JP2003098512A - Plastic substrate for reflective liquid crystal display element - Google Patents

Plastic substrate for reflective liquid crystal display element

Info

Publication number
JP2003098512A
JP2003098512A JP2001294254A JP2001294254A JP2003098512A JP 2003098512 A JP2003098512 A JP 2003098512A JP 2001294254 A JP2001294254 A JP 2001294254A JP 2001294254 A JP2001294254 A JP 2001294254A JP 2003098512 A JP2003098512 A JP 2003098512A
Authority
JP
Japan
Prior art keywords
liquid crystal
thickness
crystal display
reflective liquid
plastic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001294254A
Other languages
Japanese (ja)
Inventor
Sadafumi Furukawa
禎史 古川
Sumio Shibahara
澄夫 柴原
Hideki Kubo
英樹 窪
Hideo Umeda
英雄 楳田
Junji Tanaka
順二 田中
Kazuhiko Yagata
和彦 屋ヶ田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001294254A priority Critical patent/JP2003098512A/en
Publication of JP2003098512A publication Critical patent/JP2003098512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plastic substrate for a reflective liquid crystal display element, which has excellent chemical resistance, heat resistance, dimensional stability and, in addition, surface smoothness and a barrier property against vapor and oxygen. SOLUTION: The plastic substrate for the reflective liquid crystal display element has smoothness improving layers (b) composed of a cyanate resin with 3-50 μm thickness on both surfaces of a base substrate (a) with 50-500 μm thickness formed by heat molding pre-preg produced by applying a resin composition containing the cyanate resin to nonwoven glass fiber cloth and drying, has a protective layer (c) resistant to a mixture of hydrofluoric acid and nitric acid composed of an alicyclic epoxy resin with 2-15 μm thickness on one surface thereof and has a vapor barrier layer (d) composed of Ta2 O5 or Si3 N4 with 300-1,000 Å thickness and the protective layer (c) resistant to the mixture of hydrofluoric acid and nitric acid on the other surface thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、剛性、耐薬品性、
耐熱性および寸法安定性が良好であり、かつ水蒸気、酸
素などに対するバリア性および表面平滑性に優れた反射
型液晶表示素子用プラスチック基板に関係するものであ
る。
TECHNICAL FIELD The present invention relates to rigidity, chemical resistance,
The present invention relates to a plastic substrate for a reflective liquid crystal display device, which has excellent heat resistance and dimensional stability, and has excellent barrier properties against water vapor, oxygen, etc. and surface smoothness.

【0002】[0002]

【従来の技術】近年、液晶表示素子は薄膜化、軽量化、
大型化、任意の形状化、曲面表示対応などの高度な要求
がある。特に、携帯機器については軽量化、高耐久性が
強く要求され、これらの利用が拡大されるにつれて従来
のガラス基板に変わりプラスチックを基板とする液晶表
示パネルが提案され、例えば特開平10−77321号
に提案されている。しかし、最近になって液晶のカラー
動画化に伴いさらなる高速応答性が要求され、TFTの
需要が高まりつつある。しかし、TFT用液晶表示基板
にはその製造プロセスで高温にさらされることと、エッ
チング・洗浄工程と乾燥工程の繰り返しによる寸法変化
等の問題から、依然としてガラス基板が使われているの
が現状である。一方、反射型液晶表示素子は、低消費電
力の観点から近年注目されており、やはり基板のプラス
チック化の検討が進められている。例えば、特開平11
−2812号公報においてはガラスエポキシベース基板
等の樹脂が含浸した繊維布を含むベース基板を反射型液
晶表示基板に用いることが示されている。しかしなが
ら、TFT液晶表示素子用基板に用いるためにはなお耐
熱性が不十分であり、繊維布によるうねりが表面にも反
映され、表示素子として要求される平滑性が得られなか
った。
2. Description of the Related Art In recent years, liquid crystal display devices have become thinner and lighter.
There is a high demand for large size, arbitrary shape, and curved surface display. In particular, mobile devices are strongly required to be lightweight and have high durability, and as their use is expanded, a liquid crystal display panel using a plastic substrate instead of a conventional glass substrate has been proposed, for example, Japanese Patent Laid-Open No. 10-77321. Has been proposed to. However, with the recent trend of liquid crystal color moving images, higher speed response is required, and the demand for TFTs is increasing. However, glass substrates are still used for liquid crystal display substrates for TFTs due to the problems of exposure to high temperatures during the manufacturing process and dimensional changes due to repeated etching / cleaning and drying processes. . On the other hand, the reflective liquid crystal display element has been receiving attention in recent years from the viewpoint of low power consumption. For example, JP-A-11
JP-A-2812 discloses that a base substrate including a fiber cloth impregnated with a resin such as a glass epoxy base substrate is used as a reflective liquid crystal display substrate. However, the heat resistance is still insufficient for use as a substrate for a TFT liquid crystal display element, and the undulation due to the fiber cloth is reflected on the surface, and the smoothness required for the display element cannot be obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、耐薬
品性、耐熱性、寸法安定性に加え、表面平滑性および水
蒸気、酸素に対するバリア性の優れた反射型液晶表示素
子用プラスチック基板を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plastic substrate for a reflection type liquid crystal display device which is excellent in chemical resistance, heat resistance, dimensional stability, surface smoothness and barrier properties against water vapor and oxygen. Is to provide.

【0004】[0004]

【課題を解決するための手段】すなわち本発明は、 (1)シアネート樹脂を含む樹脂組成物をガラス繊維を
用いた不織布に塗布・乾燥させたプリプレグを加熱成形
させた、厚みが50〜500μmのベース基板(a)の
両面に厚みが10〜15μmであるシアネート樹脂から
なる平滑性改良層(b)を有し、その片面に厚さ2〜1
5μの脂環式エポキシ樹脂による耐フッ硝酸保護層
(c)を有し、対面には厚みが300〜1000ÅのT
25またはSi34からなる水蒸気バリア層(d)と
前記耐フッ硝酸保護層(c)とを有する反射型液晶表示
素子用プラスチック基板。 (2)前記シアネート樹脂がノボラック型シアネート樹
脂である(1)の反射型液晶表示素子用プラスチック基
板。 (3)前記シアネート樹脂を含む樹脂組成物に平均粒径
2μm以下の球状溶融シリカからなる無機充填材を含む
ことを特徴とする(1)または(2)の反射型液晶表示
素子用プラスチック基板 (4)前記脂環式エポキシ樹脂が一般式(1)で示され
る脂環式エポキシ樹脂であることを特徴とする(1)〜
(3)の反射型液晶表示素子用プラスチック基板。
Means for Solving the Problems That is, according to the present invention, (1) a resin composition containing a cyanate resin is applied to a nonwoven fabric made of glass fiber and dried, and a prepreg is heat-molded to have a thickness of 50 to 500 μm. The base substrate (a) has on both surfaces thereof a smoothness improving layer (b) made of a cyanate resin having a thickness of 10 to 15 μm, and one surface thereof has a thickness of 2-1.
It has a hydrofluoric / nitric acid-resistant protective layer (c) made of 5μ alicyclic epoxy resin, and has a thickness of 300 to 1000Å on the opposite side.
A plastic substrate for a reflective liquid crystal display device, comprising a water vapor barrier layer (d) made of a 2 O 5 or Si 3 N 4 and the hydrofluoric / nitric acid protective layer (c). (2) The plastic substrate for a reflective liquid crystal display device according to (1), wherein the cyanate resin is a novolac type cyanate resin. (3) The plastic substrate for a reflective liquid crystal display device according to (1) or (2), characterized in that the resin composition containing the cyanate resin contains an inorganic filler made of spherical fused silica having an average particle size of 2 μm or less. 4) The alicyclic epoxy resin is an alicyclic epoxy resin represented by the general formula (1) (1) to
(3) A plastic substrate for a reflective liquid crystal display device.

【0005】[0005]

【化2】 である。[Chemical 2] Is.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。 <ベース基板(a)>本発明のベース基板は透過光を使
用しない反射型液晶表示基板に用いるため、透明性は要
求されない。このベース基板の厚みは、50〜500μ
m、好ましくは100〜400μmである。50μm未
満では基板の剛性が維持できないおそれがあり、100
0μmを超えると重量が大きくなりすぎるため、軽量化
を目的とするプラスチック化のメリットが失われてしま
うおそれがある。また、50〜200℃での平均熱線膨
張係数は−5〜30ppm、好ましくは、−5〜25p
pm、より好ましくは0〜20ppmの範囲である事が
望ましい。平均線膨張係数が上記範囲内であれば、配線
に用いられる金属の平均線膨張係数との差が小さく、高
温にさらされたとき断線を生じるおそれがない。本発明
のベース基板は、シアネート樹脂をガラス繊維を用いた
不織布に塗布させ、乾燥したプリプレグを加熱成形して
製造することができる。本発明に用いるシアネート樹脂
としては、耐熱性が高く線膨張係数が低いことからノボ
ラック型シアネート樹脂及び/又はそのプレポリマーが
好ましい。ここでいうノボラック型シアネート樹脂とは
任意のノボラック樹脂と、ハロゲン化シアン等のシアネ
ート化試薬とを反応させることで得られるもので、また
この得られた樹脂を加熱することでプレポリマー化する
ことが出来る。また、本発明の樹脂組成物に対して弾性
率を高め、線膨張係数を低下させ、吸水性を低下させる
ために、シアネート樹脂等の樹脂成分と共に無機充填材
を併用しても良く、好ましい無機充填剤の例としては、
平均粒径2μm以下の球状溶融シリカを挙げることがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. <Base Substrate (a)> Since the base substrate of the present invention is used as a reflective liquid crystal display substrate that does not use transmitted light, transparency is not required. The thickness of this base substrate is 50 to 500 μ.
m, preferably 100 to 400 μm. If it is less than 50 μm, the rigidity of the substrate may not be maintained.
If it exceeds 0 μm, the weight becomes too large, and there is a possibility that the advantage of plasticization for the purpose of weight reduction may be lost. The average coefficient of linear thermal expansion at 50 to 200 ° C is -5 to 30 ppm, preferably -5 to 25 p.
pm, and more preferably 0 to 20 ppm. When the average linear expansion coefficient is within the above range, the difference between the average linear expansion coefficient of the metal used for the wiring and the average linear expansion coefficient is small, and there is no risk of disconnection when exposed to high temperatures. The base substrate of the present invention can be manufactured by applying a cyanate resin to a non-woven fabric using glass fiber and heat-molding a dried prepreg. As the cyanate resin used in the present invention, a novolac type cyanate resin and / or a prepolymer thereof is preferable because it has high heat resistance and a low linear expansion coefficient. The novolac type cyanate resin referred to here is obtained by reacting an arbitrary novolac resin with a cyanating reagent such as cyanogen halide, and can be prepolymerized by heating the obtained resin. Can be done. Further, in order to increase the elastic modulus, lower the linear expansion coefficient, and lower the water absorption of the resin composition of the present invention, an inorganic filler may be used in combination with a resin component such as a cyanate resin. Examples of fillers include
Examples thereof include spherical fused silica having an average particle diameter of 2 μm or less.

【0007】<平滑性改良層(b)>本発明の平滑性改
良層は、ベース基板が持つガラス繊維を用いた不織布凹
凸を改善し、半導体や絶縁層を真空プロセスにて形成さ
せることのできる平滑性100nm以下、すなわち表面
構造解析顕微鏡New View 5032(Zygo Corporation製)に
より視野:1.44mmラ1.08mmで観察を行った時の隣り合う
繊維布目の最高点と最低点との高さが100nm以下と
するために必要である。また、その材質としては基材層
との線膨張係数の差が少ないことが望ましい。基材層と
の線膨張係数の差が大きいと基板加工時の高い温度変化
により、層間剥離を起こしたり、平滑性改良層に亀裂が
生じたりする。したがって、具体的にはベース基板に使
用している樹脂と同一のシアネート樹脂が最適である。
またその厚みは、3〜50μmであることが好ましい。
更に好ましくは、10〜30μm、最も好ましくは、1
0〜25μmである。この範囲内であれば、層間剥離を
起こすことなく、十分な表面平滑性を得ることができ
る。平面性は、ガラスなどの平滑な面を有する板などに
挟んでベース基板上にコーティングしたシアネート樹脂
を硬化させることで得られる。
<Smoothness-improving layer (b)> The smoothness-improving layer of the present invention can improve the unevenness of the non-woven fabric using the glass fiber of the base substrate, and can form a semiconductor or an insulating layer by a vacuum process. Smoothness is 100 nm or less, that is, the height between the highest point and the lowest point of the adjacent fiber cloth is 100 nm or less when observed with a surface structure analysis microscope New View 5032 (manufactured by Zygo Corporation) with a field of view of 1.44 mm and 1.08 mm. Is necessary to Further, it is desirable that the material has a small difference in linear expansion coefficient from the base material layer. If the difference in the coefficient of linear expansion from the base material layer is large, delamination may occur or cracks may occur in the smoothness improving layer due to high temperature changes during substrate processing. Therefore, specifically, the same cyanate resin as the resin used for the base substrate is optimal.
The thickness is preferably 3 to 50 μm.
More preferably 10 to 30 μm, most preferably 1
It is 0 to 25 μm. Within this range, sufficient surface smoothness can be obtained without delamination. The planarity can be obtained by sandwiching a plate having a smooth surface such as glass and curing the cyanate resin coated on the base substrate.

【0008】<耐フッ硝酸保護層(c)>本発明の耐フ
ッ硝酸保護層(c)は、半導体や絶縁膜のエッチングに
使用されるフッ硝酸から後述する水蒸気バリア層(d)
を守る役目をするものであり、また加熱・吸水工程にお
いても水蒸気バリア層と剥離しないことが求められる。
したがって、その材質は耐フッ硝酸性および密着性の両
方に優れる脂環式エポキシ樹脂が良く、その厚みは2〜
15μmである。また、脂環式エポキシ樹脂の中でも一
般式(1)に示す構造を有するものが好ましい。
<Fluorine-nitric acid-resistant protective layer (c)> The hydrofluoric-nitric acid-resistant protective layer (c) of the present invention includes a water vapor barrier layer (d) which will be described later from hydrofluoric nitric acid used for etching semiconductors and insulating films.
It is also required to prevent the water vapor barrier layer from peeling even in the heating and water absorbing steps.
Therefore, the material is alicyclic epoxy resin, which is excellent in both nitric acid fluoride resistance and adhesion, and its thickness is 2 to
It is 15 μm. Further, among the alicyclic epoxy resins, those having the structure represented by the general formula (1) are preferable.

【0009】[0009]

【化3】 [Chemical 3]

【0010】この耐フッ硝酸保護層(c)は水蒸気バリ
ア層(d)の直上に積層して直接水蒸気バリア層を保護
する他、平滑性改良層の上にも積層することで、ベース基
板の保護も担っている。また、平滑性改良層(b)と同
様の平滑化を行うことで、基板の平滑度をさらに高度化
させる事も可能である。
This hydrofluoric / nitric acid-resistant protective layer (c) is laminated directly on the water vapor barrier layer (d) to directly protect the water vapor barrier layer, and is also laminated on the smoothness improving layer to form a base substrate. It also plays a role in protection. Further, by performing the same smoothing as the smoothness improving layer (b), it is possible to further improve the smoothness of the substrate.

【0011】<水蒸気バリア層(d)>本発明で用いら
れる水蒸気バリア層(d)としては、透明性、水蒸気お
よび酸素に対するバリア性に優れていることからSi4
3が好ましい。また、耐フッ硝酸性を完璧にする上で
は、経済性では劣るが、Ta25でも良い。これらは、慣
用の方法、例えば、物理的方法(真空蒸着法、反応性蒸
着法、スパッタリング法、反応性スパッタリング法、イ
オンプレーティング法、反応性イオンプレーティング法
など)、化学的方法(CVD法、プラズマCVD法、レ
ーザーCVD法など)により形成でき、その厚みは30
0〜1000Åである。
<Water Vapor Barrier Layer (d)> The water vapor barrier layer (d) used in the present invention is excellent in transparency and barrier properties against water vapor and oxygen, and thus Si 4
N 3 is preferred. Further, Ta 2 O 5 may be used although it is inferior in economic efficiency in terms of perfecting the resistance to hydrofluoric acid and nitric acid. These are conventional methods, for example, physical methods (vacuum evaporation method, reactive evaporation method, sputtering method, reactive sputtering method, ion plating method, reactive ion plating method, etc.), chemical methods (CVD method). , Plasma CVD method, laser CVD method, etc., and its thickness is 30
It is 0 to 1000Å.

【0012】[0012]

【実施例】以下に本発明を実施例によってさらに具体的
に説明するが、本発明は、これによってなんら制限され
るものではない。 <ベース基板(a)の作製>ノボラック型シアネート樹
脂(ロンザジャパン株式会社製PT60、数平均分子量
800)100重量部及びフェノールノボラック樹脂
(住友デュレズ製PR−51714)2重量部をメチル
エチルケトンに常温で溶解し、エポキシシランカップリ
ング剤(日本ユニカー製A−187)1重量部、球状溶
融シリカ(株式会社アドマテックス製SO−25R 平
均粒径0.5μm )150部を添加し、高速攪拌機を
用いて10分攪拌した。調製したワニスをガラス繊維を
用いた不織布(日東紡株式会社製FFT1020厚さ1
00μm)に塗布し、120℃の加熱炉で2分乾燥して
ワニス固形分(プリプレグ中に樹脂とシリカの占める成
分)が約50%のプリプレグを得た。このプリプレグを
4枚重ね、離型処理した鏡面のステンレス板を当て板と
して、圧力4MPa、温度220℃で1時間加熱加圧成
形を行い、250℃の乾燥機で窒素雰囲気下1時間後硬
化することによってベース基板を得た。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. <Preparation of Base Substrate (a)> 100 parts by weight of novolac type cyanate resin (PT60 manufactured by Lonza Japan Co., number average molecular weight 800) and 2 parts by weight of phenol novolac resin (PR-51714 manufactured by Sumitomo Dures) are dissolved in methyl ethyl ketone at room temperature. Then, 1 part by weight of an epoxy silane coupling agent (A-187 manufactured by Nippon Unicar) and 150 parts of spherical fused silica (SO-25R average particle size 0.5 μm manufactured by Admatechs Co., Ltd.) were added, and 10 were added using a high-speed stirrer. Stir for minutes. The prepared varnish is a non-woven fabric using glass fiber (FFT1020 manufactured by Nitto Boseki Co., Ltd. thickness 1
00 μm) and dried in a heating oven at 120 ° C. for 2 minutes to obtain a prepreg having a varnish solid content (resin and silica component in the prepreg) of about 50%. Four sheets of this prepreg are stacked, a mold-finished stainless steel plate having a mirror surface is used as a backing plate, and heat and pressure molding is performed at a pressure of 4 MPa and a temperature of 220 ° C. for 1 hour, and then post-cured in a nitrogen atmosphere in a dryer at 250 ° C. for 1 hour. By doing so, a base substrate was obtained.

【0013】<平滑性改良層(b)の積層>ノボラック
型シアネート樹脂(ロンザジャパン株式会社製PT3
0)100重量部及びフェノールノボラック樹脂(住友
デュレズ製PR−51714)2重量部を60℃で溶解
したものを前記ベース基板(a)の両面にコートし、離
型処理したガラス板で挟み込み加熱硬化させることによ
って片側20μmの平滑性改良層を形成した。
<Lamination of smoothness improving layer (b)> Novolac type cyanate resin (PT3 manufactured by Lonza Japan Co., Ltd.
0) 100 parts by weight and 2 parts by weight of a phenol novolac resin (PR-51714 manufactured by Sumitomo Durez) were dissolved at 60 ° C. and coated on both sides of the base substrate (a), sandwiched by a glass plate subjected to mold release, and heat cured. By doing so, a smoothness improving layer having a thickness of 20 μm on each side was formed.

【0014】<水蒸気バリア層(d)の成膜>さらに、
片面にRFスパッタ法を用い、五酸化タンタル( Ta2
5 )ターゲットにより水蒸気バリア層(d)を成膜し
た。成膜条件は初期真空度5×10-6 Torrまで引き、A
r分圧を2×10-4 Torrに設定し400Åの厚さに成
膜した。 <耐フッ硝酸保護層(c)の積層>最後に、固形分換算
で脂環式エポキシ(ダイセル社製:セロキサイド202
1P)100重量部に対して硬化剤ビスフェノールS
(ダイセル社製:試作品EX−1(B))3重量部、カ
チオン触媒(ダイセル社製:試作品EX−1(A))を
0.5重量部、界面活性剤F−474(大日本インキ社
製)を1重量部添加し、2−ブトキシエタノールに溶解
させ、厚み0.5μmでディップコートした。これを1
70℃、30分プレキュアさせた後200℃2時間熱硬
化させ、本発明の反射型液晶表示素子用プラスチック基
板を得た。
<Film Formation of Water Vapor Barrier Layer (d)>
RF sputtering is used on one side of tantalum pentoxide (Ta2
OFive ) Forming a water vapor barrier layer (d) with a target
It was The film forming condition is an initial vacuum degree of 5 × 10.-6 Pull to Torr, A
r partial pressure 2 × 10-Four Set to Torr and achieve a thickness of 400Å
Filmed <Lamination of hydrofluoric / nitric acid protective layer (c)> Finally, solid content conversion
And cycloaliphatic epoxy (manufactured by Daicel: Celoxide 202)
1P) 100 parts by weight of curing agent bisphenol S
(Manufactured by Daicel: prototype EX-1 (B)) 3 parts by weight,
Thion catalyst (manufactured by Daicel: prototype EX-1 (A))
0.5 parts by weight, surfactant F-474 (Dainippon Ink and Chemicals, Inc.)
1 part by weight) and dissolved in 2-butoxyethanol
Then, dip coating was performed to a thickness of 0.5 μm. This one
Precure at 70 ° C for 30 minutes, then heat cure at 200 ° C for 2 hours
And a plastic substrate for a reflective liquid crystal display device of the present invention
I got a plate.

【0015】<評価> (1) 耐DMSO性: 60℃のジメチルスルホキシド
(DMSO)に試料を浸漬して15分間放置した後、試
料を取り出し、目視にて外観を観察した。 (2) 耐NMP性: 23℃のN−メチルピロリドン
(NMP)に試料を浸漬して20分間放置した後、試料
を取り出し、目視にて外観を観察した。 (3) 耐液晶性: 試料の表面にメルク社製ZIL−4
792を1滴たらし、80℃のオーブン中で1時間放置
した後、試料を取り出し、目視にて外観を観察した。 (4) サイクルテスト:純水80℃ボイル30分と20
0℃30分乾燥を1サイクルとする、サイクル処理を3
回行い、無機膜の外観変化を100倍の光学顕微鏡によ
り観察した。 (5) バリア性:モコン社製透湿度測定器PERMAT
RAN−W3/31MGを用いて、40℃、90%水蒸
気に対するバリア性を測定。 (6) 耐フッ硝酸性: シート表面に50%フッ酸水溶
液:70%硝酸水溶液が1:5となるように調製したフ
ッ硝酸を両面に1滴滴下し、温度を25℃で20時間放
置後、表面の状態を観察した。 (7) 平均線膨張係数:セイコー電子社製TMA/SS
120C型熱応力歪測定装置を用いて、窒素の存在下、
1分間に5℃の割合で温度を室温から(熱変形温度−2
0℃)まで上昇させて20分間保持した後、1分間に5
℃の割合で温度を室温まで冷却し5分間室温で保持させ
た。その後、再度、1分間に5℃の割合で温度を上昇さ
せて、50℃〜200℃の時の値を測定して求めた。
(8) 貯蔵弾性率:10mm×60mmのテストピース
を切り出し、TAインスツルメント社製動的粘弾性測定
装置DMA983を用いて3℃/分で昇温し、200℃
での貯蔵弾性率を求めた。 (9) 反り、撓み等の変形:基板上に、窒化シリコン
(Si3N4)をスパッタリングにより3000Åの厚さ
で形成させ、常温に戻した後、定盤に設置して反りを観
察した。 (10) 抵抗値:基板上に、アルミニウムをスパッタリン
グにより3000Åの厚さで形成させ、フォトリソグラ
フ法により、幅10μm、長さ30mmの模擬配線パタ
ーンを形成させ、パターン両端5mmの部分に金200
0Åをのスパッタリングして5mm□の抵抗値測定用電
極を形成させた。このときの両端間の抵抗値をR0とし
て測定した。つづいて、10mm□の開口部を有するメ
タルマスクを配線パターンの中央部に配設し、SiN
(2000Å)/アモルファスSi(500Å)/Si
N(2000Å)の各層を連続CVDにより形成させ
た。常温に戻したときの両端間の抵抗値を再度測定し、
1とした。さらに、200℃のオーブンに1時間入れ
た後、常温に戻したときの両端間の抵抗値をR2とし
た。 (11) 表面平滑性:表面構造解析顕微鏡New View 5032
(Zygo Corporation製)により視野:1.44mmラ1.08mmで観
察を行い、隣り合った繊維布目の最高点と最低点との高
さを測定する。
<Evaluation> (1) DMSO resistance: After immersing the sample in dimethyl sulfoxide (DMSO) at 60 ° C. and leaving it for 15 minutes, the sample was taken out and the appearance was visually observed. (2) NMP resistance: After immersing the sample in N-methylpyrrolidone (NMP) at 23 ° C. and leaving it for 20 minutes, the sample was taken out and the appearance was visually observed. (3) Liquid crystal resistance: ZIL-4 manufactured by Merck Ltd. on the surface of the sample
After dropping one drop of 792 and leaving it in an oven at 80 ° C. for 1 hour, the sample was taken out and the appearance was visually observed. (4) Cycle test: Pure water 80 ℃, boiling 30 minutes and 20 minutes
One cycle consists of drying at 0 ° C for 30 minutes, 3 cycle treatments
This was repeated once and the appearance change of the inorganic film was observed with a 100 × optical microscope. (5) Barrier property: Mocon moisture permeability meter PERMAT
Using RAN-W3 / 31MG, measure the barrier property against water vapor at 40 ° C and 90%. (6) Hydrofluoric acid and nitric acid resistance: One drop of hydrofluoric nitric acid prepared so that 50% hydrofluoric acid aqueous solution: 70% nitric acid aqueous solution becomes 1: 5 on the surface of the sheet, and left at 25 ° C for 20 hours The surface condition was observed. (7) Average linear expansion coefficient: TMA / SS manufactured by Seiko Instruments Inc.
Using a 120C type thermal stress strain measurement device, in the presence of nitrogen,
The temperature is changed from room temperature (heat distortion temperature-2
0 ℃) and hold for 20 minutes, then 5 minutes per minute
The temperature was cooled to room temperature at a rate of ° C and kept at room temperature for 5 minutes. Then, the temperature was again raised at a rate of 5 ° C. for 1 minute, and the value at 50 ° C. to 200 ° C. was measured and obtained.
(8) Storage elastic modulus: A test piece having a size of 10 mm × 60 mm was cut out and heated at 3 ° C./minute using a dynamic viscoelasticity measuring device DMA983 manufactured by TA Instruments, and then 200 ° C.
The storage elastic modulus at was calculated. (9) Deformation such as warpage and flexure: Silicon nitride (Si3N4) was formed on the substrate by sputtering to a thickness of 3000 Å, returned to room temperature, and placed on a surface plate to observe the warpage. (10) Resistance value: Aluminum was sputtered on the substrate to a thickness of 3000Å, and a photolithography method was used to form a simulated wiring pattern with a width of 10 μm and a length of 30 mm.
Sputtering of 0Å was performed to form a resistance measuring electrode of 5 mm □. The resistance value between both ends at this time was measured as R 0 . Next, a metal mask having an opening of 10 mm □ was placed in the center of the wiring pattern and SiN
(2000Å) / Amorphous Si (500Å) / Si
Each layer of N (2000Å) was formed by continuous CVD. Measure the resistance value between both ends when returning to room temperature,
It was set to R 1 . Furthermore, after being placed in an oven at 200 ° C. for 1 hour and then returned to room temperature, the resistance value between both ends was defined as R 2 . (11) Surface smoothness: Surface structure analysis microscope New View 5032
(Zygo Corporation) observes with a visual field of 1.44 mm and 1.08 mm, and measures the heights of the highest point and the lowest point of adjacent fiber cloths.

【0016】実施例における各評価を示す。 (1) 耐DMSO性:変化なし (2) 耐NMP性:変化なし (3) 耐液晶性:変化なし (4) サイクルテスト:クラック等の異常なし (5) バリア性:処理前後で0.05g/m2dayと変化は認めら
れなかった。 (6) 耐フッ硝酸性:両面ともクラック等の変化は認め
られなかった。 (7) 平均線膨張係数:20ppmと良好であった。 (8) 貯蔵弾性率:18GPaと非常に剛直な値を示し
た。 (9) 反り、撓み等の変形:1mm以下と良好であっ
た。 (10) 抵抗値:R1/R0=1.01、R2/R0=
1.01と変化は認められなかった。 (11) 表面平滑性:最高点と最低点の高さは45nmと
良好であった。 以上の結果から、本発明は反射型液晶表示素子用プラス
チック基板として、好適な性能を示した。
Each evaluation in the examples will be shown. (1) DMSO resistance: No change (2) NMP resistance: No change (3) Liquid crystal resistance: No change (4) Cycle test: No abnormalities such as cracks (5) Barrier property: 0.05g / before / after treatment No change from m2day was observed. (6) Hydrofluoric acid resistance: No changes such as cracks were observed on both sides. (7) Average linear expansion coefficient: Good at 20 ppm. (8) Storage elastic modulus: 18 GPa, which was a very rigid value. (9) Deformation such as warpage and flexure: 1 mm or less, which was good. (10) Resistance value: R1 / R0 = 1.01, R2 / R0 =
No change from 1.01 was observed. (11) Surface smoothness: The height of the highest point and the lowest point was 45 nm, which was good. From the above results, the present invention showed suitable performance as a plastic substrate for a reflective liquid crystal display device.

【0017】[0017]

【発明の効果】本発明のベース基板構成物は、耐薬品
性、耐熱性に加え、酸素、水蒸気バリア性、寸法安定
性、剛性、表面平滑性の何れの項目に対しても優れた性
能を誇ることから、反射型液晶表示素子用プラスチック
基板に好適に用いることができる。
INDUSTRIAL APPLICABILITY The base substrate composition of the present invention is excellent in chemical resistance and heat resistance, as well as in oxygen, water vapor barrier property, dimensional stability, rigidity and surface smoothness. Since it is proud of, it can be preferably used for a plastic substrate for a reflective liquid crystal display device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/1335 520 G02F 1/1335 520 (72)発明者 楳田 英雄 東京都品川区東品川2丁目5番8号 住友 ベークライト株式会社内 (72)発明者 田中 順二 東京都品川区東品川2丁目5番8号 住友 ベークライト株式会社内 (72)発明者 屋ヶ田 和彦 東京都品川区東品川2丁目5番8号 住友 ベークライト株式会社内 Fターム(参考) 2H090 JA07 JB03 JC07 JC08 JD01 JD08 JD14 JD15 JD17 LA20 2H091 FA14Y GA01 LA02 LA04 LA06 4F072 AA02 AA07 AB09 AB29 AD45 AE06 AE21 AF06 AG03 AG16 AL12 4F100 AA12E AA17E AA20B AA20C AG00A AH03A AH03B AH03C AK51A AK51B AK51C AK53D AK53E BA05 BA07 BA10D BA10E CA23B CA23C DE04B DE04C DG15A DH01A EH46A EJ86A GB41 JB01 JB01D JB01E JD03 JD04 JD04E JJ03 JK01 JK15 JK15B JK15C JL04 YY00A YY00B YY00C YY00D YY00E 4J002 CM021 DJ016 FD016 GP00─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI theme code (reference) G02F 1/1335 520 G02F 1/1335 520 (72) Inventor Hideo Umeda 2-5 Higashishinagawa, Shinagawa-ku, Tokyo No. 8 Sumitomo Bakelite Co., Ltd. (72) Inventor Junji Tanaka 2-5-8 Higashi-Shinagawa, Shinagawa-ku, Tokyo No. 8 Sumitomo Bakelite Co., Ltd. (72) Inventor Kazuhiko Yagada 2-5, Higashi-Shinagawa, Shinagawa-ku, Tokyo Ban No. 8 Sumitomo Bakelite Co., Ltd. in the F-term (reference) 2H090 JA07 JB03 JC07 JC08 JD01 JD08 JD14 JD15 JD17 LA20 2H091 FA14Y GA01 LA02 LA04 LA06 4F072 AA02 AA07 AB09 AB29 AD45 AE06 AE21 AF06 AG03 AG16 AL12 4F100 AA12E AA17E AA20B AA20C AG00A AH03A AH03B AH03C AK51A AK51B AK51C AK53D AK53E BA05 BA07 BA10D BA10E CA23B CA23C DE04B DE04C DG15A DH01A EH46A EJ86A GB41 JB01 JB01D JB01E JD03 JD04 JD04E JJ03 JK01 JK15 JK15B JK15C JL04 YY00A YY00B YY00C YY00D YY00E 4J002 CM021 DJ016 FD016 GP00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シアネート樹脂を含む樹脂組成物をガラ
ス繊維を用いた不織布に塗布・乾燥させたプリプレグを
加熱成形させた、厚みが50〜500μmのベース基板
(a)の両面に厚みが3〜50μmであるシアネート樹
脂からなる平滑性改良層(b)を有し、その片面に厚さ
2〜15μの脂環式エポキシ樹脂による耐フッ硝酸保護
層(c)を有し、対面には厚みが300〜1000Åの
Ta25またはSi34からなる水蒸気バリア層(d)
と前記耐フッ硝酸保護層(c)とを有する反射型液晶表
示素子用プラスチック基板。
1. A base substrate (a) having a thickness of 50 to 500 μm and having a thickness of 3 to 3 formed by heat-molding a prepreg obtained by coating and drying a resin composition containing a cyanate resin on a nonwoven fabric made of glass fiber. It has a smoothness improving layer (b) made of a cyanate resin having a thickness of 50 μm, a hydrofluoric nitric acid protection layer (c) made of an alicyclic epoxy resin having a thickness of 2 to 15 μ on one surface thereof, and has a thickness on the other surface. Water vapor barrier layer (d) consisting of 300 to 1000Å Ta 2 O 5 or Si 3 N 4.
A plastic substrate for a reflective liquid crystal display device, which comprises:
【請求項2】 前記シアネート樹脂がノボラック型シア
ネート樹脂である請求項1記載の反射型液晶表示素子用
プラスチック基板。
2. The plastic substrate for a reflective liquid crystal display device according to claim 1, wherein the cyanate resin is a novolac type cyanate resin.
【請求項3】 前記シアネート樹脂を含む樹脂組成物に
平均粒径2μm以下の球状溶融シリカからなる無機充填
材を含むことを特徴とする請求項1または2記載の反射
型液晶表示素子用プラスチック基板
3. The plastic substrate for a reflective liquid crystal display device according to claim 1, wherein the resin composition containing the cyanate resin contains an inorganic filler made of spherical fused silica having an average particle size of 2 μm or less.
【請求項4】 前記脂環式エポキシ樹脂が一般式(1)
で示される脂環式エポキシ樹脂であることを特徴とする
請求項1〜3何れか一項記載の反射型液晶表示素子用プ
ラスチック基板。 【化1】
4. The alicyclic epoxy resin is represented by the general formula (1):
It is an alicyclic epoxy resin shown by these, The plastic substrate for reflective liquid crystal display elements as described in any one of Claims 1-3. [Chemical 1]
JP2001294254A 2001-09-26 2001-09-26 Plastic substrate for reflective liquid crystal display element Pending JP2003098512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294254A JP2003098512A (en) 2001-09-26 2001-09-26 Plastic substrate for reflective liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294254A JP2003098512A (en) 2001-09-26 2001-09-26 Plastic substrate for reflective liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2003098512A true JP2003098512A (en) 2003-04-03

Family

ID=19115895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294254A Pending JP2003098512A (en) 2001-09-26 2001-09-26 Plastic substrate for reflective liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2003098512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086170A (en) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd Picture display device
JP2009241522A (en) * 2008-03-31 2009-10-22 Panasonic Electric Works Co Ltd Transparent substrate
US7923062B2 (en) 2003-11-06 2011-04-12 Sharp Kabushiki Kaisha Display device
KR101560772B1 (en) * 2008-09-17 2015-10-16 삼성디스플레이 주식회사 Display and method of fabricating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923062B2 (en) 2003-11-06 2011-04-12 Sharp Kabushiki Kaisha Display device
JP2006086170A (en) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd Picture display device
JP2009241522A (en) * 2008-03-31 2009-10-22 Panasonic Electric Works Co Ltd Transparent substrate
KR101560772B1 (en) * 2008-09-17 2015-10-16 삼성디스플레이 주식회사 Display and method of fabricating the same

Similar Documents

Publication Publication Date Title
JP4639241B2 (en) OPTICAL MEMBER, OPTICAL SYSTEM USING SAME, AND OPTICAL MEMBER MANUFACTURING METHOD
EP0726579B1 (en) Transparent conductive sheet
US10751980B2 (en) Multilayer film
US20150322223A1 (en) Transparent polyimide substrate and method for fabricating the same
TW200930565A (en) Metal-clad laminate
JP4393077B2 (en) Transparent substrate
JP2003033991A (en) Plastic substrate for display element
JP4060116B2 (en) Plastic substrate for display element
JP2003098512A (en) Plastic substrate for reflective liquid crystal display element
JP2003050384A (en) Plastic substrate for reflective liquid crystal display element
JP2003084264A (en) Plastic substrate for reflective liquid crystal display element
JP6433110B2 (en) Optical member and manufacturing method thereof
JP2004307811A (en) Plastic substrate for display element
JP3818638B2 (en) Plastic substrate for display element and method for manufacturing plastic substrate for display element
Perettie et al. Benzocyclobutene as a planarization resin for flat panel displays
JPH112812A (en) Reflection conductive substrate, reflection liquid crystal display device, and manufacture of reflection conductive substrate
JPS61181829A (en) Low-thermal expansion resin material
JP2003048293A (en) Multi-layer resin sheet
JP2004151291A (en) Plastic substrate for display element
JP3403882B2 (en) Transparent conductive film
JPH1166969A (en) Transparent conductive film
JPH09254303A (en) Transparent electrically conductive film
JP5535052B2 (en) Optical member and optical system using the same
JP4098056B2 (en) Transparent sheet
JP6617811B2 (en) Adhesive film, method for producing cured body, cured body, wiring board, and semiconductor device