JP2003073859A - Regularly arranged nano-structure joined on substrate and manufacturing method therefor - Google Patents

Regularly arranged nano-structure joined on substrate and manufacturing method therefor

Info

Publication number
JP2003073859A
JP2003073859A JP2001265291A JP2001265291A JP2003073859A JP 2003073859 A JP2003073859 A JP 2003073859A JP 2001265291 A JP2001265291 A JP 2001265291A JP 2001265291 A JP2001265291 A JP 2001265291A JP 2003073859 A JP2003073859 A JP 2003073859A
Authority
JP
Japan
Prior art keywords
substrate
nanostructure
pores
film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001265291A
Other languages
Japanese (ja)
Other versions
JP3598373B2 (en
Inventor
Kenji Wada
健二 和田
Satoru Inoue
井上  悟
Shinichi Todoroki
眞市 轟
Shouchiku Sho
ショウチク ショ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2001265291A priority Critical patent/JP3598373B2/en
Publication of JP2003073859A publication Critical patent/JP2003073859A/en
Application granted granted Critical
Publication of JP3598373B2 publication Critical patent/JP3598373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a regularly arranged nano-structure such as an oxide on a substrate, with the use of an anodic oxide film. SOLUTION: The manufacturing method comprises vapor depositing a metal on the substrate having an electroconductive layer, anodically oxidising the metal to form pores on the substrate, which are regularly arranged in the anodic oxide film, chemically dissolving the pores to widen diameters of the pores, and filling the nano- structure substance in the pores. The method includes providing a fine uneven structure in the electroconductive layer, so as to develop an anchoring effect and effectively bond the nano-structure substance to the substrate. The nano-structure substance is also filled in a gap between the layers formed by multilayers vapor deposition, to prevent a collapse of the nano-structure. The substance forming the nano-structure can be a compound, which develops photocatalyst characteristics when absorbing at least ultraviolet radiation or ultra-violet of sun light, such as TiO2 or ZnO. The regularly arranged nano-structure is obtained on the substrate, which has morphology such as nanotube, nanodot, nano drill rod, nano fiber, and nano wire, by dissolving and removing only the anodic oxide film, after forming the complex oxide nano- structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基体上に直接接合
して規則化配列したナノ構造体、例えば、透明基体上に
直接接合して規則化配列した酸化チタン等の光触媒特性
を有するナノ構造体、およびその製造方法、ならびに該
製造方法に適する金属層の陽極酸化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nanostructure having a photocatalytic property such as titanium oxide directly bonded on a substrate and regularly arranged, for example, titanium oxide directly bonded and regularly arranged on a transparent substrate. The present invention relates to a body, a manufacturing method thereof, and a method of anodizing a metal layer suitable for the manufacturing method.

【0002】[0002]

【従来の技術】アルミニウムに代表されるバルブ金属の
陽極酸化法により、多孔質のナノ構造体を作製する方法
は古くから知られている。しかし、従来法では先端技術
やナノ構造体などとしての高度な利用が優先したわけで
はなく、陽極酸化皮膜自体の利用として耐食性、耐摩耗
性、電気絶縁性、着色化、磁性膜化等の限られた範囲で
の実用化が進展してきた。そして、従来法の長い歴史の
中で、例えば、アルミニウムの陽極酸化皮膜の細孔中に
金属を電析した皮膜が化学エッチングすることで酸化ア
ルミニウムの方が優先的に溶解し、金属が残留すること
は知られていた。
2. Description of the Related Art A method for producing a porous nanostructure by an anodic oxidation method of a valve metal typified by aluminum has long been known. However, the conventional method did not give priority to advanced technology or advanced applications as nanostructures, and the use of the anodic oxide film itself was limited to corrosion resistance, abrasion resistance, electrical insulation, coloring, magnetic film formation, etc. Practical application has progressed within the specified range. Then, in the long history of the conventional method, for example, aluminum oxide is preferentially dissolved by the chemical etching of the metal electrodeposited film in the pores of the anodized film of aluminum, and the metal remains. That was known.

【0003】しかし、こうしたナノ構造体は、用途が見
出されないまま今日に至った。ところが、最近先端技術
の行き止まり感などから急激にナノマテリアルの分野が
注目され、新たな視点からのナノ構造体の見直しが始ま
っている。現在は、ナノ構造体としての多孔質皮膜のみ
ならず、皮膜細孔中の電析物や浸入物質などを含めたナ
ノ構造体に関する多くの知見が見られる(例えば、特開
平11−200090号公報)。
However, such nanostructures have come to the present day without finding any applications. Recently, however, the field of nanomaterials has drastically attracted attention due to the dead end of advanced technology, and the review of nanostructures from a new perspective has begun. Currently, not only porous membranes as nanostructures, but also many findings concerning nanostructures including electrodeposits and infiltrated substances in the pores of the membranes (for example, JP-A No. 11-200090). ).

【0004】特に、最近では、皮膜をテンプレートとし
て応用する研究が盛んで、皮膜の細孔中にCVD法、PVD
法、ゾルーゲル法、めっき法、および有機膜法などによ
り、種々の金属、無機物、有機物を浸入させて、ナノド
ット、ナノロッド、ナノチューブおよびナノファイバな
どが配列したナノ構造体の作製例がある。しかし、まだ
これらの利用についての具体的な実用例はほとんど見ら
れず、今後の発展が期待されている。
[0004] In particular, recently, researches applying a film as a template have been actively conducted, and a CVD method, a PVD method or the like is used in the pores of the film.
There are examples of nanostructures in which nanodots, nanorods, nanotubes, nanofibers, and the like are arrayed by infiltrating various metals, inorganic substances, and organic substances by a method, a sol-gel method, a plating method, an organic film method, or the like. However, there are still few concrete practical examples of these uses, and future development is expected.

【0005】[0005]

【課題を解決するための手段】上記のような背景を踏ま
え、本発明者らは、導電層付き基体の利用展開を目指し
て、特に、この基体表面と金属の陽極酸化皮膜層との密
着性と成膜形態に注目しつつ、陽極酸化法とゾルーゲル
法、CVD法、PVD法を組み合わせたナノ構造体の作製上の
様々な利点に着目し、これらの技術の総合統一化を図る
こと、そして実用化を視野に入れつつ先端技術への展開
と地球環境保全のための新たな材料開発手段を開発し
た。
Based on the background described above, the present inventors have aimed to develop and utilize a substrate with a conductive layer, and in particular, the adhesion between the substrate surface and a metal anodic oxide film layer. While paying attention to the film formation morphology, paying attention to various advantages in the production of nanostructures that combine the anodic oxidation method, the sol-gel method, the CVD method, and the PVD method, and aiming to unify these technologies, and We have developed a new material development method for advanced technology development and global environmental protection, with a view to practical application.

【0006】すなわち、本発明は、基体上に形成された
多孔質陽極酸化皮膜の規則化配列した細孔中に充填さ
れ、該細孔底部のアンカー効果を発現する微細凹凸構造
を有する導電層上に直接接合していることを特徴とする
基体上に直接接合して規則化配列したナノ構造体であ
る。また、本発明は、基体上に形成された多孔質陽極酸
化皮膜は多段積層形成された金属積層膜から形成され、
該積層膜中に細孔同士を連通させる隙間状境界領域を有
し、該境界領域にも充填され倒壊防止され強化されてい
ることを特徴とする上記の基体上に直接接合して規則化
配列したナノ構造体である。
That is, according to the present invention, the porous anodic oxide film formed on the substrate is filled with the regularly arranged pores, and the conductive layer having a fine concavo-convex structure for exhibiting the anchor effect of the bottom of the pores is formed. It is a nanostructure in which a regular array is formed by being directly bonded onto a substrate, which is characterized by being directly bonded to. Further, the present invention is that the porous anodized film formed on the substrate is formed from a metal laminated film formed by multi-stage lamination,
A regular array formed by directly bonding on the above-mentioned substrate, characterized in that the laminated film has a void-like boundary region for communicating pores with each other, and the boundary region is also filled to prevent collapse and strengthen. It is a nanostructure.

【0007】また、本発明は、多孔質陽極酸化皮膜が溶
解除去されて形成された、ナノチューブ、ナノドット、
ナノロッド、ナノファイバ、またはナノワイアから選ば
れた少なくとも1種類からなる形状を有することを特徴
とする上記の基体上に直接接合して規則化配列したナノ
構造体である。また、本発明は、基体は、その表面に2
〜200nmの深さの微細凹凸構造を有し、ナノ構造体
物質のアンカー効果に優れた導電層を有するものからな
ることを特徴とする上記の基体上に直接接合して規則化
配列したナノ構造体である。
The present invention also relates to nanotubes, nanodots, formed by dissolving and removing the porous anodic oxide film.
It is a nanostructure that is directly bonded on the above-mentioned substrate and has a regular array, which has a shape of at least one selected from nanorods, nanofibers, and nanowires. Further, according to the present invention, the substrate has 2
Nanostructures having a fine concavo-convex structure with a depth of up to 200 nm and having a conductive layer having an excellent anchoring effect for nanostructured substances, which are directly bonded and regularly arranged on the above-mentioned substrate. It is the body.

【0008】また、本発明は、導電層がITO、SnO2
ZnO、またはSrCu2O2およびこれらの化合物へのドープ元
素または物質を含む化合物のうちのいずれか1種類の透
明導電性酸化物であることを特徴とする上記の基体上に
直接接合して規則化配列したナノ構造体である。また、
本発明は、基体がガラス、アルミナ、ダイヤモンド、ま
たは有機膜から選ばれる1種類の透明材料からなること
を特徴とする上記の基体上に直接接合して規則化配列し
たナノ構造体である。
Further, according to the present invention, the conductive layer is made of ITO, SnO 2 ,
ZnO or SrCu 2 O 2 and a compound containing a doping element or substance for these compounds, which is a transparent conductive oxide of any one kind, and is directly bonded onto the above-mentioned substrate to form a rule. It is a nanostructure in which the chemical structures are arranged. Also,
The present invention is a nanostructure in which a substrate is made of one kind of transparent material selected from glass, alumina, diamond, or an organic film, and is directly bonded onto the substrate to form a regular array.

【0009】また、本発明は、基体が炭化ケイ素、窒化
ケイ素などの耐熱性に優れた半透明または不透明材料の
1種類からなることを特徴とする上記の基体上に直接接
合して規則化配列したナノ構造体である。また、本発明
は、ナノ構造体が少なくとも紫外光や太陽光の紫外部を
吸収して光触媒特性を有する化合物であることを特徴と
する上記の基体上に直接接合して規則化配列したナノ構
造体である。
Further, the present invention is characterized in that the substrate is made of one kind of translucent or opaque material having excellent heat resistance such as silicon carbide or silicon nitride, and is directly bonded onto the substrate to form a regular array. It is a nanostructure. Further, the present invention is characterized in that the nanostructure is a compound having a photocatalytic property by absorbing at least the ultraviolet rays of the ultraviolet light and the sunlight, and the ordered nanostructure is directly bonded on the above-mentioned substrate. It is the body.

【0010】さらに、本発明は、基体上に金属を蒸着
し、該金属を陽極酸化処理して基体上に多孔質陽極酸化
皮膜からなる規則化配列した細孔を形成し、該細孔中に
ナノ構造体物質を充填する方法において、該細孔を拡大
するとともに細孔底部の薄いバリヤー層を充填されたナ
ノ構造体物質が基体に直接通じてアンカー効果を発現す
るように化学溶解することを特徴とする基体上に直接接
合して規則化配列したナノ構造体の製造方法である。
Further, according to the present invention, a metal is vapor-deposited on a substrate, and the metal is anodized to form regularly arranged pores composed of a porous anodic oxide film on the substrate. In the method of filling the nanostructured material, the nanostructured material, which expands the pores and is filled with a thin barrier layer at the bottom of the pores, is directly dissolved in the substrate and chemically dissolved so as to exhibit an anchoring effect. It is a method for producing a nanostructure in which regular arrangement is carried out by directly bonding on a characteristic substrate.

【0011】また、本発明は、蒸着する金属がAl、Ti、
Mg、Nb、Ta、Si、Zrのいずれか1種類であり、陽極酸化
により多孔質酸化皮膜の構造の形成ができることを特徴
とする上記の基体上に直接接合して規則化配列したナノ
構造体の製造方法である。また、本発明は、アンカー効
果を発現する2〜200nmの深さの微細凹凸構造を持
つ透明導電層を表面に形成した基体上に金属を蒸着し、
金属および多孔質陽極酸化皮膜と導電層との密着性を高
めることを特徴とする上記の基体上に直接接合して規則
化配列したナノ構造体の製造方法である。
Further, according to the present invention, the metal to be deposited is Al, Ti,
Nanostructures that are any one of Mg, Nb, Ta, Si, and Zr, and that can form a structure of a porous oxide film by anodic oxidation, are directly bonded onto the above-mentioned substrate, and are regularly arranged. Is a manufacturing method. In addition, the present invention vapor-deposits a metal on a substrate having a transparent conductive layer having a fine concavo-convex structure having a depth of 2 to 200 nm that exhibits an anchor effect, formed on the surface,
A method for producing a nanostructure in which the metal and the porous anodic oxide film and the conductive layer are adhered to each other and which is regularly bonded and regularly arranged on the above-mentioned substrate.

【0012】また、本発明は、基体上に金属を蒸着する
途中で蒸着サイクル方式又は蒸着条件を変える等の多段
積層方式による金属蒸着により、形成される積層膜中に
隙間状境界領域を少なくとも一層以上を形成することを
特徴とする上記の基体上に直接接合して規則化配列した
ナノ構造体の製造方法である。
Further, according to the present invention, at least one interstitial boundary region is formed in a laminated film formed by metal vapor deposition by a multi-stage laminating system such as a vapor deposition cycle system or changing vapor deposition conditions during vapor deposition of a metal on a substrate. A method for producing a nanostructure in which the above are formed, the nanostructures are directly bonded onto the above-mentioned substrate and are regularly arranged.

【0013】また、本発明は、細孔中にナノ構造体物質
を充填する方法が酸化物のゾルーゲルコーティング法で
あることを特徴とする上記の基体上に直接接合して規則
化配列したナノ構造体の製造方法である。また、本発明
は、ナノ構造体物質を200℃〜500℃の範囲内で加
熱することにより陽極酸化皮膜と酸化物との接合性およ
び結晶化の促進を図ることを特徴とする上記の基体上に
直接接合して規則化配列したナノ構造体の製造方法であ
る。
Further, the present invention is characterized in that the method of filling the nanostructured substance in the pores is an oxide sol-gel coating method. It is a body manufacturing method. In addition, the present invention is characterized in that the nanostructured substance is heated in the range of 200 ° C. to 500 ° C. to promote the bondability between the anodized film and the oxide and the crystallization. It is a method for producing a nanostructure in which a nanostructure is directly bonded to and regularly arranged.

【0014】さらに、本発明は、上記の各方法で基体上
に直接接合して規則化配列したナノ構造体を製造した
後、陽極酸化皮膜のみを溶解除去することを特徴とする
基体上に直接接合して規則化配列したナノ構造体の製造
方法である。また、本発明は、陽極酸化皮膜のみを溶解
除去した後のナノ構造体が、ナノチューブ、ナノドッ
ト、ナノロッド、ナノファイバ、ナノワイアから選ばれ
た少なくとも1種類からなる形状を有することを特徴と
する上記の基体上に直接接合して規則化配列したナノ構
造体の製造方法である。
Further, according to the present invention, after directly ordering on the substrate by each of the above-mentioned methods to produce an ordered nanostructure, only the anodized film is dissolved and removed directly onto the substrate. This is a method for producing a nanostructure that is joined and ordered. Further, the present invention is characterized in that the nanostructure after dissolving and removing only the anodized film has a shape made of at least one selected from nanotubes, nanodots, nanorods, nanofibers, and nanowires. This is a method for producing a nanostructure in which regular arrangement is performed by directly bonding on a substrate.

【0015】また、本発明は、多孔質陽極酸化皮膜の細
孔の底部のバリヤー層の厚さと、孔壁(セル壁)の厚さ
との比が1/3〜1/10になるよう制御された、薄い
バリヤー層であることを特徴とする多孔質陽極酸化皮膜
構造体である。
In the present invention, the ratio of the thickness of the barrier layer at the bottom of the pores of the porous anodic oxide film to the thickness of the pore wall (cell wall) is controlled to be 1/3 to 1/10. In addition, it is a porous anodic oxide film structure characterized by being a thin barrier layer.

【0016】また、本発明は、ゾルーゲル法、CVD
法、またはPVD法のいずれかの方法により、酸化物な
どの微細粒子が陽極酸化皮膜の細孔の孔壁を伝ってまた
は吸着により浸入し易い形態を有する多孔質酸化皮膜の
構造で、その構造が細孔径が80〜250nm、セル径
が300〜600nmであり、その皮膜を陽極酸化電圧
が90〜200Vの高電圧で形成することを特徴とする
導電層付き基体上に蒸着により形成した金属の陽極酸化
皮膜形成方法である。また、本発明は、蒸着により形成
した金属がアルミニウムであり、電解液がリン酸溶液ま
たはシュウ酸溶液であり、電解液の液温度を10℃以下
とすることを特徴とする上記の導電層付き基体上に蒸着
により形成した金属の陽極酸化皮膜形成方法である。
The present invention is also based on the sol-gel method and CVD.
Or a PVD method, a structure of a porous oxide film having a form in which fine particles such as oxides easily penetrate through pore walls of pores of the anodic oxide film or by adsorption. Has a pore diameter of 80 to 250 nm, a cell diameter of 300 to 600 nm, and a coating thereof is formed at a high voltage of 90 to 200 V as an anodic oxidation voltage. This is a method of forming an anodized film. In the present invention, the metal formed by vapor deposition is aluminum, the electrolytic solution is a phosphoric acid solution or an oxalic acid solution, and the electrolytic solution has a liquid temperature of 10 ° C. or lower. It is a method for forming a metal anodic oxide film formed on a substrate by vapor deposition.

【0017】ダイオキシン類などの毒性の強い有機物を
光触媒特性を有する透明酸化チタンなどのナノ構造体を
用いて、紫外線または太陽光の照射支援を受けて酸化分
解させる場合、実際面では、分解させる物質が気体であ
ることが多く、紫外線や太陽光照射時に有機物を可能な
限り長時間光触媒と接触させる必要がある。
In the practical aspect, when a highly toxic organic substance such as dioxins is oxidatively decomposed by using a nanostructure such as transparent titanium oxide having photocatalytic properties with the assistance of irradiation of ultraviolet rays or sunlight, it is actually a substance to be decomposed. Is often a gas, and it is necessary to bring organic matter into contact with the photocatalyst for as long as possible during irradiation with ultraviolet rays or sunlight.

【0018】そのためには、酸化チタン等の光触媒体表
面を微細化して比表面積を高め、かつ薄膜化と高純度化
を図り透明性を高めるほど、有機物の分解率も上がる。
つまり、有機物分解用の反応基体はそれ自体透明である
ことと、表面に形成させる光触媒も透明で適度な大きさ
のナノ構造体を具備することが重要である。
For that purpose, as the surface of the photocatalyst such as titanium oxide is made finer to increase the specific surface area, and the transparency is improved by thinning the film and increasing the purity, the decomposition rate of organic substances is also increased.
In other words, it is important that the reaction substrate for decomposing organic substances is transparent itself, and that the photocatalyst formed on the surface is also transparent and has a nanostructure of an appropriate size.

【0019】本発明の製造方法によって得られる酸化物
ナノ構造体は、例えば、有機物を光触媒特性を有する透
明酸化物によって分解する用途にも有用である。こうし
た透明基体上の特異形状の光触媒体は、紫外線や太陽光
の照射により容易に有機物の連続的分解ができ、省エネ
ルギーおよび環境保全にとって重要となる。透明体を利
用することは、基体全面(表と裏面の同時利用)での分
解ができ、太陽光などの照射位置および角度などを自在
に選択できる有利性がある。
The oxide nanostructure obtained by the production method of the present invention is also useful, for example, for the purpose of decomposing organic matter with a transparent oxide having photocatalytic properties. The peculiar shape photocatalyst on such a transparent substrate can easily and continuously decompose organic substances by irradiation with ultraviolet rays or sunlight, which is important for energy saving and environmental protection. The use of the transparent body has an advantage that the entire surface of the substrate (the front and back surfaces can be simultaneously used) can be decomposed and the irradiation position and angle of sunlight or the like can be freely selected.

【0020】本発明は不透明基体への利用もできるが、
この場合一般的には光触媒効果を引き出すための太陽光
などの照射が制限され、照射効果の低下を招き、かつ照
射エネルギーが大きくなる。しかし、特に耐熱性が要求
される特別な用途などにも適用できることは利点であ
る。
Although the present invention can be used with opaque substrates,
In this case, generally, the irradiation of sunlight or the like to bring out the photocatalytic effect is restricted, the irradiation effect is lowered, and the irradiation energy becomes large. However, it is an advantage that it can be applied to special applications where heat resistance is particularly required.

【0021】本発明によるナノ構造体付き基体は、今
後、エレクトロニクス分野でのナノデバイスとしての応
用のみならず、電池、太陽エネルギー、センサーおよび
触媒担体等としての機能性材料などの分野における発展
が期待できる。
The substrate with a nanostructure according to the present invention is expected to develop not only in the field of electronics as a nanodevice, but also in the fields of functional materials such as batteries, solar energy, sensors and catalyst carriers. it can.

【0022】[0022]

【発明の実施の形態】本発明の基体上へのナノ構造体の
作製工程を図に基づいて説明する。図1のa)に示すよ
うに、基体1の表面に導電層2、例えば、ITO、SnO2、Z
nO、またはSrCu2O2およびこれらの物質へのドープ元素
(例えば、Sn、Sb、F、Al、Ga)を含む化合物のうちの
いずれかのような透明導電層を形成する。基体1はガラ
ス、アルミナ、ダイヤモンド、または有機膜などの透明
材料や炭化ケイ素、窒化ケイ素などの耐熱性に優れた半
透明および不透明材料を使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION A process for producing a nanostructure on a substrate of the present invention will be described with reference to the drawings. As shown in FIG. 1 a), a conductive layer 2 such as ITO, SnO 2 , Z is formed on the surface of the substrate 1.
A transparent conductive layer is formed such as nO or any of SrCu 2 O 2 and compounds containing doping elements (eg, Sn, Sb, F, Al, Ga) into these materials. As the substrate 1, a transparent material such as glass, alumina, diamond, or an organic film, or a semitransparent or opaque material having excellent heat resistance such as silicon carbide or silicon nitride can be used.

【0023】導電層2が存在しない場合は、蒸着金属層
3を完全に酸化させることができず(陽極酸化によって
形成されるバリヤー層/基体界面に金属が一部残留して
透明性が劣る)、透明材料を基体として用いても基体の
透明度が低くダイオキシン類の分解用途には利用できな
い。
If the conductive layer 2 does not exist, the vapor-deposited metal layer 3 cannot be completely oxidized (a part of the metal remains at the barrier layer / substrate interface formed by anodic oxidation, resulting in poor transparency). Even if a transparent material is used as a substrate, the transparency of the substrate is low and it cannot be used for decomposing dioxins.

【0024】また、導電層は、表面が平坦過ぎると蒸着
する金属との密着性が悪く、完全に陽極酸化した後、ま
たは加熱処理時に剥離が起こり利用できない。したがっ
て、導電層表面には、蒸着する金属およびその陽極酸化
皮膜との密着性を高めるためのアンカー効果を発現する
微細凹凸構造が存在するものを用いるほどよい。このア
ンカー効果を発現する微細凹凸構造は、2〜200nm
の深さが必要で、これにより種々の大きさの蒸着金属粒
子との密着性が高まる。
If the surface of the conductive layer is too flat, the adhesion to the metal to be deposited is poor and peeling occurs after complete anodic oxidation or during heat treatment, which makes it unusable. Therefore, it is preferable to use a conductive layer having a fine concavo-convex structure that exhibits an anchor effect for enhancing the adhesion to the metal to be deposited and its anodized film on the surface of the conductive layer. The fine concavo-convex structure that develops this anchor effect is 2 to 200 nm.
Depth is required, which enhances adhesion to vapor-deposited metal particles of various sizes.

【0025】導電層の形成方法は真空蒸着法、イオンプ
レーティング法およびスパッタリング法で行うことがで
きる。導電層の膜厚や表面の微細凹凸構造の深さは、目
的により該形成方法の使い分けや成膜速度および基体温
度などを制御することによって調整する。
The conductive layer can be formed by a vacuum vapor deposition method, an ion plating method and a sputtering method. The thickness of the conductive layer and the depth of the fine concavo-convex structure on the surface are adjusted depending on the purpose by properly using the forming method, controlling the film forming rate, the substrate temperature, and the like.

【0026】次に、導電層2上に蒸着金属層3を形成す
る。金属の蒸着は、真空蒸着法、イオンプレーティング
法およびスパッタリング法などで成膜されたものを使用
できるが、その成膜条件および膜質などは、次の工程の
陽極酸化により細孔がシリンダー状に整然と配列するよ
うにすることが重要である。例えば、通常は成膜速度は
0.2nm/秒程度であるが、本発明のスパッタリング
法では少なくともこの条件を1〜2nm/秒の範囲で制
御し、蒸着粒子が小さく、柱状配向性のない緻密な膜と
し、かつ表面の平滑性も可能な限り均一で平らになるよ
うに配慮する。
Next, the vapor-deposited metal layer 3 is formed on the conductive layer 2. Metal deposition can be performed by vacuum deposition, ion plating, sputtering, etc., but the deposition conditions and film quality can be changed by anodic oxidation in the next step so that the pores become cylindrical. It is important to arrange them in an orderly manner. For example, the film formation rate is usually about 0.2 nm / sec, but in the sputtering method of the present invention, at least this condition is controlled within the range of 1 to 2 nm / sec, the vapor deposition particles are small, and there is no columnar orientation. The film should be smooth and the surface should be as flat and smooth as possible.

【0027】また、例えば、スパッタリング法でμm単
位の厚膜を成膜する場合には、一段法でもよいが、通常
は良質膜を形成するために1サイクルでの形成膜厚が
0.5〜0.8μm程度に制御するのが一般的である。
このことは、成膜中に基体(基板)温度が徐々に上昇し
て、膜に配向性が生じ膜質が悪くなるためである。それ
ゆえ、厚膜を形成するためには、必然的にサイクル数を
2回以上とする多段方式となる。本発明では、基体温度
は室温から始め350℃以下で制御した。
Further, for example, when forming a thick film of a unit of μm by a sputtering method, a one-step method may be used, but normally, in order to form a good quality film, the film thickness formed in one cycle is 0.5 to Generally, it is controlled to about 0.8 μm.
This is because the temperature of the substrate (substrate) gradually rises during the film formation, the film is oriented and the film quality deteriorates. Therefore, in order to form a thick film, a multi-stage method in which the number of cycles is necessarily two or more is inevitable. In the present invention, the substrate temperature is controlled to be 350 ° C. or lower starting from room temperature.

【0028】しかし、この多段式で成膜した膜の断面を
電子顕微鏡で良く観察すると、各サイクルごとの界面に
相当する領域に境界線が入る。従って、用途にもよる
が、通常、厚膜の用途ではこの境界線の存在が、その後
のナノ構造体形成にも影響を及ぼす。そして一般的に
は、この境界領域の存在は利点とならず、むしろ欠陥と
して取り扱われている。
However, when the cross section of the film formed by the multi-stage method is well observed by an electron microscope, a boundary line is formed in a region corresponding to the interface for each cycle. Therefore, in thick film applications, the presence of this boundary also affects subsequent nanostructure formation, depending on the application. And in general, the existence of this boundary region is not an advantage, but rather is treated as a defect.

【0029】ところが、本発明では、こうした常識を打
破するため、境界領域をナノ構造体の配列強化技術とし
て注目し、その利用検討と今後の実用化向けての有益な
知見を得た。つまり、陽極酸化皮膜のみを溶解除去した
後の酸化物ナノ構造体が倒壊分散しないように、少なく
とも2サイクル以上の多段積層方式により金属の蒸着途
中で形成される隙間状の境界領域を利用できる。
However, in the present invention, in order to break such common sense, attention has been paid to the boundary region as a technique for strengthening the arrangement of nanostructures, and useful knowledge for studying its use and practical application in the future has been obtained. That is, in order to prevent the oxide nanostructure from being collapsed and dispersed after the anodic oxide film alone has been dissolved and removed, it is possible to use the interstitial boundary region formed during the vapor deposition of the metal by the multi-stage lamination method of at least 2 cycles or more.

【0030】次に、図1のb)に示すように、蒸着金属
層3を陽極酸化する。蒸着金属の陽極酸化では、ダイオ
キシン類などの有機物が浸入し易い多孔質酸化皮膜4の
構造を作ることが重要である。ところが、伝統的かつJI
SやISOに規定された標準的な電解条件で行うと、電圧が
上げられないだけでなく、細孔径Aも、例えば、硫酸皮
膜10〜15nm、シュウ酸皮膜20〜50nm、リン
酸皮膜30〜60nm程度であるため、有機物などの浸
入は不十分である。
Next, as shown in FIG. 1B), the vapor-deposited metal layer 3 is anodized. In the anodic oxidation of the vapor-deposited metal, it is important to create a structure of the porous oxide film 4 in which organic substances such as dioxins easily enter. However, it is traditional and JI
When it is carried out under standard electrolysis conditions stipulated by S or ISO, not only the voltage cannot be increased, but the pore diameter A is, for example, 10 to 15 nm for the sulfuric acid film, 20 to 50 nm for the oxalic acid film, and 30 to the phosphoric acid film. Since it is about 60 nm, infiltration of organic substances is insufficient.

【0031】このため、例えば、分解のための有機物の
大きさとその浸入および酸化物ゾルの大きさ(TiO2ゾル
では粒子の大きさは約3〜20nmである)などを考慮
して、これらの物質が浸入できるのに容易な多孔質酸化
皮膜4の構造として、細孔径Aがおよそ80nm〜25
0nmになるような電解液、電解条件、製造プロセスを
総合的に選択する。つまり、電解液は化学溶解性の高い
リン酸溶液、シュウ酸溶液を選択し、電解電圧はセル径
(図1のbのCで示す孔壁の中心と中心間の距離)が3
00〜600nmと大きくなるように高電圧をかけ、液
温度も高電圧がかけられるようにできるだけ低温、好ま
しくはおよそ10℃以下とする。
Therefore, for example, in consideration of the size of the organic substance for decomposition and its penetration and the size of the oxide sol (the particle size of the TiO 2 sol is about 3 to 20 nm), these As the structure of the porous oxide film 4 which is easy for the substance to enter, the pore diameter A is about 80 nm to 25 nm.
An electrolytic solution, an electrolytic condition, and a manufacturing process that result in 0 nm are comprehensively selected. That is, a phosphoric acid solution or an oxalic acid solution having high chemical solubility is selected as the electrolytic solution, and the electrolytic voltage is 3 when the cell diameter (the distance between the centers of the hole walls shown by C in FIG. 1b) is 3
A high voltage is applied so as to be as large as 00 to 600 nm, and the liquid temperature is set as low as possible so that the high voltage can be applied, preferably about 10 ° C. or lower.

【0032】多孔質陽極酸化皮膜4と導電層2との密着
性が優れた金属蒸着基体1は、90〜200Vもの高電
圧電解でも多孔質酸化皮膜4の構造が破壊されることも
なく、導電層2からの剥離もなくなり、シリンダー状細
孔の配列した強固な皮膜が形成する。つまり、この密着
性が考慮されない一般的な陽極酸化では、例えば、シュ
ウ酸皮膜では電圧をおよそ40V以上にすることができ
ず、また、リン酸皮膜でもおよそ60V以上での電解は
困難である。この電圧を超えると、大電流が流れて皮膜
溶解と皮膜破壊が同時に起こり、また導電層からの皮膜
剥離も起こり、電解処理できない。
The metal vapor-deposited substrate 1 having excellent adhesion between the porous anodic oxide coating 4 and the conductive layer 2 does not destroy the structure of the porous oxide coating 4 even by high-voltage electrolysis of 90 to 200 V, and the conductivity is improved. Peeling from the layer 2 is also eliminated, and a strong film in which cylindrical pores are arranged is formed. That is, in the general anodic oxidation in which the adhesiveness is not taken into consideration, for example, the oxalic acid film cannot have a voltage of about 40 V or higher, and even the phosphoric acid film is difficult to electrolyze at about 60 V or higher. If this voltage is exceeded, a large current will flow, and film dissolution and film destruction will occur at the same time, and film exfoliation from the conductive layer will occur, making electrolytic treatment impossible.

【0033】さらなる利点として、本発明の陽極酸化で
形成される多孔質酸化皮膜構造では、図1のb)に示し
たバリヤー層の厚さDと孔壁の厚さBとの比D/Bがお
よそ1/3〜1/10であるのに対して、従来法の多孔
質酸化皮膜構造ではおよそ1/2である。このバリヤー
層の厚さDは通常電解電圧に比例しており、電圧の上昇
とともにおよそ1.2nm/Vの割合で厚くなることが
知られている。本発明のバリヤー層はこの点が本質的に
異なっている。加えてバリヤー層の形態も常法のそれと
異なる。
As a further advantage, in the porous oxide film structure formed by anodic oxidation of the present invention, the ratio D / B of the thickness D of the barrier layer and the thickness B of the pore wall shown in FIG. Is about 1/3 to 1/10, while it is about 1/2 in the conventional porous oxide film structure. It is known that the thickness D of the barrier layer is usually proportional to the electrolysis voltage and increases with the increase of the voltage at a rate of about 1.2 nm / V. The barrier layer of the present invention differs essentially in this respect. In addition, the morphology of the barrier layer is different from that of the conventional method.

【0034】細孔径が目標より小さい場合には、図1の
c)に示すように、化学溶解工程により拡孔処理する。
拡孔のための化学溶解では、単なる拡孔処理にとどまら
ず、上記バリヤー層の厚さに関して細孔底部のバリヤー
層の溶解除去時間が通常法の場合より短時間となる有利
性があり、省エネルギー化が図れる。すなわち、従来法
の標準的な電解条件で陽極酸化した多孔質酸化皮膜構造
では、例えば、電圧が40V程度の低い電圧で形成され
たバリヤー層でも化学溶解時間がおよそ50分以上であ
るのに対し、本発明の多孔質酸化皮膜構造では90V以
上の高電圧で形成されても、バリヤー層が極端に薄いた
め化学溶解時間は30分程度で十分であり、バリヤー層
は完全に除去され、多孔質酸化物ナノ構造体5が形成さ
れる。
When the pore diameter is smaller than the target, as shown in FIG. 1c), the pores are expanded by the chemical dissolution process.
In the chemical dissolution for pore expansion, there is an advantage that the dissolution removal time of the barrier layer at the bottom of the pores is shorter than that of the conventional method with respect to the thickness of the barrier layer, not limited to simple pore expansion treatment, and energy saving. Can be realized. That is, in the porous oxide film structure anodized under the standard electrolytic conditions of the conventional method, for example, the chemical dissolution time is about 50 minutes or more even with a barrier layer formed at a low voltage of about 40V. In the porous oxide film structure of the present invention, even if it is formed at a high voltage of 90 V or higher, the barrier layer is extremely thin, so that a chemical dissolution time of about 30 minutes suffices, and the barrier layer is completely removed. The oxide nanostructure 5 is formed.

【0035】また、拡孔処理した細孔内の孔壁の濡れ性
は優れ、図1のd)に示すように、細孔内への、例え
ば、TiO2などのナノ構造体形成工程におけるゾルーゲル
コーティングでは、ゾルが孔壁を伝って浸入し、さら
に、細孔底部の微細凹凸構造を有する導電体層まで浸入
して導電体層と強固に直接接合する。さらに、ゾルは、
上記のとおり、蒸着時に形成された孔壁の隙間状の境界
領域の隙間にも浸入してゲル化する。これに対して、拡
孔処理しない孔壁の濡れ性は劣り、ゾルは浸入しにく
い。
Further, the wettability of the pore wall in the pores subjected to the pore expansion treatment is excellent, and as shown in d) of FIG. 1, the sol-gel in the step of forming a nanostructure such as TiO 2 into the pores. In the coating, the sol penetrates along the pore walls and further penetrates to the conductor layer having a fine concavo-convex structure at the bottom of the pores to firmly and directly bond to the conductor layer. Furthermore, the sol is
As described above, it also penetrates into the gaps in the gap-shaped boundary regions of the hole walls formed during vapor deposition and gels. On the other hand, the wettability of the hole wall that has not been subjected to the hole expansion treatment is poor, and the sol is difficult to enter.

【0036】このようにして形成された複合多孔質酸化
物ナノ構造体6は、さらに、図1のe)に示すように、
例えば、5%リン酸と2%クロム酸との混酸などの酸ま
たは2%〜5%濃度の水酸化ナトリウムなどのアルカリ
溶液による化学溶解工程でエッチングすると、酸化皮膜
のみが溶解して、TiO2などのナノ構造体7(ナノチュー
ブ、ナノドット、ナノロッド、ナノファイバ、ナノワイ
ア等)が導電層2を介して基体1上に直接接合して規則
化配列でき、本発明の最大の特徴となる。
The composite porous oxide nanostructure 6 thus formed further has the following structure as shown in FIG.
For example, when etching is performed in a chemical dissolution process using an acid such as a mixed acid of 5% phosphoric acid and 2% chromic acid or an alkaline solution such as sodium hydroxide having a concentration of 2% to 5%, only the oxide film is dissolved and TiO 2 Nanostructures 7 (nanotubes, nanodots, nanorods, nanofibers, nanowires, etc.) such as can be directly bonded onto the base 1 through the conductive layer 2 to form a regular array, which is the greatest feature of the present invention.

【0037】すなわち、これによって、基体1および導
電層2としてともに透明材料を用いた場合は、図2に示
すように、透明基体1および透明導電層2上に光触媒性
を有し、比表面積の大きな透明で密着性に優れたナノ構
造体7の規則化配列体が形成できる。
That is, when a transparent material is used for both the substrate 1 and the conductive layer 2, the transparent substrate 1 and the transparent conductive layer 2 have a photocatalytic property and a specific surface area as shown in FIG. An ordered array of nanostructures 7 having a large transparency and excellent adhesion can be formed.

【0038】[0038]

【実施例】(実施例1)20×100×1.1mmのガラ
ス基体の表面に約15nmのSiO2膜、120nmのIT
O膜、2μmの99.9%Al蒸着膜を形成した。Alの蒸
着はRFスパッタリングで成膜速度1.5nm/sで行っ
た。この多層基板をアセトンで10分間超音波洗浄し
た。次に、7℃の10%リン酸溶液中に浸せきし、13
0Vで定電位陽極酸化することにより、多孔質陽極酸化
皮膜を作製した。
EXAMPLES Example 1 A SiO 2 film of about 15 nm and an IT of 120 nm are formed on the surface of a glass substrate of 20 × 100 × 1.1 mm.
An O film and a 29.9 μm 99.9% Al vapor deposition film were formed. The vapor deposition of Al was performed by RF sputtering at a film formation rate of 1.5 nm / s. This multilayer substrate was ultrasonically cleaned with acetone for 10 minutes. Then, dip it in a 10% phosphoric acid solution at 7 ° C.,
A porous anodized film was prepared by performing constant potential anodization at 0V.

【0039】図3に、下地のITO層まで陽極酸化した
アルミナ皮膜の破断面構造をFESEM写真で示す。ガ
ラスの上に細孔が垂直に配列しており、平均孔径が11
0nm、セル径が約350nmの特有な多孔質アルミナ
構造体が得られた。また、陽極酸化初期における皮膜の
バリヤー層は、通常は半球状であるが、下地のITO層
まで完全に陽極酸化した皮膜のバリヤー層は、ほぼ平
ら、または弓形になり、かつ厚さが極端に薄いことが分
かる。
FIG. 3 is a FESEM photograph showing a fractured surface structure of an alumina film anodized up to the underlying ITO layer. The pores are arranged vertically on the glass and the average pore size is 11
A unique porous alumina structure having a cell diameter of 0 nm and a cell diameter of about 350 nm was obtained. The barrier layer of the film in the initial stage of anodization is usually hemispherical, but the barrier layer of the film completely anodized up to the underlying ITO layer becomes almost flat or arcuate and has an extremely thick thickness. You can see that it is thin.

【0040】次に、30℃の5%リン酸溶液中に浸せき
し、細孔径を200nmまで調整した。細孔径を拡大し
た試料をエタノールに10分間浸せき後、さらにTiO2
ル中に20分間浸せきしてディップコーティングした。
100℃で1時間乾燥後、400℃で2時間加熱した。
TiO2ゾルの組成は、酸化物粒子が極めて小さいものを目
指し、かつこれら粒子の凝集防止を考慮したもので、Ti
(OPri)4:AcAc:H2O:EtOH=1:1:3:20のゾルを
基本とした。
Next, it was dipped in a 5% phosphoric acid solution at 30 ° C. to adjust the pore size to 200 nm. The sample with the enlarged pore size was dipped in ethanol for 10 minutes and then dipped in TiO 2 sol for 20 minutes for dip coating.
After drying at 100 ° C. for 1 hour, it was heated at 400 ° C. for 2 hours.
The composition of the TiO 2 sol is aimed at those with extremely small oxide particles, and in consideration of preventing the aggregation of these particles.
(OPri) 4 : AcAc: H 2 O: EtOH = 1: 1: 3: 20 based on sol.

【0041】図4は、拡孔処理した陽極酸化試料をTiO2
コートした後の破断面FESEM写真である。30分以上拡
孔処理すると、皮膜のバリヤー層が完全に溶解除去さ
れ、ディプコーティングの際に、ゾルが孔壁に沿ってI
TO素地まで浸入し、最終的にドライゲルとして基体上
に直接接合している。一方、このポーラスAl2O3/TiO2
複合ナノ構造体の表面積を計算したところ、通常の平坦
無孔膜より約200倍の表面積を持つことが分かった
(孔密度=1.4×1013個/m2、孔内径φ=140
nm)。
FIG. 4 shows the anodic oxide sample subjected to the hole expansion treatment as TiO 2
It is a FESEM photograph of a fractured surface after coating. When the pore expansion treatment is performed for 30 minutes or more, the barrier layer of the film is completely dissolved and removed, and during dip coating, the sol is I along the pore wall.
It penetrates to the TO base material and is finally bonded as a dry gel directly onto the substrate. On the other hand, this porous Al 2 O 3 / TiO 2
When the surface area of the composite nanostructure was calculated, it was found that the surface area was about 200 times that of a normal flat nonporous membrane (pore density = 1.4 × 10 13 holes / m 2 , pore inner diameter φ = 140).
nm).

【0042】(実施例2)実施例1で得られたポーラス
Al2O3/TiO2複合ナノ構造体から5%リン酸と2%クロ
ム酸の70℃混酸溶液中でアルミナ皮膜のみをエッチン
グ除去し、TiO2ナノ構造体を作製した。図5は、セル壁
のアルミナを化学溶解により部分的に除去したTiO2ナノ
チューブ配列構造である。直径約180nm、壁厚さ約
40nmのTiO2ナノチューブが得られた。チューブ状を
明確に示すために、一部を人為的に倒している(写真の
右上)。細孔中に浸入したゾルがゲル化してチューブ状
になる理由は、孔壁の濡れ性が優れているためである。
濡れ性が悪いと、ファイバー状になる原因となる。
(Example 2) Porous material obtained in Example 1
From the Al 2 O 3 / TiO 2 composite nanostructure, only the alumina film was removed by etching in a mixed acid solution of 5% phosphoric acid and 2% chromic acid at 70 ° C. to prepare a TiO 2 nanostructure. FIG. 5 shows a TiO 2 nanotube array structure in which alumina on the cell wall is partially removed by chemical dissolution. TiO 2 nanotubes having a diameter of about 180 nm and a wall thickness of about 40 nm were obtained. A part is artificially laid down to clearly show the tube shape (upper right of the photo). The reason why the sol that has penetrated into the pores is gelled into a tubular shape is that the wettability of the pore walls is excellent.
Poor wettability may cause fiber formation.

【0043】仮に、アルミナを全て除去したとすれば、
TiO2ナノチューブの表面積は、化学溶解前の約2.25
倍となると予測され、同じ組成の平坦なTiO2膜と比べる
と、単位面積当たりかなり高い光触媒性があると考えら
れる。一方、ダブルビーム分光測定により、図3、図
4、および図5のFESEM写真に示した試料の平均透過率
は、それぞれ、およそ95%、65%、75%T(55
0nm vs.Glass)であることが分かった。
If all the alumina is removed,
The surface area of TiO 2 nanotubes is about 2.25 before chemical dissolution.
It is expected that the amount will double, and it is considered that the TiO 2 film has a considerably higher photocatalytic property per unit area as compared with a flat TiO 2 film having the same composition. On the other hand, the average transmittances of the samples shown in the FESEM photographs of FIGS. 3, 4 and 5 were about 95%, 65% and 75% T (55%), respectively, by double beam spectroscopy.
0 nm vs. Glass).

【0044】(実施例3)平均抵抗値が20Ω/□のI
TO膜付きガラス基板にスパッタリング法でAlを2μm
蒸着した試料を、7℃の10%リン酸溶液中130Vに
て陽極酸化し、約3μm厚さの透明な酸化アルミニウム
の多孔質陽極酸化皮膜を形成した。次いで、この試料を
30℃、5%リン酸溶液中に10分間浸せきして、平均
細孔径が約100nmになるよう細孔径拡大を図った。
実施例1と同様に、TiO2のゾルーゲルコーティングによ
り細孔中へのゾルの浸入とゲル化処理を行い、自然乾燥
後400℃の電気炉中で2時間加熱した。
(Example 3) I having an average resistance value of 20 Ω / □
2μm of Al on the glass substrate with TO film by sputtering method
The vapor-deposited sample was anodized in a 10% phosphoric acid solution at 7 ° C. at 130 V to form a transparent aluminum oxide porous anodic oxide film having a thickness of about 3 μm. Next, this sample was immersed in a 5% phosphoric acid solution at 30 ° C. for 10 minutes to expand the pore size so that the average pore size was about 100 nm.
In the same manner as in Example 1, sol-gel coating of TiO 2 was used to infiltrate the sol into the pores and perform gelation treatment, and after natural drying, it was heated in an electric furnace at 400 ° C. for 2 hours.

【0045】こうして作製した複合酸化物ナノ構造体
は、最終的に5%リン酸と2%クロム酸の70℃混酸溶
液中で陽極酸化皮膜のみをエッチング除去し、TiO2結晶
(アナターゼ)のナノチューブがガラス基板上に倒壊防
止された透明基体が得られた(図6のFESEMによる破断
面写真参照)。
In the composite oxide nanostructure thus produced, only the anodic oxide film was finally removed by etching in a mixed acid solution of 5% phosphoric acid and 2% chromic acid at 70 ° C. to form TiO 2 crystal (anatase) nanotubes. As a result, a transparent substrate was obtained which was prevented from collapsing on the glass substrate (see the fracture surface photograph by FESEM in FIG. 6).

【0046】(実施例4)平均抵抗値が10Ω/□のI
TO膜付きガラス基板にスパッタリング法でAlを1.5
μm蒸着した試料を、7℃の10%リン酸溶液中130
Vにて陽極酸化し、約2.2μm厚さの透明な酸化アル
ミニウムの多孔質陽極酸化皮膜を形成した。次いで、こ
の試料を30℃、5%リン酸溶液中に20分間浸せきし
て、平均細孔径が約150nmになるよう細孔径拡大を
図り、実施例1と同様に、TiO2のゾルーゲルコーティン
グにより細孔中へのゾルの浸入とゲル化処理を行い、自
然乾燥後400℃の電気炉中で2時間加熱した。
(Example 4) I having an average resistance value of 10 Ω / □
1.5% Al on the glass substrate with TO film by sputtering method
Samples deposited by μm deposition in 10% phosphoric acid solution at 7 ° C
Anodization was performed at V to form a transparent aluminum oxide porous anodic oxide film having a thickness of about 2.2 μm. Then, the sample 30 ° C., and immersed for 20 minutes in 5% phosphoric acid solution, aims to pore diameter enlargement as an average pore diameter of about 150 nm, in the same manner as in Example 1, fine by the sol over gel coating of TiO 2 The sol was infiltrated into the pores and subjected to gelation treatment, and after natural drying, it was heated in an electric furnace at 400 ° C for 2 hours.

【0047】こうして作製した複合酸化物ナノ構造体
は、最終的に5%リン酸と2%クロム酸の30℃混酸溶
液中で陽極酸化皮膜のみをエッチング除去し、TiO2結晶
のナノチューブがガラス基板上に配列した透明基体が得
られた。
The thus prepared composite oxide nanostructures, finally 5% only the anodized film at 30 ° C. a mixed acid solution of phosphoric acid and 2% chromic acid was removed by etching, the nanotubes of the TiO 2 crystal glass substrate A transparent substrate arranged above was obtained.

【0048】平均抵抗値が9Ω/□のITO膜付きガラ
ス基板に真空蒸着法でAlを2μm蒸着した試料を、10
℃の10%リン酸溶液中110Vにて陽極酸化し、約
2.9μm厚さの透明なアルミナの多孔質陽極酸化皮膜
を形成した。次いで、この試料を30℃、5%リン酸溶
液中に20分間浸せきして、平均細孔径が120nmに
なるよう細孔径拡大を図り、実施例1と同様に、TiO2
ゾルーゲルコーティングにより細孔中へのゾルの浸入と
ゲル化処理を行い、自然乾燥後420℃の電気炉中で2
時間加熱した。
Samples obtained by vapor-depositing Al to a thickness of 2 μm on a glass substrate with an ITO film having an average resistance value of 9 Ω / □ by 10 μm were prepared.
Anodic oxidation was performed at 110 V in a 10% phosphoric acid solution at 0 ° C. to form a transparent alumina porous anodic oxide film having a thickness of about 2.9 μm. Then, this sample was dipped in a 5% phosphoric acid solution at 30 ° C. for 20 minutes to expand the pore size so that the average pore size was 120 nm, and as in Example 1, pores were formed by sol-gel coating of TiO 2. The sol was infiltrated and gelled, then dried naturally and then in an electric furnace at 420 ° C for 2
Heated for hours.

【0049】こうして作製した複合酸化物ナノ構造体
は、最終的に40℃の水酸化ナトリウム溶液中で陽極酸
化皮膜のみをエッチング除去し、TiO2結晶のナノチュー
ブがガラス基板上に配列した透明基体が得られた。
In the composite oxide nanostructure thus produced, only the anodized film was finally removed by etching in a sodium hydroxide solution at 40 ° C., and a transparent substrate having TiO 2 crystal nanotubes arranged on a glass substrate was obtained. Was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明のナノ構造体の製造工程を示す
概念図である。
FIG. 1 is a conceptual diagram showing a manufacturing process of a nanostructure of the present invention.

【図2】図2は、表面に2〜200nmの深さの微細凹
凸構造を有する透明導電層上にアンカー効果により酸化
物ナノチューブ構造体が基体に強固に直接接合している
状態を示す模式図である。
FIG. 2 is a schematic diagram showing a state in which an oxide nanotube structure is firmly bonded directly to a substrate by an anchor effect on a transparent conductive layer having a fine uneven structure with a depth of 2 to 200 nm on the surface. Is.

【図3】図3は、実施例1において、下地のITO層ま
で陽極酸化したアルミナ皮膜の破断面構造を示す図面代
用FESEM写真像である。
FIG. 3 is a drawing-substitute FESEM photographic image showing a fractured surface structure of an alumina film anodized to the underlying ITO layer in Example 1.

【図4】図4は、実施例1において、拡孔処理した陽極
酸化試料をTiO2コートした後の破断面構造を示す図面代
用FESEM写真像である。
FIG. 4 is a drawing-substituting FESEM photographic image showing a fracture surface structure after TiO 2 coating of a hole-expanded anodized sample in Example 1.

【図5】図5は、実施例2において、セル壁のアルミナ
を化学溶解により部分的に除去したTiO2ナノチューブ配
列を鳥瞰した構造を示す図面代用FESEM写真像である。
FIG. 5 is a drawing-substituting FESEM photographic image showing a bird's-eye view of a TiO 2 nanotube array in which alumina of a cell wall is partially removed by chemical dissolution in Example 2.

【図6】図6は、実施例3において、セル壁のアルミナ
を化学溶解により部分的に除去し、倒壊防止されたTiO2
ナノチューブ配列の破断面構造を示す図面代用FESEM写
真像である。
FIG. 6 is a view of Example 3 in which alumina on the cell wall is partially removed by chemical dissolution to prevent collapse of TiO 2;
It is a drawing-substitute FESEM photographic image showing a fractured surface structure of a nanotube array.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25D 11/16 302 C25D 11/16 302 11/18 301 11/18 301E 311 311 312 312 (72)発明者 ショ ショウチク 茨城県つくば市千現1丁目2番1号 独立 行政法人物質・材料研究機構内 Fターム(参考) 4K044 AA12 BA02 BA10 BA12 BB04 BB14 CA04 CA13 CA14 CA15─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C25D 11/16 302 C25D 11/16 302 11/18 301 11/18 301E 311 311 312 312 312 (72) Inventor Shocho Chik 1-2-1, Sengen, Tsukuba-shi, Ibaraki F-Term (Reference), National Institute for Materials Science (Reference) 4K044 AA12 BA02 BA10 BA12 BB04 BB14 CA04 CA13 CA14 CA15

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 基体上に形成された多孔質陽極酸化皮膜
の規則化配列した細孔中に充填され、該細孔底部のアン
カー効果を発現する微細凹凸構造を有する導電層上に直
接接合していることを特徴とする基体上に直接接合して
規則化配列したナノ構造体。
1. A porous anodic oxide coating formed on a substrate is filled in regularly arranged pores, and is directly bonded onto a conductive layer having a fine concavo-convex structure which exhibits an anchoring effect at the bottom of the pores. An ordered nanostructure directly bonded on a substrate.
【請求項2】 基体上に形成された多孔質陽極酸化皮膜
は多段積層形成された金属積層膜から形成され、該積層
膜中に細孔同士を連通させる隙間状境界領域を有し、該
境界領域にも充填され倒壊防止され強化されていること
を特徴とする請求項1記載の基体上に直接接合して規則
化配列したナノ構造体。
2. A porous anodic oxide film formed on a substrate is formed of a metal laminated film having a multi-layered structure, and has a gap-like boundary region for communicating pores in the laminated film. 2. The nanostructure having a regular arrangement by directly bonding to the substrate according to claim 1, wherein the nanostructure is also filled in the region to prevent collapse and strengthening.
【請求項3】 多孔質陽極酸化皮膜が溶解除去されて形
成された、ナノチューブ、ナノドット、ナノロッド、ナ
ノファイバ、またはナノワイアから選ばれた少なくとも
1種類からなる形状を有することを特徴とする請求項1
または2に記載の基体上に直接接合して規則化配列した
ナノ構造体。
3. The shape of at least one selected from nanotubes, nanodots, nanorods, nanofibers, or nanowires, which is formed by dissolving and removing the porous anodic oxide film.
Alternatively, a nanostructure in which the substrate is directly bonded onto the substrate according to 2 and has a regular arrangement.
【請求項4】 基体は、その表面に2〜200nmの深
さの微細凹凸構造を有し、ナノ構造体物質のアンカー効
果に優れた導電層を有するものからなることを特徴とす
る請求項1ないし3のいずれかに記載の基体上に直接接
合して規則化配列したナノ構造体。
4. The substrate has a fine concavo-convex structure having a depth of 2 to 200 nm on the surface thereof and a conductive layer excellent in the anchor effect of the nanostructured substance. 4. A nanostructure in which a regular array is formed by directly bonding on the substrate according to any one of 1 to 3.
【請求項5】 導電層がITO、SnO2、ZnO、またはSrC
u2O2およびこれらの化合物へのドープ元素または物質を
含む化合物のうちのいずれか1種類の透明導電性酸化物
であることを特徴とする請求項4記載の基体上に直接接
合して規則化配列したナノ構造体。
5. The conductive layer is ITO, SnO 2 , ZnO, or SrC.
5. A transparent conductive oxide of any one of u 2 O 2 and a compound containing a doping element or a substance for these compounds, which is directly bonded onto the substrate to form a rule. Arrayed nanostructures.
【請求項6】 基体がガラス、アルミナ、ダイヤモン
ド、または有機膜から選ばれる1種類の透明材料からな
ることを特徴とする請求項1ないし5のいずれかに記載
の基体上に直接接合して規則化配列したナノ構造体。
6. The rule by directly bonding onto the substrate according to claim 1, wherein the substrate is made of one kind of transparent material selected from glass, alumina, diamond, and an organic film. Arrayed nanostructures.
【請求項7】 基体が炭化ケイ素、窒化ケイ素などの耐
熱性に優れた半透明または不透明材料の1種類からなる
ことを特徴とする請求項1ないし5のいずれかに記載の
基体上に直接接合して規則化配列したナノ構造体。
7. The substrate is directly bonded onto the substrate according to claim 1, wherein the substrate is made of one kind of translucent or opaque material having excellent heat resistance such as silicon carbide and silicon nitride. And ordered nanostructures.
【請求項8】 ナノ構造体が少なくとも紫外光や太陽光
の紫外部を吸収して光触媒特性を有する化合物であるこ
とを特徴とする請求項1ないし7のいずれかに記載の基
体上に直接接合して規則化配列したナノ構造体。
8. The direct bonding on the substrate according to claim 1, wherein the nanostructure is a compound having a photocatalytic property by absorbing at least ultraviolet light or ultraviolet light of sunlight. And ordered nanostructures.
【請求項9】 基体上に金属を蒸着し、該金属を陽極酸
化処理して基体上に多孔質陽極酸化皮膜からなる規則化
配列した細孔を形成し、該細孔中にナノ構造体物質を充
填する方法において、該細孔を拡大するとともに細孔底
部の薄いバリヤー層を充填されたナノ構造体物質が基体
に直接通じてアンカー効果を発現するように化学溶解す
ることを特徴とする基体上に直接接合して規則化配列し
たナノ構造体の製造方法。
9. A metal is vapor-deposited on a substrate, and the metal is anodized to form regularly arranged pores made of a porous anodized film on the substrate, and the nanostructured substance is present in the pores. In the method for filling a substrate, the nanostructured material, which expands the pores and is filled with a thin barrier layer at the bottom of the pores, is directly dissolved in the substrate and chemically dissolved so as to exhibit an anchor effect. A method for producing a nanostructure in which a nanostructure is directly bonded on the top and ordered.
【請求項10】 蒸着する金属がAl、Ti、Mg、Nb、Ta、
Si、Zrのいずれか1種類であり、陽極酸化により多孔質
酸化皮膜の構造の形成ができることを特徴とする請求項
9記載の基体上に直接接合して規則化配列したナノ構造
体の製造方法。
10. The deposited metal is Al, Ti, Mg, Nb, Ta,
The method for producing a nanostructure in which the structure of a porous oxide film is formed by anodic oxidation, which is any one of Si and Zr, and which is directly bonded to the substrate to form an ordered array of nanostructures. .
【請求項11】 アンカー効果を発現する2〜200n
mの深さの微細凹凸構造を持つ透明導電層を表面に形成
した基体上に金属を蒸着し、金属および多孔質陽極酸化
皮膜と導電層との密着性を高めることを特徴とする請求
項9または10に記載の基体上に直接接合して規則化配
列したナノ構造体の製造方法。
11. 2 to 200n that exhibits an anchor effect
10. A metal is vapor-deposited on a substrate on the surface of which a transparent conductive layer having a fine concavo-convex structure having a depth of m is formed to enhance the adhesion between the metal and the porous anodic oxide coating and the conductive layer. Alternatively, the method for producing a nanostructure in which the nanostructure is directly bonded on the substrate according to 10, and is regularly arranged.
【請求項12】 基体上に金属を蒸着する途中で蒸着サ
イクル方式又は蒸着条件を変える等の多段積層方式によ
る金属蒸着により、形成される積層膜中に隙間状境界領
域を少なくとも一層以上を形成することを特徴とする請
求項9ないし11のいずれかに記載の基体上に直接接合
して規則化配列したナノ構造体の製造方法。
12. At least one interstitial boundary region is formed in a laminated film to be formed by metal vapor deposition by a multi-stage laminating system such as vapor deposition cycle system or vapor deposition condition changing during vapor deposition of metal on a substrate. A method for producing a nanostructure in which a regular array is formed by directly bonding to the substrate according to any one of claims 9 to 11.
【請求項13】 細孔中にナノ構造体物質を充填する方
法が酸化物のゾルーゲルコーティング法であることを特
徴とする請求項9ないし12のいずれかに記載の基体上
に直接接合して規則化配列したナノ構造体の製造方法。
13. The method of directly bonding on a substrate according to claim 9, wherein the method of filling the nanostructured substance in the pores is an oxide sol-gel coating method. A method for producing a nanostructure having a chemical arrangement.
【請求項14】 ナノ構造体物質を200℃〜500℃
の範囲内で加熱することにより陽極酸化皮膜と酸化物と
の接合性および結晶化の促進を図ることを特徴とする請
求項13記載の基体上に直接接合して規則化配列したナ
ノ構造体の製造方法。
14. The nanostructured material is heated to 200 ° C. to 500 ° C.
The bonding property between the anodized film and the oxide and the promotion of crystallization are promoted by heating within the range of 14. Production method.
【請求項15】 請求項9〜14のいずれかに記載した
方法で基体上に直接接合して規則化配列したナノ構造体
を製造した後、陽極酸化皮膜のみを溶解除去することを
特徴とする基体上に直接接合して規則化配列したナノ構
造体の製造方法。
15. The method according to any one of claims 9 to 14, which is characterized in that the anodic oxide film alone is dissolved and removed after the ordered nanostructures are manufactured by directly bonding on the substrate. A method for producing a nanostructure, which is directly bonded on a substrate to form an ordered array.
【請求項16】 陽極酸化皮膜のみを溶解除去した後の
ナノ構造体が、ナノチューブ、ナノドット、ナノロッ
ド、ナノファイバ、ナノワイアから選ばれた少なくとも
1種類からなる形状を有することを特徴とする請求項1
5記載の基体上に直接接合して規則化配列したナノ構造
体の製造方法。
16. The nanostructure after dissolving and removing only the anodized film has a shape of at least one selected from nanotubes, nanodots, nanorods, nanofibers, and nanowires.
5. A method for producing a nanostructure, which is directly bonded on the substrate according to 5, and is regularly arranged.
【請求項17】 多孔質陽極酸化皮膜の細孔の底部のバ
リヤー層の厚さと、孔壁(セル壁)の厚さとの比が1/
3〜1/10になるよう制御された、薄いバリヤー層で
あることを特徴とする多孔質陽極酸化皮膜構造体。
17. The ratio of the thickness of the barrier layer at the bottom of the pores of the porous anodic oxide film to the thickness of the pore wall (cell wall) is 1 /.
A porous anodic oxide film structure, which is a thin barrier layer controlled to 3 to 1/10.
【請求項18】 ゾルーゲル法、CVD法、またはPV
D法のいずれかの方法により、酸化物などの微細粒子が
陽極酸化皮膜の細孔の孔壁を伝ってまたは吸着により浸
入し易い形態を有する多孔質酸化皮膜の構造で、その構
造が細孔径が80〜250nm、セル径が300〜60
0nmであり、その皮膜を陽極酸化電圧が90〜200
Vの高電圧で形成することを特徴とする導電層付き基体
上に蒸着により形成した金属の陽極酸化皮膜形成方法。
18. A sol-gel method, a CVD method, or a PV
According to any one of the D methods, the structure of the porous oxide film has a structure in which fine particles such as oxides easily penetrate through the pore walls of the pores of the anodized film or by adsorption, and the structure has a pore diameter of Is 80 to 250 nm and the cell diameter is 300 to 60
0 nm, and the film has an anodic oxidation voltage of 90 to 200.
A method of forming a metal anodic oxide film formed by vapor deposition on a substrate with a conductive layer, characterized in that the method is performed at a high voltage of V.
【請求項19】 蒸着により形成した金属がアルミニウ
ムであり、電解液がリン酸溶液またはシュウ酸溶液であ
り、電解液の液温度を10℃以下とすることを特徴とす
る請求項18記載の導電層付き基体上に蒸着により形成
した金属の陽極酸化皮膜形成方法。
19. The conductive material according to claim 18, wherein the metal formed by vapor deposition is aluminum, the electrolytic solution is a phosphoric acid solution or an oxalic acid solution, and the liquid temperature of the electrolytic solution is 10 ° C. or lower. A method for forming a metal anodic oxide film formed on a layered substrate by vapor deposition.
JP2001265291A 2001-09-03 2001-09-03 Nanostructures joined and regularly arranged on a substrate and a method for producing the same Expired - Lifetime JP3598373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265291A JP3598373B2 (en) 2001-09-03 2001-09-03 Nanostructures joined and regularly arranged on a substrate and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265291A JP3598373B2 (en) 2001-09-03 2001-09-03 Nanostructures joined and regularly arranged on a substrate and a method for producing the same

Publications (2)

Publication Number Publication Date
JP2003073859A true JP2003073859A (en) 2003-03-12
JP3598373B2 JP3598373B2 (en) 2004-12-08

Family

ID=19091775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265291A Expired - Lifetime JP3598373B2 (en) 2001-09-03 2001-09-03 Nanostructures joined and regularly arranged on a substrate and a method for producing the same

Country Status (1)

Country Link
JP (1) JP3598373B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086460A2 (en) * 2003-03-21 2004-10-07 North Carolina State University Method and systems for single- or multi-period edge definition lithography
WO2004109815A1 (en) * 2003-06-09 2004-12-16 Postech Foundation Contacts fabric using heterostructure of metal/semiconductor nanorods and fabrication method thereof
JP2005076117A (en) * 2003-09-03 2005-03-24 Kanagawa Acad Of Sci & Technol Method for preparing anodized porous alumina film, and anodized porous alumina film prepared with the method
WO2005061762A1 (en) * 2003-12-18 2005-07-07 Nippon Oil Corporation Nano-array electrode manufacturing method and photoelectric converter using same
JP2005307340A (en) * 2004-03-23 2005-11-04 Canon Inc Process for producing structure, process for producing magnetic recording medium, and process for producing molded product
KR100616733B1 (en) 2004-07-26 2006-08-28 한국표준과학연구원 ZnO Nano-structure and the Method of fabricating the same
JP2006247795A (en) * 2005-03-11 2006-09-21 Furukawa Electric Co Ltd:The Nano structure, magnetic storage material using it, wiring board and antenna base material
JP2006283122A (en) * 2005-03-31 2006-10-19 Canon Inc Production method of nanostructure
JP2006308559A (en) * 2005-04-26 2006-11-09 Sharp Corp Method for manufacturing nanowire chemfet sensor device utilizing selective deposition of nanowire
JP2007031732A (en) * 2005-07-22 2007-02-08 National Institute For Materials Science Zirconium oxide nanostructure and method for producing the same
WO2007026974A1 (en) * 2005-08-31 2007-03-08 Postech Foundation Near-field photocatalyst including zinc oxide nanowire
JP2007514630A (en) * 2003-11-06 2007-06-07 ナノハイブリッド カンパニー リミテッド Formation method of ZnO nano-array and ZnO nanowall array for UV laser on silicon substrate
JP2007184554A (en) * 2005-12-06 2007-07-19 Canon Inc Capacitor and circuit device employing it
CN100365836C (en) * 2004-04-07 2008-01-30 三星电子株式会社 Nanowire light emitting device and method of fabricating the same
WO2008087957A1 (en) * 2007-01-18 2008-07-24 Panasonic Corporation Nanostructure and process for producing the same
KR100848689B1 (en) * 2006-11-01 2008-07-28 고려대학교 산학협력단 Method of Manufacturing Multilayered Nanowires and Nanowires thereof
JP2009521203A (en) * 2005-12-20 2009-05-28 ジョージア・テック・リサーチ・コーポレーション Coupled piezoelectric semiconductor nanogenerator
CN101600323A (en) * 2009-05-13 2009-12-09 郭世明 High effect nano wire heat conducting film and manufacture method thereof
US7732015B2 (en) 2004-05-31 2010-06-08 Japan Science And Technology Agency Process for producing nanoparticle or nanostructure with use of nanoporous material
US7906803B2 (en) 2005-12-06 2011-03-15 Canon Kabushiki Kaisha Nano-wire capacitor and circuit device therewith
JP2011517850A (en) * 2008-03-21 2011-06-16 ライズ・テクノロジー・エッセ・アール・エル Method for making microstructures by converting porous silicon into porous metals or ceramics
JP2011124583A (en) * 2010-12-20 2011-06-23 Agency For Science Technology & Research Nanostructure aggregate and method of forming nanostructure
KR101287922B1 (en) * 2011-11-08 2013-07-18 제이엠티(주) Method of forming a pattern on a light stand and a light stand manufactured by the method
KR101287926B1 (en) * 2011-11-08 2013-07-18 제이엠티(주) Method of forming a pattern on a street lamp and a light stand manufactured by the method
KR101387715B1 (en) 2008-01-10 2014-04-22 엘지전자 주식회사 Method for fabricating selar cell having semiconductor wafer substrate with nano texturing structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044463B (en) * 2019-04-28 2021-05-07 陕西师范大学 Sensing structure based on optical fiber sensing

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086460A3 (en) * 2003-03-21 2004-12-29 Univ North Carolina State Method and systems for single- or multi-period edge definition lithography
WO2004086460A2 (en) * 2003-03-21 2004-10-07 North Carolina State University Method and systems for single- or multi-period edge definition lithography
CN100416872C (en) * 2003-06-09 2008-09-03 学校法人浦项工科大学校 Contacts fabric using heterostructure of metal/semiconductor nanorods and fabrication method thereof
WO2004109815A1 (en) * 2003-06-09 2004-12-16 Postech Foundation Contacts fabric using heterostructure of metal/semiconductor nanorods and fabrication method thereof
JP2005076117A (en) * 2003-09-03 2005-03-24 Kanagawa Acad Of Sci & Technol Method for preparing anodized porous alumina film, and anodized porous alumina film prepared with the method
JP4648907B2 (en) * 2003-11-06 2011-03-09 ナノハイブリッド カンパニー リミテッド Formation method of ZnO nano-array and ZnO nanowall array for UV laser on silicon substrate
JP2007514630A (en) * 2003-11-06 2007-06-07 ナノハイブリッド カンパニー リミテッド Formation method of ZnO nano-array and ZnO nanowall array for UV laser on silicon substrate
WO2005061762A1 (en) * 2003-12-18 2005-07-07 Nippon Oil Corporation Nano-array electrode manufacturing method and photoelectric converter using same
US7977131B2 (en) 2003-12-18 2011-07-12 Nippon Oil Corporation Method for manufacturing nano-array electrode and photoelectric conversion device using same
JP2005307340A (en) * 2004-03-23 2005-11-04 Canon Inc Process for producing structure, process for producing magnetic recording medium, and process for producing molded product
CN100365836C (en) * 2004-04-07 2008-01-30 三星电子株式会社 Nanowire light emitting device and method of fabricating the same
US7732015B2 (en) 2004-05-31 2010-06-08 Japan Science And Technology Agency Process for producing nanoparticle or nanostructure with use of nanoporous material
KR100616733B1 (en) 2004-07-26 2006-08-28 한국표준과학연구원 ZnO Nano-structure and the Method of fabricating the same
JP4712412B2 (en) * 2005-03-11 2011-06-29 古河電気工業株式会社 Nanostructure and magnetic storage material, wiring board and antenna base material using the same
JP2006247795A (en) * 2005-03-11 2006-09-21 Furukawa Electric Co Ltd:The Nano structure, magnetic storage material using it, wiring board and antenna base material
JP2006283122A (en) * 2005-03-31 2006-10-19 Canon Inc Production method of nanostructure
JP4621058B2 (en) * 2005-03-31 2011-01-26 キヤノン株式会社 Method for producing nanostructure
JP4574570B2 (en) * 2005-04-26 2010-11-04 シャープ株式会社 Method for manufacturing nanowire CHEMFET sensor device using selective deposition of nanowire
JP2006308559A (en) * 2005-04-26 2006-11-09 Sharp Corp Method for manufacturing nanowire chemfet sensor device utilizing selective deposition of nanowire
JP2007031732A (en) * 2005-07-22 2007-02-08 National Institute For Materials Science Zirconium oxide nanostructure and method for producing the same
WO2007026974A1 (en) * 2005-08-31 2007-03-08 Postech Foundation Near-field photocatalyst including zinc oxide nanowire
US7906803B2 (en) 2005-12-06 2011-03-15 Canon Kabushiki Kaisha Nano-wire capacitor and circuit device therewith
JP2007184554A (en) * 2005-12-06 2007-07-19 Canon Inc Capacitor and circuit device employing it
JP2009521203A (en) * 2005-12-20 2009-05-28 ジョージア・テック・リサーチ・コーポレーション Coupled piezoelectric semiconductor nanogenerator
US8330154B2 (en) 2005-12-20 2012-12-11 Georgia Tech Research Corporation Piezoelectric and semiconducting coupled nanogenerators
KR100848689B1 (en) * 2006-11-01 2008-07-28 고려대학교 산학협력단 Method of Manufacturing Multilayered Nanowires and Nanowires thereof
WO2008087957A1 (en) * 2007-01-18 2008-07-24 Panasonic Corporation Nanostructure and process for producing the same
US8822000B2 (en) 2007-01-18 2014-09-02 Panasonic Corporation Nanostructure and method for manufacturing the same
KR101387715B1 (en) 2008-01-10 2014-04-22 엘지전자 주식회사 Method for fabricating selar cell having semiconductor wafer substrate with nano texturing structure
JP2011517850A (en) * 2008-03-21 2011-06-16 ライズ・テクノロジー・エッセ・アール・エル Method for making microstructures by converting porous silicon into porous metals or ceramics
CN101600323A (en) * 2009-05-13 2009-12-09 郭世明 High effect nano wire heat conducting film and manufacture method thereof
JP2011124583A (en) * 2010-12-20 2011-06-23 Agency For Science Technology & Research Nanostructure aggregate and method of forming nanostructure
KR101287922B1 (en) * 2011-11-08 2013-07-18 제이엠티(주) Method of forming a pattern on a light stand and a light stand manufactured by the method
KR101287926B1 (en) * 2011-11-08 2013-07-18 제이엠티(주) Method of forming a pattern on a street lamp and a light stand manufactured by the method

Also Published As

Publication number Publication date
JP3598373B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP2003073859A (en) Regularly arranged nano-structure joined on substrate and manufacturing method therefor
Liu et al. Fabrication and application of nanoporous anodic aluminum oxide: A review
BOCCACCINI et al. The electrophoretic deposition of inorganic nanoscaled materials-a review
Yang et al. Hierarchically nanostructured rutile arrays: acid vapor oxidation growth and tunable morphologies
Chu et al. Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization
Lai et al. Templated electrosynthesis of zinc oxide nanorods
JP4109809B2 (en) Method for producing fine wire containing titanium oxide
Zhang et al. Observation of defect state in highly ordered titanium dioxide nanotube arrays
Stepniowski et al. Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by combined hard anodizing and electrochemical barrier layer thinning
Zhang et al. Anodic oxidation synthesis of one-dimensional TiO 2 nanostructures for photocatalytic and field emission properties
JP3834631B2 (en) Method for producing photocatalyst comprising titania-based crystal formed on substrate
JP2001162600A (en) Structure with pore, manufacturing method of structure with pore and device using structure with the above pore
Li et al. Fabrication of nanotube thin films and their gas sensing properties
Inoue et al. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum
Sadasivan et al. Electrochemical self‐assembly of porous alumina templates
Kim et al. Self-assembled arrays of ZnO stripes by anodization
Ottone et al. Wetting behavior of hierarchical oxide nanostructures: TiO2 nanotubes from anodic oxidation decorated with ZnO nanostructures
Prida et al. Electrochemical methods for template-assisted synthesis of nanostructured materials
JPH11246300A (en) Titanium nano fine wire, production of titanium nano fine wire, structural body, and electron-emitting element
Li et al. Fabrication of highly ordered Ta2O5 and Ta3N5 nanorod arrays by nanoimprinting and through-mask anodization
Sigircik et al. Electrosynthesis of ZnO nanorods and nanotowers: morphology and X-ray absorption near edge spectroscopy studies
Yoo et al. TiO2 nanotubes fabricated by electrochemical anodization in molten o-H3PO4-based electrolyte: Properties and applications
Kapusta-Kołodziej et al. Synthesis and photoelectrochemical properties of anodic oxide films on titanium formed by pulse anodization
Li et al. Interface feature characterization and Schottky interfacial layer confirmation of TiO2 nanotube array film
Ren et al. The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol–gel electrophoresis

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

R150 Certificate of patent or registration of utility model

Ref document number: 3598373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term