10 16 per 1 g of the positive electrode mixture in the No. 1 lead-acid battery. No. 2 lead-acid battery has 1.18 x 10 17 per gram of positive electrode mixture, No. 3 lead-acid battery has 5.535 x 10 16 per gram of positive electrode mixture, and No. 4 lead-acid battery has positive electrode mixture. The number was 6.31 × 10 16 per gram.

〔試験〕
[活物質利用率を調べる試験]
No.1〜No.5の鉛蓄電池について、以下の方法で電池容量を測定した。
水面が鉛蓄電池の上面から下方向15mm〜25mmとなるように25℃±2℃の水槽中に鉛蓄電池を置き、SBA規格K42相当の20時間率電流に係数3.42を乗じた、5.643Aで充電した。15分間隔で比重を測定し、3回連続して比重が同じ値を示したら、満充電と判断し、充電を終了した。
〔test〕
[Test to examine active material utilization rate]
The battery capacity of the No. 1 to No. 5 lead-acid batteries was measured by the following method.
5. Place the lead-acid battery in a water tank at 25 ° C ± 2 ° C so that the water surface is 15 mm to 25 mm downward from the top surface of the lead-acid battery, and multiply the 20-hour rate current equivalent to SBA standard K42 by a coefficient of 3.42. It was charged at 643A. The specific gravity was measured at 15-minute intervals, and when the specific gravity showed the same value three times in a row, it was judged that the battery was fully charged, and charging was completed.

充電が完了し1時間〜5時間経過後、中央にあるいずれかのセル(2セル目〜5セル目)の電解液温度が25±2℃であることを確認した後、鉛蓄電池の端子電圧が10.5Vに低下するまで、SBA規格K42相当の20時間率電流である、1.65Aで放電し、放電電気量を電池容量とした。
その結果、No.1では34.0Ah、No.2では31.4Ah、No.3では33.9Ah、No.4では33.3Ah、No.5では32.3Ahであった。
No.5の鉛蓄電池の容量を基準にして、No.1〜No.4の鉛蓄電池の容量増大率を計算した。この値が大きいほど活物質の利用率が高いことを示す。
After 1 to 5 hours have passed since charging was completed, after confirming that the electrolyte temperature of any of the cells in the center (2nd to 5th cells) was 25 ± 2 ° C, the terminal voltage of the lead-acid battery Was discharged at 1.65 A, which is a 20-hour rate current equivalent to SBA standard K42, until the voltage dropped to 10.5 V, and the amount of discharged electricity was taken as the battery capacity.
As a result, it was 34.0 Ah in No. 1, 31.4 Ah in No. 2, 33.9 Ah in No. 3, 33.3 Ah in No. 4, and 32.3 Ah in No. 5.
Based on the capacity of the No. 5 lead-acid battery, the capacity increase rate of the No. 1 to No. 4 lead-acid batteries was calculated. The larger this value is, the higher the utilization rate of the active material is.

[充電受入性試験]
電池工業会の規格SBA S0101:2014に規定される「充電受入性2試験」を行った。この規格はアイドリングストップ車用鉛蓄電池の規格である。この規格に準拠し、鉛蓄電池を最大14.5V、200Aの条件で10秒間充電した際に流れる電気量を測定し、その測定値で充電受入性を評価した。この試験は、部分充電状態で使用される鉛蓄電池の充電受入性評価の方法として認知されている試験の一つである。
No.1〜No.5の鉛蓄電池について上述の試験を行い、No.1〜No.4の鉛蓄電池で得られた電気量の測定値について、No.5の鉛蓄電池で得られた測定値を100とした時のNo.1〜No.4の鉛蓄電池で得られた測定値の相対値を算出した。
これらの結果を下記の表1に示す。
[Charge acceptance test]
The "charge acceptability 2 test" specified in the standard SBA S0101: 2014 of the Battery Manufacturers Association was conducted. This standard is a standard for lead-acid batteries for idling stop vehicles. In accordance with this standard, the amount of electricity flowing when the lead-acid battery was charged at a maximum of 14.5 V and 200 A for 10 seconds was measured, and the charge acceptability was evaluated by the measured value. This test is one of the recognized tests as a method for evaluating the charge acceptability of lead-acid batteries used in a partially charged state.
The above tests were performed on the lead-acid batteries of No. 1 to No. 5, and the measured values of the amount of electricity obtained by the lead-acid batteries of No. 1 to No. 4 were the measured values obtained by the lead-acid batteries of No. 5. The relative values of the measured values obtained from the lead-acid batteries No. 1 to No. 4 when the value was 100 were calculated.
These results are shown in Table 1 below.

Figure 2021077482
Figure 2021077482

また、これらの結果から得られた、各鉛蓄電池の容量増大率(%)と、正極合剤に含まれている正極合剤1g当たりのシラノール基の個数と、の関係を、図1にグラフで示す。さらに、各鉛蓄電池の容量増大率(%)と、正極板製造時の正極合剤形成用ペーストに含まれていた鉛粉1g当たりのシラノール基の個数と、の関係を、図2にグラフで示す。 Further, FIG. 1 is a graph showing the relationship between the capacity increase rate (%) of each lead-acid battery obtained from these results and the number of silanol groups per 1 g of the positive electrode mixture contained in the positive electrode mixture. Indicated by. Further, the relationship between the capacity increase rate (%) of each lead-acid battery and the number of silanol groups per 1 g of lead powder contained in the paste for forming a positive electrode mixture at the time of manufacturing a positive electrode plate is shown in a graph in FIG. Shown.

図1のグラフでは、No.1〜No.4のプロットによる回帰直線が(x,y)=(0.0,9.535E+16)を通る。つまり、図1のグラフから、正極合剤1g当たりのシラノール基の個数が9.535×1016個未満であれば、鉛蓄電池の容量増大効果が得られることが分かる。
図2のグラフでは、No.1〜No.4のプロットによる回帰直線が(x,y)=(0.0,1.228E+17)を通る。つまり、図2のグラフから、正極板製造時の材料保持工程で使用する正極合剤形成用ペーストに含まれている鉛粉1g当たりのシラノール基の個数が1.228×1017個未満であれば、鉛蓄電池の容量増大効果が得られることが分かる。
In the graph of FIG. 1, the regression line obtained by plotting No. 1 to No. 4 passes through (x, y) = (0.0, 9.535E + 16). That is, from the graph of FIG. 1, it can be seen that if the number of silanol groups per 1 g of the positive electrode mixture is less than 9.535 × 10 16 , the effect of increasing the capacity of the lead storage battery can be obtained.
In the graph of FIG. 2, the regression line obtained by plotting No. 1 to No. 4 passes through (x, y) = (0.0, 1.228E + 17). That is, from the graph of FIG. 2, if the number of silanol groups per 1 g of lead powder contained in the paste for forming a positive electrode mixture used in the material holding step at the time of manufacturing a positive electrode plate is less than 1.228 × 10 17. For example, it can be seen that the effect of increasing the capacity of the lead storage battery can be obtained.

そして、表1から分かるように、正極合剤に多孔質シリカ粒子を含み、正極合剤に含まれるシラノール基の個数が正極合剤1g当たり9.535×1016個未満であるNo.1、No.3、No.4の鉛蓄電池(本発明の実施例に相当)は、正極合剤に多孔質シリカ粒子を含まないNo.5の鉛蓄電池(従来例)よりも電池容量が大きく、正極活物質の利用率が高いものであり、充電受入性も高いものであった。
また、正極合剤に多孔質シリカ粒子を含み、正極合剤に含まれるシラノール基の個数が正極合剤1g当たり9.535×1016個以上であるNo.2の鉛蓄電池(本発明の比較例に相当)は、No.5の鉛蓄電池よりも電池容量が小さく、正極活物質の利用率が低いものであり、充電受入性も低いものであった。
As can be seen from Table 1, the positive electrode mixture contains porous silica particles, and the number of silanol groups contained in the positive electrode mixture is less than 9.535 × 10 16 per 1 g of the positive electrode mixture. The No. 3 and No. 4 lead-acid batteries (corresponding to the examples of the present invention) have a larger battery capacity than the No. 5 lead-acid batteries (conventional example) that do not contain porous silica particles in the positive electrode mixture, and have a positive electrode. The utilization rate of the active material was high, and the charge acceptability was also high.
Further, the No. 2 lead-acid battery containing porous silica particles in the positive electrode mixture and having a number of silanol groups contained in the positive electrode mixture of 9.535 × 10 16 or more per 1 g of the positive electrode mixture (comparison of the present invention). The battery capacity was smaller than that of the No. 5 lead-acid battery, the utilization rate of the positive electrode active material was low, and the charge acceptability was also low.

Claims (3)

セル室と、前記セル室に電解液と共に収納された極板群と、を備え、
前記極板群は、交互に配置された負極板および正極板と、負極板と正極板との間に配置されたセパレータと、からなる積層体を有し、
前記正極板は、正極活物質と、表面にシラノール基(−SiOH)が存在する多孔質シリカ粒子と、を含む正極合剤を備え、
前記正極合剤に含まれる前記シラノール基の個数は、前記正極合剤1g当たり9.535×1016個未満である鉛蓄電池。
A cell chamber and a group of electrode plates stored together with an electrolytic solution in the cell chamber are provided.
The electrode plate group has a laminate composed of alternately arranged negative electrode plates and positive electrode plates and separators arranged between the negative electrode plates and the positive electrode plates.
The positive electrode plate comprises a positive electrode mixture containing a positive electrode active material and porous silica particles having a silanol group (-SiOH) on the surface.
A lead-acid battery in which the number of silanol groups contained in the positive electrode mixture is less than 9.535 × 10 16 per 1 g of the positive electrode mixture.
セル室と、前記セル室に電解液と共に収納された極板群と、を備え、前記極板群は、交互に配置された負極板および正極板と、負極板と正極板との間に配置されたセパレータと、からなる積層体を有し、前記正極板は、正極活物質と多孔質シリカ粒子とを含む正極合剤を有する、鉛蓄電池の前記正極板の製造方法であって、
鉛粉と、表面にシラノール基(−SiOH)が存在する多孔質シリカ粒子と、を含む材料を、前記シラノール基の個数が前記鉛粉1g当たり1.228×1017個未満となるように、集電体に保持された状態にする材料保持工程と、
前記状態の前記鉛粉を前記正極活物質に変化させる化成工程と、
を含む鉛蓄電池の正極板の製造方法。
A cell chamber and a group of electrode plates housed together with an electrolytic solution in the cell chamber are provided, and the electrode plate group is arranged between the negative electrode plates and the positive electrode plates arranged alternately, and between the negative electrode plates and the positive electrode plates. The positive electrode plate is a method for producing the positive electrode plate of a lead storage battery, which has a laminate composed of the separated separator and a positive electrode mixture containing a positive electrode active material and porous silica particles.
A material containing lead powder and porous silica particles having silanol groups (-SiOH) on the surface is used so that the number of silanol groups is less than 1.228 × 10 17 per 1 g of the lead powder. A material holding process that keeps the particles held in the current collector,
A chemical conversion step of changing the lead powder in the above state into the positive electrode active material, and
A method for manufacturing a positive electrode plate of a lead storage battery including.
前記材料保持工程は、鉛粉と表面にシラノール基(−SiOH)が存在する多孔質シリカ粒子と水とを含む混練物を、集電体の格子状基板に充填した後に乾燥する工程であり、
前記混練物に含まれる前記シラノール基の個数が前記鉛粉1g当たり1.228×1017個未満である請求項2記載の鉛蓄電池の正極板の製造方法。
The material holding step is a step of filling a kneaded product containing lead powder, porous silica particles having a silanol group (-SiOH) on the surface, and water in a grid-like substrate of a current collector and then drying the kneaded product.
The method for producing a positive electrode plate of a lead storage battery according to claim 2, wherein the number of silanol groups contained in the kneaded product is less than 1.228 × 10 17 per 1 g of the lead powder.
JP2019201512A 2019-11-06 2019-11-06 Manufacturing method of lead-acid battery and positive electrode plate of lead-acid battery Active JP7049739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201512A JP7049739B2 (en) 2019-11-06 2019-11-06 Manufacturing method of lead-acid battery and positive electrode plate of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201512A JP7049739B2 (en) 2019-11-06 2019-11-06 Manufacturing method of lead-acid battery and positive electrode plate of lead-acid battery

Publications (2)

Publication Number Publication Date
JP2021077482A true JP2021077482A (en) 2021-05-20
JP7049739B2 JP7049739B2 (en) 2022-04-07

Family

ID=75899718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201512A Active JP7049739B2 (en) 2019-11-06 2019-11-06 Manufacturing method of lead-acid battery and positive electrode plate of lead-acid battery

Country Status (1)

Country Link
JP (1) JP7049739B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135127A (en) * 1997-10-29 1999-05-21 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2007123206A (en) * 2005-10-31 2007-05-17 Furukawa Battery Co Ltd:The Conductive and porous silica gel, and lead-acid storage battery using the same
JP2009200042A (en) * 2008-01-25 2009-09-03 Ntt Data Ex Techno Corp Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135127A (en) * 1997-10-29 1999-05-21 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2007123206A (en) * 2005-10-31 2007-05-17 Furukawa Battery Co Ltd:The Conductive and porous silica gel, and lead-acid storage battery using the same
JP2009200042A (en) * 2008-01-25 2009-09-03 Ntt Data Ex Techno Corp Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery

Also Published As

Publication number Publication date
JP7049739B2 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
JP5500315B2 (en) Lead acid battery
JP5126454B2 (en) Lead acid battery
EP2544291B1 (en) Lead storage battery
EP3288107B1 (en) Lead storage battery
JP5445655B2 (en) Lead acid battery
JP5598532B2 (en) Lead acid battery
JP4364460B2 (en) Negative electrode for lead acid battery
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
JP6727965B2 (en) Lead acid battery
WO2005096431A1 (en) Lead storage battery
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
JP4053272B2 (en) Negative electrode for lead acid battery
JPWO2018229875A1 (en) Liquid lead storage battery
JP2008243493A (en) Lead acid storage battery
JP2021086731A (en) Positive electrode plate for lead acid battery, and lead acid battery
JP7049739B2 (en) Manufacturing method of lead-acid battery and positive electrode plate of lead-acid battery
JP6730406B2 (en) Lead acid battery
JP6734456B1 (en) Lead acid battery
JP7212649B2 (en) Lead-acid battery and manufacturing method thereof
JP2017183160A (en) Lead storage battery
JP2005268061A (en) Lead storage cell
JP2021086732A (en) Positive electrode plate for lead acid battery, and lead acid battery
JP2021061127A (en) Lead acid battery positive electrode and lead acid battery
JP2021086730A (en) Method for manufacturing positive electrode plate for lead acid battery
JP2021057108A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7049739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150