JP2003084380A - Method for preparing silver halide photographic emulsion - Google Patents

Method for preparing silver halide photographic emulsion

Info

Publication number
JP2003084380A
JP2003084380A JP2001273759A JP2001273759A JP2003084380A JP 2003084380 A JP2003084380 A JP 2003084380A JP 2001273759 A JP2001273759 A JP 2001273759A JP 2001273759 A JP2001273759 A JP 2001273759A JP 2003084380 A JP2003084380 A JP 2003084380A
Authority
JP
Japan
Prior art keywords
silver halide
mixer
reaction vessel
silver
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001273759A
Other languages
Japanese (ja)
Inventor
Shigeji Urabe
茂治 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001273759A priority Critical patent/JP2003084380A/en
Publication of JP2003084380A publication Critical patent/JP2003084380A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a flat platy silver halide grain emulsion having a very small thickness and a very large equivalent circular diameter. SOLUTION: In the method for preparing the silver halide grain emulsion, a mixing vessel is disposed at the outside of a reactor vessel in which growth of silver halide grains is caused, an aqueous silver salt solution and an aqueous halide salt solution are continuously brought into collision with each other in the mixing vessel by feeding at least one of the solutions as a linear jet having a high flow rate to form fine silver halide grains and the fine silver halide grains are mixed with a bulk liquid or a silver halide grain emulsion in the reactor vessel within 1 sec after the formation to grow silver halide grains in the reactor vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は写真用感光材料のハ
ロゲン化銀写真乳剤の製造方法及び装置に関するもので
ある。
FIELD OF THE INVENTION The present invention relates to a method and an apparatus for producing a silver halide photographic emulsion for a photographic light-sensitive material.

【0002】[0002]

【従来の技術】ハロゲン化銀写真乳剤の製造は、通常の
場合、攪拌機を備えた反応容器内に銀イオンとハロゲン
化物イオンを添加して行われる。初期の添加によって核
形成が起こり、その後の添加によって結晶成長が行われ
る。攪拌方法には、例えば特開平7−219092、特
開平8−171156、特開平4−283741、特公
平8−22739、米国特許3,782,954に記載
されているような様々な方法がある。しかし、このよう
な方法で核形成を行う場合、いずれの攪拌方法を用いて
も、反応容器内を液が循環するために核形成と核成長が
並行して起こり、単分散な核を生成することが困難であ
る。
2. Description of the Related Art A silver halide photographic emulsion is usually manufactured by adding silver ions and halide ions into a reaction vessel equipped with a stirrer. The initial addition causes nucleation, and the subsequent addition causes crystal growth. As the stirring method, there are various methods as described in, for example, JP-A-7-219092, JP-A-8-171156, JP-A-4-283741, JP-B-8-22739, and US Pat. No. 3,782,954. However, when nucleation is performed by such a method, no matter which stirring method is used, the liquid circulates in the reaction vessel, so that nucleation and nucleus growth occur in parallel to generate monodisperse nuclei. Is difficult.

【0003】ハロゲン化銀写真分野では感光素子として
受光面積の大きい平板状ハロゲン化銀粒子が広く用いら
れている。受光効率を上げるために、厚さの薄い平板状
ハロゲン化銀粒子が好ましい。しかし、上述ような方法
では、反応容器内でハロゲン化銀粒子が循環する際、成
長途中の平板状ハロゲン化銀粒子が銀イオンまたはハロ
ゲン物イオン添加口近傍の高過飽和領域を通過し、平板
状粒子の厚さが増加する弊害が生じる。
In the silver halide photographic field, tabular silver halide grains having a large light receiving area are widely used as a photosensitive element. In order to increase the light receiving efficiency, thin tabular silver halide grains are preferred. However, in the above-mentioned method, when the silver halide grains circulate in the reaction vessel, the tabular silver halide grains in the middle of growth pass through the high supersaturation region near the silver ion or halide ion addition port to form a tabular grain. The adverse effect that the thickness of the particles increases increases.

【0004】これらの問題を解決するために、前記反応
容器の他に外部混合器を設け、該外部混合器でハロゲン
化銀微粒子を形成し、それを反応容器に添加する事によ
り、核形成工程や成長工程等の一部或いは全部を行う方
法がある。この方法では、外部混合器に銀塩水溶液とハ
ロゲン化物塩水溶液と分散媒水溶液を添加し、連続的に
微粒子を形成する。微粒子は核形成及び/または成長に
用いることが出来る。このような方法では外部混合器内
で、できるだけ短時間で添加液を完全に混合し、生成し
た微粒子を出来るだ速く混合器から排出することが望ま
れる。混合に長時間を要したり、添加液が外部混合器内
部を循環することは好ましくない。
In order to solve these problems, an external mixer is provided in addition to the reaction container, fine silver halide grains are formed in the external mixer, and the fine silver halide particles are added to the reaction container to form a nucleation step. There is a method of performing a part or all of the growth process and the like. In this method, an aqueous silver salt solution, an aqueous halide salt solution and an aqueous dispersion medium solution are added to an external mixer to continuously form fine particles. The fine particles can be used for nucleation and / or growth. In such a method, it is desired to completely mix the additive liquid in the external mixer in the shortest possible time and discharge the produced fine particles from the mixer as quickly as possible. It is not preferable that the mixing takes a long time or the additive liquid circulates inside the external mixer.

【0005】前述の反応容器として様々な形式のものを
用いることが出来る。米国特許5,250,403や特
開平10−43570では、小容量の混合器の中で攪拌
羽根によって混合を行う。しかし、このような方法は容
器内で添加液が混合器内部を循環する。
Various types of reaction vessels can be used as the above-mentioned reaction vessel. In U.S. Pat. No. 5,250,403 and Japanese Patent Laid-Open No. 10-43570, mixing is performed by a stirring blade in a small capacity mixer. However, in such a method, the additive liquid circulates inside the mixer in the container.

【0006】特開平4−139440や特表平6−50
7255では、機械的攪拌を伴わずに混合を行うため、
添加液の循環は存在しない。しかし、これらの方法では
強力な攪拌が存在しないために混合力が不十分である。
機械的攪拌を伴わずに十分な混合力を保つために、添加
液を直線状の噴流としてその運動エネルギーによって混
合を行う方法がある。特開平8−334848にはその
ような噴流の運動エネルギーを利用するハロゲン化銀写
真乳剤の製造方法が開示されている。しかし、該特許は
シングルジェット法によるハロゲン化銀写真乳剤の製造
方法に関するものであり、外部混合器とは全く異なるも
のである。さらにここで用いられている運動エネルギー
は反応容器全体の混合を行うには不十分なため、機械的
攪拌が併用されている。
Japanese Unexamined Patent Publication No. 4-139440 and Japanese Patent Publication No. 6-50
In 7255, since mixing is performed without mechanical stirring,
There is no circulation of additive liquid. However, these methods have insufficient mixing power due to the absence of strong agitation.
In order to maintain a sufficient mixing force without mechanical agitation, there is a method in which the additive liquid is made into a linear jet flow and mixed by its kinetic energy. JP-A-8-334848 discloses a method for producing a silver halide photographic emulsion utilizing the kinetic energy of such a jet. However, this patent relates to a method for producing a silver halide photographic emulsion by the single jet method, and is completely different from an external mixer. Furthermore, since the kinetic energy used here is insufficient for mixing the entire reaction vessel, mechanical stirring is also used.

【0007】銀塩水溶液とハロゲン化物水溶液の少なく
とも一方を高い流速を持つ直線状の噴流とし、前記二種
類の溶液を短時間内に混合してハロゲン化銀粒子を連続
的に生成することが特開2000−338620号に開
示されている。この方法によって調製した微細なサイズ
のハロゲン化銀粒子を粒子成長を起こさせる反応容器に
直ちに添加し、反応容器中のハロゲン化銀粒子を成長さ
せる事が記載されている。しかし係る方法を採用して
も、効果は不十分であった。
At least one of the silver salt aqueous solution and the halide aqueous solution is used as a linear jet having a high flow rate, and the two types of solutions are mixed within a short time to continuously produce silver halide grains. It is disclosed in Kai 2000-338620. It is described that fine-grained silver halide grains prepared by this method are immediately added to a reaction vessel for causing grain growth to grow the silver halide grains in the reaction vessel. However, even if such a method was adopted, the effect was insufficient.

【0008】[0008]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0009】本発明により、非常に厚さが薄い平板粒
子、特に非常に薄くかつ円相当径の非常に大きい平板状
ハロゲン化銀粒子乳剤を得る事ができる。また本発明に
より、双晶比率が非常に小さい、極微粒子正常晶粒子乳
剤を得る事ができる。
According to the present invention, it is possible to obtain a tabular grain having a very thin thickness, particularly a tabular silver halide grain emulsion having a very thin diameter and a very large circle equivalent diameter. Further, according to the present invention, an ultrafine normal grain emulsion having a very small twinning ratio can be obtained.

【0010】[0010]

【課題を解決するための手段】本発明の目的は以下の手
段によって達成される。 〔1〕ハロゲン化銀粒子の成長を起こさせる反応容器の
外に混合器を設け、該混合器においては、銀塩水溶液と
ハロゲン化物塩水溶液の少なくとも一方を高い流速を持
つ直線状の噴流とし、前記二種類の溶液を連続的に衝突
させてハロゲン化銀微粒子を形成したあと1秒以内に、
該ハロゲン化銀微粒子を反応容器内のバルク液又はハロ
ゲン化銀粒子乳剤と混合せしめることによって、反応容
器中のハロゲン化銀粒子を成長させる事を特徴とするハ
ロゲン化銀粒子乳剤の製造方法。
The objects of the present invention are achieved by the following means. [1] A mixer is provided outside the reaction vessel for causing the growth of silver halide grains, and in the mixer, at least one of the aqueous solution of silver salt and the aqueous solution of halide salt is a linear jet having a high flow rate, Within 1 second after forming the silver halide fine particles by continuously colliding the two kinds of solutions,
A method for producing a silver halide grain emulsion, which comprises growing the silver halide grains in a reaction vessel by mixing the silver halide fine grains with a bulk liquid in the reaction vessel or a silver halide grain emulsion.

【0011】〔2〕ハロゲン化銀粒子の成長を起こさせ
る反応容器の外に混合器を設け、該混合器においては、
銀塩水溶液とハロゲン化物塩水溶液の少なくとも一方を
高い流速を持つ直線状の噴流とし、該噴流を細管に高速
で流し、該細管内で前記二種類の溶液を連続的に衝突さ
せてハロゲン化銀微粒子を形成したあと1秒以内に、該
ハロゲン化銀微粒子を反応容器内のバルク液又はハロゲ
ン化銀粒子乳剤と混合せしめることによって、反応容器
中のハロゲン化銀粒子を成長させる事を特徴とする請求
項1に記載のハロゲン化銀粒子乳剤の製造方法。
[2] A mixer is provided outside the reaction vessel for causing the growth of silver halide grains, and in the mixer,
At least one of the silver salt aqueous solution and the halide salt aqueous solution is formed into a linear jet stream having a high flow rate, the jet stream is caused to flow through a thin tube at a high speed, and the two kinds of solutions are continuously collided in the thin tube to produce a silver halide. Characterized by growing the silver halide grains in the reaction vessel by mixing the silver halide grains with the bulk liquid in the reaction vessel or the silver halide grain emulsion within 1 second after the formation of the grains. The method for producing a silver halide grain emulsion according to claim 1.

【0012】〔3〕ハロゲン化銀粒子の成長を起こさせ
る反応容器の外に混合器を設け、該混合器においては、
銀塩水溶液とハロゲン化物塩水溶液の少なくとも一方を
高い流速を持つ直線状の噴流とし、該噴流を細管に高速
で流し、該細管内で前記二種類の溶液を連続的に衝突さ
せてハロゲン化銀微粒子を形成したあと、該ハロゲン化
銀微粒子を反応容器内のバルク液又はハロゲン化銀粒子
乳剤と混合できるように、反応容器と混合器の出口の間
に循環系を設け、反応容器内のバルク液又はハロゲン化
銀乳剤を循環し、該循環系に、混合器で連続的に調製さ
れたハロゲン化銀微粒子が添加、混合されることを特徴
とするハロゲン化銀粒子乳剤の製造方法。
[3] A mixer is provided outside the reaction vessel for causing the growth of silver halide grains, and in the mixer,
At least one of the silver salt aqueous solution and the halide salt aqueous solution is formed into a linear jet stream having a high flow rate, the jet stream is caused to flow through a thin tube at a high speed, and the two kinds of solutions are continuously collided in the thin tube to produce a silver halide. After forming the fine grains, a circulation system is provided between the reaction vessel and the outlet of the mixer so that the silver halide fine grains can be mixed with the bulk liquid or the silver halide grain emulsion in the reaction vessel. A process for producing a silver halide grain emulsion, characterized in that a liquid or a silver halide emulsion is circulated, and silver halide fine grains continuously prepared by a mixer are added to and mixed with the circulation system.

【0013】〔4〕ハロゲン化銀粒子の成長を起こさせ
る反応容器の外に混合器を設け、該混合器においては、
銀塩水溶液とハロゲン化物塩水溶液の少なくとも一方を
高い流速を持つ直線状の噴流とし、該噴流を細管に高速
で流し、該細管内で前記二種類の溶液を連続的に衝突さ
せてハロゲン化銀微粒子を形成したあと、混合器で連続
的に調製された該ハロゲン化銀微粒子を反応容器内のバ
ルク液又はハロゲン化銀粒子乳剤と混合できるように、
反応容器内のバルク液又はハロゲン化銀乳剤を循環し、
混合器で連続的に調製されたハロゲン化銀微粒子が添
加、混合されるような循環系を、反応容器と混合器の出
口の間に設けたことを特徴とするハロゲン化銀粒子乳剤
の製造装置。
[4] A mixer is provided outside the reaction vessel for causing the growth of silver halide grains, and in the mixer,
At least one of the silver salt aqueous solution and the halide salt aqueous solution is formed into a linear jet stream having a high flow rate, the jet stream is caused to flow through a thin tube at a high speed, and the two kinds of solutions are continuously collided in the thin tube to produce a silver halide. After forming the fine grains, the silver halide fine grains continuously prepared in a mixer can be mixed with a bulk liquid in a reaction vessel or a silver halide grain emulsion,
Circulate the bulk liquid or silver halide emulsion in the reaction vessel,
An apparatus for producing a silver halide grain emulsion, characterized in that a circulation system for continuously adding and mixing fine silver halide grains prepared in a mixer is provided between the reaction vessel and the outlet of the mixer. .

【0014】[0014]

【発明の実施の形態】従来法と本発明によるハロゲン化
銀粒子調製装置の一つの例を図1(従来法)及び図2
(本発明)に示した。図1及び図2において、攪拌翼2
によってよく攪拌された反応容器1にハロゲン化銀粒子
乳剤が保持され、その反応容器の外に細管からなる混合
器5が設置され、この混合器に高圧ポンプ3によって、
反応液(硝酸銀溶液或いはハライド溶液)が、高圧のも
とでオリフィス4を通して高速の噴流が混合器5に注入
され、一方もう一つの反応液(硝酸銀溶液又はハライド
溶液)が、ポンプ8を通して、混合器5に注入される。
反応液(硝酸銀溶液又はハライド溶液)は容器6及び7
に保持され、ポンプ8及び高圧ポンプ3によって送液さ
れる。混合器5内では、反応液の高速ジェット流が形成
されており保持容器6から添加されて該二つの溶液が衝
突し、二つの溶液の迅速かつ高能率の混合が実現され
る。混合によって生成した微細なハロゲン化銀粒子から
なる乳剤は、図1の従来法では、混合器からパイプ10
によって反応容器1に添加される。一方本発明の図2に
おいては、反応容器1に保持されている乳剤は、パイプ
10を通してポンプ8によって循環される。混合器5で
生成した微細な粒子は、生成直後、非常に短時間のうち
に、即ちオリフィスから出た噴流がもう一つの液と衝突して
から1秒以内に、反応容器から循環された乳剤に添加さ
れ混合される。反応容器の乳剤の循環系の滞留時間は、
短いことが好ましく、具体的には2分以内が好ましく、
より好ましくは1分以内であり、更に好ましくは30秒
以内であり、特に好ましくは20秒以内である。循環系
10と混合器5の排出口の交点では、両者の流速が高い
ので、そのままで十分な両者の混合が可能であるが、必
要な場合には混合器をとりつけても良い。この混合器と
しては、特登第2687183号、特開平10−435
70、特開平11−271898に記載されている混合
器を用いる事ができる。
BEST MODE FOR CARRYING OUT THE INVENTION One example of a conventional method and an apparatus for preparing silver halide grains according to the present invention is shown in FIG. 1 (conventional method) and FIG.
(Invention) 1 and 2, the stirring blade 2
The silver halide grain emulsion is held in the reaction vessel 1 which is well stirred by, and a mixer 5 made of a thin tube is installed outside the reaction vessel.
A reaction liquid (silver nitrate solution or halide solution) is injected into the mixer 5 at high speed through the orifice 4 under high pressure, while another reaction liquid (silver nitrate solution or halide solution) is mixed through the pump 8. It is injected into the container 5.
The reaction solution (silver nitrate solution or halide solution) is in containers 6 and 7.
And is sent by the pump 8 and the high-pressure pump 3. In the mixer 5, a high-speed jet stream of the reaction solution is formed and added from the holding container 6 so that the two solutions collide with each other, and rapid and highly efficient mixing of the two solutions is realized. An emulsion composed of fine silver halide grains produced by mixing is prepared by mixing a pipe 10 from a mixer in the conventional method of FIG.
Is added to the reaction vessel 1. On the other hand, in FIG. 2 of the present invention, the emulsion held in the reaction vessel 1 is circulated by the pump 8 through the pipe 10. The fine particles produced in the mixer 5 are emulsions circulated from the reaction vessel immediately after the production, within a very short time, that is, within 1 second after the jet flow from the orifice collides with another liquid. And mixed. The residence time of the emulsion circulation system in the reaction vessel is
It is preferably short, specifically within 2 minutes,
It is more preferably 1 minute or less, further preferably 30 seconds or less, and particularly preferably 20 seconds or less. At the intersection of the circulation system 10 and the discharge port of the mixer 5, since the flow velocities of both are high, the two can be sufficiently mixed as they are, but a mixer may be attached if necessary. As this mixer, there are Japanese Patent No. 2687183 and Japanese Patent Laid-Open No. 10-435.
70, and the mixer described in JP-A No. 11-271898 can be used.

【0015】本発明において、噴流として添加される溶
液流の線速度は、50m/sec以上であることが好ま
しく、100m/sec以上であることがさらに好まし
く、300m/sec以上であることが最も好ましい。
噴流の線速度は、噴流が排出される添加口の極近傍で定
義されるが、その後空気抵抗及び噴流を通す細管の壁に
よる抵抗により、その速度は急速に減少する。従って本
発明においては、噴流の排出直後に、他の溶液を衝突さ
せる事が二つの溶液を効率よく混合する上で大切であ
る。
In the present invention, the linear velocity of the solution stream added as a jet stream is preferably 50 m / sec or more, more preferably 100 m / sec or more, and most preferably 300 m / sec or more. .
The linear velocity of the jet is defined in the immediate vicinity of the addition port from which the jet is discharged, but thereafter, the velocity decreases rapidly due to the air resistance and the resistance of the wall of the narrow tube through which the jet flows. Therefore, in the present invention, it is important that the other solutions collide with each other immediately after the jet flow is discharged in order to efficiently mix the two solutions.

【0016】噴流を通して、二つの溶液を混合する混合
器の細管の直径は、直線状噴流添加口の直径(即ちオリ
フィスの径)の200倍以下(好ましくは2倍以上)で
あることが好ましく、100倍以下であることがさらに
好ましく、70倍以下であることが最も好ましい。該細
管の長さは、その直径の10倍以上(好ましくは500
0倍以下、より好ましくは3000倍以下)であること
が好ましく、50倍以上であることがさらに好ましく、
100倍以上であることが最も好ましい。本発明で用い
られる細管は内部に窪みを有する事が好ましい。添加さ
れた溶液が細管内を流れる際にこの窪みによって流れは
より細かな乱流となり、混合に要する混合時間をより小
さくする事ができる。
The diameter of the narrow tube of the mixer for mixing the two solutions through the jet is preferably 200 times or less (preferably 2 times or more) the diameter of the linear jet addition port (that is, the diameter of the orifice). It is more preferably 100 times or less, and most preferably 70 times or less. The length of the thin tube is 10 times or more of its diameter (preferably 500).
0 times or less, more preferably 3000 times or less), more preferably 50 times or more,
Most preferably, it is 100 times or more. The thin tube used in the present invention preferably has a hollow inside. When the added solution flows in the narrow tube, the flow becomes a finer turbulent flow due to the depression, and the mixing time required for mixing can be shortened.

【0017】高い流速を持つ噴流による混合を行う場
合、該噴流が高い運動エネルギーを有する為、細管を通
過する際、混合液の温度が上昇する。本発明において
は、より微細な粒子を形成する事を指向するが、温度の
上昇はハロゲン化銀の溶解度の上昇を来たし、粒子サイ
ズを大きくする事になる。この望ましくない温度上昇を
防ぐ為には、添加液の温度を予め低くしておく事が望ま
しい。添加液(硝酸銀水溶液及び又はハライド水溶液)
の温度は、20℃以下が好ましく、10℃以下がさらに
好ましく、5℃以下が最も好ましい。また噴流が形成さ
れる部分を冷却する事が好ましい。好ましくは20℃以
下、より好ましくは5℃以下のする事が好ましい。
When mixing with a jet having a high flow velocity, since the jet has a high kinetic energy, the temperature of the mixed liquid rises when passing through the thin tube. In the present invention, the aim is to form finer grains, but an increase in temperature leads to an increase in the solubility of silver halide and an increase in grain size. In order to prevent this undesired temperature rise, it is desirable to lower the temperature of the additive liquid in advance. Additive solution (silver nitrate aqueous solution and / or halide aqueous solution)
The temperature is preferably 20 ° C. or lower, more preferably 10 ° C. or lower, most preferably 5 ° C. or lower. Further, it is preferable to cool the portion where the jet flow is formed. The temperature is preferably 20 ° C. or lower, more preferably 5 ° C. or lower.

【0018】図2に示した装置図は、本発明の一つの例
であって、混合器に注入される溶液は両方とも高速噴流
にする事もできる。この際、混合器は二つの噴流が注入
されるが、双方を対向させて衝突させるとより迅速かつ
高能率の混合を実現する事ができる。
The apparatus diagram shown in FIG. 2 is an example of the present invention, and both solutions injected into the mixer can be high-speed jet streams. At this time, two jets are injected into the mixer, but if they are made to face each other and collide with each other, more rapid and highly efficient mixing can be realized.

【0019】本発明のハロゲン化物塩水溶液は、通常、
臭化カリウム、臭化ナトリウム、塩化カリウム、塩化ナ
トリウム、沃化カリウム、沃化ナトリウムおよびそれら
の混合物の水溶液が用いられる。本発明の方法で得られ
るハロゲン化銀粒子を核として用いる場合、銀塩溶液及
びハロゲン化物塩水溶液の濃度は4mol/L以下が好まし
く、1mol/L以下がさらに好ましく、0.2mol/L以下が最も
好ましい。結晶成長に用いる場合は、生産性の観点から
高濃度の銀塩溶液及びハロゲン化物塩水溶液を用いるこ
とが好ましい。0.5mol/L以上4mol/L以下が好ましく、1.
0mol/L以上がさらに好ましい。本発明の方法で得られる
ハロゲン化銀粒子を反応容器に添加してオストワルド熟
成によって粒子成長を行う際、反応容器内の乳剤の温度
は40℃以上が好ましく、更に60℃以上、さらに70
℃以上、100℃以下が好ましい。
The halide salt aqueous solution of the present invention is usually
Aqueous solutions of potassium bromide, sodium bromide, potassium chloride, sodium chloride, potassium iodide, sodium iodide and mixtures thereof are used. When the silver halide grain obtained by the method of the present invention is used as a nucleus, the concentration of the silver salt solution and the halide salt aqueous solution is preferably 4 mol / L or less, more preferably 1 mol / L or less, most preferably 0.2 mol / L or less. preferable. When used for crystal growth, it is preferable to use a high-concentration silver salt solution and a halide salt aqueous solution from the viewpoint of productivity. It is preferably 0.5 mol / L or more and 4 mol / L or less, 1.
It is more preferably 0 mol / L or more. When the silver halide grains obtained by the method of the present invention are added to a reaction vessel to grow the grains by Ostwald ripening, the temperature of the emulsion in the reaction vessel is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, further 70
C. or higher and 100.degree.

【0020】本発明の銀塩水溶液とハロゲン化物塩水溶
液の少なくとも一方に保護コロイドとしてゼラチンが含
まれることが好ましい。ゼラチンは生成するハロゲン化
銀粒子サイズ及びハロゲン化銀粒子中の双晶発生確率に
大きな影響を与えるため、好ましいゼラチン水溶液濃度
は、生成する微粒子ハロゲン化銀粒子の使用目的によっ
て異なる。
At least one of the silver salt aqueous solution and the halide salt aqueous solution of the present invention preferably contains gelatin as a protective colloid. Since gelatin greatly affects the size of silver halide grains produced and the probability of twinning in silver halide grains, the preferred concentration of aqueous gelatin solution varies depending on the intended use of the fine silver halide grains produced.

【0021】平板状ハロゲン化銀粒子調製を行う際の核
として本発明の連続生成されたハロゲン化銀微粒子を利
用する場合は、平行二重双晶核が必要なため、所望の双
晶発生確率が達成されるようにゼラチン水溶液濃度を調
節することが必要である。銀塩水溶液とハロゲン化物塩
水溶液が混合されたときに銀1gあたりのゼラチン量が
0.4g以下となるようにゼラチン濃度を選ぶことが好
ましく、0.3g以下にすることがさらに好ましい。核
形成においては、非常に希薄は反応溶液を用いる為、保
護コロイドが必要でない場合がある。ゼラチンを用いな
い平板核形成も好ましい。
When the continuously produced silver halide fine grains of the present invention are used as nuclei for preparing tabular silver halide grains, parallel double twinning nuclei are required. It is necessary to adjust the gelatin aqueous solution concentration so that The gelatin concentration is preferably selected so that the amount of gelatin is 0.4 g or less per 1 g of silver when the silver salt aqueous solution and the halide salt aqueous solution are mixed, and more preferably 0.3 g or less. In the nucleation, a protective solution may not be necessary because the reaction solution is used very dilutely. Flat plate nucleation without the use of gelatin is also preferred.

【0022】本発明によって連続生成されたハロゲン化
銀微粒子を、結晶成長に利用する場合には、添加したハ
ロゲン化銀粒子が速やかに溶解することが好ましい。正
常晶核は、双晶核より溶解しやすい為、双晶核は少ない
方が好ましい。一方、粒子生成の際ゼラチン水溶液濃度
は高いと双晶形成確率が低い為、ゼラチン濃度は高い方
が好ましい。ゼラチン水溶液濃度は添加される硝酸銀1
gに対して0.2g以上、1g以下になる様にゼラチン
が添加されるようにする事が好ましく、0.3g以上に
することがさらに好ましく、0.4g以上にすることが
最も好ましい。
When the silver halide fine particles continuously produced according to the present invention are utilized for crystal growth, it is preferable that the added silver halide grains are rapidly dissolved. Since normal nuclei are more easily dissolved than twin nuclei, it is preferable that the number of twin nuclei is small. On the other hand, when the concentration of the aqueous gelatin solution is high at the time of grain formation, the twin formation probability is low. Therefore, it is preferable that the concentration of gelatin is high. Gelatin solution concentration is silver nitrate 1
It is preferable that gelatin is added in an amount of 0.2 g or more and 1 g or less, more preferably 0.3 g or more, and most preferably 0.4 g or more.

【0023】ゼラチンの濃度を高くし過ぎると、ゼラチ
ン水溶液の粘度が増加し添加が困難になる。酵素分解な
どの手法でゼラチンの低子量を小さくすることにより、
粘度を低下させることができる。ゼラチンの分子量は1
000以上、10万以下であることが好ましく、100
0以上、5万以下であることがさらに好ましく、100
0以上3万以下であることが最も好ましい。
If the concentration of gelatin is too high, the viscosity of the gelatin aqueous solution will increase, making addition difficult. By reducing the amount of gelatin low by methods such as enzymatic decomposition,
The viscosity can be reduced. The molecular weight of gelatin is 1
000 or more and 100,000 or less, preferably 100
It is more preferably 0 or more and 50,000 or less, and 100
Most preferably, it is 0 or more and 30,000 or less.

【0024】本発明によって連続生成されたハロゲン化
銀微粒子を結晶成長に利用する場合、ハロゲン化銀粒子
と共に添加されるゼラチンが平板状ハロゲン化銀粒子の
厚さに影響を及ぼす。反応容器に保持されている平板粒
子の厚さへの影響はゼラチンの化学修飾によって様々に
変化させることができる。薄い平板状ハロゲン化銀粒子
を得るために、酸化処理、フタル化処理、コハク化処
理、トリメリット化処理ゼラチンを好ましく用いること
ができる。
When the silver halide fine grains continuously produced according to the present invention are utilized for crystal growth, gelatin added together with the silver halide grains affects the thickness of the tabular silver halide grains. The influence on the thickness of the tabular grains held in the reaction vessel can be variously changed by chemically modifying gelatin. In order to obtain thin tabular silver halide grains, gelatin which has been subjected to oxidation treatment, phthalation treatment, succination treatment or trimellitization treatment can be preferably used.

【0025】銀塩水溶液とハロゲン化物塩水溶液の混合
は短時間に行うことが好ましい。混合器内での混合時間
は0.5秒以下であることが好ましく、0.1秒以下で
あることが好ましく、0.05秒以下であることが最も好ま
しい。また、本発明の方法においては、混合器内で銀塩
水溶液とハロゲン化物塩水溶液が衝突した後、生成した
ハロゲン化銀微粒子が反応容器のハロゲン化銀乳剤と出
会うまでの時間は1秒以内が好ましく、0.5秒以内が
さらに好ましい。この時間は混合器である細管の直径と
添加される水溶液の流量によって簡単に計算する事がで
きる。さらには、該ハロゲン化銀微粒子が反応容器から
循環されたハロゲン化銀粒子と出会うまでの時間は、1
秒以内が好ましく、0.5秒以内がさらに好ましく、
0.1秒以内が最も好ましい。この時間は混合器である
細管の直径と添加される水溶液の流量によって簡単に計
算する事ができる。本発明においては、混合器で生成し
た微粒子が反応容器に保持されているハロゲン化銀粒子
と混合され、該微粒子はそのサイズが微細な為、溶解度
が高く、オストワルド熟成によって溶解して、銀イオン
とハライドイオンになり、ハロゲン化銀乳剤に含まれる
ハロゲン化銀粒子に沈積して粒子の成長を起こさせるも
のである。ここでハロゲン化銀微粒子のサイズが小さい
程、その溶解度がより高く、従って微粒子の溶解が迅速
に起こり、従ってハロゲン化銀粒子の成長を早くする事
が出来る。混合器において、銀イオンとハライドイオン
が瞬間的に混合されてからの時間と得られるハロゲン化
銀粒子微粒子のサイズの関係を調べると、1秒以上経過
した後はほぼ粒子サイズは一定となり、それ以上時間が
経過してもあまり変化しない。これは1秒以上の時間
で、ある程度の平衡状態が達せられ、所謂安定核サイズ
以上の粒子になってしまっていると考えられる。本発明
においては出来るだけ微小なサイズのハロゲン化銀粒子
が必要であり、その為には混合後1秒以内でまだ平衡状
態に達していない非常に小サイズの微粒子を利用する事
が必要となる。
The silver salt aqueous solution and the halide salt aqueous solution are preferably mixed in a short time. The mixing time in the mixer is preferably 0.5 seconds or less, preferably 0.1 seconds or less, and most preferably 0.05 seconds or less. Further, in the method of the present invention, after the collision of the aqueous silver salt solution and the aqueous halide salt solution in the mixer, the time required for the produced silver halide fine particles to meet with the silver halide emulsion in the reaction vessel is within 1 second. It is preferably within 0.5 seconds, more preferably within 0.5 seconds. This time can be easily calculated by the diameter of the capillary tube that is the mixer and the flow rate of the added aqueous solution. Furthermore, the time required for the silver halide fine particles to meet with the silver halide grains circulated from the reaction vessel is 1
Within seconds, preferably within 0.5 seconds,
Most preferably within 0.1 seconds. This time can be easily calculated by the diameter of the capillary tube that is the mixer and the flow rate of the added aqueous solution. In the present invention, the fine particles produced in the mixer are mixed with the silver halide grains held in the reaction vessel, and since the fine particles have a small size, they have high solubility and are dissolved by Ostwald ripening to give silver ions. And halide ions, which are deposited on the silver halide grains contained in the silver halide emulsion to cause grain growth. Here, the smaller the size of the fine silver halide grains, the higher the solubility thereof, and therefore the faster the dissolution of fine grains, the faster the growth of silver halide grains. When the relationship between the time after the silver ions and the halide ions were mixed instantaneously in the mixer and the size of the obtained silver halide grain fine particles was examined, the grain size became almost constant after 1 second or more. It does not change much over the time. It is considered that the equilibrium state is reached to some extent in a time of 1 second or more, and the particles have a so-called stable nucleus size or more. In the present invention, a silver halide grain having a size as small as possible is required. Therefore, it is necessary to utilize a very small size grain which has not reached an equilibrium state within 1 second after mixing. .

【0026】銀塩水溶液とハロゲン化物塩水溶液の混合
の際、機械的攪拌を伴わないことが好ましい。機械的攪
拌を伴うと、循環が起こらない混合を実現する事が困難
となる。また、0.1秒以下のような短い混合時間の場
合、機械的攪拌では十分な混合を行うことが困難であ
る。
When the silver salt aqueous solution and the halide salt aqueous solution are mixed, it is preferable that no mechanical stirring is involved. With mechanical agitation, it is difficult to achieve circulation-free mixing. Further, when the mixing time is as short as 0.1 seconds or less, it is difficult to perform sufficient mixing by mechanical stirring.

【0027】本発明の要件を満たす混合方法として、B
EEINTERNATIONAL社製の高圧ホモジェナ
イザー(DeBEE2000)を応用して用いることが
できる。該装置のデュアルフィード法を用いて、銀塩水
溶液またはハロゲン化物塩水溶液の一方を高速噴流と
し、もう一方の液と混合することができる。噴流とする
水溶液に高圧をかけることで高い運動エネルギーを持た
せ、二つの液を極めて短時間に混合することが可能であ
る。また、この方法では添加された液が再び添加口近傍
に戻るような循環が発生せず、さらに、添加液が十分な
運動エネルギーを持つために機械的攪拌も不要である。
また該装置を2台用いれば、二つの液を高速噴流とし
て、両者を衝突させる事により同様の効果を得る事がで
きる。
As a mixing method satisfying the requirements of the present invention, B
A high-pressure homogenizer (DeBEE2000) manufactured by EEINTERNATIONAL can be applied and used. Using the dual feed method of the apparatus, one of the silver salt aqueous solution and the halide salt aqueous solution can be made into a high-speed jet stream and mixed with the other solution. It is possible to mix two liquids in an extremely short time by giving high kinetic energy by applying high pressure to the aqueous solution used as the jet flow. Further, in this method, the circulation such that the added liquid returns to the vicinity of the addition port does not occur, and further, the mechanical agitation is unnecessary because the added liquid has sufficient kinetic energy.
If two such devices are used, the same effect can be obtained by colliding the two liquids into a high-speed jet.

【0028】[0028]

【実施例】以下、本発明を実施例によって説明する。EXAMPLES The present invention will be described below with reference to examples.

【0029】実施例1 (比較例)硝酸銀水溶液とゼラチンを含む臭化銀水溶液
を添加して、臭化銀微粒子を生成させた。この際、攪拌
装置は機械的攪拌によって混合を行う。
Example 1 (Comparative Example) An aqueous silver nitrate solution and an aqueous silver bromide solution containing gelatin were added to produce fine silver bromide particles. At this time, the stirring device mixes by mechanical stirring.

【0030】(乳剤A/比較例1) (1st液調製)KBrを26.4g、低分子量酸化処
理ゼラチン(メチオニン基を酸化処理し酵素により低分
子量化したアルカリ処理オセインゼラチンで、メチオニ
ン基含有率4μmol/g、平均分子量15000)を
65.9g含む水溶液34.3Lを35℃に保ち、撹拌
した。
(Emulsion A / Comparative Example 1) (Preparation of 1st solution) 26.4 g of KBr, low-molecular weight oxidatively treated gelatin (alkali-treated ossein gelatin whose methionine group is oxidized to have a low molecular weight by an enzyme, and contains methionine group) 34.3 L of an aqueous solution containing 65.9 g of a rate of 4 μmol / g and an average molecular weight of 15,000) was maintained at 35 ° C. and stirred.

【0031】(添加1)Ag−1水溶液(100ml中
にAgNO3を4.9g含有する)2005mlと、X
−1水溶液(100ml中にKBrを5.2g含有す
る)1530ml、およびゼラチン水溶液(100ml
中に前記の低分子量酸化処理ゼラチンを8.0g含有す
る)448mlをトリプルジェット法で、一定の流量で
30秒間にわたり添加した。
(Addition 1) 2005 ml of an Ag-1 aqueous solution (containing 100 g of 4.9 g of AgNO 3 ) and X
-1 aqueous solution (containing 5.2 g of KBr in 100 ml) 1530 ml, and aqueous gelatin solution (100 ml
448 ml (containing 8.0 g of the above-mentioned low molecular weight oxidized gelatin) was added by the triple jet method at a constant flow rate for 30 seconds.

【0032】その後、KBr171gを添加し、温度を
75℃に昇温した。昇温後12分間の熟成工程を経た
後、ゼラチン水溶液(100ml中にメチオニン基を酸
化処理したアルカリ処理オセインゼラチンを12.7g
含有する)7900mlを添加し、次いで、4,5−ジ
ヒドロキシ−1,3−ジスルホン酸ジナトリウム一水和
物を55.3g、二酸化チオ尿素を0.05gを1分間
づつ間隔をあけて順次添加した。
Thereafter, 171 g of KBr was added and the temperature was raised to 75 ° C. After the aging process for 12 minutes after the temperature rise, an aqueous gelatin solution (12.7 g of alkali-treated ossein gelatin obtained by oxidizing methionine groups in 100 ml) was used.
7900 ml), and then 55.3 g of disodium 4,5-dihydroxy-1,3-disulfonate monohydrate and 0.05 g of thiourea dioxide are sequentially added at intervals of 1 minute. did.

【0033】(添加2)次に、Ag−2水溶液(100
ml中にAgNO3を45g含有する)17472ml
とX−2水溶液(100ml中に、KBrを31.2g
含有する)をダブルジェット法で63分間にわたり添加
した。この時、Ag−2の添加は一定の流量で行い、X
−2水溶液の添加は反応容器内のバルク乳剤溶液のpA
gが7.86を保つように行った。
(Addition 2) Next, an Ag-2 aqueous solution (100
(containing 45 g of AgNO 3 in ml) 17472 ml
And X-2 aqueous solution (31.2 g of KBr in 100 ml)
Containing) was added by the double jet method over 63 minutes. At this time, Ag-2 is added at a constant flow rate, and X-2 is added.
-2 addition of aqueous solution is pA of bulk emulsion solution in the reaction vessel
g was kept at 7.86.

【0034】(添加3)その後、ベンゼンチオスルホン
酸ナトリウムを1.8g、オセインゼラチン水溶液(1
00ml中にアルカリ処理オセインゼラチンを12.0
g含有する)3297mlを、1分間づつ間隔をあけて
順次添加した。次いでKBrをバルク乳剤溶液のpAg
を9.00になるように添加してから、AgI微粒子乳
剤(100g中に平均粒径0.047μmのAgI微粒
子を13.0g含有する)1950gを添加し、その2
分後から、Ag−4水溶液6567mlと、X−4水溶
液をダブルジェット法で添加した。この時Ag−4水溶
液は一定の流量で9分間にわたって添加し、X−4水溶
液は最初の3.3分間だけ反応容器内のバルク乳剤溶液
のpAgを9.00に保つように添加し、残りの5.7
分間は添加をせず、反応容器内のバルク乳剤溶液のpA
gが最終的に8.4になるようにした。(添加5)その
後、フロキュレーション法により脱塩を行い、次いで、
攪拌しながら水、NaOH、前記のゼラチン−1を添加
し、56℃でpH6.4、pAg8.6になるように調
整した。
(Addition 3) Thereafter, 1.8 g of sodium benzenethiosulfonate and an aqueous solution of ossein gelatin (1
12.0 of alkali-treated ossein gelatin in 00 ml
3297 ml (containing g) was sequentially added at intervals of 1 minute. Then KBr is added to pAg of the bulk emulsion solution.
To 19.00 g, and then 1950 g of AgI fine grain emulsion (containing 100 g of 13.0 g of AgI fine grains having an average particle diameter of 0.047 μm).
After 6 minutes, 6567 ml of Ag-4 aqueous solution and X-4 aqueous solution were added by the double jet method. At this time, the Ag-4 aqueous solution was added at a constant flow rate for 9 minutes, and the X-4 aqueous solution was added for the first 3.3 minutes so that the pAg of the bulk emulsion solution in the reaction vessel was kept at 9.00, and the rest. Of 5.7
PA of bulk emulsion solution in the reaction vessel
The final g was 8.4. (Addition 5) After that, desalting is performed by a flocculation method, and then,
While stirring, water, NaOH, and gelatin-1 were added to adjust the pH to 6.4 and pAg 8.6 at 56 ° C.

【0035】得られた粒子は、(111)面を主平面と
する平板状ハロゲン化銀粒子であり、平均円相当径1.
46μm、平均厚さ0.15μmであった。これらの粒
子を透過型電子顕微鏡で観察したところ、粒子のフリン
ジ(縁)部分に1粒子辺り平均30本以上の転位線が観察
された。
The resulting grains are tabular silver halide grains having the (111) plane as the main plane and have an average equivalent circle diameter of 1.
The thickness was 46 μm and the average thickness was 0.15 μm. When these particles were observed with a transmission electron microscope, 30 or more dislocation lines per particle were observed on average in the fringe (edge) portion of the particles.

【0036】(乳剤B/比較例2)添加2のAg−2水
溶液とX−2水溶液を、特開平10−43570に記載
の攪拌装置を用いて混合し、形成された臭化銀超微粒子
を含むハロゲン化銀粒子乳剤を、吐出後連続的に反応容
器に添加した。混合器に添加された反応液(硝酸銀水溶
液及びゼラチンを含んだハライド水溶液)の混合器内及
び混合器から反応容器までの配管内の滞留時間、即ち混
合器で銀イオンとハライドイオンが混合され、反応容器
のハロゲン化銀粒子と出会うまでの時間は、4秒であっ
た。混合器で形成される臭化銀超微粒子の平均サイズ
0.018μmであった。この時、X−2水溶液は添加
量が17472mLとなるように一定流量で添加し、反
応容器に保持されている乳剤のpAgは、X−1を反応
容器に添加しながら7.86になるように保った。上記
以外は、比較例1と同様にした。
(Emulsion B / Comparative Example 2) The Ag-2 aqueous solution of Addition 2 and the X-2 aqueous solution were mixed using a stirring device described in JP-A-10-43570 to form ultrafine silver bromide particles. The containing silver halide grain emulsion was continuously added to the reaction vessel after discharge. The residence time in the mixer of the reaction solution (silver nitrate aqueous solution and halide aqueous solution containing gelatin) added to the mixer and in the pipe from the mixer to the reaction vessel, that is, silver ions and halide ions are mixed in the mixer, The time required to meet the silver halide grains in the reaction vessel was 4 seconds. The average size of the silver bromide ultrafine particles formed in the mixer was 0.018 μm. At this time, the X-2 aqueous solution was added at a constant flow rate so that the addition amount was 17472 mL, and the pAg of the emulsion held in the reaction vessel was adjusted to 7.86 while X-1 was added to the reaction vessel. Kept at. Except for the above, the same procedure as in Comparative Example 1 was performed.

【0037】得られた粒子は、(111)面を主平面と
する平板状ハロゲン化銀粒子と0.06μm程度の正常
晶微粒子の混合物であった。添加2で加えたハロゲン化
銀微粒子のかなりの部分が溶解せずに残存する結果とな
った。平板状粒子は、平均円相当径1.69μm、平均
厚さ0.08μmであった。
The resulting grains were a mixture of tabular silver halide grains having the (111) plane as the principal plane and fine normal grains of about 0.06 μm. As a result, a considerable part of the silver halide fine grains added in Addition 2 remained without being dissolved. The tabular grains had an average equivalent circular diameter of 1.69 μm and an average thickness of 0.08 μm.

【0038】(乳剤C/比較例3)比較例2において、
特開平10−43570に記載の攪拌機の代わりに、D
eBEE2000を混合器として図1の様な系において
用いて、比較例2と同様にした。混合器から反応容器ま
での配管内の反応液の滞留時間も比較例2と同様、4秒
であった。DeBEE2000から生成する微粒子の平
均サイズは、配管9の出口でサンプリングした微粒子乳
剤の平均粒子サイズは、0.013μmであった。
(Emulsion C / Comparative Example 3) In Comparative Example 2,
Instead of the stirrer described in JP-A-10-43570, D
Similar to Comparative Example 2, using eBEE2000 as a mixer in a system as shown in FIG. The residence time of the reaction liquid in the pipe from the mixer to the reaction container was 4 seconds as in Comparative Example 2. The average size of the fine particles generated from DeBEE2000 was 0.013 μm, and the average size of the fine grain emulsion sampled at the outlet of the pipe 9 was 0.013 μm.

【0039】得られた粒子は、(111)面を主平面と
する平板状ハロゲン化銀粒子であり混合器から添加され
た超微粒子の一部がまだわずかに観察された。平板状粒
子は、平均円相当径1.91μm、平均厚さ0.08μ
mであった。これらの粒子を透過型電子顕微鏡で観察し
たところ、粒子のフリンジ(縁)部分に1粒子辺り平均
30本以上の転位線が観察された。
The obtained grain was a tabular silver halide grain having the (111) plane as the main plane, and a part of the ultrafine grain added from the mixer was still observed. The tabular grains have an average equivalent circle diameter of 1.91 μm and an average thickness of 0.08 μm.
It was m. When these particles were observed with a transmission electron microscope, the average per particle was found in the fringe part of the particles.
More than 30 dislocation lines were observed.

【0040】(乳剤D/本発明)比較例2において、D
eBEE2000を混合器として図2に示した系を用い
て、比較例2と同様にした。ここでは、ここでは、銀イ
オンとハライドイオンの混合から、生成した微粒子が、
循環された反応容器のハロゲン化銀粒子と出会うまでの
時間は0.1秒であった。
(Emulsion D / Invention) D in Comparative Example 2
The same procedure as in Comparative Example 2 was performed using the system shown in FIG. 2 using eBEE2000 as a mixer. Here, the fine particles generated from the mixture of silver ions and halide ions are
The time required to meet the silver halide grains in the circulated reaction vessel was 0.1 seconds.

【0041】得られた粒子は、(111)面を主平面と
する平板状ハロゲン化銀粒子であり正常晶微粒子が全く
観察されなかった。平板状粒子は、平均円相当径2.1
μm、平均厚さ0.08μmであった。これらの粒子を
透過型電子顕微鏡で観察したところ、粒子のフリンジ
(縁)部分に1粒子辺り平均30本以上の転位線が観察さ
れた。
The obtained grain was a tabular silver halide grain having the (111) plane as the principal plane, and no normal crystal grain was observed at all. The tabular grains have an average equivalent circle diameter of 2.1.
The average thickness was 0.08 μm. When these particles were observed with a transmission electron microscope, 30 or more dislocation lines per particle were observed on average in the fringe (edge) portion of the particles.

【0042】本発明により、厚さが薄くなおかつ微粒子
の残存が少ない平板状粒子の形成が可能となった。
According to the present invention, it is possible to form tabular grains having a small thickness and less residual fine particles.

【0043】実施例2 特開平5−346631の実施例1と同様にして、上記
実施例1の乳剤AからDについて化学増感および分光増
感を行い、写真性能を比較した。乳剤Aに対して乳剤D
は、増感色素を多量に吸着できるため、より高い写真感
度がえられた。乳剤Bでは、微粒子が多く残存してお
り、高い写真感度は得られなかった。また乳剤Cでは多
少微粒子が残存しており、乳剤Dより感度が低かった。
Example 2 Emulsions A to D of Example 1 were subjected to chemical sensitization and spectral sensitization in the same manner as in Example 1 of JP-A-5-346631 to compare photographic performances. Emulsion A to emulsion D
Has a higher photographic sensitivity because it can adsorb a large amount of sensitizing dye. In Emulsion B, many fine particles remained, and high photographic sensitivity could not be obtained. In emulsion C, some fine particles remained, and the sensitivity was lower than that of emulsion D.

【0044】[0044]

【発明の効果】本発明により、小サイズかつ単分散性に
優れたハロゲン化銀粒子の形成が可能となる。それを核
形成や結晶成長に用いることで、単分散ハロゲン化銀写
真乳剤や、厚さの薄い平板状ハロゲン化銀写真乳剤の調
製が可能となる。
According to the present invention, it is possible to form silver halide grains having a small size and excellent monodispersity. By using it for nucleation and crystal growth, it is possible to prepare a monodisperse silver halide photographic emulsion and a thin tabular silver halide photographic emulsion.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術の乳剤調製の系の構成を示す概略図で
ある。
FIG. 1 is a schematic diagram showing the configuration of a prior art emulsion preparation system.

【図2】本発明の乳剤調製の系の構成を示す概略図であ
る。
FIG. 2 is a schematic diagram showing the constitution of an emulsion preparation system of the present invention.

【符号の説明】[Explanation of symbols]

1 反応容器 2 攪拌器 3 高圧ポンプ 4 オリフィス 5 混合器(細管) 6 反応溶液保持容器(銀塩又はハロゲン塩水溶
液) 7 反応溶液保持容器(銀塩又はハロゲン塩水溶
液) 8 ポンプ 9 微粒子送液用の配管 10 乳剤循環系用の配管
1 Reaction Container 2 Stirrer 3 High Pressure Pump 4 Orifice 5 Mixer (Thin Tube) 6 Reaction Solution Holding Container (Silver Salt or Halogen Salt Aqueous Solution) 7 Reaction Solution Holding Container (Silver Salt or Halogen Salt Aqueous Solution) 8 Pump 9 For Liquid Delivery Piping 10 Piping for emulsion circulation system

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ハロゲン化銀粒子の成長を起こさせる反応
容器の外に混合器を設け、該混合器においては、銀塩水
溶液とハロゲン化物塩水溶液の少なくとも一方を高い流
速を持つ直線状の噴流とし、前記二種類の溶液を連続的
に衝突させてハロゲン化銀微粒子を形成したあと1秒以
内に、該ハロゲン化銀微粒子を反応容器内のバルク液又
はハロゲン化銀粒子乳剤と混合せしめることによって、
反応容器中のハロゲン化銀粒子を成長させる事を特徴と
するハロゲン化銀粒子乳剤の製造方法。
1. A mixer is provided outside a reaction vessel for causing the growth of silver halide grains, and in the mixer, at least one of an aqueous silver salt solution and an aqueous halide salt solution is used as a linear jet stream having a high flow rate. And the silver halide fine particles are mixed with the bulk liquid or the silver halide grain emulsion in the reaction vessel within 1 second after the silver halide fine particles are formed by continuously colliding the two kinds of solutions. ,
A method for producing a silver halide grain emulsion, which comprises growing silver halide grains in a reaction vessel.
【請求項2】ハロゲン化銀粒子の成長を起こさせる反応
容器の外に混合器を設け、該混合器においては、銀塩水
溶液とハロゲン化物塩水溶液の少なくとも一方を高い流
速を持つ直線状の噴流とし、該噴流を細管に高速で流
し、該細管内で前記二種類の溶液を連続的に衝突させて
ハロゲン化銀微粒子を形成したあと1秒以内に、該ハロ
ゲン化銀微粒子を反応容器内のバルク液又はハロゲン化
銀粒子乳剤と混合せしめることによって、反応容器中の
ハロゲン化銀粒子を成長させる事を特徴とする請求項1
に記載のハロゲン化銀粒子乳剤の製造方法。
2. A mixer is provided outside the reaction vessel for causing the growth of silver halide grains, and in the mixer, at least one of the silver salt aqueous solution and the halide salt aqueous solution is a linear jet stream having a high flow rate. Then, the jet stream is caused to flow through a narrow tube at a high speed, and the two types of solutions are continuously collided in the narrow tube to form silver halide fine particles, and the silver halide fine particles in the reaction vessel are formed within 1 second. A silver halide grain in a reaction vessel is grown by mixing with a bulk liquid or a silver halide grain emulsion.
The method for producing a silver halide grain emulsion according to 1.
【請求項3】ハロゲン化銀粒子の成長を起こさせる反応
容器の外に混合器を設け、該混合器においては、銀塩水
溶液とハロゲン化物塩水溶液の少なくとも一方を高い流
速を持つ直線状の噴流とし、該噴流を細管に高速で流
し、該細管内で前記二種類の溶液を連続的に衝突させて
ハロゲン化銀微粒子を形成したあと、該ハロゲン化銀微
粒子を反応容器内のバルク液又はハロゲン化銀粒子乳剤
と混合できるように、反応容器と混合器の出口の間に循
環系を設け、反応容器内のバルク液又はハロゲン化銀乳
剤を循環し、該循環系に、混合器で連続的に調製された
微粒子ハロゲン化銀粒子が添加、混合されることを特徴
とするハロゲン化銀粒子乳剤の製造方法。
3. A mixer is provided outside the reaction vessel for causing the growth of silver halide grains, and in the mixer, at least one of the silver salt aqueous solution and the halide salt aqueous solution is a linear jet stream having a high flow rate. The jet stream is passed through a thin tube at a high speed, and the two kinds of solutions are continuously collided in the thin tube to form silver halide fine particles, and then the silver halide fine particles are mixed with a bulk liquid or halogen in a reaction vessel. A circulation system is provided between the reaction vessel and the outlet of the mixer so that it can be mixed with the silver halide grain emulsion, and the bulk liquid or the silver halide emulsion in the reaction vessel is circulated, and the circulation system is continuously mixed with the mixer. A method for producing a silver halide grain emulsion, characterized in that the fine grain silver halide grain prepared in step 1 is added and mixed.
JP2001273759A 2001-09-10 2001-09-10 Method for preparing silver halide photographic emulsion Pending JP2003084380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273759A JP2003084380A (en) 2001-09-10 2001-09-10 Method for preparing silver halide photographic emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273759A JP2003084380A (en) 2001-09-10 2001-09-10 Method for preparing silver halide photographic emulsion

Publications (1)

Publication Number Publication Date
JP2003084380A true JP2003084380A (en) 2003-03-19

Family

ID=19098929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273759A Pending JP2003084380A (en) 2001-09-10 2001-09-10 Method for preparing silver halide photographic emulsion

Country Status (1)

Country Link
JP (1) JP2003084380A (en)

Similar Documents

Publication Publication Date Title
US6096495A (en) Method for preparing silver halide emulsion
US6645713B2 (en) Method of manufacturing silver halide emulsions and apparatus thereof
JP2003103152A (en) Method and device for mixing liquid or solution
US5104786A (en) Plug-flow process for the nucleation of silver halide crystals
US3773516A (en) Process for preparing silver halide emulsions
JPH02167819A (en) Controlling method in forming silver halide particle and apparatus therefor
JPS6227008B2 (en)
US5213772A (en) Apparatus for forming silver halide grains
JPH02167818A (en) Production of silver halide particle
JP2003084380A (en) Method for preparing silver halide photographic emulsion
US5104785A (en) Process of forming silver halide grains
US6372420B1 (en) Method for producing silver halide photographic emulsion
JPH06507255A (en) How to obtain monodisperse tabular grains
JP2000338620A (en) Method for manufacturing silver halide photographic emulsion
JP4248297B2 (en) Method for producing a silver halide photographic emulsion
JPH0782208B2 (en) Method for producing silver halide
JP2000187293A (en) Manufacture of silver halide emulsion
JPH09179225A (en) Preparation of photographing emulsion and device used for the same
US5709989A (en) Process for making high chloride tabular grain emulsion using multiple stream addition of iodide
JPH11217217A (en) Device for producing silver halide
JP2987011B2 (en) Method for producing silver halide emulsion
JP2003107608A (en) Method for producing silver halide emulsion and equipment therefor
JP2004004475A (en) Silver halide emulsion and method for preparation of silver halide emulsion
JPH02172816A (en) Production of silver halide grain and device therefor
JP3575642B2 (en) Method and apparatus for producing silver halide emulsion