JP2003119097A - SiC SINGLE CRYSTAL, METHOD OF PRODUCING THE SAME, SiC SEED CRYSTAL AND METHOD OF PRODUCING THE SAME - Google Patents

SiC SINGLE CRYSTAL, METHOD OF PRODUCING THE SAME, SiC SEED CRYSTAL AND METHOD OF PRODUCING THE SAME

Info

Publication number
JP2003119097A
JP2003119097A JP2001315367A JP2001315367A JP2003119097A JP 2003119097 A JP2003119097 A JP 2003119097A JP 2001315367 A JP2001315367 A JP 2001315367A JP 2001315367 A JP2001315367 A JP 2001315367A JP 2003119097 A JP2003119097 A JP 2003119097A
Authority
JP
Japan
Prior art keywords
growth
crystal
plane
single crystal
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001315367A
Other languages
Japanese (ja)
Other versions
JP3745668B2 (en
Inventor
Daisuke Nakamura
大輔 中村
Hiroyuki Kondo
宏行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2001315367A priority Critical patent/JP3745668B2/en
Priority to DE10247017A priority patent/DE10247017B4/en
Priority to SE0202992A priority patent/SE523917C2/en
Priority to US10/268,103 priority patent/US6890600B2/en
Publication of JP2003119097A publication Critical patent/JP2003119097A/en
Application granted granted Critical
Publication of JP3745668B2 publication Critical patent/JP3745668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high quality SiC single crystal almost free from micropipe defects, screw dislocations, edge dislocations, and stacking faults, and to provide a method of producing the same, an SiC seed crystal and a method of producing the same. SOLUTION: In a first growth process, a first growth crystal is produced by using a surface having an offset angle within ±20 deg. from 1-100} plane or a surface having an offset angle within ±20 deg. from 11-20} plane as a first growth surface. In an intermediate growth process, n-th growth crystal is produced by using a surface inclined from the (n-1)th growth surface at an angle of 45 to 90 deg. and inclined from the 0001} plane at an angle of 60 to 90 deg. as the n-th growth surface. Further, in the final growth process, a bulk SiC single crystal 30 is grown on the final growth surface 35 by using a surface having an offset angle within ±20 deg. from the 0001} plane of the (N-1)th growth crystal as the final growth surface 35.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は,SiC単結晶及びその製造方法
並びにSiC種結晶及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a SiC single crystal, a method for producing the same, an SiC seed crystal, and a method for producing the same.

【0002】[0002]

【従来技術】従来より,SiC単結晶を利用するSiC
半導体は,Si半導体に代わる次世代パワーデバイスの
候補材料として期待されている。高性能なSiCパワー
デバイスを実現するためには,上記SiC半導体に生じ
るリーク電流などを低減することが必須条件である。上
記SiC単結晶に生じるマイクロパイプ欠陥,螺旋転
位,刃状転位,積層欠陥などの欠陥が,上記SiC半導
体のリーク電流などの原因となっていると考えられる。
2. Description of the Related Art Conventionally, SiC using a SiC single crystal
Semiconductors are expected as candidate materials for next-generation power devices to replace Si semiconductors. In order to realize a high-performance SiC power device, it is an essential condition to reduce the leak current generated in the SiC semiconductor. It is considered that micropipe defects, screw dislocations, edge dislocations, stacking faults, and other defects that occur in the SiC single crystal cause the leak current of the SiC semiconductor.

【0003】図4に示すごとく,上記SiC単結晶は主
要な面方位として{0001}面(c面)と,{000
1}面に垂直な{1−100}面(a面)及び{11−
20}面(a面)とを有している。従来より上記SiC
単結晶を得る方法としては,上記{0001}面(c
面)もしくは{0001}面からオフセット角度10°
以内の面を種結晶面として露出するSiC種結晶を用い
て,昇華再析出法などにより上記種結晶面上にSiC単
結晶を成長させる,いわゆるc面成長を行う方法が用い
られてきた。しかし,このように{0001}面を種結
晶面とし,<0001>方向に成長させてなる成長結晶
(c面成長結晶)中には,<0001>方向に略平行な
方向に上記マイクロパイプ欠陥,螺旋転位,刃状転位な
どの線形欠陥が非常に多く発生するという問題があっ
た。
As shown in FIG. 4, the above-mentioned SiC single crystal has {0001} planes (c-planes) and {000} planes as major plane orientations.
{1-100} plane (a plane) and {11-
20} surface (a surface). Conventionally the above SiC
As a method for obtaining a single crystal, the {0001} plane (c
Plane) or an offset angle of 10 ° from the {0001} plane
A method of performing so-called c-plane growth has been used, in which an SiC seed crystal whose inner surface is exposed as a seed crystal surface is used to grow a SiC single crystal on the seed crystal surface by a sublimation reprecipitation method or the like. However, in such a grown crystal (c-plane grown crystal) grown in the <0001> direction with the {0001} plane as the seed crystal plane, the micropipe defect is in a direction substantially parallel to the <0001> direction. However, there was a problem that a large number of linear defects such as screw dislocations and edge dislocations occurred.

【0004】上記の問題を解決するために特開平5−2
62599号公報には,図6に示すごとく,{000
1}面からの傾きが60〜120°(90°が好まし
い)の面を種結晶面95として,この種結晶9をa面成
長させて,成長結晶(a面成長結晶)90を得る方法が
開示されている。そしてこのa面成長結晶90中には,
マイクロパイプ欠陥や螺旋転位が含まれないことを明ら
かにした。
In order to solve the above-mentioned problem, Japanese Patent Laid-Open No. 5-2
In the 62599 publication, as shown in FIG.
A method of obtaining a grown crystal (a-plane grown crystal) 90 by growing the seed crystal 9 in the a-plane by using a plane having an inclination of 60 to 120 ° (preferably 90 °) from the 1} plane as a seed crystal plane 95. It is disclosed. And in this a-plane grown crystal 90,
It was revealed that micropipe defects and screw dislocations were not included.

【0005】[0005]

【解決しようとする課題】しかしながら,上記a面成長
結晶90中には高密度の積層欠陥91が含まれている。
このような積層欠陥91を高密度に含有するSiC単結
晶は,積層欠陥91を横切る方向の電気抵抗が増大す
る。そのため,上記a面成長結晶9は,SiCパワーデ
バイス作製用として使用することができない。また,上
記SiC単結晶中には,<0001>方向に平行及び直
交なバーガースベクトルをもつ刃状転位92が高密度に
存在する。このような刃状転位92を高密度に含有する
SiC単結晶より,{0001}面が露出した種結晶を
作製してc面成長を行うと,刃状転位92に起因して螺
旋転位や新たな刃状転位が発生してしまうという問題が
ある。
However, the a-plane grown crystal 90 contains high density stacking faults 91.
In the SiC single crystal containing the stacking fault 91 at a high density, the electric resistance in the direction crossing the stacking fault 91 increases. Therefore, the a-plane grown crystal 9 cannot be used for producing a SiC power device. In addition, edge dislocations 92 having Burgers vectors parallel and orthogonal to the <0001> direction are present in high density in the SiC single crystal. When a seed crystal in which the {0001} plane is exposed is prepared from a SiC single crystal containing such edge dislocations 92 at a high density and c-plane growth is performed, screw dislocations and new dislocations are generated due to the edge dislocations 92. There is a problem that various edge dislocations occur.

【0006】本発明は,かかる従来の問題点に鑑みてな
されたもので,マイクロパイプ欠陥,螺旋転位,刃状転
位,及び積層欠陥をほとんど含まず,高品質のSiC単
結晶及びその製造方法並びにSiC種結晶及びその製造
方法を提供しようとするものである。
The present invention has been made in view of the above conventional problems, and is a high-quality SiC single crystal containing almost no micropipe defects, screw dislocations, edge dislocations, and stacking faults, and a method for manufacturing the same. It is intended to provide a SiC seed crystal and a method for manufacturing the same.

【0007】[0007]

【課題の解決手段】第1の発明は,SiC単結晶よりな
る種結晶上にSiC単結晶を成長させてバルク状のSi
C単結晶を製造する製造方法において,該製造方法はN
回(Nは,N≧3の自然数)の成長工程を含み,各成長
工程を第n成長工程(nは自然数であって1から始まり
Nで終わる序数)として表した場合,n=1である第1
成長工程においては,{1−100}面からオフセット
角度±20°以下の面,または{11−20}面からオ
フセット角度±20°以下の面を第1成長面として露出
させた第1種結晶を用いて,上記第1成長面上にSiC
単結晶を成長させ第1成長結晶を作製し,n=2,
3,...,(N−1)回目である中間成長工程におい
ては,第(n−1)成長面より45〜90°傾き,且つ
{0001}面より60〜90°傾いた面を第n成長面
とした第n種結晶を第(n−1)成長結晶より作製し,
該第n種結晶の上記第n成長面上にSiC単結晶を成長
させて第n成長結晶を作製し,n=Nである最終成長工
程においては,第(N−1)成長結晶の{0001}面
よりオフセット角度±20°以下の面を最終成長面とし
て露出させた最終種結晶を第(N−1)成長結晶より作
製し,該最終種結晶の上記最終成長面上にバルク状のS
iC単結晶を成長させることを特徴とするSiC単結晶
の製造方法にある(請求項1)。
According to a first aspect of the present invention, bulk SiC is obtained by growing a SiC single crystal on a seed crystal made of a SiC single crystal.
In a manufacturing method for manufacturing a C single crystal, the manufacturing method is N
When the number of times (N is a natural number of N ≧ 3) of growth steps is included and each growth step is expressed as the n-th growth step (n is a natural number and an ordinal number starting from 1 and ending with N), n = 1. First
In the growth step, a first seed crystal in which a face having an offset angle of ± 20 ° or less from the {1-100} face or a face having an offset angle of ± 20 ° or less from the {11-20} face is exposed as a first growth face. On the first growth surface by using
A single crystal is grown to make a first grown crystal, and n = 2.
3 ,. . . , (N-1) th intermediate growth step, a plane inclined by 45 to 90 ° from the (n-1) th growth plane and 60 to 90 ° from the {0001} plane was defined as the nth growth plane. An n-th seed crystal is prepared from the (n-1) -th grown crystal,
A SiC single crystal is grown on the n-th growth surface of the n-th seed crystal to produce an n-th growth crystal. In the final growth step where n = N, the (N-1) -th growth crystal {0001 } A plane having an offset angle of ± 20 ° or less from the plane is exposed as a final growth plane to prepare a final seed crystal from the (N-1) th growth crystal, and a bulk-like S is formed on the final growth plane of the final seed crystal.
An SiC single crystal is produced by growing an iC single crystal (claim 1).

【0008】本発明の第1成長工程においては,上記
{1−100}面,又は{11−20}面という,いわ
ゆるa面からオフセット角度20°以内の面を第1成長
面としている。そのため,上記第1成長結晶は第1成長
面と直交する方向に成長し,これはいわゆるa面成長に
相当する。それ故,上記第1成長結晶中には上記マイク
ロパイプ欠陥及び螺旋転位は発生しない。しかし,上記
第1成長工程に用いる第1種結晶中には,マイクロパイ
プ欠陥,螺旋転位,刃状転位,及びそれらの複合転位が
存在する。そのため,上記第1成長結晶中には,これら
の欠陥に起因する<0001>方向に平行及び直交する
バーガースベクトルをもつ刃状転位が上記第1成長面の
表面から継承されて存在する。このとき上記刃状転位
は,第1成長結晶の成長方向に平行な方向に伸びるよう
に存在する。
In the first growth step of the present invention, the {1-100} plane or the {11-20} plane, which is within a 20 ° offset angle from the so-called a-plane, is used as the first growth plane. Therefore, the first grown crystal grows in the direction orthogonal to the first growth plane, which corresponds to so-called a-plane growth. Therefore, the micropipe defects and screw dislocations do not occur in the first grown crystal. However, micropipe defects, screw dislocations, edge dislocations, and composite dislocations thereof exist in the first seed crystal used in the first growth step. Therefore, edge dislocations having Burgers vectors parallel to and orthogonal to the <0001> direction due to these defects exist in the first growth crystal, inherited from the surface of the first growth surface. At this time, the edge dislocations are present so as to extend in a direction parallel to the growth direction of the first grown crystal.

【0009】次に,上記中間成長工程においては,第
(n−1)成長面より45〜90°傾き,且つ{000
1}面より60〜90°傾いた面,即ちほぼa面を第n
成長面とした第n種結晶を第(n−1)成長結晶より作
製し,上記第n成長面上にSiC単結晶を成長させて第
n成長結晶を作製する。そのため,第(n−1)成長結
晶に含まれる刃状転位は,上記第n種結晶の表面にはほ
とんど露出されないので,第n成長結晶中に上記刃状転
位はほとんど発生しない。また,上記中間成長工程にお
けるSiC単結晶の成長は,略a面成長の方向に起こ
る。そのため,上記中間成長工程における成長結晶中に
は,マイクロパイプ欠陥及び螺旋転位は発生しない。
Next, in the above intermediate growth step, the inclination is 45 to 90 ° from the (n-1) th growth plane and {000
The plane inclined by 60 to 90 ° from the 1} plane, that is, almost the a plane
The n-th seed crystal used as the growth surface is prepared from the (n-1) -th growth crystal, and the SiC single crystal is grown on the n-th growth surface to prepare the n-th growth crystal. Therefore, the edge dislocations contained in the (n-1) th grown crystal are barely exposed on the surface of the nth seed crystal, so that the edge dislocations are hardly generated in the nth grown crystal. In addition, the growth of the SiC single crystal in the intermediate growth step occurs in the direction of approximately a-plane growth. Therefore, micropipe defects and screw dislocations do not occur in the grown crystal in the intermediate growth step.

【0010】また,上記中間成長工程は,1回(N=3
のとき),又は複数回繰り返して行うことができる。そ
して,中間成長工程の回数を増やす毎に,得られる成長
結晶のいわゆる転位密度を指数関数的に減少させること
ができる。しかし,上記中間成長工程においては,Si
C単結晶を略a面成長の方向に成長させているため,a
面成長結晶特有の積層欠陥が発生することは避けられな
い。
Further, the intermediate growth step is performed once (N = 3
,) Or repeated several times. Then, each time the number of intermediate growth steps is increased, the so-called dislocation density of the obtained grown crystal can be exponentially reduced. However, in the above intermediate growth step, Si
Since a C single crystal is grown in the direction of approximately a-plane growth,
It is inevitable that stacking faults peculiar to surface-grown crystals will occur.

【0011】上記最終成長工程においては,上記第(N
−1)成長結晶の{0001}面よりオフセット角度±
20°以下の面,即ちほぼc面を最終成長面として露出
させた最終種結晶としている。そのため,上記最終成長
面には,<0001>方向に平行及び直交するバーガー
スベクトルをもつ刃状転位はほとんど存在しない。それ
故,上記最終種結晶を成長させてなるSiC単結晶(以
下適宜最終SiC単結晶とよぶ)には,<0001>方
向に直交するバーガースベクトルをもつ転位である刃状
転位は発生しない。また,<0001>方向に平行な方
向のバーガースベクトルをもつ欠陥であるマイクロパイ
プ欠陥及び螺旋転位も発生しない。また,上記最終成長
工程においては,上記最終種結晶から略c面成長の方向
にSiC単結晶を成長させる。そのため,上記最終種結
晶に高密度に含まれる積層欠陥は,最終SiC単結晶中
にはほとんど存在しない。上記積層欠陥は<0001>
方向の成長(いわゆるc面成長)には継承されないから
である。
In the final growth step, the (N-th)
-1) Offset angle from the {0001} plane of the grown crystal ±
The surface of 20 ° or less, that is, the c-plane is used as the final growth surface, and the final seed crystal is exposed. Therefore, there is almost no edge dislocation having Burgers vectors parallel and orthogonal to the <0001> direction on the final growth surface. Therefore, edge dislocations, which are dislocations having Burgers vectors orthogonal to the <0001> direction, do not occur in the SiC single crystal obtained by growing the final seed crystal (hereinafter appropriately referred to as the final SiC single crystal). In addition, micropipe defects and screw dislocations, which are defects having Burgers vectors parallel to the <0001> direction, do not occur. Further, in the final growth step, a SiC single crystal is grown from the final seed crystal in the direction of substantially c-plane growth. Therefore, stacking faults contained in the final seed crystal at a high density hardly exist in the final SiC single crystal. The stacking fault is <0001>
This is because it is not inherited by directional growth (so-called c-plane growth).

【0012】したがって,本発明によれば,マイクロパ
イプ欠陥,螺旋転位,刃状転位,及び積層欠陥をほとん
ど含まず,高品質のSiC単結晶を提供することができ
る。なお,本発明において,{1−100},{11−
20}及び{0001}は,いわゆる結晶面の面指数を
表している。上記面指数において,「−」記号は通常数
字の上に付されるが,本明細書及び図面においては書類
作成の便宜上のため数字の左側に付した。また,<00
01>,<11−20>,及び<1−100>は,結晶
内の方向を表し,「−」記号の取り扱いについては,上
記面指数と同様である。
Therefore, according to the present invention, it is possible to provide a high-quality SiC single crystal containing almost no micropipe defects, screw dislocations, edge dislocations, and stacking faults. In the present invention, {1-100}, {11-
20} and {0001} represent so-called plane indices of crystal planes. In the above surface index, the "-" symbol is usually added above the number, but in this specification and the drawings, it is added to the left side of the number for convenience of document preparation. Also, <00
01>, <11-20>, and <1-100> represent directions in the crystal, and the handling of the “−” symbol is the same as the above-mentioned plane index.

【0013】第2の発明は,第1の発明により作製され
ることを特徴とするSiC単結晶にある(請求項6)。
A second invention is a SiC single crystal characterized by being manufactured by the first invention (claim 6).

【0014】第1の発明により作製されるSiC単結晶
は,上述したごとく,結晶中にマイクロパイプ欠陥,螺
旋転位,刃状転位,及び積層欠陥をほとんど含まず,高
品質である。それ故,次世代パワーデバイスの材料とし
て非常に有効である。
As described above, the SiC single crystal produced by the first invention is of high quality because it hardly contains micropipe defects, screw dislocations, edge dislocations, and stacking faults. Therefore, it is very effective as a material for next-generation power devices.

【0015】第3の発明は,バルク状のSiC単結晶を
成長させるためのSiC種結晶を製造する方法におい
て,該製造方法は(N−1)回(Nは,N≧3の自然
数)の成長工程と該成長工程後に行う種結晶作製工程を
含み,各成長工程を第n成長工程(nは自然数であって
1から始まりNで終わる序数)として表した場合,n=
1である第1成長工程においては,{1−100}面か
らオフセット角度±20°以下の面,または{11−2
0}面からオフセット角度±20°以下の面を第1成長
面として露出させた第1種結晶を用いて,上記第1成長
面上にSiC単結晶を成長させ第1成長結晶を作製し,
n=2,3,...,(N−1)回目である中間成長工
程においては,第(n−1)成長面より45〜90°傾
き,且つ{0001}面より60〜90°傾いた面を第
n成長面とした第n種結晶を第(n−1)成長結晶より
作製し,該第n種結晶の上記第n成長面上にSiC単結
晶を成長させて第n成長結晶を作製し,上記種結晶作製
工程においては,第(N−1)成長結晶の{0001}
面よりオフセット角度±20°以下の面を最終成長面と
して露出させることを特徴とするSiC種結晶の製造方
法にある(請求項7)。
A third invention is a method for producing a SiC seed crystal for growing a bulk SiC single crystal, wherein the production method is (N-1) times (N is a natural number of N ≧ 3). When a growth step and a seed crystal production step performed after the growth step are included and each growth step is represented as an nth growth step (n is a natural number and an ordinal number starting from 1 and ending with N), n =
In the first growth step of No. 1, a surface having an offset angle of ± 20 ° or less from the {1-100} plane, or {11-2
The first seed crystal is grown on the first growth surface by using the first seed crystal in which a surface having an offset angle of ± 20 ° or less from the 0} plane is exposed as the first growth surface, and a first growth crystal is produced.
n = 2, 3 ,. . . , (N-1) th intermediate growth step, a plane inclined by 45 to 90 ° from the (n-1) th growth plane and 60 to 90 ° from the {0001} plane was defined as the nth growth plane. The n-th seed crystal is prepared from the (n-1) -th grown crystal, and a SiC single crystal is grown on the n-th growth surface of the n-th seed crystal to prepare the n-th grown crystal. , The (N-1) th grown crystal {0001}
A method for producing a SiC seed crystal is characterized in that a surface having an offset angle of ± 20 ° or less from the surface is exposed as a final growth surface (claim 7).

【0016】上記SiC種結晶は,第1の発明における
最終種結晶と同じものである。そのため,上述したよう
に,上記SiC種結晶には,マイクロパイプ欠陥及び螺
旋転位は含まれない。また,該SiC種結晶の成長面に
は<0001>方向に平行及び直交するバーガースベク
トルをもつ転位はほとんど露出しない。そして,上記S
iC種結晶は,{0001}面よりオフセット角度±2
0°以下の面を最終成長面としており,略<0001>
方向に成長する。そのため,上記SiC種結晶を成長さ
せて得られる最終SiC単結晶には,積層欠陥はほとん
ど含まれない。したがって,本発明のSiC種結晶を用
いて,SiC単結晶を成長させると,マイクロパイプ欠
陥,螺旋転位,刃状転位,及び積層欠陥を含まず,高品
質のSiC単結晶を簡単に作製することができる。
The above-mentioned SiC seed crystal is the same as the final seed crystal in the first invention. Therefore, as described above, the SiC seed crystal does not include micropipe defects and screw dislocations. Further, dislocations having Burgers vectors parallel and orthogonal to the <0001> direction are hardly exposed on the growth surface of the SiC seed crystal. And the above S
iC seed crystal has an offset angle of ± 2 from the {0001} plane.
The surface of 0 ° or less is the final growth surface, which is approximately <0001>.
Grow in the direction. Therefore, the final SiC single crystal obtained by growing the SiC seed crystal contains almost no stacking faults. Therefore, when a SiC single crystal is grown using the SiC seed crystal of the present invention, a high-quality SiC single crystal containing no micropipe defects, screw dislocations, edge dislocations, and stacking faults can be easily produced. You can

【0017】第4の発明は,第3の発明により作製され
たことを特徴とするSiC種結晶にある(請求項1
1)。
A fourth invention is a SiC seed crystal produced by the third invention (claim 1)
1).

【0018】上記SiC種結晶は,上述のごとく,最終
成長面上に転位や欠陥をほとんど有していない。そのた
め,上記SiC種結晶を用いてSiC単結晶を成長させ
ると,該SiC単結晶中にはほとんど転位や欠陥は発生
せず,高品質の欠陥フリーのSiC単結晶を提供するこ
とができる。また,種結晶は一度作製すると同様の結晶
を繰り返して製造できることから,上記SiC種結晶を
用いると,高品質の欠陥フリーのSiC単結晶を簡単に
大量に作製することができる。
As described above, the SiC seed crystal has almost no dislocations or defects on the final growth surface. Therefore, when a SiC single crystal is grown using the above-mentioned SiC seed crystal, dislocations and defects hardly occur in the SiC single crystal, and a high-quality defect-free SiC single crystal can be provided. Further, since the seed crystal can be manufactured by repeating the same crystal once it is manufactured, a large amount of high quality defect-free SiC single crystal can be easily manufactured by using the SiC seed crystal.

【0019】[0019]

【発明の実施の形態】本発明において,上記第1成長面
は,{1−100}面又は{11−20}面からオフセ
ット角度±20°以下の面であり,これは{1−10
0}面又は{11−20}面を含む概念である。ここで,
上記第1成長面は,{1−100}面又は{11−2
0}面であることが好ましい。この場合には,上記第1
成長は,それぞれ<1−100>又は<11−20>方
向に成長する(a面成長)。そのため,上記第1成長結
晶に含まれる<0001>方向の貫通欠陥をより効果的
に減少させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the first growth plane is a plane having an offset angle of ± 20 ° or less from the {1-100} plane or the {11-20} plane, which is {1-10.
This is a concept including the 0} plane or the {11-20} plane. here,
The first growth plane is the {1-100} plane or the {11-2} plane.
It is preferable that it is a 0 plane. In this case, the first
The growth is in the <1-100> or <11-20> direction, respectively (a-plane growth). Therefore, it is possible to more effectively reduce the penetrating defects in the <0001> direction included in the first grown crystal.

【0020】また,上記中間成長工程において,上記第
n成長面は,第(n−1)成長面より80°〜90°傾
き,且つ{0001}面より80°〜90°傾いた面で
あることが好ましい。この場合には,<0001>方向
に平行及び直交するバーガースベクトルをもつ刃状転位
をより効果的に減少させることができる。また,上記最
終成長面は,上記第(N−1)成長結晶の{0001}
面であることが好ましい。この場合には,上記最終種結
晶を<0001>方向に成長させることができるので,
上記SiC単結晶に積層欠陥が生じることを防止するこ
とができる。
In the intermediate growth step, the nth growth surface is a surface tilted by 80 ° to 90 ° from the (n-1) th growth surface and by 80 ° to 90 ° from the {0001} surface. It is preferable. In this case, edge dislocations having Burgers vectors parallel and orthogonal to the <0001> direction can be reduced more effectively. The final growth surface is {0001} of the (N-1) th growth crystal.
It is preferably a surface. In this case, since the final seed crystal can be grown in the <0001> direction,
It is possible to prevent stacking faults from occurring in the SiC single crystal.

【0021】また,上記各成長面の上にSiC単結晶を
成長させる前には,付着物や加工変質層を除去しておく
ことが好ましい。この場合には,上記付着物や加工変質
層に起因する各成長面から各成長結晶に継承される転位
を防ぐことができる。なお,上記付着物や加工変質層を
除去する方法としては例えば,化学洗浄,Reacti
ve Ion Etching(RIE),犠牲酸化な
どがある。
Further, it is preferable to remove deposits and work-affected layers before growing the SiC single crystal on each of the growth surfaces. In this case, it is possible to prevent dislocations that are inherited by the grown crystals from the growth surfaces due to the deposits and work-affected layers. In addition, as a method of removing the deposits and the work-affected layer, for example, chemical cleaning, Reacti
ve Ion Etching (RIE), sacrificial oxidation, etc.

【0022】また,上記最終成長工程によって得られる
SiC単結晶から,該SiC単結晶の{0001}面よ
りオフセット角度±20°以下の面を成長面として露出
させた種結晶を切り出し,該種結晶を使用してSiC単
結晶を製造することができる(請求項2)。
Further, from the SiC single crystal obtained by the final growth step, a seed crystal exposed by using a face having an offset angle of ± 20 ° or less from the {0001} plane of the SiC single crystal as a growth surface is cut out, and the seed crystal is cut out. Can be used to produce a SiC single crystal (claim 2).

【0023】この場合には,上記最終成長工程で得られ
るSiC単結晶,いわば最終SiC単結晶から切り出し
た上記種結晶を使用して,上記最終SiC単結晶と同様
な高品質のSiC単結晶を複製することができる。ま
た,上記と同様の種結晶の切り出しと,これを用いた成
長を繰り返すことにより,上記最終SiC単結晶と同様
のSiC単結晶を何度でも繰り返し複製することができ
る。
In this case, a high-quality SiC single crystal similar to the final SiC single crystal is obtained by using the SiC single crystal obtained in the final growth step, that is, the seed crystal cut out from the final SiC single crystal. Can be duplicated. Further, by cutting out a seed crystal similar to the above and growing it using the seed crystal, an SiC single crystal similar to the final SiC single crystal can be repeatedly reproduced any number of times.

【0024】また,上記第1成長工程及び中間成長工程
においては,成長温度もしくは成長温度から±400℃
以内の温度にて,種結晶の表面を熱エッチングする,又
は,成長を行うための容器内にエッチングガスを導入す
る予備工程を行い,その後,成長温度に移行して成長を
行うことが好ましい(請求項3,請求項8)。この場合
には,上記第1成長工程及び中間成長工程に用いる各成
長面の表面における付着物及び加工変質層に起因する各
成長面から各成長結晶に継承される転位を防ぐことがで
きる。なお,上記エッチングガスとしては,例えば
2,HClなどがある。
In the first growth step and the intermediate growth step, the growth temperature or ± 400 ° C. from the growth temperature is used.
It is preferable to perform a preliminary step of thermally etching the surface of the seed crystal or introducing an etching gas into a container for performing growth at a temperature within the range, and then transitioning to the growth temperature and performing growth ( Claims 3 and 8). In this case, it is possible to prevent dislocations which are inherited from the respective growth surfaces due to the deposits and work-affected layers on the surfaces of the respective growth surfaces used in the first growth step and the intermediate growth step. It should be noted that examples of the etching gas include H 2 and HCl.

【0025】また,上記種結晶上でのSiC単結晶の成
長には昇華再析出法を用いることが好ましい(請求項
4,請求項9)。この場合には,十分な成長高さが得ら
れるため,大口径のSiC単結晶又はSiC種結晶を作
製することができる。
Further, it is preferable to use a sublimation reprecipitation method for growing the SiC single crystal on the seed crystal (claims 4 and 9). In this case, since a sufficient growth height can be obtained, a large diameter SiC single crystal or SiC seed crystal can be produced.

【0026】また,上記種結晶の厚みは1mm以上であ
ることが好ましい(請求項5,請求項10)。この場合
には,上記種結晶と該種結晶を固定している物体との熱
膨張差による応力によって成長結晶に生じる転位を防止
することができる。即ち,上記種結晶の厚みを充分大き
くすることにより,上記応力が上記種結晶を構成する格
子を歪めて,成長結晶に転位が発生することを防止する
ことができる。また,特に,上記種結晶の成長面の面積
Aが500mm2を越える場合には,上記種結晶の厚み
を1mmよりさらに大きくする必要がある。このときの
必要最低限の厚さをtseedとすると,tseed=
1/2×2/πの式が与えられる。なお,上記種結晶及
び成長結晶とは,本発明におけるすべての種結晶及びす
べての成長結晶を含む概念である。
The thickness of the seed crystal is preferably 1 mm or more (claims 5 and 10). In this case, it is possible to prevent dislocations that occur in the grown crystal due to the stress due to the difference in thermal expansion between the seed crystal and the object that fixes the seed crystal. That is, by sufficiently increasing the thickness of the seed crystal, it is possible to prevent the stress from distorting the lattice constituting the seed crystal and generating dislocations in the grown crystal. Further, especially when the area A of the growth surface of the seed crystal exceeds 500 mm 2 , the thickness of the seed crystal needs to be made larger than 1 mm. Assuming that the minimum necessary thickness at this time is tseed, tseed =
The formula of A 1/2 × 2 / π is given. The seed crystal and the grown crystal are concepts including all seed crystals and all grown crystals in the present invention.

【0027】[0027]

【実施例】(実施例1)本発明の実施例にかかるSiC
単結晶及びその製造方法並びにSiC種結晶及びその製
造方法につき説明する。本発明のSiC単結晶の製造方
法は,図1〜3に示すごとく,SiC単結晶よりなる種
結晶上にSiC単結晶を成長させてバルク状のSiC単
結晶を製造する製造方法である。そして,この製造方法
はN回(本例ではN=3)の成長工程を含み,各成長工
程を第n成長工程(nは自然数であって1から始まりN
で終わる序数)として表す。まず,図1に示すごとく,
n=1である第1成長工程においては,{1−100}
面からオフセット角度±20°以下の面,または{11
−20}面からオフセット角度±20°以下の面を第1
成長面15として露出させた第1種結晶1を用いて,上
記第1成長面15上にSiC単結晶を成長させ第1成長
結晶10を作製する(第1成長工程)。次に,図2に示
すごとく,n=2である第2成長工程としての中間成長
工程においては,第1成長面より45〜90°傾き,且
つ{0001}面より60〜90°傾いた面を第2成長
面25とした第2種結晶2を作製し,該第2種結晶2の
上記第2成長面25上にSiC単結晶を成長させて第2
成長結晶20を作製する(中間成長工程)。そして,図
3に示すごとく,n=N(N=3)である最終成長工程
においては,第2成長結晶の{0001}面よりオフセ
ット角度±20°以下の面を最終成長面35として露出
させた最終種結晶3を作製し,該最終種結晶3の上記最
終成長面35上にバルク状のSiC単結晶30を成長さ
せる(最終成長工程)。
EXAMPLES Example 1 SiC according to an example of the present invention
A single crystal and its manufacturing method, and a SiC seed crystal and its manufacturing method are demonstrated. As shown in FIGS. 1 to 3, the method for producing a SiC single crystal of the present invention is a method for producing a bulk SiC single crystal by growing the SiC single crystal on a seed crystal made of the SiC single crystal. This manufacturing method includes N times (N = 3 in this example) of growth steps, and each growth step is performed by n-th growth step (n is a natural number and starts from 1).
Ordinal number ending with). First, as shown in Figure 1,
In the first growth step where n = 1, {1-100}
A surface with an offset angle of ± 20 ° or less from the surface, or {11
The surface with an offset angle of ± 20 ° or less from the −20} surface is the first
Using the first seed crystal 1 exposed as the growth surface 15, a SiC single crystal is grown on the first growth surface 15 to produce the first growth crystal 10 (first growth step). Next, as shown in FIG. 2, in the intermediate growth step as the second growth step where n = 2, a plane inclined by 45 to 90 ° from the first growth plane and 60 to 90 ° from the {0001} plane. The second seed crystal 2 having the second growth surface 25 is prepared, and a SiC single crystal is grown on the second growth surface 25 of the second seed crystal 2 to form the second seed crystal 2.
The grown crystal 20 is produced (intermediate growth step). Then, as shown in FIG. 3, in the final growth step in which n = N (N = 3), a surface having an offset angle of ± 20 ° or less from the {0001} plane of the second grown crystal is exposed as the final growth surface 35. The final seed crystal 3 is prepared, and the bulk SiC single crystal 30 is grown on the final growth surface 35 of the final seed crystal 3 (final growth step).

【0028】以下,本例につき詳細に説明する。本例で
は,図1〜図5に示すごとく,SiC単結晶よりなる種
結晶上に昇華再析出法によりSiC単結晶を成長させ
て,SiC単結晶を製造する。なお,本例においては,
上記のごとくN=3,即ち3回の成長工程を含む例を示
す。まず,昇華再析出法により成長したSiC単結晶を
準備した。図4に示すごとく,SiC単結晶は,主要な
面方位として{0001}面と{0001}面に垂直な
{1−100}面及び{11−20}面とを有してい
る。また,{0001}面に垂直な方向が<0001>
方向,{1−100}面に垂直な方向が<1−100>
方向,{11−20}面に垂直な方向が<11−20>
である。図1に示すごとく,上記SiC単結晶の{1−
100}面が第1成長面15として露出するように上記
SiC単結晶を切断し,さらにこの第1成長面15を加
工,研磨した。また,第1成長面15の表面を化学洗浄
して付着物を除去し,RIE(Reactive Io
n Etching),犠牲酸化などにより,切断・研
磨に伴う加工変質層を除去した。さらに,第1成長面1
5の表面を熱エッチングし,これを第1種結晶1とし
た。なお,第1種結晶1の厚みは3mmである。
Hereinafter, this example will be described in detail. In this example, as shown in FIGS. 1 to 5, a SiC single crystal is grown on a seed crystal made of a SiC single crystal by a sublimation reprecipitation method to manufacture a SiC single crystal. In this example,
An example including N = 3, that is, three growth steps as described above is shown. First, a SiC single crystal grown by the sublimation reprecipitation method was prepared. As shown in FIG. 4, the SiC single crystal has a {0001} plane and a {1-100} plane and a {11-20} plane perpendicular to the {0001} plane as main plane orientations. Also, the direction perpendicular to the {0001} plane is <0001>
Direction, the direction perpendicular to the {1-100} plane is <1-100>
Direction, the direction perpendicular to the {11-20} plane is <11-20>
Is. As shown in FIG. 1, {1-
The SiC single crystal was cut so that the 100} plane was exposed as the first growth surface 15, and the first growth surface 15 was further processed and polished. In addition, the surface of the first growth surface 15 is chemically cleaned to remove deposits, and RIE (Reactive Io) is performed.
n Etching), sacrificial oxidation, etc. to remove the work-affected layer caused by cutting and polishing. Furthermore, the first growth surface 1
The surface of No. 5 was subjected to thermal etching, and this was used as the first seed crystal 1. The thickness of the first seed crystal 1 is 3 mm.

【0029】次に,図5に示すごとく,上記第1種結晶
1とSiC原料粉末75とをこれらが対向するように坩
堝6内に配置した。このとき,上記第1種結晶1は坩堝
6の蓋体65の内側面に接着剤などを介して固定した。
そして上記坩堝6を減圧不活性雰囲気中で2100〜2
400℃に加熱した。このとき,SiC原料粉末75側
の温度を第1種結晶1側の温度より20〜200℃高く
設定した。これにより,坩堝6内のSiC原料粉末75
が加熱により昇華し,該SiC原料粉末75より低温の
第1種結晶1上に堆積し,第1成長結晶10を得た。
Next, as shown in FIG. 5, the first seed crystal 1 and the SiC raw material powder 75 were placed in the crucible 6 so that they face each other. At this time, the first seed crystal 1 was fixed to the inner surface of the lid 65 of the crucible 6 with an adhesive or the like.
Then, the crucible 6 is set to 2100-2 in a reduced pressure inert atmosphere.
Heated to 400 ° C. At this time, the temperature of the SiC raw material powder 75 side was set to 20 to 200 ° C. higher than the temperature of the first seed crystal 1 side. As a result, the SiC raw material powder 75 in the crucible 6
Was sublimated by heating and deposited on the first seed crystal 1 at a temperature lower than that of the SiC raw material powder 75 to obtain a first grown crystal 10.

【0030】次に,図1,図2に示すごとく,上記第1
成長結晶10から,第1成長面15より90°傾き,且
つ{0001}面より90°傾いた面,即ち{11−2
0}面を第2成長面25とする第2種結晶2を第1種結
晶1と同様にして作製した。そして,この第2種結晶2
を第1種結晶1と同様にして成長させ,第2成長結晶2
0を得た。
Next, as shown in FIG. 1 and FIG.
From the grown crystal 10, a plane inclined by 90 ° from the first growth plane 15 and 90 ° from the {0001} plane, that is, {11-2
The second seed crystal 2 having the 0} plane as the second growth surface 25 was prepared in the same manner as the first seed crystal 1. And this second seed crystal 2
Are grown in the same manner as the first seed crystal 1, and the second grown crystal 2
I got 0.

【0031】次に,図2〜図3に示すごとく,上記第2
成長結晶20の面50を最終成長面(第3成長面)35
とする最終種結晶(第3種結晶)3を第1種結晶1及び
第2種結晶2と同様にして作製し,この最終種結晶3か
らSiC単結晶を成長させ,本発明のSiC単結晶30
を作製した。
Next, as shown in FIGS.
The surface 50 of the grown crystal 20 is changed to the final growth surface (third growth surface) 35.
A final seed crystal (third seed crystal) 3 is prepared in the same manner as the first seed crystal 1 and the second seed crystal 2, and a SiC single crystal is grown from this final seed crystal 3 to obtain the SiC single crystal of the present invention. Thirty
Was produced.

【0032】以下,本例の作用効果につき説明する。本
例の第1成長工程においては,上記{1−100}面を
第1成長面15としている。そのため,上記第1成長結
晶10は第1成長面15と直交する方向に成長し,これ
はいわゆるa面成長に相当する。それ故,上記第1成長
結晶10中には上記マイクロパイプ欠陥及び螺旋転位は
発生しない。しかし,第1種結晶中には,マイクロパイ
プ欠陥,螺旋転位,刃状転位,及びそれらの複合転位な
どの欠陥が存在する。そのため,上記第1成長結晶10
中には,<0001>方向に平行及び直交するバーガー
スベクトルをもつ刃状転位が上記第1成長面の表面から
継承されて存在する。このとき上記刃状転位は,第1成
長結晶の成長方向に平行な方向に伸びるように存在す
る。
The operation and effect of this example will be described below. In the first growth step of this example, the {1-100} plane is the first growth plane 15. Therefore, the first grown crystal 10 grows in the direction orthogonal to the first growth surface 15, which corresponds to so-called a-plane growth. Therefore, the micropipe defect and the screw dislocation do not occur in the first grown crystal 10. However, defects such as micropipe defects, screw dislocations, edge dislocations, and composite dislocations thereof exist in the first seed crystal. Therefore, the first grown crystal 10
Edge dislocations having Burgers vectors parallel and orthogonal to the <0001> direction are present therein, inherited from the surface of the first growth surface. At this time, the edge dislocations are present so as to extend in a direction parallel to the growth direction of the first grown crystal.

【0033】上記中間成長工程においては,第1成長面
15より90°傾き,且つ{0001}面より90°傾
いた面,即ち{11−20}面を第2成長面25とする
第2種結晶2を作製している。そのため,上記第1成長
結晶10に含まれる刃状転位は,上記第2種結晶2の表
面にはほとんど露出されない。それ故,第2成長面25
上にSiC単結晶を成長させても,第2成長結晶20中
には第2種結晶2から継承される刃状転位はほとんど除
外される。また,上記中間成長工程において,上記第2
種結晶2は略a面成長の方向に成長する。そのため,上
記第2成長結晶20中には,マイクロパイプ欠陥及び螺
旋転位は発生しない。
In the above-mentioned intermediate growth step, the second kind in which the second growth surface 25 is a surface inclined by 90 ° with respect to the first growth surface 15 and by 90 ° with respect to the {0001} surface, that is, the {11-20} surface. Crystal 2 is produced. Therefore, the edge dislocations contained in the first grown crystal 10 are hardly exposed on the surface of the second seed crystal 2. Therefore, the second growth surface 25
Even if a SiC single crystal is grown on top, edge dislocations inherited from the second seed crystal 2 are almost excluded from the second grown crystal 20. In the intermediate growth step, the second
Seed crystal 2 grows in the direction of approximately a-plane growth. Therefore, micropipe defects and screw dislocations do not occur in the second grown crystal 20.

【0034】上記最終成長工程においては,上記第2成
長結晶20の{0001}面を最終成長面35として露
出させた最終種結晶3を作製している。そのため,上記
最終成長面35には,<0001>方向に平行及び直交
するバーガースベクトルをもつ刃状転位は存在しない。
それ故,上記最終SiC単結晶30には,<0001>
方向に直交するバーガースベクトルをもつ転位である刃
状転位は発生しない。また,<0001>方向に平行な
方向のバーガースベクトルをもつ欠陥であるマイクロパ
イプ欠陥及び螺旋転位も発生しない。また,上記最終成
長工程において,上記最終種結晶3は,<0001>方
向に成長している。そのため,上記最終種結晶3に高密
度に含まれる積層欠陥は,上記最終SiC単結晶30中
にはほとんど存在しない。上記積層欠陥は<0001>
方向の成長には継承されないからである。
In the final growth step, the final seed crystal 3 in which the {0001} plane of the second growth crystal 20 is exposed as the final growth plane 35 is produced. Therefore, there is no edge dislocation having Burgers vectors parallel and orthogonal to the <0001> direction on the final growth surface 35.
Therefore, <0001> is added to the final SiC single crystal 30.
Edge dislocations, which are dislocations having a Burgers vector orthogonal to the direction, do not occur. In addition, micropipe defects and screw dislocations, which are defects having Burgers vectors parallel to the <0001> direction, do not occur. In the final growth step, the final seed crystal 3 grows in the <0001> direction. Therefore, stacking faults contained in the final seed crystal 3 at a high density hardly exist in the final SiC single crystal 30. The stacking fault is <0001>
This is because it is not inherited by the growth of direction.

【0035】また,本例においては,上記第1成長面,
第2成長面25及び最終成長面35の上にSiC単結晶
を成長させる前に,付着物や加工変質層を取り除いてい
る。そのため,上記付着物や加工変質層に起因する各成
長面から各成長結晶に継承される転位を防ぐことができ
る。
In the present example, the first growth surface,
Before growing the SiC single crystal on the second growth surface 25 and the final growth surface 35, deposits and work-affected layers are removed. Therefore, it is possible to prevent dislocations which are inherited by each grown crystal from each growth surface due to the deposits or work-affected layers.

【0036】また,上記第1成長工程及び中間成長工程
においては,各種結晶1,2の表面を熱エッチングして
いる。そのため,各成長面15,25の表面の付着物及
び加工変質層に起因する各成長面15,25から各成長
結晶10,20に継承される転位を防ぐことができる。
In the first growth step and the intermediate growth step, the surfaces of the various crystals 1 and 2 are thermally etched. Therefore, it is possible to prevent dislocations inherited from the growth surfaces 15 and 25 to the grown crystals 10 and 20 due to the deposits on the surfaces of the growth surfaces 15 and 25 and the work-affected layers.

【0037】また,上記第1種結晶,中間種結晶及び最
終種結晶の厚みを1mm以上にしている。そのため,上
記各種結晶1,2,3と種結晶が接触している蓋体65
との熱膨張差による応力によって成長結晶10,20,
30に生じる転位を防止することができる。
The thickness of the first seed crystal, the intermediate seed crystal and the final seed crystal is set to 1 mm or more. Therefore, the lid 65 in which the various crystals 1, 2, and 3 are in contact with the seed crystal
Due to the stress due to the difference in thermal expansion between
The dislocation generated in 30 can be prevented.

【0038】したがって,本例によれば,マイクロパイ
プ欠陥,螺旋転位,刃状転位,及び積層欠陥をほとんど
含まず,高品質のSiC単結晶及びその製造方法並びに
SiC種結晶及びその製造方法を提供することができ
る。
Therefore, according to this example, a high-quality SiC single crystal, a method for producing the same, a SiC seed crystal, and a method for producing the same, which hardly contain micropipe defects, screw dislocations, edge dislocations, and stacking faults, are provided. can do.

【0039】また,本例においてはN=3として,上記
中間成長工程を1回だけ行っているが,複数回繰り返し
て行ってもよい。即ち,本例の中間成長工程において
は,{11−20}面を第2成長面25として第2成長
結晶20を得た。この第2成長結晶20から,上記第2
成長面25より90°傾き,且つ{0001}面より9
0°傾いた面,即ち{1−100}面を第3成長工程に
おける第3成長面とし,この上にSiC単結晶を成長さ
せて,第3成長結晶を作製する。さらに,上記第3成長
結晶から,第4成長工程,第5成長工程,・・・,第
(N−1)工程というように,上記中間成長工程を繰り
返して行うことができる。この場合には,上記中間成長
工程の回数を増やす毎に,ここで得られる成長結晶のい
わゆる転位密度を指数関数的に減少させることができ
る。
In this example, N = 3 and the above intermediate growth step is performed only once, but it may be repeated a plurality of times. That is, in the intermediate growth step of this example, the {11-20} plane was used as the second growth plane 25 to obtain the second growth crystal 20. From this second grown crystal 20, the second
90 ° inclined from the growth plane 25 and 9 from the {0001} plane
A plane inclined by 0 °, that is, a {1-100} plane is used as a third growth plane in the third growth step, and a SiC single crystal is grown on this to produce a third growth crystal. Further, the intermediate growth step can be repeated from the third growth crystal to the fourth growth step, the fifth growth step, ... (N-1) step. In this case, the so-called dislocation density of the grown crystal obtained here can be exponentially reduced each time the number of intermediate growth steps is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1にかかる,第1成長工程を示す説明
図。
FIG. 1 is an explanatory diagram showing a first growth step according to Example 1.

【図2】実施例1にかかる,中間成長工程を示す説明
図。
FIG. 2 is an explanatory diagram showing an intermediate growth step according to Example 1.

【図3】実施例1にかかる,最終成長工程を示す説明
図。
FIG. 3 is an explanatory diagram showing a final growth step according to Example 1.

【図4】実施例1にかかる,SiC単結晶の主要な面方
位を示す説明図。
FIG. 4 is an explanatory view showing main plane orientations of a SiC single crystal according to Example 1.

【図5】実施例1にかかる,昇華再結晶法によるSiC
単結晶及びSiC種結晶の製造方法。
5 is a SiC according to Example 1 by a sublimation recrystallization method. FIG.
Method for producing single crystal and SiC seed crystal.

【図6】従来例にかかる,a面成長と刃状転位及び積層
欠陥の関係を示す説明図。
FIG. 6 is an explanatory diagram showing a relationship between a-plane growth, edge dislocations, and stacking faults according to a conventional example.

【符号の説明】[Explanation of symbols]

1...第1種結晶, 15...第1成長面, 10...第1成長結晶, 2...第2種結晶, 25...第2成長面, 20...第2成長結晶, 3...最終種結晶(SiC種結晶), 35...最終成長面, 30...SiC単結晶(最終SiC単結晶), 1. . . First seed crystal, 15. . . First growth plane, 10. . . First grown crystal, 2. . . Second seed crystal, 25. . . Second growth plane, 20. . . Second grown crystal, 3. . . Final seed crystal (SiC seed crystal), 35. . . Final growth surface, 30. . . SiC single crystal (final SiC single crystal),

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 宏行 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 4G077 AA02 BE08 DA19 EA01 ED02 EF01 HA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Kondo             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO F-term (reference) 4G077 AA02 BE08 DA19 EA01 ED02                       EF01 HA12

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 SiC単結晶よりなる種結晶上にSiC
単結晶を成長させてバルク状のSiC単結晶を製造する
製造方法において,該製造方法はN回(Nは,N≧3の
自然数)の成長工程を含み,各成長工程を第n成長工程
(nは自然数であって1から始まりNで終わる序数)と
して表した場合,n=1である第1成長工程において
は,{1−100}面からオフセット角度±20°以下
の面,または{11−20}面からオフセット角度±2
0°以下の面を第1成長面として露出させた第1種結晶
を用いて,上記第1成長面上にSiC単結晶を成長させ
第1成長結晶を作製し,n=2,3,...,(N−
1)回目である中間成長工程においては,第(n−1)
成長面より45〜90°傾き,且つ{0001}面より
60〜90°傾いた面を第n成長面とした第n種結晶を
第(n−1)成長結晶より作製し,該第n種結晶の上記
第n成長面上にSiC単結晶を成長させて第n成長結晶
を作製し,n=Nである最終成長工程においては,第
(N−1)成長結晶の{0001}面よりオフセット角
度±20°以下の面を最終成長面として露出させた最終
種結晶を第(N−1)成長結晶より作製し,該最終種結
晶の上記最終成長面上にバルク状のSiC単結晶を成長
させることを特徴とするSiC単結晶の製造方法。
1. SiC on a seed crystal made of SiC single crystal
In a manufacturing method for manufacturing a bulk SiC single crystal by growing a single crystal, the manufacturing method includes N times (N is a natural number of N ≧ 3) of growth steps, and each growth step includes an nth growth step ( n is a natural number and is expressed as an ordinal number starting from 1 and ending with N), in the first growth step where n = 1, a surface having an offset angle of ± 20 ° or less from the {1-100} plane, or {11 Offset angle ± 2 from -20} plane
Using the first seed crystal in which the surface of 0 ° or less is exposed as the first growth surface, a SiC single crystal is grown on the first growth surface to prepare the first growth crystal, and n = 2, 3 ,. . . , (N-
1) In the intermediate growth step, which is the first time,
An n-th seed crystal having a plane inclined by 45 to 90 degrees from the growth plane and 60 to 90 degrees from the {0001} plane as the n-th growth plane was prepared from the (n-1) th growth crystal, A SiC single crystal is grown on the nth growth surface of the crystal to produce an nth growth crystal, and in the final growth step where n = N, the offset is from the {0001} plane of the (N-1) th growth crystal. A final seed crystal having a surface with an angle of ± 20 ° or less exposed as a final growth surface is prepared from a (N-1) th growth crystal, and a bulk SiC single crystal is grown on the final growth surface of the final seed crystal. A method for producing a SiC single crystal, which comprises:
【請求項2】 請求項1において,上記最終成長工程に
よって得られるSiC単結晶から,該SiC単結晶の
{0001}面よりオフセット角度±20°以下の面を
成長面として露出させた種結晶を切り出し,該種結晶を
使用してSiC単結晶を製造することを特徴とするSi
C単結晶の製造方法。
2. The seed crystal according to claim 1, wherein the SiC single crystal obtained by the final growth step is exposed as a growth surface at an offset angle of ± 20 ° or less from the {0001} plane of the SiC single crystal. Si which is cut out and used to produce a SiC single crystal
Method for producing C single crystal.
【請求項3】 請求項1又は2において,上記第1成長
工程及び中間成長工程においては,成長温度もしくは成
長温度から±400℃以内の温度にて,上記各種結晶の
表面を熱エッチングする,又は,成長を行うための容器
内にエッチングガスを導入する予備工程を行い,その
後,成長温度に移行して成長を行うことを特徴とするS
iC単結晶の製造方法。
3. The method according to claim 1 or 2, wherein in the first growth step and the intermediate growth step, the surfaces of the various crystals are thermally etched at a growth temperature or a temperature within ± 400 ° C. from the growth temperature, or , S is characterized by performing a preliminary step of introducing an etching gas into a container for growing, and then shifting to a growth temperature to carry out growth.
Method for producing iC single crystal.
【請求項4】 請求項1〜3のいずれか1項おいて,上
記各種結晶上でのSiC単結晶の成長には昇華再析出法
を用いることを特徴とするSiC単結晶の製造方法。
4. The method for producing a SiC single crystal according to claim 1, wherein a sublimation reprecipitation method is used to grow the SiC single crystal on the various crystals.
【請求項5】 請求項1〜4のいずれか1項において,
上記各種結晶の厚みは1mm以上であることを特徴とす
るSiC単結晶の製造方法。
5. The method according to any one of claims 1 to 4,
The method for producing a SiC single crystal, wherein the thickness of each of the various crystals is 1 mm or more.
【請求項6】 請求項1〜5のいずれか1項に記載の製
造方法により作製されたことを特徴とするSiC単結
晶。
6. A SiC single crystal manufactured by the manufacturing method according to claim 1.
【請求項7】 バルク状のSiC単結晶を成長させるた
めのSiC種結晶を製造する方法において,該製造方法
は(N−1)回(Nは,N≧3の自然数)の成長工程と
該成長工程後に行う種結晶作製工程を含み,各成長工程
を第n成長工程(nは自然数であって1から始まり(N
−1)で終わる序数)として表した場合,n=1である
第1成長工程においては,{1−100}面からオフセ
ット角度±20°以下の面,または{11−20}面か
らオフセット角度±20°以下の面を第1成長面として
露出させた第1種結晶を用いて,上記第1成長面上にS
iC単結晶を成長させ第1成長結晶を作製し,n=2,
3,...,(N−1)回目である中間成長工程におい
ては,第(n−1)成長面より45〜90°傾き,且つ
{0001}面より60〜90°傾いた面を第n成長面
とした第n種結晶を第(n−1)成長結晶より作製し,
該第n種結晶の上記第n成長面上にSiC単結晶を成長
させて第n成長結晶を作製し,上記種結晶作製工程にお
いては,第(N−1)成長結晶の{0001}面よりオ
フセット角度±20°以下の面を最終成長面として露出
させることを特徴とするSiC種結晶の製造方法。
7. A method for producing a SiC seed crystal for growing a bulk SiC single crystal, which comprises (N-1) times (N is a natural number of N ≧ 3) of growth steps and Including the seed crystal manufacturing process performed after the growth process, each growth process is performed by n-th growth process (n is a natural number and starts from 1 (N
If it is expressed as an ordinal number ending with −1), in the first growth step in which n = 1, a plane having an offset angle of ± 20 ° or less from the {1-100} plane or an offset angle from the {11-20} plane Using the first seed crystal in which a surface of ± 20 ° or less is exposed as the first growth surface, S is formed on the first growth surface.
An iC single crystal is grown to form a first grown crystal, and n = 2.
3 ,. . . , (N-1) th intermediate growth step, a plane inclined by 45 to 90 ° from the (n-1) th growth plane and 60 to 90 ° from the {0001} plane was defined as the nth growth plane. An n-th seed crystal is prepared from the (n-1) -th grown crystal,
A SiC single crystal is grown on the n-th growth surface of the n-th seed crystal to manufacture an n-th growth crystal, and in the seed crystal manufacturing process, the {0001} plane of the (N-1) -th growth crystal is used. A method for producing a SiC seed crystal, which comprises exposing a surface having an offset angle of ± 20 ° or less as a final growth surface.
【請求項8】 請求項7において,上記第1成長工程及
び中間成長工程においては,成長温度もしくは成長温度
から±400℃以内の温度にて,種結晶の表面を熱エッ
チングする,又は,成長を行うための容器内にエッチン
グガスを導入する予備工程を行い,その後,成長温度に
移行して成長を行うことを特徴とするSiC種結晶の製
造方法。
8. The surface of the seed crystal is thermally etched or grown at a growth temperature or a temperature within ± 400 ° C. from the growth temperature in the first growth step and the intermediate growth step according to claim 7. A method for producing a SiC seed crystal, which comprises performing a preliminary step of introducing an etching gas into a container for performing the growth, and thereafter performing growth by shifting to a growth temperature.
【請求項9】 請求項7又は8において,上記各種結晶
上でのSiC単結晶の成長には昇華再析出法を用いるこ
とを特徴とするSiC種結晶の製造方法。
9. The method for producing a SiC seed crystal according to claim 7, wherein a sublimation reprecipitation method is used for growing the SiC single crystal on the various crystals.
【請求項10】 請求項7〜9のいずれか1項におい
て,上記各種結晶の厚みは1mm以上であることを特徴
とするSiC種結晶の製造方法。
10. The method for producing a SiC seed crystal according to claim 7, wherein the various crystals have a thickness of 1 mm or more.
【請求項11】 請求項7〜10のいずれか1項に記載
の製造方法により作製されたことを特徴とするSiC種
結晶。
11. A SiC seed crystal produced by the manufacturing method according to claim 7.
JP2001315367A 2001-10-12 2001-10-12 Method for producing SiC single crystal and method for producing SiC seed crystal Expired - Lifetime JP3745668B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001315367A JP3745668B2 (en) 2001-10-12 2001-10-12 Method for producing SiC single crystal and method for producing SiC seed crystal
DE10247017A DE10247017B4 (en) 2001-10-12 2002-10-09 SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film
SE0202992A SE523917C2 (en) 2001-10-12 2002-10-10 Single crystal of SiC, method of producing a single crystal of SiC, SiC disc with epitaxial layer, method of producing SiC disc with epitaxial layer and electronic device based on SiC
US10/268,103 US6890600B2 (en) 2001-10-12 2002-10-10 SiC single crystal, method for manufacturing SiC single crystal, SiC wafer having an epitaxial film, method for manufacturing SiC wafer having an epitaxial film, and SiC electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315367A JP3745668B2 (en) 2001-10-12 2001-10-12 Method for producing SiC single crystal and method for producing SiC seed crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005269379A Division JP2006001836A (en) 2005-09-16 2005-09-16 SiC SINGLE CRYSTAL AND SiC SEED CRYSTAL

Publications (2)

Publication Number Publication Date
JP2003119097A true JP2003119097A (en) 2003-04-23
JP3745668B2 JP3745668B2 (en) 2006-02-15

Family

ID=19133545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315367A Expired - Lifetime JP3745668B2 (en) 2001-10-12 2001-10-12 Method for producing SiC single crystal and method for producing SiC seed crystal

Country Status (1)

Country Link
JP (1) JP3745668B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115039A (en) * 2006-11-02 2008-05-22 Nippon Steel Corp Method for producing silicon carbide single crystal substrate and silicon carbide single crystal substrate
JP2008540316A (en) * 2005-05-13 2008-11-20 クリー インコーポレイテッド Method and apparatus for producing silicon carbide crystal
WO2009063844A1 (en) 2007-11-12 2009-05-22 Hoya Corporation Semiconductor device and semiconductor device manufacturing method
WO2010044484A1 (en) 2008-10-15 2010-04-22 新日本製鐵株式会社 Silicon carbide single crystal and silicon carbide single crystal wafer
JP2010184829A (en) * 2009-02-12 2010-08-26 Denso Corp Method for producing silicon carbide single crystal
DE102011004247A1 (en) 2010-02-19 2011-08-25 DENSO CORPORATION, Aichi-pref. Method for producing a silicon carbide substrate
US8044408B2 (en) 2009-05-20 2011-10-25 Nippon Steel Corporation SiC single-crystal substrate and method of producing SiC single-crystal substrate
JP2012046377A (en) * 2010-08-26 2012-03-08 Toyota Central R&D Labs Inc METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2012116676A (en) * 2010-11-29 2012-06-21 Toyota Central R&D Labs Inc Method of manufacturing silicon carbide single crystal
WO2012169465A1 (en) * 2011-06-05 2012-12-13 株式会社豊田中央研究所 SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SAME, SiC WAFER, AND SEMICONDUCTOR DEVICE
WO2013005347A1 (en) 2011-07-04 2013-01-10 トヨタ自動車株式会社 Sic single crystal and manufacturing process therefor
WO2013081164A1 (en) * 2011-12-02 2013-06-06 株式会社豊田中央研究所 SiC SINGLE CRYSTAL, SiC WAFER, AND SEMICONDUCTOR DEVICE
WO2013157418A1 (en) * 2012-04-20 2013-10-24 トヨタ自動車株式会社 SiC SINGLE CRYSTAL AND PRODUCTION METHOD THEREOF
KR20140022074A (en) 2011-05-16 2014-02-21 도요타지도샤가부시키가이샤 Sic single crystal, sic wafer, and semiconductor device
KR20140101862A (en) 2012-01-20 2014-08-20 도요타지도샤가부시키가이샤 Seed crystal isolating spindle for single crystal production device and method for producing single crystals
JP2014201466A (en) * 2013-04-02 2014-10-27 株式会社豊田中央研究所 SiC SINGLE CRYSTAl AND METHOD FOR PRODUCING THE SAME AND SiC SINGLE CRYSTAL SUBSTRATE
WO2015037465A1 (en) 2013-09-13 2015-03-19 トヨタ自動車株式会社 Sic single crystal, and production method therefor
JP2015054815A (en) * 2013-09-13 2015-03-23 トヨタ自動車株式会社 SiC SINGLE CRYSTAL AND ITS MANUFACTURING METHOD
JP2015063435A (en) * 2013-09-26 2015-04-09 三菱電機株式会社 Method of manufacturing single-crystal ingot, method of manufacturing single-crystal substrate, and method of manufacturing semiconductor device
JP2015221752A (en) * 2015-09-15 2015-12-10 住友電気工業株式会社 Semiconductor substrate
JP2016020302A (en) * 2015-09-15 2016-02-04 住友電気工業株式会社 Semiconductor substrate
US9450054B2 (en) 2011-12-22 2016-09-20 Sumitomo Electric Industries, Ltd. Dislocation in SiC semiconductor substrate
JP2016169156A (en) * 2016-07-01 2016-09-23 住友電気工業株式会社 Semiconductor substrate
JP2016169157A (en) * 2016-07-01 2016-09-23 住友電気工業株式会社 Semiconductor substrate
US9534317B2 (en) 2012-11-19 2017-01-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Seed crystal for SiC single-crystal growth, SiC single crystal, and method of manufacturing the SiC single crystal
WO2017094707A1 (en) * 2015-12-03 2017-06-08 昭和電工株式会社 METHOD FOR PRODUCING SiC SINGLE CRYSTAL, SiC SINGLE CRYSTAL, AND SiC INGOT
WO2018151189A1 (en) 2017-02-16 2018-08-23 信越化学工業株式会社 Compound semiconductor laminate substrate, method for manufacturing same, and semiconductor element
WO2019088221A1 (en) * 2017-11-01 2019-05-09 セントラル硝子株式会社 Method for producing silicon carbide single crystal
JP2020050543A (en) * 2018-09-27 2020-04-02 住友金属鉱山株式会社 Manufacturing method of seed crystal for single crystal growth of iron gallium alloy, and single crystal growth method of iron gallium alloy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692195B2 (en) 2012-10-02 2015-04-01 株式会社デンソー Silicon carbide single crystal, silicon carbide semiconductor substrate and manufacturing method thereof
JP6597065B2 (en) * 2015-08-31 2019-10-30 株式会社デンソー Silicon carbide single crystal, silicon carbide single crystal wafer, silicon carbide single crystal epitaxial wafer, electronic device

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008540316A (en) * 2005-05-13 2008-11-20 クリー インコーポレイテッド Method and apparatus for producing silicon carbide crystal
JP2008115039A (en) * 2006-11-02 2008-05-22 Nippon Steel Corp Method for producing silicon carbide single crystal substrate and silicon carbide single crystal substrate
JP4719126B2 (en) * 2006-11-02 2011-07-06 新日本製鐵株式会社 Method for manufacturing silicon carbide single crystal substrate
WO2009063844A1 (en) 2007-11-12 2009-05-22 Hoya Corporation Semiconductor device and semiconductor device manufacturing method
WO2010044484A1 (en) 2008-10-15 2010-04-22 新日本製鐵株式会社 Silicon carbide single crystal and silicon carbide single crystal wafer
US9777403B2 (en) 2008-10-15 2017-10-03 Nippon Steel & Sumitomo Metal Corporation Single-crystal silicon carbide and single-crystal silicon carbide wafer
JP2010184829A (en) * 2009-02-12 2010-08-26 Denso Corp Method for producing silicon carbide single crystal
US8044408B2 (en) 2009-05-20 2011-10-25 Nippon Steel Corporation SiC single-crystal substrate and method of producing SiC single-crystal substrate
DE102011004247A1 (en) 2010-02-19 2011-08-25 DENSO CORPORATION, Aichi-pref. Method for producing a silicon carbide substrate
JP2012046377A (en) * 2010-08-26 2012-03-08 Toyota Central R&D Labs Inc METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP2012116676A (en) * 2010-11-29 2012-06-21 Toyota Central R&D Labs Inc Method of manufacturing silicon carbide single crystal
KR20140022074A (en) 2011-05-16 2014-02-21 도요타지도샤가부시키가이샤 Sic single crystal, sic wafer, and semiconductor device
US9166008B2 (en) 2011-05-16 2015-10-20 Kabushiki Kaisha Toyota Chuo Kenkyusho SiC single crystal, SiC wafer, and semiconductor device
WO2012169465A1 (en) * 2011-06-05 2012-12-13 株式会社豊田中央研究所 SiC SINGLE CRYSTAL AND METHOD FOR MANUFACTURING SAME, SiC WAFER, AND SEMICONDUCTOR DEVICE
JP2012250888A (en) * 2011-06-05 2012-12-20 Toyota Central R&D Labs Inc SiC SINGLE CRYSTAL, METHOD FOR PRODUCING THE SAME, SiC WAFER, AND SEMICONDUCTOR DEVICE
US9096947B2 (en) 2011-06-05 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho SiC single crystal, production method therefor, SiC wafer and semiconductor device
CN103582723A (en) * 2011-06-05 2014-02-12 株式会社丰田中央研究所 SiC single crystal and method for manufacturing same, SiC wafer, and semiconductor device
WO2013005347A1 (en) 2011-07-04 2013-01-10 トヨタ自動車株式会社 Sic single crystal and manufacturing process therefor
US10094041B2 (en) 2011-07-04 2018-10-09 Toyota Jidosha Kabushiki Kaisha SiC single crystal and method of producing same
WO2013081164A1 (en) * 2011-12-02 2013-06-06 株式会社豊田中央研究所 SiC SINGLE CRYSTAL, SiC WAFER, AND SEMICONDUCTOR DEVICE
US9048102B2 (en) 2011-12-02 2015-06-02 Kabushiki Kaisha Toyota Chuo Kenkyusho SiC single crystal, SiC wafer, and semiconductor device
JP2013116840A (en) * 2011-12-02 2013-06-13 Toyota Central R&D Labs Inc Sic single crystal, sic wafer, and semiconductor device
DE112012005019B4 (en) 2011-12-02 2021-10-07 Denso Corporation SiC single crystal, SiC wafer and its use for manufacturing a semiconductor device
US9583571B2 (en) 2011-12-22 2017-02-28 Sumitomo Electric Industries, Ltd. Dislocation in SiC semiconductor substrate
US9450054B2 (en) 2011-12-22 2016-09-20 Sumitomo Electric Industries, Ltd. Dislocation in SiC semiconductor substrate
KR20140101862A (en) 2012-01-20 2014-08-20 도요타지도샤가부시키가이샤 Seed crystal isolating spindle for single crystal production device and method for producing single crystals
US10428440B2 (en) 2012-04-20 2019-10-01 Toyota Jidosha Kabushiki Kaisha SiC single crystal and production method thereof
WO2013157418A1 (en) * 2012-04-20 2013-10-24 トヨタ自動車株式会社 SiC SINGLE CRYSTAL AND PRODUCTION METHOD THEREOF
CN104246026A (en) * 2012-04-20 2014-12-24 丰田自动车株式会社 SiC SINGLE CRYSTAL AND PRODUCTION METHOD THEREOF
JPWO2013157418A1 (en) * 2012-04-20 2015-12-21 トヨタ自動車株式会社 SiC single crystal and method for producing the same
US9534317B2 (en) 2012-11-19 2017-01-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Seed crystal for SiC single-crystal growth, SiC single crystal, and method of manufacturing the SiC single crystal
JP2014201466A (en) * 2013-04-02 2014-10-27 株式会社豊田中央研究所 SiC SINGLE CRYSTAl AND METHOD FOR PRODUCING THE SAME AND SiC SINGLE CRYSTAL SUBSTRATE
JP2015054815A (en) * 2013-09-13 2015-03-23 トヨタ自動車株式会社 SiC SINGLE CRYSTAL AND ITS MANUFACTURING METHOD
US10087549B2 (en) 2013-09-13 2018-10-02 Toyota Jidosha Kabushiki Kaisha Method for producing sic single crystal having low defects by solution process
WO2015037465A1 (en) 2013-09-13 2015-03-19 トヨタ自動車株式会社 Sic single crystal, and production method therefor
JP2015054814A (en) * 2013-09-13 2015-03-23 トヨタ自動車株式会社 SiC SINGLE CRYSTAL AND ITS MANUFACTURING METHOD
KR101790904B1 (en) 2013-09-13 2017-10-26 도요타 지도샤(주) Sic single crystal, and production method therefor
JP2015063435A (en) * 2013-09-26 2015-04-09 三菱電機株式会社 Method of manufacturing single-crystal ingot, method of manufacturing single-crystal substrate, and method of manufacturing semiconductor device
JP2016020302A (en) * 2015-09-15 2016-02-04 住友電気工業株式会社 Semiconductor substrate
JP2015221752A (en) * 2015-09-15 2015-12-10 住友電気工業株式会社 Semiconductor substrate
WO2017094707A1 (en) * 2015-12-03 2017-06-08 昭和電工株式会社 METHOD FOR PRODUCING SiC SINGLE CRYSTAL, SiC SINGLE CRYSTAL, AND SiC INGOT
JP2017100922A (en) * 2015-12-03 2017-06-08 昭和電工株式会社 PRODUCTION METHOD OF SiC SINGLE CRYSTAL, SiC SINGLE CRYSTAL, AND SiC INGOT
US11773507B2 (en) 2015-12-03 2023-10-03 Resonac Corporation SiC single crystal, and SiC ingot
US10724152B2 (en) 2015-12-03 2020-07-28 Showa Denko K.K. Method for producing SiC single crystal, SiC single crystal, and SiC ingot
JP2016169156A (en) * 2016-07-01 2016-09-23 住友電気工業株式会社 Semiconductor substrate
JP2016169157A (en) * 2016-07-01 2016-09-23 住友電気工業株式会社 Semiconductor substrate
WO2018151189A1 (en) 2017-02-16 2018-08-23 信越化学工業株式会社 Compound semiconductor laminate substrate, method for manufacturing same, and semiconductor element
KR20190117650A (en) 2017-02-16 2019-10-16 신에쓰 가가꾸 고교 가부시끼가이샤 Compound Semiconductor Laminated Substrate, Method for Manufacturing the Same, and Semiconductor Device
US11177123B2 (en) 2017-02-16 2021-11-16 Shin-Etsu Chemical Co., Ltd. Compound semiconductor laminate substrate, method for manufacturing same, and semiconductor element
JP2019085328A (en) * 2017-11-01 2019-06-06 セントラル硝子株式会社 Production method for silicon carbide single crystal
JP7352058B2 (en) 2017-11-01 2023-09-28 セントラル硝子株式会社 Method for manufacturing silicon carbide single crystal
WO2019088221A1 (en) * 2017-11-01 2019-05-09 セントラル硝子株式会社 Method for producing silicon carbide single crystal
JP2020050543A (en) * 2018-09-27 2020-04-02 住友金属鉱山株式会社 Manufacturing method of seed crystal for single crystal growth of iron gallium alloy, and single crystal growth method of iron gallium alloy
JP7125711B2 (en) 2018-09-27 2022-08-25 住友金属鉱山株式会社 Method for producing seed crystal for growing single crystal of iron-gallium alloy and method for growing single crystal of iron-gallium alloy

Also Published As

Publication number Publication date
JP3745668B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
JP2003119097A (en) SiC SINGLE CRYSTAL, METHOD OF PRODUCING THE SAME, SiC SEED CRYSTAL AND METHOD OF PRODUCING THE SAME
JP6067801B2 (en) Finely graded gallium nitride substrate for high quality homoepitaxy
JP4949627B2 (en) Single crystal diamond
JP4723500B2 (en) Method for reducing Vf drift in bipolar devices by reducing stacking fault nucleation sites
JP3764462B2 (en) Method for producing silicon carbide single crystal
JP5218047B2 (en) Method for producing gallium nitride crystal and gallium nitride wafer
US20120060751A1 (en) Manufacturing method of silicon carbide single crystal
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
JP2009218575A (en) Method of manufacturing semiconductor substrate
JP7114786B2 (en) Diamond and heteroepitaxial formation of diamond
JP2006225232A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
JP3750622B2 (en) SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
JP2008290895A (en) Method for producing silicon carbide single crystal
JP2017536325A (en) Group III nitride crystals, methods for their production, and methods for producing bulk Group III nitride crystals in supercritical ammonia
JP6621304B2 (en) Manufacturing method of semiconductor wafer
JP2011521878A (en) Hexagonal wurtzite single crystal
JP2006001836A (en) SiC SINGLE CRYSTAL AND SiC SEED CRYSTAL
JP2010516602A5 (en)
JP2010516602A (en) Semiconductor substrate suitable for the implementation of electronic and / or optoelectronic devices and related manufacturing processes
JP2010171330A (en) Method of manufacturing epitaxial wafer, defect removing method, and the epitaxial wafer
JPH0797299A (en) Method for growing sic single crystal
JP4976647B2 (en) Method for manufacturing silicon carbide semiconductor substrate
JP7194407B2 (en) Single crystal manufacturing method
JP6015989B2 (en) Diamond composite manufacturing method, diamond single crystal manufacturing method, and diamond composite
WO2021210397A1 (en) Method for manufacturing semiconductor substrate, semiconductor substrate, and method for suppressing introduction of displacement to growth layer

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050615

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

R151 Written notification of patent or utility model registration

Ref document number: 3745668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250