JP2003109589A - Lithium battery negative electrode activator, manufacturing method of the same, and negative electrode using the same - Google Patents

Lithium battery negative electrode activator, manufacturing method of the same, and negative electrode using the same

Info

Publication number
JP2003109589A
JP2003109589A JP2001303059A JP2001303059A JP2003109589A JP 2003109589 A JP2003109589 A JP 2003109589A JP 2001303059 A JP2001303059 A JP 2001303059A JP 2001303059 A JP2001303059 A JP 2001303059A JP 2003109589 A JP2003109589 A JP 2003109589A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
lithium battery
silicon powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001303059A
Other languages
Japanese (ja)
Inventor
Takeshi Machino
毅 町野
Yusuke Watarai
祐介 渡會
Nariyoshi Ri
成圭 李
Tadashi Sugihara
忠 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001303059A priority Critical patent/JP2003109589A/en
Publication of JP2003109589A publication Critical patent/JP2003109589A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium battery negative electrode active material which reduces the volume fluctuation of a negative electrode caused by ion absorption and release, improves charging/discharging efficiency of the lithium cell, prevents the shortening of life cycle, lowering of energy density, and increase of internal resistance. SOLUTION: A negative electrode active material contains ball-shaped silicon powder with a mean diameter of 1-100 nμ by 10-98 wt.% as a main component. Phosphor and aluminum might be doped to the silicon powder as impurities. The ball shaped silicon powder is manufactured by applying reductive treatment to ball-shaped silica powder with a mean diameter of 1-100 nμ. The ball-shaped silicon is obtained by blazing and hydrolyzing the mixed gas of oxygen, hydrogen, and silicon chloride or a kind of silane. The reduction reaction is carried out in an atmosphere of 500-1,100 deg.C containing hydrogen of 5-100 vol.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池用負
極活物質材料と、リチウム電池用負極活物質材料の製造
方法と、その負極活物質材料を用いた負極と、この負極
を用いたリチウム電池に関するものである。
TECHNICAL FIELD The present invention relates to a negative electrode active material for a lithium battery, a method for producing the negative electrode active material for a lithium battery, a negative electrode using the negative electrode active material, and a lithium battery using the negative electrode. It is about.

【0002】[0002]

【従来の技術】最近、シリコン、或いはシリコンベース
の合金又は化合物がリチウム電池の負極材料として注目
されている(特開平10−83817号)。例えば、特
開平10−83817号公報には、シリコンを主成分と
する負極材料がリチウムイオンなどの軽金属イオンをド
ープ及び脱ドープ可能な性質を有するように構成された
負極材料が開示されている。この負極材料では、シリコ
ンがシリコン単体(単結晶)であるか、或いはSiO2
やSiC等のシリコン化合物である。また負極材料に導
電性を付与するために、p型又はn型の不純物がドープ
される。なお、上記負極材料を用いて負極を製造するに
は、先ずシリコン単体の単結晶又はシリコン化合物の単
結晶を粉砕し、その後メッシュ篩により分級して直径が
38μm以下の粉末をアルゴンガス雰囲気中で加熱して
乾燥することによりシリコン粉末を作製する。次にこの
シリコン粉末と結着剤と溶媒と導電材と混合してスラリ
ーを調製する。更にこのスラリーを集電体に塗布し乾燥
することにより、負極が製造される。またこの負極と、
正極と、非水電解液とを用いて非水電解液リチウム電池
が製造される。このように製造された負極では、炭素質
材料を主成分とする負極に比べて密度が高く、結着剤に
より互いに結着されたシリコン粉末の層間や微細な空間
にリチウムイオンを多量にドープ及び脱ドープできる。
従って、上記負極材料を用いた非水電解液リチウム電池
は、充放電容量が高くなり、単位体積当りのエネルギ密
度を増大できるようになっている。
2. Description of the Related Art Recently, silicon or a silicon-based alloy or compound has attracted attention as a negative electrode material for lithium batteries (Japanese Patent Laid-Open No. 10-83817). For example, Japanese Patent Application Laid-Open No. 10-83817 discloses a negative electrode material composed of a negative electrode material containing silicon as a main component so as to have a property of being able to dope and dedope light metal ions such as lithium ions. In this negative electrode material, silicon is silicon simple substance (single crystal) or SiO 2
And silicon compounds such as SiC. Further, p-type or n-type impurities are doped in order to impart conductivity to the negative electrode material. In order to manufacture a negative electrode using the above negative electrode material, first, a single crystal of a simple substance of silicon or a single crystal of a silicon compound is crushed and then classified by a mesh sieve to obtain a powder having a diameter of 38 μm or less in an argon gas atmosphere. A silicon powder is produced by heating and drying. Next, the silicon powder, the binder, the solvent, and the conductive material are mixed to prepare a slurry. Further, the negative electrode is manufactured by applying this slurry to a current collector and drying it. Also with this negative electrode,
A non-aqueous electrolyte lithium battery is manufactured using the positive electrode and the non-aqueous electrolyte. In the negative electrode thus manufactured, the density is higher than that of the negative electrode containing a carbonaceous material as a main component, and a large amount of lithium ions are doped in the interlayers or the minute spaces of the silicon powders bound to each other by the binder. Can be dedoped.
Therefore, the non-aqueous electrolyte lithium battery using the above-mentioned negative electrode material has a high charge / discharge capacity and can increase the energy density per unit volume.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の特
開平10−83817号公報に示された負極材料を用い
た非水電解液リチウム電池では、シリコン粉末がシリコ
ン単体の単結晶又はシリコン化合物の単結晶を粉砕する
ことにより得るため、シリコン粉末自体が非常に粗くな
り、また直径が比較的大きな38μm以下のシリコン粉
末を用いるため、リチウムイオンの吸蔵及び放出時にお
ける体積変化が大きい不具合がある。また、粉砕する際
にシリコン粉末に亀裂が発生する場合もあり、シリコン
粉末内に亀裂が発生すると、このシリコン粉末を負極活
物質材料とするリチウム電池の充放電時におけるイオン
のインターカレーションを吸蔵し、結果的にそのサイク
ル特性が低下し、サイクル寿命が短くなる不具合があっ
た。本発明の目的は、比較的簡単な工程で製造でき、リ
チウムイオンの吸蔵及び放出時における体積変化を低減
できるリチウム電池用負極活物質材料及びその製造方法
並びに該材料を用いた負極を提供することにある。本発
明の別の目的は、充放電効率が高く、サイクル寿命及び
エネルギ密度が低下せず、更に内部抵抗が増大しないリ
チウム電池を提供することにある。
However, in the non-aqueous electrolyte lithium battery using the negative electrode material disclosed in Japanese Patent Laid-Open No. 10-83817, the silicon powder is a single crystal of silicon or a silicon compound. Since the silicon powder itself is obtained by crushing the single crystal, the silicon powder itself becomes very rough. Also, since the silicon powder having a relatively large diameter of 38 μm or less is used, there is a problem that the volume change during occlusion and release of lithium ions is large. In addition, when crushing, a crack may occur in the silicon powder, and when a crack occurs in the silicon powder, the intercalation of ions during charge / discharge of a lithium battery using this silicon powder as a negative electrode active material is occluded. However, as a result, the cycle characteristics are deteriorated and the cycle life is shortened. An object of the present invention is to provide a negative electrode active material material for a lithium battery, which can be manufactured by a relatively simple process, and can reduce volume change at the time of occlusion and release of lithium ions, a method for manufacturing the same, and a negative electrode using the material. It is in. Another object of the present invention is to provide a lithium battery that has high charge / discharge efficiency, does not deteriorate cycle life and energy density, and does not increase internal resistance.

【0004】[0004]

【課題を解決するための手段】請求項1に係る発明は、
平均粒径が1〜100nmである球状のシリコン粉末を
主成分とするリチウム電池用負極活物質材料である。こ
の請求項1に記載された負極活物質材料では、この負極
活物質材料がリチウムイオンを吸蔵するときに膨張し、
リチウムイオンを放出するときに収縮するけれども、負
極活物質が極めて小さな1〜100nmである球状のシ
リコン粉末により形成されているため、上記リチウムイ
オンの吸蔵及び放出時の体積変化を従来より低減でき
る。請求項2に係る発明は、請求項1に係る発明であっ
て、シリコン粉末を10〜98重量%含むリチウム電池
用負極活物質材料である。この請求項2に記載された負
極活物質材料は、シリコン粉末を10〜98重量%含
み、残部が炭素系粉末及び金属粉末の導電助剤であるこ
とが好ましい。
The invention according to claim 1 is
It is a negative electrode active material material for a lithium battery, which contains spherical silicon powder having an average particle diameter of 1 to 100 nm as a main component. In the negative electrode active material according to claim 1, the negative electrode active material expands when it absorbs lithium ions,
Although it contracts when releasing lithium ions, the negative electrode active material is formed of extremely small spherical silicon powder having a particle size of 1 to 100 nm, so that the volume change during storage and release of lithium ions can be reduced as compared with the conventional case. The invention according to claim 2 is the invention according to claim 1, which is a negative electrode active material for a lithium battery containing 10 to 98% by weight of silicon powder. The negative electrode active material according to the second aspect of the present invention preferably contains 10 to 98% by weight of silicon powder, and the balance is a carbon-based powder and a metal powder as a conduction aid.

【0005】請求項3に係る発明は、請求項1又は2に
係る発明であって、シリコン粉末に、リン、ホウ素及び
アルミニウムからなる群より選ばれた1種又は2種以上
の元素が不純物としてドープされたことを特徴とする。
この請求項3に記載された負極活物質材料では、上記不
純物を負極活物質材料にドープすることにより、導電性
の低いシリコン粉末からなる負極活物質の導電性を高め
ることができる。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the silicon powder contains one or more elements selected from the group consisting of phosphorus, boron and aluminum as impurities. It is characterized by being doped.
In the negative electrode active material according to the third aspect, by doping the negative electrode active material with the above impurities, the conductivity of the negative electrode active material made of silicon powder having low conductivity can be increased.

【0006】請求項4に係る発明は、請求項1ないし3
いずれかに記載の負極活物質材料を用いて形成された負
極である。この請求項4に記載された負極では、負極活
物質であるシリコン粉末によるリチウムイオンの吸蔵及
び放出時における体積変化が平均粒径が1〜100nm
である球状のシリコン粉末を主成分とすることで緩和さ
れるので、負極のサイクル寿命を延すことができる。ま
た負極活物質材料への導電助剤の添加量を少なくして
も、負極の充放電効率が低下しないので、負極のエネル
ギ密度及び内部抵抗は増大しない。
The invention according to claim 4 relates to claims 1 to 3.
It is a negative electrode formed by using any one of the negative electrode active material materials. In the negative electrode according to the fourth aspect, the average particle diameter is 1 to 100 nm due to the volume change at the time of inserting and extracting lithium ions by the silicon powder that is the negative electrode active material.
Since it is relaxed by using spherical silicon powder as a main component, the cycle life of the negative electrode can be extended. Even if the amount of the conductive additive added to the negative electrode active material is reduced, the charge and discharge efficiency of the negative electrode does not decrease, and the energy density and internal resistance of the negative electrode do not increase.

【0007】請求項5に係る発明は、請求項4に記載の
負極を用いたリチウム電池及びリチウムポリマー電池で
ある。この請求項5に記載されたリチウム電池及びリチ
ウムポリマー電池では、負極活物質であるシリコン粉末
によるリチウムイオンの吸蔵及び放出時における体積変
化が緩和されるので、リチウム電池のサイクル寿命を延
すことができる。また負極活物質材料への導電助剤の添
加量を少なくしても、リチウム電池及びリチウムポリマ
ー電池の充放電効率が低下しないので、リチウム電池及
びリチウムポリマー電池のエネルギ密度及び内部抵抗は
増大しない。
The invention according to claim 5 is a lithium battery and a lithium polymer battery using the negative electrode according to claim 4. In the lithium battery and the lithium polymer battery described in claim 5, since the volume change at the time of absorbing and desorbing lithium ions by the silicon powder as the negative electrode active material is alleviated, the cycle life of the lithium battery can be extended. it can. Even if the amount of the conductive additive added to the negative electrode active material is reduced, the charge / discharge efficiency of the lithium battery and the lithium polymer battery does not decrease, so that the energy density and internal resistance of the lithium battery and the lithium polymer battery do not increase.

【0008】請求項6に係る発明は、平均粒径が1〜1
00nmである球状のシリカ粉末を還元処理することに
より球状のシリコン粉末を得るリチウム電池用負極活物
質材料の製造方法である。この請求項6に記載された負
極活物質材料の製造方法では、粒子表面に傷、ひびなど
のひずみ、およそそのひずみに基づくストレスのない請
求項1ないし3いずれかに記載された負極活物質材料を
製造できる。
The invention according to claim 6 has an average particle diameter of 1 to 1.
A method for producing a negative electrode active material for a lithium battery, wherein spherical silica powder having a diameter of 00 nm is subjected to a reduction treatment to obtain spherical silicon powder. In the method for producing a negative electrode active material according to the present invention, the negative electrode active material according to any one of claims 1 to 3, wherein the surface of the particle is free from strains such as scratches and cracks, and stress caused by the strain. Can be manufactured.

【0009】請求項7に係る発明は、請求項6に係る発
明であって、平均粒径が1〜100nmである球状のシ
リカ粉末が、塩化ケイ素又はシラン類と酸素と水素が混
合されたガス混合物を火炎加水分解することにより得ら
れたことを特徴とする。この請求項7に記載された負極
活物質材料の製造方法では、比較的簡単な工程で平均粒
径が1〜100nmである球状のシリカ粉末を得ること
ができる。
The invention according to claim 7 is the invention according to claim 6, wherein the spherical silica powder having an average particle size of 1 to 100 nm is a gas obtained by mixing silicon chloride or silanes with oxygen and hydrogen. It is characterized in that it is obtained by flame hydrolysis of the mixture. In the method for producing a negative electrode active material according to the present invention, spherical silica powder having an average particle diameter of 1 to 100 nm can be obtained by a relatively simple process.

【0010】請求項8に係る発明は、請求項6又は7に
係る発明であって、還元処理が、水素を5〜100vo
l%含む雰囲気であって、500〜1100℃の温度で
行われることを特徴とする。この請求項8に記載された
負極活物質材料の製造方法では、比較的簡単な工程で平
均粒径が1〜100nmである球状のシリコン粉末を得
ることができる。
The invention according to claim 8 is the invention according to claim 6 or 7, wherein the reduction treatment is performed with hydrogen of 5 to 100 vo.
It is an atmosphere containing 1%, and is performed at a temperature of 500 to 1100 ° C. In the method for producing a negative electrode active material according to the present invention, spherical silicon powder having an average particle diameter of 1 to 100 nm can be obtained by a relatively simple process.

【0011】[0011]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。本発明のリチウム電池用負極活物質
材料は、平均粒径が1〜100nmである球状のシリコ
ン粉末を主成分とする。ここで、シリコン粉末の更に好
ましい粒径は5〜50nmである。このシリコン粉末の
粒径を1〜100nmの範囲に限定したのは、1nm未
満では活物質の充填密度が減少する不具合があり、10
0nmを越えると粒子にひびなどのひずみが生じやすく
なり、粒子が微細化するという不具合があるからであ
る。また負極活物質材料は上記シリコン粉末を10〜9
8重量%、好ましくは50〜95重量%含む。シリコン
粉末の含有量を10〜98重量%の範囲に限定したの
は、10重量%未満では活物質の含有量が少なくなるた
め、エネルギ密度が減少するという不具合があり、98
重量%を越えると、シリコンは電気電導性が悪いため、
電極の内部抵抗が上昇して高い放電電流での放電容量の
減少等の電池特性が低下する不具合があるからである。
なお、シリコン粉末には、リン、ホウ素及びアルミニウ
ムからなる群より選ばれた1種又は2種以上の元素を不
純物としてドープすることが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. The negative electrode active material for a lithium battery of the present invention contains spherical silicon powder having an average particle diameter of 1 to 100 nm as a main component. Here, the more preferable particle size of the silicon powder is 5 to 50 nm. The particle size of the silicon powder is limited to the range of 1 to 100 nm because if it is less than 1 nm, the packing density of the active material decreases.
If it exceeds 0 nm, distortion such as cracks is likely to occur in the particles, and there is a problem that the particles become fine. The negative electrode active material is made of the above silicon powder in an amount of 10 to 9
8% by weight, preferably 50 to 95% by weight. The content of the silicon powder is limited to the range of 10 to 98% by weight. When the content of the silicon powder is less than 10% by weight, the content of the active material becomes small, so that there is a problem that the energy density decreases.
When it exceeds the weight%, silicon has poor electric conductivity,
This is because the internal resistance of the electrode increases, and there is a problem that the battery characteristics such as the decrease in discharge capacity at high discharge current deteriorate.
The silicon powder is preferably doped with one or more elements selected from the group consisting of phosphorus, boron and aluminum as impurities.

【0012】次に、このような負極活物質材料及びリチ
ウム電池の製造方法を説明する。 シリカ粉末の製造 先ず、平均粒径が1〜100nmである球状のシリカ粉
末を製造して準備する。このシリカ粉末は、塩化ケイ素
又はシラン類と酸素と水素が混合されたガス混合物を火
炎加水分解することにより作られる。具体的に説明する
と、このシリカ粉末を製造する装置は、図1に示すよう
に、熱分解法酸化物の製造のために従来公知の構造形式
のバーナー1中に付加的に1つの管5が軸線方向に配置
されており、この管が、バーナーのノズル3の前方部で
開口していることを特徴としている。以下、本発明に用
いるシリカ粉末の製造方法を詳述する。
Next, a method of manufacturing such a negative electrode active material and a lithium battery will be described. Production of Silica Powder First, spherical silica powder having an average particle size of 1 to 100 nm is produced and prepared. This silica powder is produced by flame hydrolysis of a gas mixture in which silicon chloride or silanes is mixed with oxygen and hydrogen. More specifically, as shown in FIG. 1, the apparatus for producing this silica powder has an additional one tube 5 in a burner 1 of a conventionally known structure type for producing a pyrogenic oxide. It is arranged axially and is characterized in that this tube opens at the front of the nozzle 3 of the burner. Hereinafter, the method for producing the silica powder used in the present invention will be described in detail.

【0013】バーナー1の中央管2に四塩化ケイ素、水
素及び空気よりなる原料混合ガスを導入管2aにより導
入する。この原料混合ガスはバーナー1のノズル3から
流れ、燃焼室8及びこれと接続している水冷却した火炎
管9中で燃焼する。この間、中央管2を包囲する環状ノ
ズル4中にノズルでの焼付きを回避するために二次水素
を導入管4aにより導入する。原料混合ガスは燃焼室8
及びこれと接続している火炎管9中で燃焼してシリカ粉
末が生成される。得られたシリカ粉末は公知方法により
流出気体流から分離されて、平均粒径が1〜100nm
である球状のシリカ粉末が得られる。
A raw material mixed gas consisting of silicon tetrachloride, hydrogen and air is introduced into the central tube 2 of the burner 1 through an introduction tube 2a. This raw material mixed gas flows from the nozzle 3 of the burner 1, and is burned in the combustion chamber 8 and the water-cooled flame tube 9 connected thereto. During this time, secondary hydrogen is introduced into the annular nozzle 4 surrounding the central tube 2 by the introduction tube 4a in order to avoid seizure at the nozzle. Raw material mixed gas is in combustion chamber 8
And the flame tube 9 connected thereto burns to produce silica powder. The silica powder obtained is separated from the effluent gas stream by known methods and has an average particle size of 1-100 nm.
A spherical silica powder is obtained.

【0014】 球状のシリコン粉末の製造 球状のシリコン粉末は、平均粒径が1〜100nmであ
る球状のシリカ粉末を還元処理することにより得る。具
体的に説明すると、上述したように得られた平均粒径が
1〜100nmである球状のシリカ粉末を、水素を5〜
100vol%含む雰囲気であって、500〜1100
℃の温度で還元処理することにより球状のシリコン粉末
を得る。このシリコン粉末の平均粒径は、平均粒径が1
〜100nmである球状のシリカ粉末を還元処理するの
で、1〜100nmになりその形状が球状になる。ここ
で、還元温度が500℃未満では、反応が十分に進行せ
ず、シリコン粉末の結晶性が低下する不具合があり、還
元温度が1100℃を越えると、粒成長が起きるため、
所定粒径のシリコン粉末を得ることが困難になる。ここ
で、還元温度は700〜1100℃であることが更に好
ましい。また、水素を5〜100vol%含む雰囲気に
限定するのは還元が十分に行われるためであり、水素が
5vol%未満では、還元反応が十分に進行せず、シリ
コン粉末の結晶性が低下する不具合があり、水素が40
〜95vol%であることが更に好ましい。このように
して得られた平均粒径が1〜100nmである球状のシ
リコン粉末が負極活物質となる。
Production of Spherical Silicon Powder Spherical silicon powder is obtained by subjecting spherical silica powder having an average particle diameter of 1 to 100 nm to a reduction treatment. More specifically, the spherical silica powder having an average particle diameter of 1 to 100 nm obtained as described above is mixed with hydrogen of 5 to 5.
An atmosphere containing 100 vol%, 500 to 1100
Spherical silicon powder is obtained by reduction treatment at a temperature of ° C. The average particle size of this silicon powder is 1
Since the spherical silica powder having a particle size of ˜100 nm is subjected to the reduction treatment, the particle size becomes 1 to 100 nm and the shape becomes spherical. Here, if the reduction temperature is lower than 500 ° C., the reaction does not proceed sufficiently and the crystallinity of the silicon powder is deteriorated. If the reduction temperature exceeds 1100 ° C., grain growth occurs.
It becomes difficult to obtain silicon powder having a predetermined particle size. Here, the reduction temperature is more preferably 700 to 1100 ° C. Further, the reason why the atmosphere containing hydrogen in an amount of 5 to 100 vol% is limited is that the reduction is sufficiently performed. If the hydrogen content is less than 5 vol%, the reduction reaction does not proceed sufficiently and the crystallinity of the silicon powder decreases. There is 40 hydrogen
It is more preferable that the content is ˜95 vol%. The spherical silicon powder having an average particle diameter of 1 to 100 nm thus obtained serves as the negative electrode active material.

【0015】このように製造された負極活物質材料で
は、負極活物質が比較的小さな平均粒径が1〜100n
mである球状のシリコン粉末により形成されているた
め、負極活物質によるリチウムイオンの吸蔵及び放出時
の体積変化が緩和される。この結果、上記負極活物質に
よるリチウムイオンの吸蔵及び放出時の体積変化を低減
できる。なお、シリコン粉末と酸化物粉末とを混合する
ときに、リン、ホウ素及びアルミニウムからなる群より
選ばれた1種又は2種以上の元素を不純物として混合し
てもよい。このような不純物を混合することにより、導
電性の低いシリコン粉末からなる負極活物質の導電性を
高めることができる。
In the negative electrode active material thus manufactured, the negative electrode active material has a relatively small average particle size of 1 to 100 n.
Since it is formed of spherical silicon powder of m, the volume change at the time of occlusion and release of lithium ions by the negative electrode active material is alleviated. As a result, it is possible to reduce the volume change of the negative electrode active material during storage and release of lithium ions. When the silicon powder and the oxide powder are mixed, one or more elements selected from the group consisting of phosphorus, boron and aluminum may be mixed as impurities. By mixing such impurities, the conductivity of the negative electrode active material made of silicon powder having low conductivity can be increased.

【0016】 負極の作製 先ず上記にて得られたシリコン粉末(負極活物質)
と、炭素粉末やリチウムと反応しない金属粉末等の導電
助剤と、ポリフッ化ビニリデン(PFV)の結着剤とを
所定の割合で混合することにより負極スラリーを調製す
る。ここで結着剤はアセトン等の溶剤に溶解させた状態
で混合される。次に負極スラリーを負極集電体箔の上面
に、スクリーン印刷法やドクタブレード法などにより塗
布して乾燥して負極を作製する。なお、負極スラリーを
ガラス基板上に塗布し乾燥した後に、ガラス基板から剥
離して負極フィルムを作製し、更にこの負極フィルムを
負極集電体に重ねて所定の圧力でプレス成形することに
より、負極を作製してもよい。
Preparation of Negative Electrode First, the silicon powder (negative electrode active material) obtained above.
A negative electrode slurry is prepared by mixing a conductive auxiliary agent such as carbon powder or a metal powder that does not react with lithium with a binder of polyvinylidene fluoride (PFV) at a predetermined ratio. Here, the binder is mixed in a state of being dissolved in a solvent such as acetone. Next, the negative electrode slurry is applied on the upper surface of the negative electrode current collector foil by a screen printing method, a doctor blade method or the like and dried to form a negative electrode. The negative electrode slurry is applied on a glass substrate and dried, and then peeled from the glass substrate to prepare a negative electrode film, and the negative electrode film is further laminated on a negative electrode current collector and press-molded at a predetermined pressure to form a negative electrode. May be produced.

【0017】このように製造された負極では、負極活物
質であるシリコン粉末の平均粒径が比較的小さな1〜1
00nmに限定されかつ粒径であるので、リチウムイオ
ンの吸蔵及び放出時における体積変化が緩和され、負極
のサイクル寿命を延すことができる。また負極活物質材
料への導電助剤の添加量を少なくしても、負極の充放電
効率が低下しないので、負極のエネルギ密度及び内部抵
抗は増大しない。
In the negative electrode thus manufactured, the average particle size of the silicon powder, which is the negative electrode active material, is relatively small.
Since the particle size is limited to 00 nm and has a particle size, the volume change during occlusion and desorption of lithium ions is alleviated, and the cycle life of the negative electrode can be extended. Even if the amount of the conductive additive added to the negative electrode active material is reduced, the charge and discharge efficiency of the negative electrode does not decrease, and the energy density and internal resistance of the negative electrode do not increase.

【0018】 リチウム電池の作製 上記にて得られた負極に、エチレンカーボネート(E
C)とディエチレンカーボネート(DEC)を1:1重
量%で混合した混合溶媒と過塩素酸リチウムを1モル/
リットル溶解させたもの等の非水電解液を含む電解質層
と、LiCoO 2等により形成された正極とを積層する
ことにより、非水電解液リチウム電池が得られる。また
上記にて得られた負極に、ポリエチレンオキシドやポ
リフッ化ビニリデン等からなるポリマー電解質層と、L
iCoO2等の正極活物質を含む正極スラリーを正極集
電体に塗布し乾燥した正極とを積層することにより、リ
チウムポリマーリチウム電池が得られる。
Fabrication of lithium battery On the negative electrode obtained above, ethylene carbonate (E
C) and diethylene carbonate (DEC) 1: 1
1 mol / mol of mixed solvent and lithium perchlorate mixed in an amount of
Liter Electrolyte layer containing non-aqueous electrolyte such as dissolved one
And LiCoO 2And the positive electrode formed by
As a result, a non-aqueous electrolyte lithium battery is obtained. Also
On the negative electrode obtained above, polyethylene oxide or
A polymer electrolyte layer made of vinylidene fluoride or the like;
iCoO2A positive electrode slurry containing a positive electrode active material such as
By stacking the positive electrode that has been applied to the electric body and dried,
A lithium polymer lithium battery is obtained.

【0019】このように製造された非水電解液リチウム
電池やリチウムポリマーリチウム電池では、負極活物質
であるシリコン粉末によるリチウムイオンの吸蔵及び放
出時における体積変化が緩和されるので、リチウム電池
のサイクル寿命を延すことができる。また負極活物質材
料への導電助剤の添加量を少なくしても、リチウム電池
の充放電効率が低下しないので、リチウム電池のエネル
ギ密度及び内部抵抗は増大しない。
In the non-aqueous electrolyte lithium battery and the lithium polymer lithium battery manufactured as described above, the volume change at the time of absorbing and desorbing lithium ions by the silicon powder which is the negative electrode active material is moderated, so that the cycle of the lithium battery is reduced. The life can be extended. Even if the amount of the conductive additive added to the negative electrode active material is reduced, the charge / discharge efficiency of the lithium battery does not decrease, so the energy density and internal resistance of the lithium battery do not increase.

【0020】[0020]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1> 球状シリコン粉末の製造 塩化ケイ素又はシラン類と酸素と水素が混合されたガス
混合物を火炎加水分解することにより球状のシリカ粉末
を得た。そのシリカ粉末を還元処理することにより球状
のシリコン粉末を得た。そのシリコン粉末をメッシュ篩
により分級して直径が100nmの粉末を集めた。この
粉末をアルゴン雰囲気中で30℃/分の昇温速度で15
0℃(到達温度)にまで加熱し、その温度を1時間保持
した。これにより、表面に吸着した水分などを除去し
た。そして、この球状のシリコン粉末を室温まで冷却し
た。
EXAMPLES Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> Production of spherical silicon powder Spherical silica powder was obtained by flame hydrolysis of a gas mixture obtained by mixing silicon chloride or silanes with oxygen and hydrogen. A spherical silicon powder was obtained by subjecting the silica powder to a reduction treatment. The silicon powder was classified by a mesh sieve to collect powder having a diameter of 100 nm. This powder was heated in an argon atmosphere at a temperature rising rate of 30 ° C./min for 15
It heated up to 0 degreeC (achievement temperature), and maintained that temperature for 1 hour. As a result, the water adsorbed on the surface was removed. Then, this spherical silicon powder was cooled to room temperature.

【0021】 負極(作用極)に作製 先ず上記シリコン粉末(負極活物質)75重量%と、炭
素粉末からなる導電助剤20重量%と、ポリフッ化ビニ
リデン(PVdF)からなる結着剤5重量%とを混合し
て負極スラリーを調製した。ここで上記結着剤の溶剤と
してアセトンを用いた。次いで上記負極スラリーをガラ
ス基板上に塗布して乾燥した後に剥離することにより厚
さ0.09cmの負極フィルムを作製した。この負極フ
ィルムを縦×横がそれぞれ1.2cm×1.2cmの正
方形に切断して、2枚の正方形の負極フィルムを得た。
次にこれらの負極フィルムを縦×横×厚さがそれぞれ1
cm×1cm×0.1cmの正方形金属網状の負極集電
体の両面に配置して積層体を作製した。更にこの積層体
に110〜130℃に加熱されたプレス機で0.5〜3
MPaの圧力をかけて圧着した。これにより負極(作用
極)を得た。この負極(作用極)を実施例1とした。
Preparation of Negative Electrode (Working Electrode) First, 75% by weight of the above-mentioned silicon powder (negative electrode active material), 20% by weight of a conductive aid made of carbon powder, and 5% by weight of a binder made of polyvinylidene fluoride (PVdF). And were mixed to prepare a negative electrode slurry. Here, acetone was used as a solvent for the binder. Next, the above negative electrode slurry was applied onto a glass substrate, dried, and then peeled off to prepare a negative electrode film having a thickness of 0.09 cm. This negative electrode film was cut into a square of 1.2 cm × 1.2 cm in length and width to obtain two square negative electrode films.
Next, each of these negative electrode films has a length x width x thickness of 1
A cm × 1 cm × 0.1 cm square metal mesh negative electrode current collector was arranged on both sides to produce a laminate. Furthermore, 0.5 to 3 is applied to this laminate by a press machine heated to 110 to 130 ° C.
Pressure was applied by applying a pressure of MPa. As a result, a negative electrode (working electrode) was obtained. This negative electrode (working electrode) was referred to as Example 1.

【0022】<実施例2>球状のシリコン粉末をメッシ
ュ篩により分級して直径が50nmの粉末を集めたこと
を除いて、実施例1と同様にして負極(作用極)を作製
した。この負極(作用極)を実施例2とした。 <実施例3>予めリンによるドープを施して導電性を与
え、十分に乾燥させたシリコン粉末を用いたこと、及び
シリコン粉末(負極活物質)85重量%と、炭素粉末か
らなる導電助剤10重量%と、ポリフッ化ビニリデン
(PVdF)からなる結着剤5重量%とを混合して負極
スラリーを調製したことを除いて、実施例1と同様にし
て負極(作用極)を作製した。この負極(作用極)を実
施例3とした。
Example 2 A negative electrode (working electrode) was produced in the same manner as in Example 1 except that spherical silicon powder was classified by a mesh sieve to collect powder having a diameter of 50 nm. This negative electrode (working electrode) was referred to as Example 2. <Example 3> A silicon powder which was previously doped with phosphorus to give conductivity and was sufficiently dried was used, and 85% by weight of silicon powder (negative electrode active material) and a conductive additive 10 composed of carbon powder. A negative electrode (working electrode) was prepared in the same manner as in Example 1 except that a negative electrode slurry was prepared by mixing 5% by weight of a binder made of polyvinylidene fluoride (PVdF) with 5% by weight. This negative electrode (working electrode) was referred to as Example 3.

【0023】<比較例1>球状のシリコン粉末をメッシ
ュ篩により分級して直径が1μmの粉末を集めたことを
除いて、実施例1と同様にして負極(作用極)を作製し
た。この負極(作用極)を比較例1とした。 <比較例2>球状のシリコン粉末をメッシュ篩により分
級して直径が10μmの粉末を集めたことを除いて、実
施例1と同様にして負極(作用極)を作製した。この負
極(作用極)を比較例2とした。
Comparative Example 1 A negative electrode (working electrode) was prepared in the same manner as in Example 1 except that spherical silicon powder was classified by a mesh sieve to collect powder having a diameter of 1 μm. This negative electrode (working electrode) was designated as Comparative Example 1. <Comparative Example 2> A negative electrode (working electrode) was produced in the same manner as in Example 1 except that spherical silicon powder was classified by a mesh sieve to collect powder having a diameter of 10 µm. This negative electrode (working electrode) was designated as Comparative Example 2.

【0024】<比較試験及び評価>図2に示すように、
実施例1〜3及び比較例1並びに比較例2の負極21
(作用極)を充放電サイクル試験装置31に取付けた。
この装置31は、容器32に電解液33(リチウム塩を
有機溶媒に溶かしたもの)が貯留され、上記負極21が
正極22(縦×横×厚さがそれぞれ2cm×2cm×
0.2cmの金属リチウム板:対極)及び参照極23
(縦×横×厚さがそれぞれ1cm×1cm×0.2cm
の金属リチウム板)とともに電解液33に浸され、更に
負極21(作用極),正極22(対極)及び参照極23
がポテンシオスタット34(ポテンショメータ)にそれ
ぞれ電気的に接続された構成となっている。この装置を
用いて充放電サイクル試験を行い、各負極(作用極)の
初回放電容量と、初回充放電効率と、サイクル特性をそ
れぞれ測定し、その結果を、負極活物質であるシリコン
粉末の粒径と、導電助剤と結着剤と不純物の種類と、負
極活物質と導電助剤と結着剤との混合割合とともに、表
1に示す。
<Comparison Test and Evaluation> As shown in FIG.
Negative electrode 21 of Examples 1 to 3 and Comparative Example 1 and Comparative Example 2
The (working electrode) was attached to the charge / discharge cycle test device 31.
In this device 31, an electrolytic solution 33 (a lithium salt dissolved in an organic solvent) is stored in a container 32, and the negative electrode 21 is a positive electrode 22 (length × width × thickness 2 cm × 2 cm × each).
0.2 cm metal lithium plate: counter electrode) and reference electrode 23
(Length x width x thickness is 1 cm x 1 cm x 0.2 cm, respectively)
Of the negative electrode 21 (working electrode), the positive electrode 22 (counter electrode), and the reference electrode 23.
Are each electrically connected to the potentiostat 34 (potentiometer). A charge / discharge cycle test is performed using this device, the initial discharge capacity of each negative electrode (working electrode), the initial charge / discharge efficiency, and the cycle characteristics are measured, and the results are shown as particles of silicon powder, which is the negative electrode active material. Table 1 shows the diameter, the type of the conductive additive, the binder, and the impurities, and the mixing ratio of the negative electrode active material, the conductive additive, and the binder.

【0025】なお、充放電試験は、充電及び放電時の電
流密度を0.5mA/cm2とし、充電時に初期電圧か
ら0.1VまでCVCC法で負極(作用極)にリチウム
を吸蔵させ、放電時に2VまでCC法で負極(作用極)
からリチウムを放出させることにより行った。初回放電
容量は最初の放電時の容量であり、充電時初回充放電効
率は[(初回放電容量/初回受電容量)×100%]よ
り算出した。またサイクル特性(%)は次の式(1)より
算出した。 サイクル特性=(20サイクル目の放電容量/初回放電容量)×100…(1)
In the charging / discharging test, the current density during charging and discharging was set to 0.5 mA / cm 2, and during charging, lithium was absorbed in the negative electrode (working electrode) by the CVCC method from the initial voltage to 0.1 V and discharging. Sometimes negative voltage up to 2V by CC method (working electrode)
It was carried out by releasing lithium from. The initial discharge capacity is the capacity at the time of the first discharge, and the initial charge / discharge efficiency during charging was calculated from [(initial discharge capacity / initial power receiving capacity) × 100%]. The cycle characteristic (%) was calculated from the following equation (1). Cycle characteristics = (20th cycle discharge capacity / first discharge capacity) x 100 (1)

【0026】[0026]

【表1】 [Table 1]

【0027】表1から明らかなように、初回放電容量は
比較例1及び比較例2では843mAh/g及び720
mAh/gと小さいのに対し、実施例1〜3では911
〜955mAh/gと若干高くなった。また、初回充放
電効率は比較例1及び比較例2では48%及び60%と
低かったのに対し、実施例1〜3では83〜88%と高
くなった。またサイクル特性は比較例1及び比較例2で
は56%及び31%と低かったのに対し、実施例1〜3
では91〜93%と高くなった。これらの結果は球状シ
リコンの粒径の相違に起因するものと考えられる。一
方、不純物をドープするとともに導電助剤を減らした実
施例3は、実施例1及び実施例2に比較して、初回放電
容量、充放電効率及びサイクル特性は殆ど低下しなかっ
た。このため負極活物質の密度が高くなって、二次電池
の充放電容量を増大できることが判る。
As is apparent from Table 1, the initial discharge capacities of Comparative Example 1 and Comparative Example 2 were 843 mAh / g and 720, respectively.
mAh / g, which is small, is 911 in Examples 1 to 3.
It was slightly higher at ˜955 mAh / g. The initial charge / discharge efficiency was 48% and 60%, which were low in Comparative Example 1 and Comparative Example 2, while it was high, 83 to 88% in Examples 1 to 3. The cycle characteristics were low at 56% and 31% in Comparative Example 1 and Comparative Example 2, respectively.
Then, it became as high as 91 to 93%. It is considered that these results are due to the difference in particle size of spherical silicon. On the other hand, in Example 3 in which the impurities were doped and the conductive additive was reduced, the initial discharge capacity, the charge / discharge efficiency, and the cycle characteristics were hardly reduced as compared with Examples 1 and 2. Therefore, it is understood that the density of the negative electrode active material is increased and the charge / discharge capacity of the secondary battery can be increased.

【0028】[0028]

【発明の効果】以上述べたように、本発明によれば、平
均粒径が極めて小さな1〜100nmである球状のシリ
コン粉末を主成分とするので、リチウムイオンの吸蔵及
び放出時の体積変化を従来より低減できる。また、この
シリコン粉末に、リン、ホウ素及びアルミニウムからな
る群より選ばれた1種又は2種以上の元素を不純物とし
てドープすれば、導電性の低いシリコン粉末からなる負
極活物質の導電性を高めることができる。また負極を上
記負極活物質材料を用いて形成すれば、負極活物質であ
るシリコン粉末によるリチウムイオンの吸蔵及び放出時
における体積変化が緩和されるので、負極のサイクル寿
命を延すことができるとともに、負極活物質材料への導
電助剤の添加量を少なくしても、負極の充放電効率が低
下しないので、負極のエネルギ密度及び内部抵抗は増大
しない。
As described above, according to the present invention, since spherical silicon powder having an extremely small average particle diameter of 1 to 100 nm is the main component, the volume change at the time of occlusion and desorption of lithium ions can be prevented. It can be reduced compared to the past. Further, if the silicon powder is doped with one or more elements selected from the group consisting of phosphorus, boron and aluminum as impurities, the conductivity of the negative electrode active material composed of silicon powder having low conductivity is increased. be able to. Further, when the negative electrode is formed using the above-mentioned negative electrode active material, the volume change at the time of occlusion and release of lithium ions by the silicon powder that is the negative electrode active material is mitigated, so that the cycle life of the negative electrode can be extended. Even if the amount of the conductive additive added to the negative electrode active material is reduced, the charge and discharge efficiency of the negative electrode does not decrease, so the energy density and internal resistance of the negative electrode do not increase.

【0029】また上記負極を用いてリチウム電池を形成
すれば、負極活物質であるシリコン粉末によるリチウム
イオンの吸蔵及び放出時における体積変化が緩和される
ので、リチウム電池のサイクル寿命を延すことができる
とともに、負極活物質材料への導電助剤の添加量を少な
くしても、リチウム電池の充放電効率が低下しないの
で、リチウム電池のエネルギ密度及び内部抵抗は増大し
ない。更に、平均粒径が1〜100nmである球状のシ
リカ粉末を還元処理することにより球状のシリコン粉末
を得れば、粒子表面に傷、ひびなどのひずみ、およそそ
のひずみに基づくストレスのないシリコン粉末を主成分
とする負極活物質材料を製造できる。この場合、平均粒
径が1〜100nmである球状のシリカ粉末が、塩化ケ
イ素又はシラン類と酸素と水素が混合されたガス混合物
を火炎加水分解することにより得られたものであれば、
比較的簡単な工程でその球状のシリカ粉末を得ることが
でき、還元処理が、水素を5〜100vol%含む雰囲
気であって、500〜1100℃の温度で行われれば、
比較的簡単な工程で平均粒径が1〜100nmである球
状のシリコン粉末を得ることができる。この結果、僅か
な製造コストの増大で済む。
Further, when a lithium battery is formed using the above-mentioned negative electrode, the volume change at the time of occlusion and release of lithium ions by the silicon powder as the negative electrode active material is alleviated, so that the cycle life of the lithium battery can be extended. Moreover, even if the amount of the conductive additive added to the negative electrode active material is reduced, the charge / discharge efficiency of the lithium battery does not decrease, and therefore the energy density and internal resistance of the lithium battery do not increase. Furthermore, if spherical silicon powder is obtained by subjecting spherical silica powder having an average particle diameter of 1 to 100 nm to reduction treatment, the surface of the particle is free from stress such as scratches and cracks and stress caused by the distortion. It is possible to manufacture a negative electrode active material material containing as a main component. In this case, if the spherical silica powder having an average particle diameter of 1 to 100 nm is one obtained by flame hydrolysis of a gas mixture in which silicon chloride or silanes, oxygen and hydrogen are mixed,
If the spherical silica powder can be obtained by a relatively simple process and the reduction treatment is performed in an atmosphere containing 5 to 100 vol% of hydrogen at a temperature of 500 to 1100 ° C.,
A spherical silicon powder having an average particle size of 1 to 100 nm can be obtained by a relatively simple process. As a result, a slight increase in manufacturing cost is sufficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】還元させるシリカ粉末の製造プロセスを示す
図。
FIG. 1 is a diagram showing a manufacturing process of silica powder to be reduced.

【図2】実施例及び比較例のリチウム電池用負極活物質
の充放電サイクル試験に用いられる装置。
FIG. 2 is an apparatus used for a charge / discharge cycle test of negative electrode active materials for lithium batteries of Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡會 祐介 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 (72)発明者 李 成圭 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 (72)発明者 杉原 忠 茨城県那珂郡那珂町向山1002−14 三菱マ テリアル株式会社総合研究所那珂研究セン ター内 Fターム(参考) 5H029 AJ02 AJ05 AK03 AL01 AM03 AM05 AM07 AM16 CJ02 CJ08 CJ11 CJ14 CJ15 CJ28 CJ30 DJ16 HJ01 HJ05 HJ07 HJ14 5H050 AA02 AA07 BA17 CA08 CB01 FA17 GA02 GA10 GA15 GA16 GA27 GA29 HA01 HA05 HA07 HA14    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yusuke Watanabe             1002-14 Mukoyama, Naka-machi, Naka-gun, Ibaraki Prefecture             Terari Co., Ltd.             Inside (72) Inventor Lee Cheng             1002-14 Mukoyama, Naka-machi, Naka-gun, Ibaraki Prefecture             Terari Co., Ltd.             Inside (72) Inventor Tadashi Sugihara             1002-14 Mukoyama, Naka-machi, Naka-gun, Ibaraki Prefecture             Terari Co., Ltd.             Inside F-term (reference) 5H029 AJ02 AJ05 AK03 AL01 AM03                       AM05 AM07 AM16 CJ02 CJ08                       CJ11 CJ14 CJ15 CJ28 CJ30                       DJ16 HJ01 HJ05 HJ07 HJ14                 5H050 AA02 AA07 BA17 CA08 CB01                       FA17 GA02 GA10 GA15 GA16                       GA27 GA29 HA01 HA05 HA07                       HA14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が1〜100nmである球状の
シリコン粉末を主成分とするリチウム電池用負極活物質
材料。
1. A negative electrode active material for a lithium battery, which contains spherical silicon powder having an average particle diameter of 1 to 100 nm as a main component.
【請求項2】 シリコン粉末を10〜98重量%含む請
求項1記載のリチウム電池用負極活物質材料。
2. The negative electrode active material for a lithium battery according to claim 1, which contains 10 to 98% by weight of silicon powder.
【請求項3】 シリコン粉末に、リン、ホウ素及びアル
ミニウムからなる群より選ばれた1種又は2種以上の元
素が不純物としてドープされた請求項1又は2記載のリ
チウム電池用負極活物質材料。
3. The negative electrode active material material for a lithium battery according to claim 1, wherein the silicon powder is doped with one or more elements selected from the group consisting of phosphorus, boron and aluminum as impurities.
【請求項4】 請求項1ないし3いずれかに記載の負極
活物質材料を用いて形成された負極。
4. A negative electrode formed by using the negative electrode active material according to claim 1.
【請求項5】 請求項4に記載の負極を用いたリチウム
電池及びリチウムポリマー電池。
5. A lithium battery and a lithium polymer battery using the negative electrode according to claim 4.
【請求項6】 平均粒径が1〜100nmである球状の
シリカ粉末を還元処理することにより球状のシリコン粉
末を得るリチウム電池用負極活物質材料の製造方法。
6. A method for producing a negative electrode active material for a lithium battery, which comprises subjecting spherical silica powder having an average particle diameter of 1 to 100 nm to reduction treatment to obtain spherical silicon powder.
【請求項7】 平均粒径が1〜100nmである球状の
シリカ粉末が、塩化ケイ素又はシラン類と酸素と水素が
混合されたガス混合物を火炎加水分解することにより得
られた請求項6記載のリチウム電池用負極活物質材料の
製造方法。
7. The spherical silica powder having an average particle diameter of 1 to 100 nm is obtained by flame hydrolysis of a gas mixture in which silicon chloride or silanes, oxygen and hydrogen are mixed. A method for producing a negative electrode active material for a lithium battery.
【請求項8】 還元処理が、水素を5〜100vol%
含む雰囲気であって、500〜1100℃の温度で行わ
れる請求項6又は7記載のリチウム電池用負極活物質材
料の製造方法。
8. The reduction treatment uses hydrogen in an amount of 5 to 100% by volume.
The method for producing a negative electrode active material for a lithium battery according to claim 6 or 7, which is carried out at a temperature of 500 to 1100 ° C.
JP2001303059A 2001-09-28 2001-09-28 Lithium battery negative electrode activator, manufacturing method of the same, and negative electrode using the same Withdrawn JP2003109589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303059A JP2003109589A (en) 2001-09-28 2001-09-28 Lithium battery negative electrode activator, manufacturing method of the same, and negative electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303059A JP2003109589A (en) 2001-09-28 2001-09-28 Lithium battery negative electrode activator, manufacturing method of the same, and negative electrode using the same

Publications (1)

Publication Number Publication Date
JP2003109589A true JP2003109589A (en) 2003-04-11

Family

ID=19123202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303059A Withdrawn JP2003109589A (en) 2001-09-28 2001-09-28 Lithium battery negative electrode activator, manufacturing method of the same, and negative electrode using the same

Country Status (1)

Country Link
JP (1) JP2003109589A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534118A (en) * 2004-04-01 2007-11-22 デグサ ゲーエムベーハー Nanoscale silicon particles in negative electrode materials for use in lithium ion batteries
JP2008243661A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Cylindrical lithium secondary battery
JP2010021100A (en) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, lithium-ion secondary battery, and electrochemical capacitor
JP2010073349A (en) * 2008-09-16 2010-04-02 Nissan Motor Co Ltd Lithium ion secondary battery
JP2012033280A (en) * 2010-07-28 2012-02-16 Denso Corp Electrode for secondary battery, and non-aqueous electrolyte battery
JP2012505505A (en) * 2008-10-10 2012-03-01 ネグゼオン・リミテッド Silicon or silicon-based materials and their use in rechargeable lithium batteries
WO2013151047A1 (en) * 2012-04-05 2013-10-10 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries
WO2014007161A1 (en) 2012-07-06 2014-01-09 東レ株式会社 Negative electrode material for lithium ion secondary batteries, composite negative electrode material for lithium ion secondary batteries, resin composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2015133258A (en) * 2014-01-14 2015-07-23 東ソー株式会社 Si-BASED NEGATIVE ELECTRODE MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2017518621A (en) * 2014-06-20 2017-07-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Electrode and method with nanostructures made of porous silicon
CN116332193A (en) * 2023-05-18 2023-06-27 深圳软硅材料科技有限公司 Method for sintering silicon-oxygen negative electrode material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534118A (en) * 2004-04-01 2007-11-22 デグサ ゲーエムベーハー Nanoscale silicon particles in negative electrode materials for use in lithium ion batteries
JP2008243661A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Cylindrical lithium secondary battery
JP2010021100A (en) * 2008-07-14 2010-01-28 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, lithium-ion secondary battery, and electrochemical capacitor
JP2010073349A (en) * 2008-09-16 2010-04-02 Nissan Motor Co Ltd Lithium ion secondary battery
JP2012505505A (en) * 2008-10-10 2012-03-01 ネグゼオン・リミテッド Silicon or silicon-based materials and their use in rechargeable lithium batteries
JP2012033280A (en) * 2010-07-28 2012-02-16 Denso Corp Electrode for secondary battery, and non-aqueous electrolyte battery
WO2013151047A1 (en) * 2012-04-05 2013-10-10 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries
GB2514987A (en) * 2012-04-05 2014-12-10 Mitsui Mining & Smelting Co Negative electrode active material for nonaqueous electrolyte secondary batteries
US10505183B2 (en) 2012-04-05 2019-12-10 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
WO2014007161A1 (en) 2012-07-06 2014-01-09 東レ株式会社 Negative electrode material for lithium ion secondary batteries, composite negative electrode material for lithium ion secondary batteries, resin composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
US9991510B2 (en) 2012-07-06 2018-06-05 Toray Industries, Inc. Negative electrode material for lithium ion secondary battery, composite negative electrode material for lithium ion secondary battery, resin composition for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015133258A (en) * 2014-01-14 2015-07-23 東ソー株式会社 Si-BASED NEGATIVE ELECTRODE MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2017518621A (en) * 2014-06-20 2017-07-06 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Electrode and method with nanostructures made of porous silicon
US10756330B2 (en) 2014-06-20 2020-08-25 The Regents Of The University Of California Porous silicon nanostructured electrode and method
CN116332193A (en) * 2023-05-18 2023-06-27 深圳软硅材料科技有限公司 Method for sintering silicon-oxygen negative electrode material

Similar Documents

Publication Publication Date Title
JP6681915B2 (en) Silicon negative electrode active material and method for producing the same
JP5273931B2 (en) Negative electrode active material and method for producing the same
EP2768051B1 (en) Silicon-based composite and method for manufacturing same
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
KR101440883B1 (en) An electrode, a method for preparing the same and a lithium battery using the same
JP5642918B2 (en) Negative electrode active material containing metal nanocrystal composite, method for producing the same, and negative electrode and lithium battery employing the same
JP5604036B2 (en) Si / C composite, anode active material containing the same, and lithium battery
JP5122272B2 (en) Anode active material, method for producing the same, and anode and lithium battery employing the same
KR101552089B1 (en) Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries and method for producing same
KR101555932B1 (en) Electrode active material for lithium secondary battery and Method of preparing the same
KR20170023076A (en) Porous silicon electrode and method
JP2008198610A (en) Negative electode active material, its manufacturing method, and negative electrode and lithium battery adopting it
JP2004303593A (en) Negative electrode material for lithium secondary battery, and its manufacturing method
WO2020067609A1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
JP2003109589A (en) Lithium battery negative electrode activator, manufacturing method of the same, and negative electrode using the same
KR20170069951A (en) Negative electrode active material particle and method of preparing for the same
KR101171954B1 (en) Silicon Nano Particles Coated with Carbon and Method for Preparing the same
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
KR101018659B1 (en) Silicon anode active material for lithium secondary battery
JP2004063411A (en) Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6797519B2 (en) Negative electrode material for lithium secondary battery and its manufacturing method, composition for forming negative electrode active material layer, negative electrode for lithium secondary battery, lithium secondary battery, and resin composite silicon particles
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2021131933A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
EP3150554B1 (en) Negative electrode of a secondary battery composed of a silicon material
KR102388470B1 (en) Silicon-based nano plate manufacturing method, and negative electrode material including silicon-based nano plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202