JP2003098441A - Space telescope - Google Patents

Space telescope

Info

Publication number
JP2003098441A
JP2003098441A JP2001292224A JP2001292224A JP2003098441A JP 2003098441 A JP2003098441 A JP 2003098441A JP 2001292224 A JP2001292224 A JP 2001292224A JP 2001292224 A JP2001292224 A JP 2001292224A JP 2003098441 A JP2003098441 A JP 2003098441A
Authority
JP
Japan
Prior art keywords
main reflecting
space
mirror surface
reflecting mirrors
support structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001292224A
Other languages
Japanese (ja)
Other versions
JP4955166B2 (en
Inventor
Shinichiro Nishida
信一郎 西田
Shunichi Ebisaki
俊一 戎崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Japan Space Forum
NEC Space Technologies Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
National Space Development Agency of Japan
Japan Space Forum
NEC Space Technologies Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan, Japan Space Forum, NEC Space Technologies Ltd, RIKEN Institute of Physical and Chemical Research filed Critical National Space Development Agency of Japan
Priority to JP2001292224A priority Critical patent/JP4955166B2/en
Publication of JP2003098441A publication Critical patent/JP2003098441A/en
Application granted granted Critical
Publication of JP4955166B2 publication Critical patent/JP4955166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Telescopes (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize reliable and highly accurate observation by making the aperture diameter large after realizing efficient transportation to the space. SOLUTION: A space bus system for composing a space navigation body is arranged, six sets of main reflecting mirrors 11 whose outer shape is formed in an almost hexagonal shape are mounted on the circumference of a support structure 10 in a detachable manner, and subreflecting mirrors 12 arranged facing mirror planes of the six sets of the main reflecting mirrors 11 are oppositely arranged. Then, light condensed through the main reflecting mirrors 11 and the subreflecting mirrors 12 is observed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば宇宙空間
に配備され、各種の観測を実行する宇宙望遠鏡に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a space telescope that is deployed in outer space and performs various observations.

【0002】[0002]

【従来の技術】宇宙開発の分野においては、宇宙空間に
宇宙望遠鏡を配備して宇宙空間から地上や、他の惑星等
の観測を実行する観測システムがある。このような宇宙
望遠鏡は、例えば図12に示すようなハッブル宇宙望遠
鏡を知られている。このハッブル宇宙望遠鏡は、電力源
を形成する太陽電池パドル1、及び図示しない姿勢制御
系や通信系等で構成される宇宙用バス系機器2を備え
て、その姿勢を、宇宙ようバス系機器の姿勢制御系(図
示せず)で制御しながらその望遠鏡本体3で所望の方向
の光を集光する。そして、この望遠鏡本体3で集光した
光は、その観測部4で、例えば受光及び記録されて、そ
の取得した観測データが上記通信系を介して基地局に送
信される。
2. Description of the Related Art In the field of space development, there is an observation system that deploys a space telescope in outer space to observe the ground and other planets from outer space. As such a space telescope, for example, a Hubble space telescope as shown in FIG. 12 is known. This Hubble Space Telescope is equipped with a solar cell paddle 1 that forms a power source and a space bus system device 2 including an attitude control system and a communication system (not shown). The telescope main body 3 collects light in a desired direction while controlling it by an attitude control system (not shown). Then, the light condensed by the telescope main body 3 is received and recorded by the observation unit 4, for example, and the acquired observation data is transmitted to the base station via the communication system.

【0003】しかしながら、上記宇宙望遠鏡では、それ
自体を宇宙空間まで輸送して配備しなければならない構
成上、その宇宙空間までの輸送の制約により、望遠鏡本
体3の光を集光する反射鏡の開口径の大口径化を図るの
が困難であるために、その観測の信頼性や運用の多様化
の要請を満足することが困難であるという問題を有す
る。
However, in the above-mentioned space telescope, due to the structure that the space telescope itself has to be transported and deployed to outer space, due to the constraint of transportation to the outer space, the opening of the reflecting mirror for condensing the light of the telescope main body 3. Since it is difficult to increase the diameter, it is difficult to satisfy the requirements of the reliability of observation and diversification of operation.

【0004】そこで、最近の宇宙開発の分野において
は、開口径の大口径化を図り得るようにした宇宙望遠鏡
の開発が急がれている。
Therefore, in the recent field of space development, there is an urgent need to develop a space telescope capable of increasing the aperture diameter.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来の宇宙望遠鏡では、開口径の大口径化が困難であると
いう問題を有する。
As described above, the conventional space telescope has a problem that it is difficult to increase the aperture diameter.

【0006】この発明は、上記の事情に鑑みてなされた
もので、宇宙空間までの効率的な輸送を実現したうえ
で、開口径の大口径化を図り得るようにして、信頼性の
高い高精度な観測を実現した宇宙望遠鏡を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and realizes efficient transportation to outer space and, at the same time, makes it possible to increase the diameter of the aperture, thereby achieving high reliability and high reliability. The purpose is to provide a space telescope that realizes accurate observation.

【0007】[0007]

【課題を解決するための手段】この発明は、支持構造体
の周囲に着脱可能に配設される外形が略六角形形状に形
成された複数の主反射鏡と、これら複数の主反射鏡の鏡
面に対向して配設される複数の副反射鏡と、前記複数の
主反射鏡及び複数の副反射鏡を介して集光した光を観測
する光観測手段と、宇宙航行体を構成するための宇宙バ
ス系とを備えて宇宙望遠鏡を構成した。
SUMMARY OF THE INVENTION According to the present invention, a plurality of main reflecting mirrors, each of which has a substantially hexagonal outer shape and which is detachably arranged around a support structure, and a plurality of main reflecting mirrors are provided. A plurality of sub-reflecting mirrors arranged to face the mirror surface, a light observing means for observing the light condensed through the plurality of main reflecting mirrors and the plurality of sub-reflecting mirrors, and for configuring a spacecraft. The space telescope was constructed with the space bus system.

【0008】上記構成によれば、複数の主反射鏡は、支
持構造体の周囲に略リング形状に配置することができる
ことにより、その収納状態における外形寸法を所望の寸
法に保ってうえで、鏡面としての開口径の大口径化を促
進することが可能となる。従って、信頼性の高い高精度
な観測を行うことが可能となる。
According to the above construction, since the plurality of main reflecting mirrors can be arranged in a substantially ring shape around the support structure, the outer dimensions in the housed state can be maintained at desired dimensions and the mirror surface can be maintained. As a result, it is possible to promote the increase of the opening diameter. Therefore, highly reliable and highly accurate observation can be performed.

【0009】また、この発明は、複数の主反射鏡が着脱
されて所望の鏡面を形成する支持構造体を組立可能ある
いは折り畳み展開可能に構成した。これによれば、宇宙
空間までの輸送の簡略化の促進を図ることが可能とな
る。
Further, according to the present invention, a support structure having a plurality of main reflecting mirrors attached and detached to form a desired mirror surface can be assembled or folded and developed. According to this, it becomes possible to promote simplification of transportation to outer space.

【0010】また、この発明は、支持構造体に電気コネ
クタを有した複数の取っ手を所定の間隔に設けて、作業
ロボットアームが取っ手を把持した状態で、該作業ロボ
ットアームが電気コネクタを介して宇宙バス系と電気的
に接続され、所望の作業が可能に構成した。これによれ
ば、支持構造体の作業ロボットアームを使用した主反射
鏡の着脱作業を含む各種の作業を、安全に行うことが可
能となる。
Further, according to the present invention, a plurality of handles having an electric connector are provided on a support structure at predetermined intervals, and the work robot arm holds the handles while the work robot arm interposes the electric connectors. It was electrically connected to the space bus system, and was configured so that desired work could be performed. According to this, it becomes possible to safely perform various works including the work of attaching and detaching the main reflecting mirror using the work robot arm of the support structure.

【0011】また、この発明は、前記光観測手段を、前
記複数の主反射鏡で集光した光を個別に観測する個別観
測手段と、前記複数の主反射鏡で集光した光を合成して
観測する光束合成観測手段と、前記個別観測手段及び前
記光束合成観測手段のいずれかを選択して個別観測ある
いは光束合成観測を実行する観測選択手段とを備えて構
成した。
In the present invention, the light observing means combines the individual observing means for individually observing the light collected by the plurality of main reflecting mirrors with the light collecting by the plurality of main reflecting mirrors. And the observation selection means for selecting either the individual observation means or the luminous flux synthesis observation means to perform individual observation or luminous flux synthesis observation.

【0012】上記構成によれば、観測選択手段により、
個別観測あるいは光束合成観測を実行することにより、
高精度な観測を実現したうえで、運用の多様化を図るこ
とが可能となる。
According to the above arrangement, the observation selection means
By performing individual observation or luminous flux combination observation,
It is possible to diversify the operation after realizing highly accurate observation.

【0013】また、この発明は、複数の主反射鏡を、外
形が略六角形形状の鏡面支持体と、この鏡面支持体の一
方面に配設される略中央部にバッフル筒が設けられた反
射鏡面とを備え、前記鏡面支持体の鏡面側及び背面側に
第1及び第2の嵌合部を設けると共に、前記反射鏡面の
バッフル筒の両端に第3及び第4の嵌合部を設けて前記
鏡面支持体の第1の嵌合部を、他の主反射鏡の鏡面支持
体の第2の嵌合部と嵌合させ、前記反射鏡面のバッフル
筒の第3の嵌合部を前記他の主反射鏡のバッフル筒の第
4の嵌合部と嵌合させて複数個を積重状に収容可能に構
成した。
Further, according to the present invention, a plurality of main reflecting mirrors are provided, a mirror surface support having an outer shape of a substantially hexagonal shape, and a baffle tube provided at a substantially central portion provided on one surface of the mirror surface support. A reflecting mirror surface, first and second fitting portions are provided on a mirror surface side and a back surface side of the mirror surface support, and third and fourth fitting portions are provided on both ends of the baffle cylinder of the reflecting mirror surface. The first fitting portion of the mirror surface support member with the second fitting portion of the mirror surface support member of the other main reflecting mirror, and the third fitting portion of the reflecting mirror surface baffle tube is connected to the first fitting portion. A plurality of the plurality of main reflecting mirrors can be housed in a stack by being fitted with the fourth fitting portion of the baffle cylinder.

【0014】上記構成によれば、複数の主反射鏡は、そ
の鏡面支持体の第1の嵌合部を、他の主反射鏡の鏡面支
持体の第2の嵌合部と嵌合させ、その反射鏡面のバッフ
ル筒の第3の嵌合部を他の主反射鏡のバッフル筒の第4
の嵌合部と嵌合させて複数個が順に積重状に収容配置さ
れる。従って、開口径の大口径化を実現したうえで、コ
ンパクトな収納が可能となり、宇宙空間への簡便にして
容易な輸送が可能となる。
According to the above construction, in the plurality of main reflecting mirrors, the first fitting portion of the mirror surface support body is fitted with the second fitting portion of the mirror surface support body of the other main reflecting mirror, The third fitting portion of the baffle cylinder on the reflecting mirror surface is connected to the fourth fitting of the baffle cylinder of the other main reflecting mirror.
A plurality of them are sequentially accommodated and stacked in a stack by being fitted with the fitting portion of. Therefore, it is possible to realize a large opening diameter and compact storage, and it is possible to easily and easily transport into space.

【0015】[0015]

【発明の実施の形態】以下、この発明の実施の形態につ
いて、図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will now be described in detail with reference to the drawings.

【0016】図1及び図2は、この発明の一実施の形態
に係る宇宙望遠鏡を示すもので、図1は側面を示し、図
2は、鏡面側から見た状態を示す。即ち、支持構造体1
0は、例えば梁部材が、折り畳み展開可能に略六角柱形
状にトラス結合されて形成される。そして、この支持構
造体10には、その一方端の周囲に略六角形形状の主反
射鏡11が6台、略円形状に着脱可能に取り付けられ
る。この支持構造体10の他方端には、副鏡取付部10
1が上記6台の主反射鏡11に対応して6箇所設けら
れ、この各副鏡取付部101には、副反射鏡12がそれ
ぞれ主反射鏡に対向するように取り付けられる。
1 and 2 show a space telescope according to an embodiment of the present invention. FIG. 1 shows a side surface, and FIG. 2 shows a state viewed from the mirror surface side. That is, the support structure 1
0 is formed, for example, by beam members being trussed in a substantially hexagonal column shape so as to be foldable and expandable. The support structure 10 has six substantially hexagonal main reflecting mirrors 11, which are detachably attached in a substantially circular shape, around one end thereof. At the other end of the support structure 10, the secondary mirror mounting portion 10
1 is provided in 6 places corresponding to the above-mentioned 6 main reflecting mirrors 11, and the sub reflecting mirrors 12 are attached to the respective sub mirror attaching portions 101 so as to face the main reflecting mirrors.

【0017】上記主反射鏡11は、例えば図3に示すよ
うに骨組み構造に形成される鏡面支持体13と、該鏡面
支持体13上に組み付けられる、例えばガラス等で略放
物面形状に形成される反射鏡面14で構成される。この
うち鏡面支持体13は、図4に示すようにその外形が上
記支持構造体10の一辺に対応するように略六角形形状
に形成され、その一方面には、鏡面支持部131が設け
られる。そして、この鏡面支持部131上には、上記反
射鏡面14の背面側が載置されて組み付けられる。
The main reflecting mirror 11 is, for example, as shown in FIG. 3, a mirror surface support 13 formed in a frame structure, and is assembled on the mirror surface support 13 and is formed of, for example, glass in a substantially parabolic shape. The reflecting mirror surface 14 is formed. Of these, the mirror surface support 13 is formed in a substantially hexagonal shape so that its outer shape corresponds to one side of the support structure 10 as shown in FIG. 4, and a mirror surface support portion 131 is provided on one surface thereof. . Then, the back side of the reflecting mirror surface 14 is placed and assembled on the mirror surface supporting portion 131.

【0018】また、鏡面支持体13には、その周囲の一
辺に構造体結合部132が上記支持構造体101に対応
して設けられ、この構造体結合部132を介して上記支
持構造体132に着脱される。さらに、鏡面支持体13
2には、構造体結合部132を挟んで鏡面結合部133
がそれぞれ設けられ、この鏡面結合部133を介して隣
接される他の主反射鏡11の鏡面支持体13に鏡面結合
部133と着脱される。
Further, the mirror support 13 is provided with a structure connecting portion 132 on one side around the mirror support 13 corresponding to the support structure 101, and is connected to the support structure 132 via the structure connecting portion 132. Detachable. Furthermore, the mirror surface support 13
2 includes a mirror coupling part 133 with the structure coupling part 132 interposed therebetween.
Are provided respectively, and are attached to and detached from the mirror surface coupling portion 133 on the mirror surface support 13 of the other main reflecting mirror 11 which is adjacent via the mirror surface coupling portion 133.

【0019】さらに、上記鏡面支持体13には、その鏡
面側の上面側に例えば図5に示すように凹状の第1の嵌
合部134が所定の間隔に設けられ、その背面側に凸状
に第2の嵌合部135が上記第1の嵌合部134に対応
して所定の間隔に設けられる。これら第1及び第2の嵌
合部134、135には、異なる主反射鏡11の鏡面支
持体13の第2及び第1の嵌合部135、134が嵌合
される。
Further, the mirror-like support 13 is provided with concave first fitting portions 134 at predetermined intervals on the mirror-like upper surface thereof, as shown in FIG. Second fitting portions 135 are provided at predetermined intervals corresponding to the first fitting portions 134. The first and second fitting portions 134, 135 are fitted with the second and first fitting portions 135, 134 of the mirror surface support 13 of the different main reflecting mirror 11.

【0020】また、上記反射鏡面14には、その略中央
部に遮光用のバッフル筒15が設けられ、このバッフル
筒15には、両端に嵌合可能に構成する第3及び第4の
嵌合部151、152が形成される。この第3及び第4
の嵌合部151、152は、他の主反射鏡11の反射鏡
面14のバッフル筒15の第4及び第3の嵌合部15
2、151に嵌合される。
The reflecting mirror surface 14 is provided with a baffle cylinder 15 for light shielding at a substantially central portion thereof, and the baffle cylinder 15 is provided with third and fourth fittings which can be fitted to both ends. The parts 151 and 152 are formed. This third and fourth
The fitting portions 151, 152 of the second and third fitting portions 15 of the baffle cylinder 15 of the reflecting mirror surface 14 of the other main reflecting mirror 11
2, 151 is fitted.

【0021】即ち、6台の主反射鏡11は、その第1及
び第3の嵌合部134、151に対して、その鏡面側に
積重される他の主反射鏡11に第2及び第4の嵌合部1
35、152が嵌合され、その第2及び第4の嵌合部1
35、152に対してその背面側に積重される他の主反
射鏡11の第1及び第3の嵌合部134、151が嵌合
されて積重配置される。これにより、6台の主反射鏡1
1は、その第1乃至第4の嵌合部134、135、15
1、152の作用により、略六角柱形状に位置決めされ
た状態で収納されて、宇宙空間への効率的な輸送が可能
となる。
That is, the six main reflecting mirrors 11 are provided with the second and second main reflecting mirrors 11 stacked on the mirror surface side of the first and third fitting portions 134 and 151. Fitting part 1 of 4
35 and 152 are fitted together, and the second and fourth fitting portions 1 thereof are
The first and third fitting portions 134 and 151 of the other main reflecting mirror 11, which are stacked on the back surface side of 35 and 152, are fitted and stacked. As a result, the six main reflecting mirrors 1
1 is the first to fourth fitting portions 134, 135, 15
By the action of 1, 152, it is housed in a state of being positioned in a substantially hexagonal prism shape, and efficient transportation to outer space is possible.

【0022】上記6台の主反射鏡11には、そのバッフ
ル筒15の出力側に個別観測装置16がそれぞれ配設さ
れる。この個別観測装置16は、例えば図6に示すよう
にバッフル筒15に対応して配設される個別観測選択用
の切換反射境161及び個別観測部162でそれぞれ構
成される。この切換反射鏡161は、例えば後述する通
信系の通信アンテナ17を介して入力される切換信号に
より切換制御され、バッフル筒15に集光された光を選
択的に個別観測部162に案内する。この個別観測部1
62は、入力した光を受光して例えば記録すると共に、
その観測データを、上記通信アンテナ17を介して地上
局等の基地局に送信する。
An individual observation device 16 is provided on the output side of the baffle cylinder 15 of each of the six main reflecting mirrors 11. The individual observation device 16 is composed of a switching reflection boundary 161 for individual observation selection and an individual observation unit 162, which are arranged corresponding to the baffle cylinder 15 as shown in FIG. 6, for example. The switching reflecting mirror 161 is switch-controlled by a switching signal input via a communication antenna 17 of a communication system described later, and selectively guides the light condensed on the baffle tube 15 to the individual observation section 162. This individual observation section 1
62 receives the input light and, for example, records the received light,
The observation data is transmitted to a base station such as a ground station via the communication antenna 17.

【0023】また、切換反射鏡161の後段には、光束
合成光学系18が設けられ、この光束合成光学系18の
後段には、観測部19が配設される。この光束結合光学
系18には、主反射鏡11に対応して位相調整器181
及び指向制御機構部182がそれぞれ設けられ、その出
力側には、上記観測部19及び偏差・位相差検出センサ
20が部分反射器21を介して設けられる。
Further, a light beam combining optical system 18 is provided after the switching reflecting mirror 161, and an observing section 19 is provided after the light beam combining optical system 18. The beam combiner optical system 18 includes a phase adjuster 181 corresponding to the main reflecting mirror 11.
, And a pointing control mechanism section 182 are provided respectively, and the observation section 19 and the deviation / phase difference detection sensor 20 are provided on the output side thereof via a partial reflector 21.

【0024】このうち偏差・位相差検出センサ20は、
部分反射器21を介して光束合成された光が入力される
と、その偏差及び位相差を検出して信号処理部22に出
力する。信号処理部22は、入力した偏差及び位相差情
報に基づいて主反射鏡11毎の指向駆動信号及び位相調
整信号を形成して上記指向制御機構部182及び位相調
整器181に出力する。この指向制御機構部182及び
位相調整器182は、入力した指向駆動信号及び位相調
整信号に基づいて指向方向を制御すると共に、その位相
を調整制御する。
Of these, the deviation / phase difference detection sensor 20 is
When the light combined by the light flux is input through the partial reflector 21, the deviation and the phase difference are detected and output to the signal processing unit 22. The signal processing unit 22 forms a pointing drive signal and a phase adjustment signal for each main reflecting mirror 11 based on the input deviation and phase difference information, and outputs the pointing drive signal and the phase adjustment signal to the pointing control mechanism unit 182 and the phase adjuster 181. The pointing control mechanism unit 182 and the phase adjuster 182 control the pointing direction based on the input pointing drive signal and phase adjustment signal, and adjust and control the phase.

【0025】また、上記信号処理部22は、偏差情報を
宇宙航行体を構成する宇宙バス系の姿勢制御部23に出
力する。この姿勢制御部23には、図示しない検出セン
サを介して姿勢情報が入力されると共に、指令情報が入
力され、これら姿勢情報及び指令情報と偏差情報とに基
づいて姿勢制御信号を生成して図示しないアクチュエー
タを駆動して全体の姿勢を制御する。
Further, the signal processing unit 22 outputs the deviation information to the attitude control unit 23 of the space bus system which constitutes the spacecraft. The posture information is input to the posture control unit 23 via a detection sensor (not shown) and command information is input, and a posture control signal is generated based on the posture information and the command information and the deviation information. Do not drive the actuator to control the overall posture.

【0026】他方、上記観測部19は、光束合成された
光を受光して記録すると共に、その観測データを、上記
通信アンテナ17を介して地上局等の基地局に送信す
る。
On the other hand, the observing section 19 receives and records the combined light flux, and transmits the observation data to the base station such as a ground station via the communication antenna 17.

【0027】上記宇宙バス系としては、その他、例えば
太陽電池パドル等の電源系24、や上記通信系を構成す
る通信アンテナ17、熱制御系等が設けられ、その電源
系24を介して上記個別観測装置16、偏差・位相差検
出センサ20、指向制御機構部182、位相調整器18
1、信号処理部22、上記検出センサ(図示せず)等に
対して電力が供給される。
As the space bus system, in addition, a power supply system 24 such as a solar cell paddle, a communication antenna 17 constituting the communication system, a thermal control system, etc. are provided, and the individual power supply system 24 is used to provide the individual power supply system. Observation device 16, deviation / phase difference detection sensor 20, pointing control mechanism section 182, phase adjuster 18
1, power is supplied to the signal processing unit 22, the detection sensor (not shown), and the like.

【0028】また、上記支持構造体10には、図7に示
すように作業ロボットアーム把持用の複数の取っ手25
が所定の間隔に設けられる。これら複数の取っ手25
は、例えば図8(a)(b)(c)に示すように係止孔
251及び電気コネクタ252が設けられる。この取っ
手25の電気コネクタ252は、上記電源系24に電気
的に接続される。そして、この取っ手25は、その係止
孔251が作業ロボットアーム26(図9参照)の指部
により係止されて把持されると、該作業ロボットアーム
26が電気コネクタ252を介して上記電源系24等と
電気的に接続される。
Further, as shown in FIG. 7, the support structure 10 has a plurality of handles 25 for gripping the work robot arm.
Are provided at predetermined intervals. These multiple handles 25
For example, as shown in FIGS. 8A, 8B, and 8C, a locking hole 251 and an electric connector 252 are provided. The electric connector 252 of the handle 25 is electrically connected to the power supply system 24. When the locking hole 251 of the handle 25 is gripped by being locked by the fingers of the work robot arm 26 (see FIG. 9), the work robot arm 26 receives the power supply system via the electric connector 252. 24 and the like are electrically connected.

【0029】上記作業ロボットアーム26は、図示しな
いが、例えば両端に電気コネクタを備えた把持部が設け
られ、その一端の把持部で支持構造体10の一つの取っ
手25を把持した状態で、その他方の把持部で支持構造
体10の他の取っ手25を把持したり、上記主反射鏡1
1の鏡面支持体13に設けられる取っ手136を把持す
ることが可能に構成される。この際、作業ロボットアー
ム26は、その一端の把持部で支持構造体10の取っ手
25を把持した状態で、該取っ手25の電気コネクタ2
52を介して上記電源系24等に電気的に接続されて動
作制御が行われる。これにより、作業ロボットアーム2
6としては、比較的小形のものを用いて主反射鏡11を
支持構造体10に着脱することが可能となり、宇宙空間
における安全な組立作業が可能となる。
Although not shown, the work robot arm 26 has, for example, gripping portions provided with electrical connectors at both ends, and one gripping portion 25 of the support structure 10 is gripped by the gripping portions at one end of the work robot arm 26. The other grip 25 of the support structure 10 is gripped by one gripping portion, and the main reflecting mirror 1 described above is used.
The handle 136 provided on the first mirror surface support 13 can be held. At this time, the work robot arm 26 holds the handle 25 of the support structure 10 with the grip portion at one end thereof, and then the electric connector 2 of the handle 25 is held.
It is electrically connected to the power supply system 24 and the like via 52 to control the operation. As a result, the work robot arm 2
As 6, the main reflecting mirror 11 can be attached to and detached from the support structure 10 by using a relatively small one, and a safe assembling work in outer space becomes possible.

【0030】例えば、上記主反射鏡11の鏡面支持体1
3に設けられる取っ手136は、作業ロボットアーム2
6の把持部(図示せず)により把持された状態で、その
構造体結合部132及び鏡面結合部13を結合可能な鏡
面支持体13の所定に位置に設けられる。
For example, the mirror surface support 1 for the main reflecting mirror 11
The handle 136 provided on the work robot arm 2 is
6 is provided at a predetermined position of the mirror surface support body 13 to which the structure body coupling portion 132 and the mirror surface coupling portion 13 can be coupled in a state of being grasped by the grasping portion 6 (not shown).

【0031】上記構成において、例えば支持構造体10
には、その略中央部に光束合成光学系18及び観測部1
9が組み付けられると共に、宇宙バス系を構成する姿勢
制御部23、電源系24及び通信アンテナ17等が配設
され、この状態で宇宙空間に輸送される。ここで、支持
構造体10は、図示しない展開機構部が駆動されて略六
角柱形状に展開され、その副鏡取付部101に対して副
反射鏡12が取り付けられる。
In the above structure, for example, the support structure 10
Of the beam combining optical system 18 and the observing unit
9 is assembled, the attitude control unit 23, the power supply system 24, the communication antenna 17, and the like that form the space bus system are arranged, and the space bus system is transported in this state. Here, the supporting structure 10 is expanded into a substantially hexagonal column shape by driving a not-illustrated expanding mechanism section, and the sub-reflecting mirror 12 is attached to the sub-mirror attaching section 101.

【0032】一方、主反射鏡11は、上述したように6
台が、その鏡面支持体13の第1及び第3の嵌合部13
4、151を、鏡面側に積重される他の主反射鏡11の
鏡面支持体13の第2及び第4の嵌合部135、152
を嵌合させると共に、その第2及び第4の嵌合部13
5、152を背面側に積重される他の主反射鏡11の鏡
面支持体13の第1及び第3の嵌合部134、151に
嵌合させて順に積重状に収納した状態で、宇宙空間に輸
送される。ここで、これら6台の主反射鏡11は、各第
1乃至第4の嵌合部134、135、151、152の
嵌合により、堅牢な状態に保たれて、宇宙空間まで安全
に輸送される。
On the other hand, the main reflecting mirror 11 has the 6
The base is the first and third fitting portions 13 of the mirror surface support body 13.
Second and fourth fitting portions 135, 152 of the mirror surface support 13 of the other main reflecting mirror 11 stacked on the mirror surface side.
And the second and fourth fitting portions 13 thereof.
In a state in which 5, 152 are fitted in the first and third fitting portions 134, 151 of the mirror surface support 13 of the other main reflecting mirror 11 to be stacked on the back side, and are housed in a stack in order, Transported to outer space. Here, these six main reflecting mirrors 11 are kept in a robust state by the fitting of the first to fourth fitting portions 134, 135, 151, 152, and are safely transported to outer space. It

【0033】そして、宇宙空間において、支持構造体1
0の一方端の周囲部には、その取っ手25を、図9に示
すように作業ロボットアーム26で把持した状態で、該
作業ロボットアーム26の先端部側の把持部で、6台の
主反射鏡11の鏡面支持体13の取っ手136が把持さ
れて、その構造体結合部132が取り付けられて、上述
したように略リング状に取り付けられる。この際、6台
の主反射鏡11は、その鏡面結合部133が隣接される
主反射鏡11の鏡面結合部133と結合されて略リング
形状に一体的に組み付けられる。ここで、6台の主反射
鏡11には、支持構造体10の副鏡取付部101に取り
付けられた副反射鏡12が対向配置されて支持構造体1
0への組付け配置が完了される(図10参照、但し、図
10中では、一箇所のみを図示)。
In the outer space, the support structure 1
In the peripheral portion of one end of 0, with the handle 25 being gripped by the work robot arm 26 as shown in FIG. The handle 136 of the mirror surface support 13 of the mirror 11 is gripped, the structure coupling portion 132 thereof is attached, and the attachment is substantially ring-shaped as described above. At this time, the six main reflecting mirrors 11 are integrally assembled in a substantially ring shape by joining the mirror surface coupling portions 133 to the mirror surface coupling portions 133 of the adjacent main reflecting mirrors 11. Here, the sub-reflecting mirrors 12 attached to the sub-mirror attaching portions 101 of the supporting structure 10 are arranged so as to face the six main reflecting mirrors 11 so that the supporting structure 1
The assembling placement to 0 is completed (see FIG. 10, but only one place is shown in FIG. 10).

【0034】ここで、上述したように6台の主反射鏡1
1は、各指向方向の光を取り込んで各副反射鏡12を介
して各バッフル筒15に光を集光する。この各主反射鏡
11で集光された光は、それぞれ個別観測装置16に入
力される。
Here, as described above, the six main reflecting mirrors 1
Reference numeral 1 captures light in each direction and focuses the light on each baffle cylinder 15 via each sub-reflecting mirror 12. The light collected by each main reflecting mirror 11 is input to the individual observation device 16.

【0035】個別観測装置16は、指令情報に基づいて
切換反射鏡161を動作制御して選択的に個別観測部1
62でそれぞれの主反射鏡で集光した光の受光、記録を
実行して、その観測データを上記通信アンテナ17を介
して基地局に送信する。
The individual observation device 16 selectively controls the switching reflecting mirror 161 based on the command information to selectively operate the individual observation unit 1.
At 62, the light collected by each main reflecting mirror is received and recorded, and the observation data is transmitted to the base station via the communication antenna 17.

【0036】また、個別観測装置16は、選択的に光束
合成光学系18に各主反射鏡11で集光した光を出力す
る。この光束合成光学系18に導かれ各光は、合成され
て部分反射器21を介して観測部19及び偏差・位相差
検出センサ20にそれぞれ出力される。すると、偏差・
位相差検出センサ20は、入力した光に基づいて各主反
射鏡11の偏差及び位相差を算出して信号処理部22に
出力する。信号処理部22は、入力した偏差及び位相差
情報に基づいて指向駆動信号及び位相調整信号を生成し
て指向制御機構部182及び位相調整器181を駆動制
御して、各指向方向及び位相を調整する。
Further, the individual observation device 16 selectively outputs the light condensed by each main reflecting mirror 11 to the light flux combining optical system 18. The respective lights guided to the light flux combining optical system 18 are combined and output to the observation unit 19 and the deviation / phase difference detection sensor 20 via the partial reflector 21. Then the deviation
The phase difference detection sensor 20 calculates the deviation and the phase difference of each main reflecting mirror 11 based on the input light and outputs it to the signal processing unit 22. The signal processing unit 22 generates a directional drive signal and a phase adjustment signal based on the input deviation and phase difference information, drives and controls the directional control mechanism unit 182 and the phase adjuster 181, and adjusts each directional direction and phase. To do.

【0037】また、信号処理部22は、偏差情報を姿勢
制御部23に出力する。この姿勢制御部23には、上述
したように姿勢情報及び指令情報が入力され、これら姿
勢情報及び指令情報と偏差情報とに基づいて姿勢制御信
号を生成して上記アクチュエータ(図示せず)を駆動し
て全体の姿勢を制御する。
The signal processing section 22 also outputs deviation information to the attitude control section 23. The posture information and the command information are input to the posture control unit 23 as described above, and a posture control signal is generated based on the posture information and the command information and the deviation information to drive the actuator (not shown). And control the whole posture.

【0038】このように、上記宇宙望遠鏡は、宇宙航行
体を構成するための宇宙バス系を配備すると共に、その
支持構造体10の周囲に対して、外形が略六角形形状に
形成される6台の主反射鏡11を着脱可能に組み付け
て、この6台の主反射鏡11の鏡面に対向して配設され
る副反射鏡12を対向配置し、これら主反射鏡11及び
副反射鏡12を介して集光した光を観測するように構成
した。
As described above, the space telescope is provided with a space bus system for constructing a space navigation body, and its outer shape is formed into a substantially hexagonal shape around the support structure 10. The main reflecting mirrors 11 of the table are detachably assembled, and the sub-reflecting mirrors 12 arranged so as to face the mirror surfaces of the six main reflecting mirrors 11 are arranged to face each other. It was configured to observe the light condensed via the.

【0039】これによれば、6台の主反射鏡11は、支
持構造体10の周囲に略リング形状に配置することがで
きることにより、その収納状態における外形寸法を所望
の寸法に保ってうえで、鏡面としての開口径の大口径化
を促進することが可能となる。従って、信頼性の高い高
精度な観測を行うことが可能となる。
According to this, since the six main reflecting mirrors 11 can be arranged in a substantially ring shape around the support structure 10, the outer dimensions in the housed state can be maintained at desired dimensions. Therefore, it becomes possible to promote the enlargement of the aperture diameter as a mirror surface. Therefore, highly reliable and highly accurate observation can be performed.

【0040】なお、上記実施の形態では、支持構造体1
0として、梁部材を、略六角柱形状のトラス結合して折
り畳み展開可能に構成した場合で説明したが、これに限
ることなく、例えば梁部材等の構成部材を分割組立可能
に組合せ構成した支持構造においても適用可能である。
また、支持構造体10の一部を展開式にして、その他の
部分を組立式に構成するようにしてもよい。さらに、支
持構造体の形状としては、略六角柱形状に限ることな
く、構成することが可能である。
In the above embodiment, the support structure 1
0 has been described as a case where the beam members are configured by truss connection of a substantially hexagonal column shape so that the beam members can be folded and expanded. It can also be applied to the structure.
Further, a part of the support structure 10 may be a development type and the other parts may be an assembly type. Further, the shape of the support structure is not limited to the substantially hexagonal prism shape, and can be configured.

【0041】また、上記実施の形態では、支持構造体1
0に副鏡取付部101を設けて、この副鏡取付部101
に副反射鏡12を取り付け配置するように構成した場合
で説明したが、これに限ることなく、例えば図11に示
すように主反射鏡11に支持部材111を介して一体的
に取り付けて、主反射鏡11とともに支持構造体10に
取り付け配置するように構成することも可能である。
Further, in the above embodiment, the support structure 1
0 is provided with a secondary mirror mounting portion 101, and the secondary mirror mounting portion 101
The case where the sub-reflecting mirror 12 is attached to the main reflecting mirror 12 has been described above. However, the present invention is not limited to this. For example, as shown in FIG. It may be configured to be attached to the support structure 10 together with the reflecting mirror 11.

【0042】さらに、上記実施の形態では、主反射鏡1
1の後段にそれぞれ個別観測装置16を配設して選択的
に各主反射鏡11で取り込んだ光を観測し得るように構
成した場合で説明したが、これに限ることなく、個別観
測装置16を設けることなく、光束合成光学系18で直
接的に各光を合成して、その合成した光を観測するよう
に構成してもよい。この場合には、個別観測装置16を
備える構成に比して運用の多様化の点で若干劣ることと
なる。
Further, in the above embodiment, the main reflecting mirror 1
The case where the individual observation devices 16 are arranged in the latter stage of the first configuration so that the light captured by each main reflecting mirror 11 can be selectively observed has been described, but the invention is not limited to this. Alternatively, it is possible to directly combine the light beams by the light beam combining optical system 18 and observe the combined light beam without arranging. In this case, it is slightly inferior to the configuration including the individual observation device 16 in terms of diversification of operation.

【0043】また、上記実施の形態では、支持構造体1
0に対して光束合成光学系18及び観測部19が組み付
けられると共に、宇宙バス系を構成する姿勢制御部2
3、電源系24及び通信アンテナ17等が組み付け配置
して、宇宙空間に輸送するように構成した場合で説明し
たが、これの限ることなく、例えばこれらを宇宙空間に
おいて支持構造体10に組み付け配置するように構成す
ることも可能である。
Further, in the above embodiment, the support structure 1
The light flux synthesizing optical system 18 and the observing unit 19 are assembled with respect to 0, and the attitude control unit 2 forming the space bus system
3, the power supply system 24, the communication antenna 17 and the like are assembled and arranged to be transported to outer space. However, the present invention is not limited to this, and for example, these are assembled and arranged on the support structure 10 in outer space. It can also be configured to do so.

【0044】さらに、上記実施の形態では、6台の主反
射鏡11を支持構造体10の周囲に略円形状に配置する
ように構成した場合で説明したが、この数に限ることな
く、配置構成することも可能である。
Further, in the above-described embodiment, the case where the six main reflecting mirrors 11 are arranged around the support structure 10 in a substantially circular shape has been described, but the number is not limited to this. It is also possible to configure.

【0045】よって、この発明は、上記実施の形態に限
ることなく、その他、実施段階ではその要旨を逸脱いな
い範囲で種々の変形を実施し得ることが可能である。さ
らに、上記実施形態には、種々の段階の発明が含まれて
おり、開示される複数の構成要件における適宜な組合せ
により種々の発明が抽出され得る。
Therefore, the present invention is not limited to the above-described embodiment, and in addition, various modifications can be carried out at the stage of implementation without departing from the scope of the invention. Further, the embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

【0046】例えば実施形態に示される全構成要件から
幾つかの構成要件が削除されても、発明が解決しようと
する課題の欄で述べた課題が解決でき、発明の効果で述
べられている効果が得られる場合には、この構成要件が
削除された構成が発明として抽出され得る。
For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, the problems described in the section of the problem to be solved by the invention can be solved, and the effects described in the effects of the invention can be obtained. When the above is obtained, the configuration in which this constituent element is deleted can be extracted as the invention.

【0047】[0047]

【発明の効果】以上詳述したように,この発明によれ
ば、宇宙空間までの効率的な輸送を実現したうえで、開
口径の大口径化を図り得るようにして、信頼性の高い高
精度な観測を実現した宇宙望遠鏡を提供することができ
る。
As described above in detail, according to the present invention, efficient transportation to outer space can be realized, and at the same time, the aperture diameter can be increased to achieve high reliability and high reliability. It is possible to provide a space telescope that realizes accurate observation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施の形態に係る宇宙望遠鏡の側
面から見た状態を示したそ構成図である。
FIG. 1 is a configuration diagram showing a state of a space telescope according to an embodiment of the present invention viewed from a side surface.

【図2】図1を鏡面側から見た状態を示した構成図であ
る。
FIG. 2 is a configuration diagram showing a state in which FIG. 1 is viewed from a mirror surface side.

【図3】図1の主反射鏡を取り出して示した図である。FIG. 3 is a diagram showing the main reflecting mirror of FIG. 1 taken out.

【図4】図1の主反射鏡の鏡面支持体を取り出した図で
ある。
FIG. 4 is a view showing a mirror surface support of the main reflecting mirror shown in FIG.

【図5】図3を断面して示した図である。5 is a cross-sectional view of FIG.

【図6】図1の光学系の構成を示した図である。FIG. 6 is a diagram showing a configuration of the optical system of FIG.

【図7】図1を分解して示した図である。7 is an exploded view of FIG. 1. FIG.

【図8】図1のロボット把持用の取っ手の構成を示した
図である。
FIG. 8 is a diagram showing a configuration of a grip for gripping the robot of FIG. 1.

【図9】図1の主反射鏡の組立動作を説明するために示
した図である。
FIG. 9 is a diagram shown for explaining an assembling operation of the main reflecting mirror of FIG. 1.

【図10】支持構造体に組み付けられた主反射鏡及び副
反射鏡の位置関係を示した図である。
FIG. 10 is a diagram showing a positional relationship between a main reflecting mirror and a sub-reflecting mirror assembled to a support structure.

【図11】この発明の他の実施の形態を示した図でる。FIG. 11 is a diagram showing another embodiment of the present invention.

【図12】従来の宇宙望遠鏡を示した構成図である。FIG. 12 is a configuration diagram showing a conventional space telescope.

【符号の説明】[Explanation of symbols]

10 … 支持構造体。 101 … 副鏡取付部。 11 … 主反射鏡。 111 … 支持部材。 12 … 副鏡。 13 … 鏡面支持体。 131 … 鏡面支持部。 132 … 構造体結合部。 133 … 鏡面結合部。 134 … 第1の嵌合部。 135 … 第2の嵌合部。 136 … 取っ手。 14 … 反射鏡面。 15 … バッフル筒。 151 … 第3の嵌合部。 152 … 第4の嵌合部。 16 … 個別観測装置。 161 … 切換反射鏡。 162 … 個別観測部。 17 … 通信アンテナ。 18 … 光束合成光学系。 181 … 位相調整器。 182 … 指向制御機構部。 19 … 観測部。 20 … 偏差・位相差検出センサ。 21 … 部分反射器。 22 … 信号処理部。 23 … 姿勢制御部。 24 … 電源系。 25 … 取っ手。 251 … 係止孔。 252 … 電気コネクタ。 26 … 作業ロボットアーム。 10 ... Support structure. 101 ... Secondary mirror mounting portion. 11 ... Main reflector. 111 ... Support member. 12 ... Secondary mirror. 13 ... Mirror surface support. 131 ... Mirror surface support. 132 ... Structure connecting part. 133 ... Mirror surface coupling part. 134 ... 1st fitting part. 135 ... 2nd fitting part. 136 ... Handle. 14 ... Reflective mirror surface. 15 ... Baffle cylinder. 151 ... 3rd fitting part. 152 ... 4th fitting part. 16 ... Individual observation device. 161 ... Switching mirror. 162 ... Individual observation unit. 17 ... Communication antenna. 18 ... Light flux combining optical system. 181 ... Phase adjuster. 182 ... Direction control mechanism section. 19 ... Observation Department. 20 ... Deviation / phase difference detection sensor. 21 ... Partial reflector. 22 ... Signal processing unit. 23 ... Attitude control unit. 24 ... Power supply system. 25 ... Handle. 251 ... Locking hole. 252 ... Electrical connector. 26 ... Working robot arm.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 301072650 エヌイーシー東芝スペースシステム株式会 社 神奈川県横浜市港北区新横浜二丁目6番3 号 (74)上記1名の代理人 100071272 弁理士 後藤 洋介 (外1名) (72)発明者 西田 信一郎 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 (72)発明者 戎崎 俊一 埼玉県和光市広沢2番1号 理化学研究所 内 Fターム(参考) 2H039 AA02 AB24 AB44 AB57 AC00 2H043 CA01 CB02 CD04 CE00    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 301072650             NEC Toshiba Space Systems Stock Association             Company             2-6-3 Shin-Yokohama, Kohoku Ward, Yokohama City, Kanagawa Prefecture             issue (74) One agent mentioned above 100071272               Attorney Yosuke Goto (1 outside) (72) Inventor Shinichiro Nishida             1st Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa             Ceremony Company Toshiba Komukai Factory (72) Inventor Shunichi Ebisaki             2-1, Hirosawa, Wako-shi, Saitama RIKEN             Within F-term (reference) 2H039 AA02 AB24 AB44 AB57 AC00                 2H043 CA01 CB02 CD04 CE00

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 支持構造体の周囲に着脱可能に配設され
る外形が略六角形形状に形成された複数の主反射鏡と、 これら複数の主反射鏡の鏡面に対向して配設される複数
の副反射鏡と、 前記複数の主反射鏡及び複数の副反射鏡を介して集光し
た光を観測する光観測手段と、 宇宙航行体を構成するための宇宙バス系とを具備したこ
とを特徴とする宇宙望遠鏡。
1. A plurality of main reflecting mirrors which are detachably arranged around a support structure and whose outer shape is formed into a substantially hexagonal shape, and a plurality of main reflecting mirrors which are arranged so as to face the mirror surfaces of the plurality of main reflecting mirrors. A plurality of sub-reflecting mirrors, a light observing means for observing the light condensed through the plurality of main reflecting mirrors and the plurality of sub-reflecting mirrors, and a space bus system for constituting a spacecraft. Space telescope characterized by that.
【請求項2】 前記支持構造体は、分割可能な複数の構
造部材を略六角柱形状に組立結合したことを特徴とする
請求項1記載の宇宙望遠鏡。
2. The space telescope according to claim 1, wherein the support structure is formed by assembling and coupling a plurality of divisible structural members into a substantially hexagonal prism shape.
【請求項3】 前記支持構造体を構成する分割可能な複
数の構造部材は、少なくとも一部が折り畳み展開可能に
設けられることを特徴とする請求項2記載の宇宙望遠
鏡。
3. The space telescope according to claim 2, wherein at least a part of the plurality of divisible structural members forming the support structure is provided so as to be foldable and expandable.
【請求項4】前記支持構造体は、折り畳み展開可能に形
成され、略六角柱形状に展開されることを特徴とする請
求項1記載の宇宙望遠鏡。
4. The space telescope according to claim 1, wherein the support structure is formed to be foldable and expandable, and is expanded into a substantially hexagonal column shape.
【請求項5】前記支持構造体は、折り畳み展開可能な展
開構造と、この展開構造に組立結合される組立構造とで
形成されることを特徴とする請求項4記載の宇宙望遠
鏡。
5. The space telescope according to claim 4, wherein the support structure is formed of a deployable structure that can be folded and deployed, and an assembly structure that is assembled and coupled to the deployable structure.
【請求項6】 上記支持構造体は、作業ロボットアーム
が解放可能に把持するもので、前記作業ロボットアーム
の把持状態で該作業ロボットアームと電気的に接続され
る前記宇宙バス系に接続された電気コネクタを有する複
数の取っ手が設けられることを特徴とする請求項1乃至
5のいずれか記載の宇宙望遠鏡。
6. The support structure is releasably gripped by a work robot arm, and is connected to the space bus system electrically connected to the work robot arm in a gripped state of the work robot arm. A space telescope according to any one of the preceding claims, characterized in that a plurality of handles with electrical connectors are provided.
【請求項7】 前記光観測手段は、前記複数の主反射鏡
で集光した光を個別に観測する個別観測手段と、前記複
数の主反射鏡で集光した光を合成して観測する光束合成
観測手段と、前記個別観測手段及び前記光束合成観測手
段のいずれかを選択して個別観測あるいは光束合成観測
を実行する観測選択手段とを備えることを特徴とする請
求項1乃至6のいずれか記載の宇宙望遠鏡。
7. The light observing means combines the individual observing means for individually observing the light collected by the plurality of main reflecting mirrors and the light flux for observing the light collected by the plurality of main reflecting mirrors. 7. A combination observation means, and an observation selection means for selecting one of the individual observation means and the light flux synthesis observation means to perform individual observation or light flux synthesis observation, according to any one of claims 1 to 6. Space telescope as described.
【請求項8】 前記複数の主反射鏡は、外形が略六角形
形状の鏡面支持体と、この鏡面支持体の一方面に配設さ
れる略中央部にバッフル筒が設けられた反射鏡面とを備
え、前記鏡面支持体の鏡面側及び背面側に第1及び第2
の嵌合部を設けると共に、前記反射鏡面のバッフル筒の
両端に第3及び第4の嵌合部を設けて前記鏡面支持体の
第1の嵌合部を、他の主反射鏡の鏡面支持体の第2の嵌
合部と嵌合させ、前記反射鏡面のバッフル筒の第3の嵌
合部を前記他の主反射鏡のバッフル筒の第4の嵌合部と
嵌合させて複数個を積重状に収容可能に構成したことを
特徴とする請求項1乃至7のいずれか記載の宇宙望遠
鏡。
8. The plurality of main reflecting mirrors include a mirror surface support whose outer shape is a substantially hexagonal shape, and a reflecting mirror surface provided with a baffle cylinder at a substantially central portion arranged on one surface of the mirror surface support. And a first surface and a second surface on the mirror surface side and the back surface side of the mirror surface support.
And a third and a fourth fitting portion are provided at both ends of the baffle cylinder for the reflecting mirror surface, and the first fitting portion of the mirror surface support is used for supporting the mirror surface of another main reflecting mirror. A plurality of fitting units are fitted to the second fitting unit of the body, and the third fitting unit of the baffle cylinder of the reflecting mirror surface is fitted to the fourth fitting unit of the baffle cylinder of the other main reflecting mirror. The space telescope according to claim 1, wherein the space telescopes are configured so that they can be housed in a stack.
【請求項9】 前記副反射鏡は、前記支持構造体あるい
は前記主反射鏡のいずれか一方に、前記主反射鏡の鏡面
に対応して取付配置されることを特徴とする請求項1乃
至8のいずれか記載の宇宙望遠鏡。
9. The sub-reflecting mirror is attached to one of the support structure and the main reflecting mirror so as to correspond to a mirror surface of the main reflecting mirror. Space telescope according to any one of.
【請求項10】 前記宇宙バス系は、少なくとも外部局
との通信を実行する通信手段と、 電力を供給するための電力源と、 前記複数の主反射鏡、前記複数の副反射鏡、前記光観測
手段、前記通信手段及び前記電力源を含む前記支持構造
体の姿勢を制御する姿勢制御手段とを備えることを特徴
とする請求項1乃至9のいずれか記載の宇宙望遠鏡。
10. The space bus system includes a communication unit that performs communication with at least an external station, a power source for supplying power, the plurality of main reflecting mirrors, the plurality of sub-reflecting mirrors, and the light. The space telescope according to any one of claims 1 to 9, further comprising: an observation means, the communication means, and an attitude control means for controlling an attitude of the support structure including the power source.
JP2001292224A 2001-09-25 2001-09-25 Space telescope Expired - Fee Related JP4955166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292224A JP4955166B2 (en) 2001-09-25 2001-09-25 Space telescope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292224A JP4955166B2 (en) 2001-09-25 2001-09-25 Space telescope

Publications (2)

Publication Number Publication Date
JP2003098441A true JP2003098441A (en) 2003-04-03
JP4955166B2 JP4955166B2 (en) 2012-06-20

Family

ID=19114228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292224A Expired - Fee Related JP4955166B2 (en) 2001-09-25 2001-09-25 Space telescope

Country Status (1)

Country Link
JP (1) JP4955166B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436052A (en) * 2011-12-13 2012-05-02 北京空间机电研究所 Optical axis levelling and gravity unloading supporting method of large diameter lightweight mirror
JP2012103332A (en) * 2010-11-08 2012-05-31 Nano Optonics Energy Co Ltd Altazimuth mount type reflecting telescope
JP2018529992A (en) * 2015-09-29 2018-10-11 レイセオン カンパニー High rigidity structure for large aperture telescope
CN113589517A (en) * 2021-08-11 2021-11-02 哈尔滨工业大学 Separable modular sub-mirror structure of large-scale space telescope and on-orbit replacement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455232B1 (en) 2013-01-07 2014-11-04 한국 천문 연구원 Optical system of signal detection for near-infrared and tera hertz waves band

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600308A (en) * 1983-10-21 1986-07-15 Rockwell International Corporation Phase-matching arrayed telescopes with a corner-cube-bridge metering rod
US5108168A (en) * 1990-05-16 1992-04-28 The United States Of America As Represented By The United States Department Of Energy High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center
JPH07214486A (en) * 1994-02-01 1995-08-15 Hitachi Ltd Gripping device with gripping temperature control function
US5905591A (en) * 1997-02-18 1999-05-18 Lockheed Martin Corporation Multi-aperture imaging system
WO1999038044A1 (en) * 1998-01-22 1999-07-29 Aerospatiale Societe Nationale Industrielle Assembly for mounting and correcting the position of an element, such as a mirror, of a space telescope
US6226121B1 (en) * 2000-03-16 2001-05-01 Trw Inc. Optical telescope system with discontinuous pupil corrector and segmented primary mirror with spherical segments

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600308A (en) * 1983-10-21 1986-07-15 Rockwell International Corporation Phase-matching arrayed telescopes with a corner-cube-bridge metering rod
US5108168A (en) * 1990-05-16 1992-04-28 The United States Of America As Represented By The United States Department Of Energy High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center
JPH07214486A (en) * 1994-02-01 1995-08-15 Hitachi Ltd Gripping device with gripping temperature control function
US5905591A (en) * 1997-02-18 1999-05-18 Lockheed Martin Corporation Multi-aperture imaging system
WO1999038044A1 (en) * 1998-01-22 1999-07-29 Aerospatiale Societe Nationale Industrielle Assembly for mounting and correcting the position of an element, such as a mirror, of a space telescope
US6226121B1 (en) * 2000-03-16 2001-05-01 Trw Inc. Optical telescope system with discontinuous pupil corrector and segmented primary mirror with spherical segments

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103332A (en) * 2010-11-08 2012-05-31 Nano Optonics Energy Co Ltd Altazimuth mount type reflecting telescope
CN102436052A (en) * 2011-12-13 2012-05-02 北京空间机电研究所 Optical axis levelling and gravity unloading supporting method of large diameter lightweight mirror
JP2018529992A (en) * 2015-09-29 2018-10-11 レイセオン カンパニー High rigidity structure for large aperture telescope
CN113589517A (en) * 2021-08-11 2021-11-02 哈尔滨工业大学 Separable modular sub-mirror structure of large-scale space telescope and on-orbit replacement method

Also Published As

Publication number Publication date
JP4955166B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
US10518909B2 (en) On-orbit assembly of communication satellites
EP1332966B1 (en) Frame structure
US10774518B1 (en) Systems and methods for joining space frame structures
US6343442B1 (en) Flattenable foldable boom hinge
US5898529A (en) Deployable space-based telescope
JP3435081B2 (en) Reconfigurable Space Manipulator System for Space
CN110536789A (en) Increasing material manufacturing system for in-orbit manufacture structure
JP6550073B2 (en) Radar satellite and radar satellite system using the same
JP2006517487A (en) Solar panel hinged assembly and spacecraft
GB2375230A (en) A carrier structure for a solar sail
US6229501B1 (en) Reflector and reflector element for antennas for use in outer space and a method for deploying the reflectors
JP2003098441A (en) Space telescope
US10730643B1 (en) Space based robotic assembly of a modular reflector
US20050088734A1 (en) Autonomously assembled space telescope
EP1331095A2 (en) Deployable structure
US11358738B1 (en) Systems and methods for assembling space frame structures
Bui et al. System design and development of VELOX-I nanosatellite
CN114503361B (en) Antenna deployable assembly
JP4679010B2 (en) Folding structure
US20160322710A1 (en) Segmented structure, in particular for a satellite antenna reflector, provided with at least one rotational and translational deployment device
Garczarczyk et al. The active mirror control of the MAGIC telescope
JP2003095200A (en) Space vehicle
JPS61202479A (en) Light condensing type solar battery device
JPH09213982A (en) Solar cell device
JP2004017957A (en) Developable structure of and forming method of trussed construction

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20011011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20011011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20020401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20020401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20020405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20020401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20020405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081009

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees