JP2003059926A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2003059926A
JP2003059926A JP2002163983A JP2002163983A JP2003059926A JP 2003059926 A JP2003059926 A JP 2003059926A JP 2002163983 A JP2002163983 A JP 2002163983A JP 2002163983 A JP2002163983 A JP 2002163983A JP 2003059926 A JP2003059926 A JP 2003059926A
Authority
JP
Japan
Prior art keywords
layer
insulating film
gate insulating
dielectric constant
interface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163983A
Other languages
Japanese (ja)
Other versions
JP4047075B2 (en
Inventor
Yoshihisa Harada
佳尚 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JP2003059926A publication Critical patent/JP2003059926A/en
Application granted granted Critical
Publication of JP4047075B2 publication Critical patent/JP4047075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-k gate insulation film having a long reliability life. SOLUTION: The high-k gate insulation film formed between an Si substrate 11 and a gate electrode 17 comprises an interface layer 15 formed on an interface with the Si substrate 11, and a high-k layer 16 which is formed on the interface layer 15 and has a high relative permittivity than that of the interface layer 15. The thickness T1 of the interface layer 15 and the thickness T2 of the high-k layer 16 should satisfy T1/(T1+T2)<=0.3, or more preferably, T1/(T1+T2)<=0.2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高誘電体からなる
ゲート絶縁膜を有する半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a gate insulating film made of a high dielectric material.

【0002】[0002]

【従来の技術】近年の半導体装置における高集積化及び
高速化に対する技術進展に伴い、MOSFETの微細化
が進められている。微細化に伴いゲート絶縁膜の薄膜化
を進めると、トンネル電流によるゲートリーク電流の増
大等の問題が顕在化してくる。この問題を抑制するため
に、HfO2 、ZrO2 、La23、TiO2 又はTa
25等の高誘電率材料を用いたゲート絶縁膜(以下、hi
gh-kゲート絶縁膜と称する)により、小さいSiO2
算膜厚(以下、EOT(Equivalent Oxide Thickness)
と称する)を実現しながら物理的膜厚を厚くするという
手法が研究されている。
2. Description of the Related Art In recent years, high integration of semiconductor devices and
MOSFET miniaturization along with technological progress for higher speed
Is being promoted. Thinning of gate insulating film due to miniaturization
The gate leakage current due to the tunnel current.
Greater problems will become apparent. To suppress this problem
To HfO2, ZrO2, La2O3, TiO2Or Ta
2OFiveGate insulating film using a high dielectric constant material such as
gh-k gate insulating film), so small SiO2Exchange
Calculated thickness (hereinafter referred to as EOT (Equivalent Oxide Thickness)
Called)) while increasing the physical film thickness
Methods are being studied.

【0003】また、昨今のシステムLSIにおいては、
演算処理を行なう内部回路、入出力を受け持つ周辺回
路、及びDRAM等の複数の機能を持つ回路を1つのチ
ップに集積することが一般的になっている。このような
システムLSIを構成するMOSFETに対しては、高
駆動力と低リーク電流とが求められる。
Further, in the recent system LSI,
It has become common to integrate an internal circuit that performs arithmetic processing, a peripheral circuit that handles input / output, and a circuit having a plurality of functions such as a DRAM into one chip. High driving force and low leakage current are required for MOSFETs that constitute such a system LSI.

【0004】従来のhigh-kゲート絶縁膜の形成方法とし
て、特開2000-058832号公報(United States Patent 6,
013,553 )に記載された方法が知られている。
As a conventional method for forming a high-k gate insulating film, Japanese Patent Laid-Open No. 2000-058832 (United States Patent 6,
013,553) is known.

【0005】図5は、前記公報に開示された従来の半導
体装置、具体的には、オキシ窒化ジルコニウム又はオキ
シ窒化ハフニウムよりなるhigh-kゲート絶縁膜を有する
MOSFETの断面構成を示している。
FIG. 5 shows a cross-sectional structure of the conventional semiconductor device disclosed in the above publication, specifically, a MOSFET having a high-k gate insulating film made of zirconium oxynitride or hafnium oxynitride.

【0006】図5に示すように、Si基板1の上にエピ
タキシャルSi層2が形成されている。エピタキシャル
Si層2の上部には不純物がドーピングされており、該
上部は電圧印加時にチャネル領域3となる。チャネル領
域3の上にはhigh-kゲート絶縁膜4を介して導電性のゲ
ート電極5が形成されている。
As shown in FIG. 5, an epitaxial Si layer 2 is formed on a Si substrate 1. The upper portion of the epitaxial Si layer 2 is doped with impurities, and the upper portion becomes the channel region 3 when a voltage is applied. A conductive gate electrode 5 is formed on the channel region 3 via a high-k gate insulating film 4.

【0007】high-kゲート絶縁膜4の形成方法は次の通
りである。すなわち、Si基板1の上に、チャネル領域
3となる部分を含むエピタキシャルSi層2を形成した
後、圧力1.33×10-1Pa程度の酸素雰囲気内で、
Si基板1に対して600〜700℃程度の加熱処理を
30秒間程度行なうことによって、厚さ1nm未満の酸
化物層を形成する。その後、この酸化物層に対して、そ
のまま残存させるか、希釈HFにより取り除いてSi表
面を水素終端させるか、又は、クラスターツールを用い
た超高真空状態(1.33×10-6Pa程度)での78
0℃程度の加熱処理により昇華して原子的に平滑なSi
表面を形成するかのいずれかの処理が行なわれる。酸化
物層つまりシリコン酸化膜を残存させる代わりに、オキ
シ窒化シリコン膜の超薄膜よりなる保護障壁層を形成し
てもよい。
The method of forming the high-k gate insulating film 4 is as follows. That is, after forming the epitaxial Si layer 2 including the portion to be the channel region 3 on the Si substrate 1, in an oxygen atmosphere with a pressure of about 1.33 × 10 −1 Pa,
A heat treatment at about 600 to 700 ° C. is performed on the Si substrate 1 for about 30 seconds to form an oxide layer having a thickness of less than 1 nm. Then, the oxide layer is left as it is, or it is removed by diluted HF to terminate the Si surface with hydrogen, or an ultrahigh vacuum state using a cluster tool (about 1.33 × 10 −6 Pa) At 78
Si that is sublimated by heat treatment at about 0 ° C and is atomically smooth
Either treatment for forming the surface is performed. Instead of leaving the oxide layer, that is, the silicon oxide film, a protective barrier layer made of an ultra-thin silicon oxynitride film may be formed.

【0008】以上のようにクリーンなSi表面、酸化物
層又は保護障壁層のいずれかを持つSi基板1を準備し
た後、Si基板1の上に、スパッタ法、蒸着法、化学的
気相成長(CVD)法又はプラズマCVD法等により、
ジルコニウム又はハフニウムよりなる金属層を堆積す
る。その後、該金属層に対して、NO若しくはN2 O等
の酸素及び窒素を含むガスを用いた酸窒化処理、N2
びO2 を用いた低温下での遠隔プラズマ処理(基板処理
チャンバーとプラズマ生成チャンバーとが異なってい
る)、又は、NH3 を用いた遠隔プラズマ窒化処理及び
それに引き続く酸化処理を行なうこと等により、オキシ
窒化ジルコニウム又はオキシ窒化ハフニウムよりなるhi
gh-kゲート絶縁膜4を形成する。
After preparing a Si substrate 1 having a clean Si surface, an oxide layer, or a protective barrier layer as described above, the Si substrate 1 is sputtered, vapor-deposited, or chemically vapor-deposited. (CVD) method or plasma CVD method,
Deposit a metal layer of zirconium or hafnium. Then, the metal layer is subjected to an oxynitriding treatment using a gas containing oxygen and nitrogen such as NO or N 2 O, a remote plasma treatment using N 2 and O 2 at a low temperature (a substrate treatment chamber and a plasma treatment). The production chamber is different), or by performing remote plasma nitriding treatment using NH 3 and subsequent oxidation treatment, etc., a zirconium oxynitride or hafnium oxynitride
A gh-k gate insulating film 4 is formed.

【0009】その後、Ar等の不活性ガス雰囲気中又は
還元性ガス雰囲気中で、high-kゲート絶縁膜4に対して
750℃程度のアニールを20秒間行なうことにより、
high-kゲート絶縁膜4を緻密化する。このように形成さ
れたhigh-kゲート絶縁膜4は非晶質又は多結晶であり、
SiO2 の比誘電率と比べて著しく高い比誘電率を有す
る。
Thereafter, the high-k gate insulating film 4 is annealed at about 750 ° C. for 20 seconds in an atmosphere of an inert gas such as Ar or a reducing gas atmosphere.
The high-k gate insulating film 4 is densified. The high-k gate insulating film 4 thus formed is amorphous or polycrystalline,
It has a significantly higher dielectric constant than that of SiO 2 .

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前述の
従来のMOSFETにおいては、high-kゲート絶縁膜の
信頼性寿命が短くなるという問題がある。
However, the above-mentioned conventional MOSFET has a problem that the reliability life of the high-k gate insulating film is shortened.

【0011】前記に鑑み、本発明は、長い信頼性寿命を
持つhigh-kゲート絶縁膜を実現することを目的とする。
In view of the above, it is an object of the present invention to realize a high-k gate insulating film having a long reliability life.

【0012】[0012]

【課題を解決するための手段】前記の目的を達成するた
め、本願発明者は、従来のhigh-kゲート絶縁膜の信頼性
寿命が短くなる原因を検討した結果、次のような知見を
得た。すなわち、前述の従来の方法を用いてシリコン基
板上にhigh-kゲート絶縁膜を形成した場合、シリコン基
板界面に、SiO2 の組成に近いシリケート(high-k材
料(ジルコニウム酸化物等の金属酸化物)とシリコンと
の3元系化合物)が形成される。一般的に、シリケート
は、シリコンを含まない元のhigh-k材料よりも比誘電率
が低い。また、high-kゲート絶縁膜堆積後のアニール
(ゲート絶縁膜を緻密化するためのPDA(Post Depos
ition Anneal))によって、ゲート絶縁膜を構成するhi
gh-k材料の結晶化が進む結果、該high-k材料から結晶粒
界を介して酸素がシリコン基板まで拡散し、それにより
シリコン基板界面にSiO2 が形成されてしまう。すな
わち、high-kゲート絶縁膜は、比誘電率の低いSiO2
又はSiO2 の組成に近いシリケートよりなる界面層
と、比誘電率の高いhigh-k材料又はhigh-k材料の組成に
近いシリケートよりなるhigh-k層との積層構造を持つ。
ところが、このような積層構造においては、ゲート電極
を介して電圧が印加されると低誘電率の界面層に電界集
中が起こり、その結果、絶縁破壊が生じやすくなって、
high-kゲート絶縁膜の重要な特性である信頼性が劣化し
てしまうと考えられる。
In order to achieve the above-mentioned object, the inventors of the present application have investigated the cause of shortening the reliability life of a conventional high-k gate insulating film, and obtained the following findings. It was That is, when a high-k gate insulating film is formed on a silicon substrate by using the above-mentioned conventional method, a silicate (high-k material (metal oxide such as zirconium oxide) having a composition close to that of SiO 2 is formed at the interface of the silicon substrate. A ternary compound of a substance) and silicon is formed. In general, silicates have a lower dielectric constant than the original silicon-free high-k materials. Also, annealing after deposition of the high-k gate insulating film (PDA (Post Deposa for densifying the gate insulating film
ition Anneal)) to form the gate insulating film.
As a result of the progress of crystallization of the gh-k material, oxygen diffuses from the high-k material to the silicon substrate through the grain boundaries, and thereby SiO 2 is formed at the silicon substrate interface. That is, the high-k gate insulating film is made of SiO 2 having a low relative dielectric constant.
Alternatively, it has a laminated structure of an interface layer made of a silicate having a composition close to that of SiO 2 and a high-k layer made of a high-k material having a high relative dielectric constant or a silicate having a composition close to that of a high-k material.
However, in such a laminated structure, when a voltage is applied through the gate electrode, electric field concentration occurs in the interface layer having a low dielectric constant, and as a result, dielectric breakdown easily occurs,
It is considered that reliability, which is an important characteristic of the high-k gate insulating film, is deteriorated.

【0013】そこで、本願発明者は、high-kゲート絶縁
膜の信頼性寿命の長さと、界面層厚さのhigh-kゲート絶
縁膜全体の厚さに対する比T1/(T1+T2)(但し
T1は界面層の物理的厚さ、T2はhigh-k層の物理的厚
さ)との相関をシミュレーションを用いて調べてみた。
その結果を図1に示す。シミュレーションは、trap gen
eration model(J.H.Stathis, Technical Digest of In
ternational ElectronDevice and Material (1998), p1
67.)をhigh-kゲート絶縁膜に応用することによって行
なった。具体的には、high-kゲート絶縁膜について、リ
ーク電流Jg 、ストレス印加直後のリーク電流J0 、注
入電荷当たりの欠陥生成率Pg (=絶縁破壊時の電流増
加比ΔJg/J0)、及び絶縁破壊に至るときの臨界欠陥
密度Nbdのそれぞれの値を求め、これらの値に基づい
て、high-kゲート絶縁膜における絶縁破壊寿命Tbd(=
bd/Pg )を求めた。また、シュミュレーションにお
いては、high-kゲート絶縁膜のEOTが常に1.5nm
を保つように各物理的厚さT1及びT2を調整しながら
比T1/(T1+T2)を変化させていった場合におけ
る、印加電圧1Vのストレス下(温度は室温)でのhigh
-kゲート絶縁膜の信頼性寿命を算出した。但し、シュミ
ュレーションにおいては、界面層の比誘電率ε1を3.
9の一定値に固定したのに対して、high-k層の比誘電率
ε2を8.0、12.0、18.0及び24.0の複数
の値に変化させた。ここで、EOT=T1+(ε1/ε
2)×T2の関係が成り立つ。
Therefore, the inventor of the present application has found that the ratio of the reliability life of the high-k gate insulating film to the total thickness of the high-k gate insulating film is T1 / (T1 + T2) (where T1 is The physical thickness of the interface layer, T2, was correlated with the physical thickness of the high-k layer.
The result is shown in FIG. Simulation is trap gen
eration model (JHStathis, Technical Digest of In
ternational ElectronDevice and Material (1998), p1
67.) was applied to a high-k gate insulating film. Specifically, for the high-k gate insulating film, the leakage current J g , the leakage current J 0 immediately after stress application, the defect generation rate P g per injected charge (= current increase ratio ΔJ g / J 0 at dielectric breakdown). ), And the critical defect density N bd at the time of reaching the dielectric breakdown, and based on these values, the dielectric breakdown life T bd (=
N bd / P g ) was determined. Also, in simulation, the EOT of the high-k gate insulating film is always 1.5 nm.
In the case where the ratio T1 / (T1 + T2) is changed while adjusting the physical thicknesses T1 and T2 so that
-k Calculated the reliability life of the gate insulating film. However, in the simulation, the relative dielectric constant ε1 of the interface layer was set to 3.
While fixed at a constant value of 9, the relative permittivity ε2 of the high-k layer was changed to a plurality of values of 8.0, 12.0, 18.0 and 24.0. Here, EOT = T1 + (ε1 / ε
2) The relationship of T2 is established.

【0014】図1に示すように、比T1/(T1+T
2)、つまりhigh-kゲート絶縁膜全体の厚さに対する界
面層厚さの比が0.2以下である場合、high-kゲート絶
縁膜の信頼性を高く維持できる。また、比T1/(T1
+T2)が増加するに従い、high-kゲート絶縁膜の信頼
性が劣化する傾向がある。さらに、図1の縦軸に対数目
盛りを用いていることを考慮すると、比T1/(T1+
T2)を0.2以下に設定することは、high-kゲート絶
縁膜の信頼性を飛躍的に向上させる効果を持っているこ
とが分かる。具体的には、比T1/(T1+T2)を
0.2以下に設定することによって、例えば比T1/
(T1+T2)が0.5程度である場合と比べて、信頼
性寿命を3桁以上も長くすることができる。
As shown in FIG. 1, the ratio T1 / (T1 + T
2) That is, when the ratio of the interface layer thickness to the total thickness of the high-k gate insulating film is 0.2 or less, the reliability of the high-k gate insulating film can be maintained high. In addition, the ratio T1 / (T1
As + T2) increases, the reliability of the high-k gate insulating film tends to deteriorate. Further, considering that the vertical axis of FIG. 1 uses a logarithmic scale, the ratio T1 / (T1 +
It can be seen that setting T2) to 0.2 or less has the effect of dramatically improving the reliability of the high-k gate insulating film. Specifically, by setting the ratio T1 / (T1 + T2) to 0.2 or less, for example, the ratio T1 /
As compared with the case where (T1 + T2) is about 0.5, the reliability life can be extended by three digits or more.

【0015】また、図1に示すように、比T1/(T1
+T2)が0.0〜0.2である構造を持つゲート絶縁
膜においては、high-k層の比誘電率ε2が8.0から1
2.0へ増加するに従って信頼性寿命の長さも増加し、
ε2が12.0から18.0までの範囲で信頼性寿命の
長さがほぼ飽和して最大値を示す。一方、ε2が18.
0から24.0へ増加すると、信頼性寿命の長さは逆に
減少してしまう。ところで、一般的に、high-k層におけ
る比誘電率ε2の値は厚さ方向に変化している。従っ
て、high-k層における比誘電率ε2の平均値をε2av
したときには、ε2avは12.0以上で且つ18.0以
下であることが好ましい。また、high-k層として、一の
金属とシリコンと酸素とを含むシリケート膜を用いた場
合、high-k層の組成をMXSiYO(但しMは一の金属を
表し、X>0、Y>0である)とすると、前述の12.
0≦ε2av≦18.0の条件は、0.20≦Y/(X+
Y)≦0.30の条件と等価である。すなわち、high-k
ゲート絶縁膜の信頼性の観点からは、high-k層の材料と
してシリコンを含まない完全な金属酸化物を用いるより
も、0.20≦Y/(X+Y)≦0.30の関係を満た
す、シリコン含有のシリケートMXSiYOを用いた方が
好ましい。その理由は、high-k層と界面層との間の比誘
電率の差を小さくすることによって、界面層への電界集
中が緩和されるためと考えられる。尚、界面層もMX
YOで表せるシリケートを含むことがあるが、このシ
リケートにおけるY/(X+Y)は0.90以上であっ
て、組成的にはSiO2 とほぼ同等である。
Further, as shown in FIG. 1, the ratio T1 / (T1
In the gate insulating film having a structure in which + T2) is 0.0 to 0.2, the relative dielectric constant ε2 of the high-k layer is 8.0 to 1
As it increases to 2.0, the length of reliability life also increases,
When ε2 is in the range of 12.0 to 18.0, the length of reliability life is almost saturated and shows the maximum value. On the other hand, ε2 is 18.
When it is increased from 0 to 24.0, the reliability life length is decreased. By the way, generally, the value of the relative permittivity ε2 in the high-k layer changes in the thickness direction. Therefore, when the average value of the dielectric constant .epsilon.2 in high-k layer and .epsilon.2 av is, .epsilon.2 av is preferably at and 18.0 or less at 12.0 or higher. When a silicate film containing one metal, silicon and oxygen is used as the high-k layer, the composition of the high-k layer is M X Si Y O (where M represents one metal and X> 0. , Y> 0).
The condition of 0 ≦ ε2 av ≦ 18.0 is 0.20 ≦ Y / (X +
Y) is equivalent to the condition of 0.30. I.e. high-k
From the viewpoint of the reliability of the gate insulating film, the relationship of 0.20 ≦ Y / (X + Y) ≦ 0.30 is satisfied, as compared with the case where a perfect metal oxide containing no silicon is used as the material of the high-k layer. It is preferred to use a silicon-containing silicate M X Si Y O. It is considered that the reason is that the electric field concentration on the interface layer is relaxed by reducing the difference in the relative dielectric constant between the high-k layer and the interface layer. Note that the interface layer be M X S
Although it may contain a silicate that can be represented by i Y O, Y / (X + Y) in this silicate is 0.90 or more, and is compositionally similar to SiO 2 .

【0016】さらに、本願発明者は、high-kゲート絶縁
膜の信頼性寿命の長さと、界面層厚さT1のhigh-kゲー
ト絶縁膜全体の厚さ(T1+T2)(但しT2はhigh-k
層の物理的厚さ)に対する比との相関を実験により調べ
てみた。その結果を図2に示す。尚、実験に用いた界面
層は、組成がSiO2 に近いSiON膜(比誘電率ε1
=3.9)であり、実験に用いたhigh-k層はCVD(ch
emical vapor deposition )法により形成されたSi3
4膜(比誘電率ε2=7.5)である。また、実験に
おいては、high-kゲート絶縁膜のEOTが常に3.0n
mを保つように各物理的厚さT1及びT2を調整しなが
ら比T1/(T1+T2)を変化させていった場合にお
ける、印加電圧3.5Vのストレス下(温度は100
℃)で絶縁破壊が生じるまでに絶縁膜に注入された総電
荷量(絶縁破壊総電荷量Qbd)を測定した。ここで、絶
縁破壊総電荷量Qbdの大きさがhigh-kゲート絶縁膜の信
頼性寿命の長さと対応する。
Furthermore, the inventor of the present application has found that the reliability life of the high-k gate insulating film is long and the total thickness of the high-k gate insulating film of the interface layer thickness T1 (T1 + T2) (where T2 is high-k).
The correlation with the ratio to the physical thickness of the layer) was investigated experimentally. The result is shown in FIG. The interface layer used in the experiment was a SiON film (relative dielectric constant ε1) having a composition close to that of SiO 2.
= 3.9), the high-k layer used in the experiment is CVD (ch
Si 3 formed by emical vapor deposition) method
It is an N 4 film (relative permittivity ε2 = 7.5). In addition, in the experiment, the EOT of the high-k gate insulating film was always 3.0n.
When the ratio T1 / (T1 + T2) is changed while adjusting the physical thicknesses T1 and T2 so as to keep m, the applied voltage is 3.5 V under stress (temperature is 100
The total amount of electric charges injected into the insulating film (dielectric breakdown total amount of charge Q bd ) until the dielectric breakdown occurred at (° C.) was measured. Here, the magnitude of the total amount Qbd of dielectric breakdown corresponds to the length of the reliability life of the high-k gate insulating film.

【0017】図2に示すように、比T1/(T1+T
2)が0.2以下である場合、high-kゲート絶縁膜の信
頼性を高く維持できる一方、該比が0.3を越えると信
頼性が急激に劣化することが実験的に実証された。ま
た、図2の縦軸に対数目盛りを用いていることを考慮す
ると、比T1/(T1+T2)を0.2以下に設定する
ことは、high-kゲート絶縁膜の信頼性を飛躍的に向上さ
せる効果を持っていることが分かる。
As shown in FIG. 2, the ratio T1 / (T1 + T
It was experimentally proved that the reliability of the high-k gate insulating film can be kept high when 2) is 0.2 or less, while the reliability is rapidly deteriorated when the ratio exceeds 0.3. . Considering that the vertical axis of FIG. 2 uses a logarithmic scale, setting the ratio T1 / (T1 + T2) to 0.2 or less dramatically improves the reliability of the high-k gate insulating film. You can see that it has an effect.

【0018】以上のように、図1及び図2に示す結果か
ら、high-kゲート絶縁膜の信頼性の観点からは、界面層
厚さT1の全体厚さ(T1+T2)に対する比を0.3
以下にすることが必須であり、また、比T1/(T1+
T2)を0.2以下にすることがより好ましい。
As described above, from the results shown in FIGS. 1 and 2, from the viewpoint of the reliability of the high-k gate insulating film, the ratio of the interface layer thickness T1 to the total thickness (T1 + T2) is 0.3.
It is essential to make the ratio below, and the ratio T1 / (T1 +
It is more preferable that T2) is 0.2 or less.

【0019】本発明は、以上の知見に基づきなされたも
のであって、具体的には、本発明に係る半導体装置は、
半導体基板上に形成された高誘電率絶縁膜を有する半導
体装置を前提とし、高誘電率絶縁膜は、半導体基板との
界面に形成された界面層と、界面層の上に形成され、界
面層よりも比誘電率が高い高誘電率層とを有し、界面層
の厚さT1及び高誘電率層の厚さT2は、T1/(T1
+T2)≦0.3の関係を満たす。
The present invention has been made based on the above findings. Specifically, the semiconductor device according to the present invention is
Assuming a semiconductor device having a high dielectric constant insulating film formed on a semiconductor substrate, the high dielectric constant insulating film is formed on an interface layer formed on the interface with the semiconductor substrate and on the interface layer. And a high dielectric constant layer having a relative dielectric constant higher than that of the interface layer, the thickness T1 of the interface layer and the thickness T2 of the high dielectric constant layer are T1 / (T1
+ T2) ≦ 0.3 is satisfied.

【0020】本発明の半導体装置によると、高誘電率絶
縁膜における界面層厚さT1の全体厚さ(T1+T2)
に対する比を0.3以下にするため、高誘電率絶縁膜に
電圧が印加された場合にも界面層への電界集中を抑制で
きる。従って、このような高誘電率絶縁膜を用いること
によって、長い信頼性寿命を持つhigh-kゲート絶縁膜を
実現することができる。また、このとき、比誘電率の低
い界面層が薄く且つ比誘電率の高い高誘電率層が厚いの
で、high-kゲート絶縁膜のEOTを小さくすることがで
きる。
According to the semiconductor device of the present invention, the total thickness (T1 + T2) of the interface layer thickness T1 in the high dielectric constant insulating film.
Since the ratio is less than 0.3, the electric field concentration on the interface layer can be suppressed even when a voltage is applied to the high dielectric constant insulating film. Therefore, by using such a high dielectric constant insulating film, a high-k gate insulating film having a long reliability life can be realized. Further, at this time, since the interface layer having a low relative permittivity is thin and the high dielectric constant layer having a high relative permittivity is thick, the EOT of the high-k gate insulating film can be reduced.

【0021】本発明の半導体装置において、T1及びT
2は、T1/(T1+T2)≦0.2の関係を満たすこ
とが好ましい。
In the semiconductor device of the present invention, T1 and T
2 preferably satisfies the relationship of T1 / (T1 + T2) ≦ 0.2.

【0022】このようにすると、高誘電率絶縁膜の信頼
性をより向上させることができる。
By doing so, the reliability of the high dielectric constant insulating film can be further improved.

【0023】本発明の半導体装置において、界面層の比
誘電率ε1は3.9以上で且つ7.0以下であると共に
高誘電率層の比誘電率ε2は7.0よりも大きく、高誘
電率層における比誘電率ε2の平均値ε2avは12.0
以上で且つ18.0以下であることが好ましい。
In the semiconductor device of the present invention, the interfacial layer has a relative permittivity ε1 of 3.9 or more and 7.0 or less, and the high permittivity layer has a relative permittivity ε2 of more than 7.0. The average value ε2 av of the relative permittivity ε2 in the refractive index layer is 12.0
It is preferably not less than 18.0.

【0024】このようにすると、高誘電率層と界面層と
の間の比誘電率の差が所定の範囲内に制限されるため、
電圧印加時の界面層への電界集中がより緩和され、高誘
電率絶縁膜の信頼性をより向上させることができる。
In this way, the difference in relative permittivity between the high dielectric constant layer and the interface layer is limited to within a predetermined range.
The concentration of an electric field on the interface layer when a voltage is applied is further alleviated, and the reliability of the high dielectric constant insulating film can be further improved.

【0025】本発明の半導体装置において、界面層の比
誘電率ε1は3.9以上で且つ7.0以下であると共に
高誘電率層の比誘電率ε2は7.0よりも大きく、高誘
電率層は、一の金属とシリコンと酸素とを含むシリケー
トよりなり、高誘電率層の組成をMXSiYO(但し、M
は一の金属を表し、X>0、Y>0である)としたとき
に、X及びYは、0.20≦Y/(X+Y)≦0.30
の関係を満たすことが好ましい。
In the semiconductor device of the present invention, the relative permittivity ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative permittivity ε2 of the high dielectric constant layer is larger than 7.0. The high-permittivity layer is made of a silicate containing one metal, silicon and oxygen, and has a composition of the high dielectric constant layer of M X Si Y O (provided that M
Represents one metal, and X> 0, Y> 0), X and Y are 0.20 ≦ Y / (X + Y) ≦ 0.30.
It is preferable to satisfy the relationship of.

【0026】このようにすると、高誘電率層の材料とし
てシリコンを含まない完全な金属酸化物を用いた場合と
比べて、高誘電率層と界面層との間の比誘電率の差が小
さくなるため、電圧印加時の界面層への電界集中がより
緩和され、その結果、高誘電率絶縁膜の信頼性をより向
上させることができる。
By doing so, the difference in relative dielectric constant between the high dielectric constant layer and the interface layer is smaller than that in the case where a complete metal oxide containing no silicon is used as the material of the high dielectric constant layer. Therefore, the concentration of the electric field on the interface layer at the time of applying a voltage is further alleviated, and as a result, the reliability of the high dielectric constant insulating film can be further improved.

【0027】本発明の半導体装置において、高誘電率層
は、ハフニウム又はジルコニウムとシリコンと酸素とを
含むシリケートよりなることが好ましい。
In the semiconductor device of the present invention, the high dielectric constant layer is preferably made of silicate containing hafnium or zirconium, silicon and oxygen.

【0028】このようにすると、長い信頼性寿命を持つ
high-kゲート絶縁膜を確実に実現することができる。
By doing so, a long reliability life is provided.
A high-k gate insulating film can be reliably realized.

【0029】[0029]

【発明の実施の形態】以下、本発明の一実施形態に係る
半導体装置及びその製造方法について図面を参照しなが
ら説明する。
DETAILED DESCRIPTION OF THE INVENTION A semiconductor device and a method of manufacturing the same according to an embodiment of the present invention will be described below with reference to the drawings.

【0030】図3(a)〜(e)は本実施形態に係る半
導体装置の製造方法の各工程を示す断面図である。
3A to 3E are cross-sectional views showing each step of the method for manufacturing a semiconductor device according to this embodiment.

【0031】図3(a)に示すように、例えばSi(1
00)基板11上に素子分離用絶縁膜12を形成し、そ
れによってデバイス領域RD を規定する。
As shown in FIG. 3A, for example, Si (1
00) The element isolation insulating film 12 is formed on the substrate 11 to define the device region R D.

【0032】次に、Si基板11に対して、標準RCA
洗浄及び希釈HF洗浄を順次行なった後、例えばNH3
ガス中でSi基板11に対して600〜700℃程度の
熱処理を行なう。これにより、図3(b)に示すよう
に、デバイス領域RD のSi基板11上にシリコン窒化
膜(Si34膜)13が形成される。
Next, for the Si substrate 11, the standard RCA
After sequentially performing washing and diluted HF washing, for example, NH 3
The Si substrate 11 is heat-treated at about 600 to 700 ° C. in a gas. As a result, as shown in FIG. 3B, the silicon nitride film (Si 3 N 4 film) 13 is formed on the Si substrate 11 in the device region R D.

【0033】次に、図3(c)に示すように、例えばC
VD法を用いて、Si34膜13の上にHfO2 膜14
を形成する。具体的には、液体HfソースであるHf t
-butoxide (C1636HfO4 )中にN2 等のキャリア
ガスを吹き込んでバブリングを行なう。これにより、液
体Hfソースを気体状態にして該ソースガスをキャリア
ガスと共に反応炉内に導入し、500℃程度の温度下で
RT−CVD(RapidThermal CVD )処理を使用してH
fO2 膜14を形成する。このとき、HfO2膜14の
成長速度又は膜質の向上のために乾燥O2 ガスを反応炉
内に導入する。このように形成されたHfO2 膜14に
対して組成分析を行なったところ、Hfソース中にH
f、O、C及びHが含まれているため、HfO2 膜14
の内部に1〜2原子%程度以下の微量なC及びHが含有
されていた。尚、反応炉内にはN2ガスも導入される
が、500℃程度の温度下ではN2 ガスは非常に不活性
であるため、N2 ガスの寄与は非常に小さい。
Next, as shown in FIG. 3C, for example, C
By using the VD method, the HfO 2 film 14 is formed on the Si 3 N 4 film 13.
To form. Specifically, Hf t which is a liquid Hf source
Bubbling is performed by blowing a carrier gas such as N 2 into butoxide (C 16 H 36 HfO 4 ). As a result, the liquid Hf source is turned into a gaseous state, the source gas is introduced into the reaction furnace together with the carrier gas, and the H-type gas is introduced into the reaction furnace at a temperature of about 500 ° C. using the RT-CVD (Rapid Thermal CVD) process.
The fO 2 film 14 is formed. At this time, dry O 2 gas is introduced into the reaction furnace in order to improve the growth rate or film quality of the HfO 2 film 14. The composition of the HfO 2 film 14 thus formed was analyzed.
Since it contains f, O, C and H, the HfO 2 film 14
A minute amount of C and H of about 1 to 2 atomic% or less was contained inside. Although N 2 gas is also introduced into the reaction furnace, the contribution of N 2 gas is very small because N 2 gas is very inactive at a temperature of about 500 ° C.

【0034】次に、例えばN2 ガス中で、HfO2 膜1
4に対して600〜800℃程度のPDA処理を30秒
間程度行なう。これにより、Si基板11の酸化、Hf
2膜14からの水素の脱離、HfO2 膜14の緻密化
及び微結晶化、並びに、Si基板11又はSi34膜1
3とHfO2 膜14との間におけるSi及びHfの相互
拡散等の反応が生じる。その結果、HfO2 膜14の堆
積当初(図3(c)参照)における、Si基板11上に
Si34膜13が形成され且つSi34膜13上にHf
2 膜14が形成された構造は、最終的に、図3(d)
に示すように、Si基板11上に比誘電率の低い界面層
15が形成され且つ界面層15上に比誘電率の高いhigh
-k層16が形成された構造に変化する。ここで、界面層
15はSiO2 又はSiO2 の組成に近いシリケートよ
りなり、high-k層16はHfO2又はHfO2 の組成に
近いシリケートよりなる。また、界面層15及びhigh-k
層16にはそれぞれ微量のNが含まれる。
Next, the HfO 2 film 1 is formed, for example, in N 2 gas.
4 is subjected to PDA treatment at about 600 to 800 ° C. for about 30 seconds. Thereby, oxidation of the Si substrate 11 and Hf
Desorption of hydrogen from the O 2 film 14, densification and microcrystallization of the HfO 2 film 14, and Si substrate 11 or Si 3 N 4 film 1
3 and the HfO 2 film 14 cause a reaction such as interdiffusion of Si and Hf. As a result, the initial deposition of the HfO 2 film 14 in (FIG. 3 (c) refer), Si the Si 3 N 4 film 13 on the substrate 11 is formed and Hf on the Si 3 N 4 film 13
The structure in which the O 2 film 14 is formed is finally shown in FIG.
As shown in FIG. 3, an interface layer 15 having a low relative dielectric constant is formed on the Si substrate 11, and a high relative dielectric constant is high on the interface layer 15.
The structure is changed to the -k layer 16. Here, the interface layer 15 is made of SiO 2 or a silicate having a composition close to that of SiO 2 , and the high-k layer 16 is made of HfO 2 or a silicate having a composition close to that of HfO 2 . In addition, the interface layer 15 and high-k
Each of the layers 16 contains a trace amount of N.

【0035】次に、図3(e)に示すように、界面層1
5とhigh-k層16との積層構造を有するhigh-kゲート絶
縁膜の上に、例えばポリシリコンよりなるゲート電極1
7を形成する。具体的には、SiH4 を用いて540℃
程度の蒸着温度でポリシリコン膜を形成した後、該ポリ
シリコン膜に対して例えば5×1015cmー2のドーズ量
でPイオンを注入し、その後、イオン注入されたポリシ
リコン膜をパターン化することによりゲート電極17を
形成する。これにより、nMOSFET構造が完成す
る。尚、ゲート電極17に注入された不純物に対する活
性化アニールは、乾燥N2 ガス中における900℃、3
0秒間のRTP(Rapid Thermal Process)により行な
った。
Next, as shown in FIG. 3E, the interface layer 1
The gate electrode 1 made of, for example, polysilicon is formed on the high-k gate insulating film having a laminated structure of 5 and the high-k layer 16.
Form 7. Specifically, using SiH 4 at 540 ° C
After forming a polysilicon film at a vapor deposition temperature of about 5 nm, P ions are implanted into the polysilicon film at a dose amount of, for example, 5 × 10 15 cm −2, and then the ion-implanted polysilicon film is patterned. By doing so, the gate electrode 17 is formed. This completes the nMOSFET structure. The activation annealing for the impurities injected into the gate electrode 17 was performed at 900 ° C. for 3 times in dry N 2 gas.
It was performed by RTP (Rapid Thermal Process) for 0 seconds.

【0036】本実施形態の特徴は、例えばHfO2 膜1
4の形成前にSi基板11上にSi 34膜13を形成す
ることにより、又は例えばHfO2 膜14に対するPD
Aの処理温度を低めに設定したり若しくは該PDAの処
理時間を短めに設定すること等により、high-kゲート絶
縁膜全体の厚さに対する界面層15の厚さの比を所定の
範囲内に設定することである。具体的には、high-kゲー
ト絶縁膜全体の厚さ、つまり界面層15の厚さT1とhi
gh-k層16の厚さT2との合計厚さ(T1+T2)に対
する界面層15の厚さT1の比を0.3以下、より好ま
しくは0.2以下に設定することである。これにより、
本実施形態においては、ゲート電圧印加時にも界面層1
5への電界集中を抑制できるので、長い信頼性寿命を持
つhigh-kゲート絶縁膜を実現することができる。また、
界面層15とhigh-k層16とが積層されてなるゲート絶
縁膜を有するMOSキャパシタに対して、LCR(indu
ctance - capacitance - resistance )メータを用いて
CV(capacitance - voltage )測定を行ない、その測
定結果に基づいて、ゲート電極の空乏化又は基板の量子
化効果等を考慮して、シミュレーションプログラムによ
りゲート絶縁膜のEOTを算出したところ、十分に小さ
なEOTが得られた。すなわち、本実施形態において
は、比誘電率の低い界面層15が薄く且つ比誘電率の高
いhigh-k層16が厚いので、high-kゲート絶縁膜のEO
Tを小さくすることができる。
The feature of this embodiment is, for example, HfO.2Membrane 1
4 is formed on the Si substrate 11 before the formation of 3NFourForm the film 13
Or, for example, HfO2PD for membrane 14
Set the processing temperature of A to a lower value or treat the PDA.
By setting a short processing time, high-k gate
The ratio of the thickness of the interface layer 15 to the thickness of the entire border film is set to a predetermined value.
It is to be set within the range. Specifically, high-k game
The total thickness of the insulating film, that is, the thickness T1 of the interface layer 15 and hi
The thickness T2 of the gh-k layer 16 and the total thickness (T1 + T2)
The ratio of the thickness T1 of the interface layer 15 is 0.3 or less, more preferably
Specifically, it should be set to 0.2 or less. This allows
In this embodiment, the interface layer 1 is applied even when the gate voltage is applied.
Since the electric field concentration on 5 can be suppressed, it has a long reliability life.
A high-k gate insulating film can be realized. Also,
A gate insulating layer formed by stacking an interface layer 15 and a high-k layer 16
LCR (indu
ctance-capacitance-resistance)
CV (capacitance-voltage) measurement is performed and
Based on the determined result, the depletion of the gate electrode or the quantum of the substrate
The simulation program will
Calculated EOT of the gate insulating film is sufficiently small
EOT was obtained. That is, in this embodiment
Indicates that the interface layer 15 having a low relative permittivity is thin and has a high relative permittivity.
Since the high-k layer 16 is thick, the EO of the high-k gate insulating film
T can be reduced.

【0037】図4(a)は、本実施形態の半導体装置、
つまりHfプレカーサーを用いて形成されたHfO2
電体をhigh-k材料とするゲート絶縁膜を備えたMOSF
ETの高分解能断面TEM(transmission electron mi
croscope)像を示している。図4(a)に示すように、
本実施形態の半導体装置におけるhigh-kゲート絶縁膜の
全体厚さ(界面層15の厚さT1とhigh-k層16の厚さ
T2との合計(T1+T2))は3.0〜3.3nm程
度である。また、界面層15の厚さT1は0.4〜0.
5nm程度である。すなわち、high-kゲート絶縁膜全体
の厚さに対する界面層15の厚さの比T1/(T1+T
2)は0.12〜0.17程度であり、本発明で推奨す
る関係:T1/(T1+T2)≦0.3(より好ましく
はT1/(T1+T2)≦0.2)を十分に満たしてい
る。
FIG. 4A shows the semiconductor device of this embodiment.
That is, a MOSF having a gate insulating film made of a HfO 2 dielectric formed by using an Hf precursor and having a high-k material.
High resolution TEM (transmission electron mi) of ET
croscope) image is shown. As shown in FIG.
The total thickness of the high-k gate insulating film (the total thickness T1 of the interface layer 15 and the thickness T2 of the high-k layer 16 (T1 + T2)) in the semiconductor device of this embodiment is 3.0 to 3.3 nm. It is a degree. The thickness T1 of the interface layer 15 is 0.4 to 0.
It is about 5 nm. That is, the ratio of the thickness of the interface layer 15 to the total thickness of the high-k gate insulating film T1 / (T1 + T
2) is about 0.12 to 0.17, which sufficiently satisfies the relationship recommended by the present invention: T1 / (T1 + T2) ≦ 0.3 (more preferably T1 / (T1 + T2) ≦ 0.2). .

【0038】図4(b)は、比較例としての半導体装
置、つまり本実施形態と同様の方法により形成されたH
fO2 誘電体をhigh-k材料とするゲート絶縁膜を備えた
他のMOSFETの高分解能断面TEM像を示してい
る。図4(b)に示すように、比較例の半導体装置にお
いては、図4(a)に示す本実施形態のMOSキャパシ
タ構造と対応するように、Si基板21上に、界面層2
5とhigh-k層26との積層構造からなるゲート絶縁膜を
介して、Poly−Siよりなるゲート電極27が形成
されている。また、比較例の半導体装置においては、hi
gh-kゲート絶縁膜の全体厚さ(界面層25の厚さT1’
とhigh-k層26の厚さT2’との合計(T1’+T
2’))は3.0〜3.3nm程度である。また、界面
層25の厚さT1’は1.0nm程度である。すなわ
ち、high-kゲート絶縁膜全体の厚さに対する界面層25
の厚さの比T1’/(T1’+T2’)は0.30〜
0.33程度であり、前述の本発明で推奨する関係を満
たしていない。
FIG. 4B shows a semiconductor device as a comparative example, that is, H formed by the same method as this embodiment.
7 shows a high-resolution cross-sectional TEM image of another MOSFET provided with a gate insulating film using a fO 2 dielectric as a high-k material. As shown in FIG. 4B, in the semiconductor device of the comparative example, the interface layer 2 is formed on the Si substrate 21 so as to correspond to the MOS capacitor structure of this embodiment shown in FIG.
A gate electrode 27 made of Poly-Si is formed via a gate insulating film having a laminated structure of the No. 5 and the high-k layer 26. In the semiconductor device of the comparative example, hi
Total thickness of gh-k gate insulating film (thickness T1 ′ of interface layer 25)
And the thickness T2 ′ of the high-k layer 26 (T1 ′ + T
2 ')) is about 3.0 to 3.3 nm. The thickness T1 ′ of the interface layer 25 is about 1.0 nm. That is, the interface layer 25 with respect to the total thickness of the high-k gate insulating film
The thickness ratio T1 '/ (T1' + T2 ') is 0.30
It is about 0.33, which does not satisfy the above-mentioned relationship recommended by the present invention.

【0039】図4(a)に示す本実施形態のMOSキャ
パシタ構造、及び、図4(b)に示す比較例のMOSキ
ャパシタ構造のそれぞれについて、ゲート面積を500
0μm2 として、印加電圧3.0V(ゲート電極側が低
電位)のストレス下(温度は室温)でのゲート絶縁膜の
信頼性寿命を算出した。その結果、界面層の相対厚さが
小さい本実施形態のゲート絶縁膜の信頼性寿命は1×1
4 秒程度であり、界面層の相対厚さが大きい比較例の
ゲート絶縁膜の信頼性寿命は1×102 秒程度であっ
た。すなわち、high-kゲート絶縁膜全体の厚さに対する
界面層の厚さの比T1/(T1+T2)が0.2以下で
あると、high-kゲート絶縁膜の信頼性寿命が劇的に向上
する。これは、Si基板表面に形成される低誘電率の界
面層を薄くできると、該界面層に集中する強い電界強度
に起因して信頼性劣化が生じる事態を回避できるためと
考えられる。
For each of the MOS capacitor structure of this embodiment shown in FIG. 4A and the MOS capacitor structure of the comparative example shown in FIG. 4B, the gate area is 500.
The reliability life of the gate insulating film under stress (at room temperature) under an applied voltage of 3.0 V (low potential on the gate electrode side) was calculated as 0 μm 2 . As a result, the reliability life of the gate insulating film according to the present embodiment in which the relative thickness of the interface layer is small is 1 × 1.
0 is about 4 seconds, reliability life of the gate insulating film of Comparative Example relative thickness is large interfacial layer was about 1 × 10 2 seconds. That is, when the ratio T1 / (T1 + T2) of the thickness of the interface layer to the total thickness of the high-k gate insulating film is 0.2 or less, the reliability life of the high-k gate insulating film is dramatically improved. . This is considered to be because if the interface layer having a low dielectric constant formed on the surface of the Si substrate can be thinned, it is possible to avoid the situation where reliability is deteriorated due to the strong electric field strength concentrated on the interface layer.

【0040】ところで、図4(a)及び(b)に示すよ
うに、high-kゲート絶縁膜の高分解能断面TEM像にお
いては、界面層の像はhigh-k層の像と比べて明らかに白
くなる。ここで、high-kゲート絶縁膜の組成をHfX
YO(但しX>0、Y>0)とすると、Y/(X+
Y)=0.90が界面層とhigh-k層との境界に対応す
る。尚、high-kゲート絶縁膜の組成は、Si基板側から
次第にSi組成が減少するように、言い換えると、Y/
(X+Y)の値が1.0から次第に減少するように変化
する。すなわち、0.90≦Y/(X+Y)≦1.0の
関係を満たす範囲が界面層であり、Y/(X+Y)<
0.90の関係を満たす範囲がhigh-k層である。このと
き、界面層の比誘電率ε1は3.9以上で且つ7.0以
下であると共にhigh-k層の比誘電率ε2は7.0よりも
大きい。
By the way, as shown in FIGS. 4A and 4B, in the high-resolution cross-sectional TEM image of the high-k gate insulating film, the image of the interface layer is clearer than that of the high-k layer. It becomes white. Here, the composition of the high-k gate insulating film is set to Hf X S
i Y O (where X> 0, Y> 0), Y / (X +
Y) = 0.90 corresponds to the boundary between the interface layer and the high-k layer. The composition of the high-k gate insulating film is such that the Si composition gradually decreases from the Si substrate side, in other words, Y /
The value of (X + Y) changes from 1.0 to gradually decrease. That is, the range satisfying the relationship of 0.90 ≦ Y / (X + Y) ≦ 1.0 is the interface layer, and Y / (X + Y) <
The range that satisfies the relationship of 0.90 is the high-k layer. At this time, the relative permittivity ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative permittivity ε2 of the high-k layer is larger than 7.0.

【0041】尚、本実施形態において、Si基板11上
にSi34膜13を介してHfO2膜14を形成した
後、HfO2 膜14に対してPDA処理を行ない、それ
により、界面層15とhigh-k層16との積層構造を有す
るhigh-kゲート絶縁膜を形成したが、このとき、窒素原
子がゲート絶縁膜のいずれかの部分(基板近傍、電極近
傍、膜中央部等)に含まれていてもよい。また、PDA
処理条件は特に限定されるものではないが、PDA処理
温度は800℃程度以下であり、PDA処理温度は30
秒程度以下であることが好ましい。
[0041] In the present embodiment, after forming the HfO 2 film 14 via the Si 3 N 4 film 13 on the Si substrate 11, performs PDA processing on the HfO 2 film 14, whereby the interfacial layer A high-k gate insulating film having a laminated structure of 15 and a high-k layer 16 was formed. At this time, nitrogen atoms were present at any part of the gate insulating film (near the substrate, near the electrode, central part of the film, etc.). May be included in. Also, PDA
The treatment conditions are not particularly limited, but the PDA treatment temperature is about 800 ° C. or lower, and the PDA treatment temperature is 30
It is preferably about a second or less.

【0042】また、本実施形態において、液体Hfソー
スであるHf t-butoxide を用いてHfO2 膜14を形成
したが、HfO2 膜14の形成方法は特に限定されるも
のではない。具体的には、例えば固体原料であるHf n
itrato(Hf(NO34)を加熱して液体状態にすると
共に該液状の原料中にAr等のキャリアガスを吹き込ん
でバブリングを行なった後、気化した原料をキャリアガ
スと共に、基板ヒーターとコールドウォールとを有する
CVD装置の反応炉内に導入し、その後、200℃程度
の温度下でRT−CVD処理を使用してHfO2 膜14
を形成してもよい。このとき、HfO2 膜14の成長速
度又は膜質の向上のために乾燥O2 ガスを反応炉内に導
入する。このように形成されたHfO2 膜14に対して
組成分析を行なった場合、Hfソース中にHf、O、及
びNが含まれているため、HfO 2 膜14の内部に1〜
2原子%程度以下の微量なNが含有される。尚、反応炉
内にはArガスも導入されるが、200℃程度の温度下
ではArガスは非常に不活性であるため、Arガスの寄
与は非常に小さい。
In the present embodiment, the liquid Hf saw
HfO using Hft-butoxide2Form the film 14
However, HfO2The method for forming the film 14 is not particularly limited.
Not of. Specifically, for example, Hf n, which is a solid raw material,
itrato (Hf (NO3)Four) Is heated to a liquid state
A carrier gas such as Ar is blown into the liquid raw material together.
After bubbling in, the vaporized raw material is
With a substrate heater and cold wall
Introduced into the reaction furnace of the CVD equipment, then about 200 ℃
At room temperature using RT-CVD process2Membrane 14
May be formed. At this time, HfO2Growth rate of film 14
Dry O to improve the degree or film quality2Guide gas into reactor
To enter. HfO formed in this way2For membrane 14
When composition analysis was performed, Hf, O, and
And N are included, HfO 21 to inside the membrane 14
A trace amount of N of about 2 atomic% or less is contained. Incidentally, the reaction furnace
Ar gas is also introduced inside, but at a temperature of about 200 ° C
However, since Ar gas is very inert, the Ar gas
The award is very small.

【0043】また、本実施形態において、high-kゲート
絶縁膜(つまりその中のhigh-k層16)の材料としてH
fO2 を用いた。しかし、これに代えて、他の金属酸化
物、具体的には、Hfと同様の性質を持つZrの酸化物
(ZrO2 )、TiO2 、Ta25、La23又はAl
23等を用いた場合にも、界面層15の厚さT1及びhi
gh-k層16の厚さT2がT1/(T1+T2)≦0.3
の関係(より好ましくはT1/(T1+T2)≦0.2
の関係)を満たす限り、high-kゲート絶縁膜の信頼性寿
命について本実施形態と同様の劇的な向上効果が生じ
る。特に、界面層の比誘電率ε1が3.9以上で且つ
7.0以下であると共にhigh-k層16の比誘電率ε2が
7.0よりも大きく、さらに、high-k層16における比
誘電率ε2の平均値ε2avが12.0以上で且つ18.
0以下である場合には、次のような特別な効果が得られ
る。すなわち、high-k層16と界面層15との間の比誘
電率の差が所定の範囲内に制限されるため、電圧印加時
の界面層15への電界集中がより緩和され、high-kゲー
ト絶縁膜の信頼性をより向上させることができる。
Further, in this embodiment, H is used as the material of the high-k gate insulating film (that is, the high-k layer 16 therein).
fO 2 was used. However, instead of this, another metal oxide, specifically, an oxide of Zr (ZrO 2 ), TiO 2 , Ta 2 O 5 , La 2 O 3 or Al having the same properties as Hf is used.
Even when 2 O 3 or the like is used, the thickness T1 of the interface layer 15 and hi
The thickness T2 of the gh-k layer 16 is T1 / (T1 + T2) ≦ 0.3
Relationship (more preferably T1 / (T1 + T2) ≦ 0.2
As long as the relationship (1) is satisfied, the same dramatic improvement effect as that of the present embodiment occurs in the reliability life of the high-k gate insulating film. In particular, the relative permittivity ε1 of the interface layer is 3.9 or more and 7.0 or less, the relative permittivity ε2 of the high-k layer 16 is larger than 7.0, and The average value ε2 av of the dielectric constant ε2 is 12.0 or more and 18.
When it is 0 or less, the following special effects are obtained. That is, since the difference in the relative dielectric constant between the high-k layer 16 and the interface layer 15 is limited within a predetermined range, the electric field concentration on the interface layer 15 when a voltage is applied is further relaxed, and the high-k The reliability of the gate insulating film can be further improved.

【0044】また、本実施形態において、high-kゲート
絶縁膜(つまりその中のhigh-k層16)の材料として、
組成がMXSiYO(但しMは一の金属を表し、X>0、
Y>0である)で表される金属シリケート(金属、シリ
コン及び酸素以外の元素を含んでいてもよい)、例えば
Hfシリケート(HfXSiY2 )又はZrシリケート
(ZrXSiY2 )等を用いた場合にも、比T1/(T
1+T2)≦0.3の関係(好ましくはT1/(T1+
T2)≦0.2の関係)を満たす限り、high-kゲート絶
縁膜の信頼性寿命について本実施形態と同様の劇的な向
上効果が生じる。特に、界面層の比誘電率ε1が3.9
以上で且つ7.0以下であると共にhigh-k層16の比誘
電率ε2が7.0よりも大きく、さらに、high-k層16
が0.20≦Y/(X+Y)≦0.30の関係を満たす
金属シリケートMXSiYOである場合には、次のような
特別な効果が得られる。すなわち、シリコンを含まない
完全な金属酸化物を用いた場合と比べて、high-k層16
と界面層15との間の比誘電率の差が小さくなるため、
電圧印加時の界面層15への電界集中がより緩和され、
その結果、high-kゲート絶縁膜の信頼性をより向上させ
ることができる。
Further, in this embodiment, as a material of the high-k gate insulating film (that is, the high-k layer 16 therein),
The composition is M X Si Y O (where M represents one metal, X> 0,
Y> 0) represented by metal silicate (may contain elements other than metal, silicon and oxygen) such as Hf silicate (Hf X Si Y O 2 ) or Zr silicate (Zr X Si Y O 2). ) Etc., the ratio T1 / (T
1 + T2) ≦ 0.3 (preferably T1 / (T1 +
As long as T2) ≤ 0.2) is satisfied, the reliability life of the high-k gate insulating film is dramatically improved as in the present embodiment. In particular, the relative dielectric constant ε1 of the interface layer is 3.9.
The dielectric constant ε2 of the high-k layer 16 is more than 7.0 and less than 7.0, and is larger than 7.0.
Is a metal silicate M X Si Y O satisfying the relationship of 0.20 ≦ Y / (X + Y) ≦ 0.30, the following special effects are obtained. That is, as compared with the case of using a complete metal oxide containing no silicon, the high-k layer 16
Since the difference in relative dielectric constant between the interface layer 15 and the interface layer 15 becomes small,
The electric field concentration on the interface layer 15 when a voltage is applied is further relaxed,
As a result, the reliability of the high-k gate insulating film can be further improved.

【0045】ところで、本実施形態のHfO2 膜14に
代えて例えばHfシリケート膜を形成する場合、次のよ
うな方法を用いることができる。すなわち、液体Hfソ
ースであるHf t-butoxide (C1636HfO4 )及び
SiソースであるTDEAS(Tetrakis Diethyl Amino
Silicon:Si[N(C2H5)2]4 )を気化して、キャリアガス
であるN2 ガスと共に反応炉内に導入した後、300〜
500℃程度の温度下でCVD処理を行なうことによ
り、Hfシリケート膜を形成できる。このとき、Hfソ
ースとSiソースとの混合比、又はCVD処理の温度を
調節することによって、Hfシリケート膜の組成を変化
させることができる。また、Hfシリケート膜の成長速
度又は膜質の向上のために、乾燥O2 ガスを反応炉内に
導入してもよい。
By the way, in the case of forming, for example, an Hf silicate film in place of the HfO 2 film 14 of this embodiment, the following method can be used. That is, Hft-butoxide (C 16 H 36 HfO 4 ) which is a liquid Hf source and TDEAS (Tetrakis Diethyl Amino) which is a Si source.
Silicon: vaporizing Si [N (C 2 H 5 ) 2] 4), was introduced into the reactor with N 2 gas as a carrier gas, 300
The Hf silicate film can be formed by performing the CVD process at a temperature of about 500 ° C. At this time, the composition of the Hf silicate film can be changed by adjusting the mixing ratio of the Hf source and the Si source or the temperature of the CVD process. Further, dry O 2 gas may be introduced into the reaction furnace in order to improve the growth rate or film quality of the Hf silicate film.

【0046】また、本実施形態において、基板としてS
i基板11を用いたが、これに代えて、他の半導体基
板、例えばSiGe基板又はSiC基板等を用いてもよ
い。
Further, in this embodiment, S is used as the substrate.
Although the i substrate 11 is used, another semiconductor substrate such as a SiGe substrate or a SiC substrate may be used instead of the i substrate 11.

【0047】また、本実施形態において、ゲート電極1
7としてPoly−Siゲート電極を用いたが、これに
代えて、メタルゲート電極を用いてもよい。具体的に
は、例えばArスパッタによるPVD(physical vapor
deposition )法を用いて、TiN膜とAl膜との積層
構造、又はTaN膜の単層構造を有するメタルゲート電
極を形成してもよい。
In this embodiment, the gate electrode 1
Although a Poly-Si gate electrode was used as 7, a metal gate electrode may be used instead of this. Specifically, for example, PVD (physical vapor) by Ar sputtering is used.
Deposition method may be used to form a metal gate electrode having a laminated structure of a TiN film and an Al film or a single-layer structure of a TaN film.

【0048】[0048]

【発明の効果】本発明によると、high-kゲート絶縁膜に
おける界面層厚さT1の全体厚さ(T1+T2)に対す
る比を0.3以下、より好ましくは0.2以下にするた
め、ゲート電圧印加時における界面層への電界集中を抑
制できるので、high-kゲート絶縁膜の信頼性寿命を向上
させることができる。
According to the present invention, the ratio of the interface layer thickness T1 in the high-k gate insulating film to the total thickness (T1 + T2) is 0.3 or less, more preferably 0.2 or less. Since the electric field concentration on the interface layer during application can be suppressed, the reliability life of the high-k gate insulating film can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】high-kゲート絶縁膜の信頼性寿命の長さと、界
面層厚さT1のhigh-kゲート絶縁膜全体の厚さ(T1+
T2)(但しT2はhigh-k層の物理的厚さ)に対する比
との相関をシミュレーションを用いて調べた結果を示す
図である。
FIG. 1 is the reliability life of the high-k gate insulating film and the total thickness of the high-k gate insulating film having an interface layer thickness T1 (T1 +
It is a figure which shows the result of having investigated the correlation with the ratio with respect to T2) (however, T2 is the physical thickness of a high-k layer) using simulation.

【図2】high-kゲート絶縁膜の信頼性寿命の長さと、界
面層厚さT1のhigh-kゲート絶縁膜全体の厚さ(T1+
T2)(但しT2はhigh-k層の物理的厚さ)に対する比
との相関を実験により調べた結果を示す図である。
FIG. 2 shows the reliability life of the high-k gate insulating film and the total thickness of the high-k gate insulating film having an interface layer thickness T1 (T1 +
It is a figure which shows the result of having investigated the correlation with the ratio with respect to T2) (however, T2 is the physical thickness of a high-k layer) by experiment.

【図3】(a)〜(e)は本発明の一実施形態に係る半
導体装置の製造方法の各工程を示す断面図である。
3A to 3E are cross-sectional views showing respective steps of a method for manufacturing a semiconductor device according to an embodiment of the present invention.

【図4】(a)は本発明の一実施形態に係る半導体装置
の高分解能断面TEM像を示す図であり、(b)は比較
例に係る半導体装置の高分解能断面TEM像を示す図で
ある。
4A is a diagram showing a high-resolution cross-sectional TEM image of a semiconductor device according to an embodiment of the present invention, and FIG. 4B is a diagram showing a high-resolution cross-sectional TEM image of a semiconductor device according to a comparative example. is there.

【図5】従来の半導体装置の断面図である。FIG. 5 is a cross-sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

11 Si基板 12 素子分離用絶縁膜 13 Si34膜 14 HfO2 膜 15 界面層 16 high-k層 17 ゲート電極 21 Si基板 25 界面層 26 high-k層 27 ゲート電極 RD デバイス領域11 Si substrate 12 Element isolation insulating film 13 Si 3 N 4 film 14 HfO 2 film 15 Interface layer 16 high-k layer 17 Gate electrode 21 Si substrate 25 Interface layer 26 high-k layer 27 Gate electrode RD Device region

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F058 BA06 BA20 BD01 BD04 BD10 BD18 BF02 BF06 BH04 BJ04 BJ10 5F140 AA05 AA24 AC32 BA01 BA02 BA05 BA20 BD01 BD07 BD11 BD13 BD16 BE02 BE08 BE10 BE17 BF01 BF04 BG27 BG32 BG37 CB01    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5F058 BA06 BA20 BD01 BD04 BD10                       BD18 BF02 BF06 BH04 BJ04                       BJ10                 5F140 AA05 AA24 AC32 BA01 BA02                       BA05 BA20 BD01 BD07 BD11                       BD13 BD16 BE02 BE08 BE10                       BE17 BF01 BF04 BG27 BG32                       BG37 CB01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された高誘電率絶縁
膜を有する半導体装置であって、 前記高誘電率絶縁膜は、 前記半導体基板との界面に形成された界面層と、 前記界面層の上に形成され、前記界面層よりも比誘電率
が高い高誘電率層とを有し、 前記界面層の厚さT1及び前記高誘電率層の厚さT2
は、 T1/(T1+T2)≦0.3の関係を満たすことを特
徴とする半導体装置。
1. A semiconductor device having a high dielectric constant insulating film formed on a semiconductor substrate, wherein the high dielectric constant insulating film includes an interface layer formed at an interface with the semiconductor substrate, and the interface layer. A high-dielectric layer having a relative dielectric constant higher than that of the interface layer, the thickness T1 of the interface layer and the thickness T2 of the high-dielectric layer.
Is a semiconductor device characterized by satisfying a relationship of T1 / (T1 + T2) ≦ 0.3.
【請求項2】 T1及びT2は、 T1/(T1+T2)≦0.2の関係を満たすことを特
徴とする請求項1に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein T1 and T2 satisfy a relationship of T1 / (T1 + T2) ≦ 0.2.
【請求項3】 前記界面層の比誘電率ε1は3.9以上
で且つ7.0以下であると共に前記高誘電率層の比誘電
率ε2は7.0よりも大きく、 前記高誘電率層における前記比誘電率ε2の平均値ε2
avは12.0以上で且つ18.0以下であることを特徴
とする請求項1に記載の半導体装置。
3. The relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high dielectric constant layer is larger than 7.0. Mean value ε2 of the relative permittivity ε2 in
The semiconductor device according to claim 1, wherein av is 12.0 or more and 18.0 or less.
【請求項4】 前記界面層の比誘電率ε1は3.9以上
で且つ7.0以下であると共に前記高誘電率層の比誘電
率ε2は7.0よりも大きく、 前記高誘電率層は、一の金属とシリコンと酸素とを含む
シリケートよりなり、 前記高誘電率層の組成をMXSiYO(但し、Mは前記一
の金属を表し、X>0、Y>0である)としたときに、 X及びYは、 0.20≦Y/(X+Y)≦0.30の関係を満たすこ
とを特徴とする請求項1に記載の半導体装置。
4. The relative dielectric constant ε1 of the interface layer is 3.9 or more and 7.0 or less, and the relative dielectric constant ε2 of the high dielectric constant layer is larger than 7.0. Is a silicate containing one metal, silicon and oxygen, and has a composition of the high dielectric constant layer of M X Si Y O (where M represents the one metal, and X> 0, Y> 0). ), X and Y satisfy the relationship of 0.20 ≦ Y / (X + Y) ≦ 0.30. 3. The semiconductor device according to claim 1, wherein
【請求項5】 前記高誘電率層は、ハフニウム又はジル
コニウムとシリコンと酸素とを含むシリケートよりなる
ことを特徴とする請求項1に記載の半導体装置。
5. The semiconductor device according to claim 1, wherein the high dielectric constant layer is made of silicate containing hafnium or zirconium, silicon and oxygen.
JP2002163983A 2001-06-21 2002-06-05 Semiconductor device Expired - Lifetime JP4047075B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29947801P 2001-06-21 2001-06-21
US60/299,478 2001-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007045149A Division JP4713518B2 (en) 2001-06-21 2007-02-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2003059926A true JP2003059926A (en) 2003-02-28
JP4047075B2 JP4047075B2 (en) 2008-02-13

Family

ID=23154975

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2001395734A Expired - Lifetime JP3773448B2 (en) 2001-06-21 2001-12-27 Semiconductor device
JP2002015066A Expired - Lifetime JP4165076B2 (en) 2001-06-21 2002-01-24 Semiconductor device having high dielectric constant insulating film
JP2002163983A Expired - Lifetime JP4047075B2 (en) 2001-06-21 2002-06-05 Semiconductor device
JP2006001334A Expired - Lifetime JP4712560B2 (en) 2001-06-21 2006-01-06 Manufacturing method of semiconductor device
JP2007045149A Expired - Fee Related JP4713518B2 (en) 2001-06-21 2007-02-26 Semiconductor device
JP2007271175A Pending JP2008078675A (en) 2001-06-21 2007-10-18 Semiconductor device having high permittivity insulating film
JP2010198973A Pending JP2011018926A (en) 2001-06-21 2010-09-06 Semiconductor device manufacturing method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2001395734A Expired - Lifetime JP3773448B2 (en) 2001-06-21 2001-12-27 Semiconductor device
JP2002015066A Expired - Lifetime JP4165076B2 (en) 2001-06-21 2002-01-24 Semiconductor device having high dielectric constant insulating film

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2006001334A Expired - Lifetime JP4712560B2 (en) 2001-06-21 2006-01-06 Manufacturing method of semiconductor device
JP2007045149A Expired - Fee Related JP4713518B2 (en) 2001-06-21 2007-02-26 Semiconductor device
JP2007271175A Pending JP2008078675A (en) 2001-06-21 2007-10-18 Semiconductor device having high permittivity insulating film
JP2010198973A Pending JP2011018926A (en) 2001-06-21 2010-09-06 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (7) JP3773448B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032948A (en) * 2004-07-10 2006-02-02 Samsung Electronics Co Ltd Method of forming composite dielectric film and method of manufacturing semiconductor device using said composite dielectric film
JP2007194652A (en) * 2001-06-21 2007-08-02 Matsushita Electric Ind Co Ltd Semiconductor device
JP2015069989A (en) * 2013-09-26 2015-04-13 三菱電機株式会社 Method of manufacturing silicon carbide semiconductor device
JP2016111253A (en) * 2014-12-09 2016-06-20 豊田合成株式会社 Semiconductor device and manufacturing method thereof

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3688631B2 (en) * 2001-11-22 2005-08-31 株式会社東芝 Manufacturing method of semiconductor device
JP4090346B2 (en) * 2002-02-28 2008-05-28 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
JP4643884B2 (en) * 2002-06-27 2011-03-02 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP4239015B2 (en) 2002-07-16 2009-03-18 日本電気株式会社 Manufacturing method of semiconductor device
JPWO2004073072A1 (en) * 2003-02-17 2006-06-01 独立行政法人産業技術総合研究所 MIS type semiconductor device and method for manufacturing MIS type semiconductor device
JP4051063B2 (en) * 2003-03-13 2008-02-20 富士通株式会社 Manufacturing method of semiconductor device
EP1605500A4 (en) * 2003-03-17 2007-03-21 Fujitsu Ltd Semiconductor device and method for manufacturing semiconductor device
JP4748927B2 (en) * 2003-03-25 2011-08-17 ローム株式会社 Semiconductor device
JP2004311782A (en) * 2003-04-08 2004-11-04 Tokyo Electron Ltd Method and device for forming film
TW200506093A (en) * 2003-04-21 2005-02-16 Aviza Tech Inc System and method for forming multi-component films
JP4140768B2 (en) * 2003-04-24 2008-08-27 株式会社日立国際電気 Semiconductor raw materials
JP4499374B2 (en) * 2003-05-14 2010-07-07 富士通株式会社 Semiconductor device and manufacturing method thereof
WO2004107451A1 (en) * 2003-05-29 2004-12-09 Nec Corporation Semiconductor device fitted with mis type field-effect transistor, process for producing the same and method of forming metal oxide film
JP2005079223A (en) 2003-08-29 2005-03-24 Toshiba Corp Semiconductor device and its manufacturing method
JPWO2005038929A1 (en) * 2003-10-15 2007-02-08 日本電気株式会社 Manufacturing method of semiconductor device
TW200526804A (en) 2003-10-30 2005-08-16 Tokyo Electron Ltd Method of manufacturing semiconductor device, film-forming apparatus, and storage medium
US20050101147A1 (en) * 2003-11-08 2005-05-12 Advanced Micro Devices, Inc. Method for integrating a high-k gate dielectric in a transistor fabrication process
JP2005191482A (en) * 2003-12-26 2005-07-14 Semiconductor Leading Edge Technologies Inc Semiconductor device and its manufacturing method
JP5235260B2 (en) * 2004-04-12 2013-07-10 三星電子株式会社 Method for manufacturing metal-insulator-metal capacitor with seed layer containing nitrogen
JP4919586B2 (en) 2004-06-14 2012-04-18 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
WO2006009025A1 (en) * 2004-07-20 2006-01-26 Nec Corporation Semiconductor device and semiconductor device manufacturing method
JPWO2006022175A1 (en) * 2004-08-23 2008-05-08 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP4966490B2 (en) * 2004-11-15 2012-07-04 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP4185057B2 (en) 2005-01-28 2008-11-19 富士通株式会社 Manufacturing method of semiconductor device
KR100702027B1 (en) * 2005-03-21 2007-03-30 후지쯔 가부시끼가이샤 Semiconductor device and method for manufacturing semiconductor device
JP2006269520A (en) * 2005-03-22 2006-10-05 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2006319091A (en) * 2005-05-12 2006-11-24 Renesas Technology Corp Manufacturing method of semiconductor device
KR100644724B1 (en) * 2005-07-26 2006-11-14 삼성전자주식회사 Semiconductor device and method of manufacturing the same
JP2008010801A (en) * 2005-08-17 2008-01-17 Kobe Steel Ltd Source/drain electrode, thin-film transistor substrate and manufacture method thereof, and display device
US7655994B2 (en) * 2005-10-26 2010-02-02 International Business Machines Corporation Low threshold voltage semiconductor device with dual threshold voltage control means
US8053849B2 (en) * 2005-11-09 2011-11-08 Advanced Micro Devices, Inc. Replacement metal gate transistors with reduced gate oxide leakage
US7436034B2 (en) * 2005-12-19 2008-10-14 International Business Machines Corporation Metal oxynitride as a pFET material
JP2006140514A (en) * 2005-12-19 2006-06-01 Fujitsu Ltd Semiconductor device and its manufacturing method
US8524617B2 (en) 2009-02-27 2013-09-03 Canon Anelva Corporation Methods for manufacturing dielectric films
CN105097952B (en) 2009-12-25 2018-12-21 株式会社理光 Insulating film forms ink, insulation film manufacturing method and semiconductor making method
JP5149936B2 (en) * 2010-04-28 2013-02-20 パナソニック株式会社 SEMICONDUCTOR DEVICE HAVING FIELD EFFECT TRANSISTOR HAVING HIGH DIELECTRIC GATE INSULATION FILM AND METHOD FOR MANUFACTURING SAME
US9396946B2 (en) * 2011-06-27 2016-07-19 Cree, Inc. Wet chemistry processes for fabricating a semiconductor device with increased channel mobility
JP5816539B2 (en) * 2011-12-05 2015-11-18 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
DE102012205977B4 (en) 2012-04-12 2017-08-17 Globalfoundries Inc. Semiconductor device with ferroelectric elements and fast transistors with metal gates with large ε and manufacturing method
JP2014053571A (en) 2012-09-10 2014-03-20 Toshiba Corp Ferroelectric memory and method of manufacturing the same
JP2014187238A (en) * 2013-03-25 2014-10-02 Toyoda Gosei Co Ltd Mis semiconductor device manufacturing method
JP2017092191A (en) * 2015-11-06 2017-05-25 株式会社デンソー Silicon carbide semiconductor device
KR20220157302A (en) 2021-05-20 2022-11-29 캐논 가부시끼가이샤 Film, element, and equipment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286356A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH0677402A (en) * 1992-07-02 1994-03-18 Natl Semiconductor Corp <Ns> Dielectric structure for semiconductor device and its manufacture
JPH06291041A (en) * 1993-03-31 1994-10-18 Toshiba Corp Thin-film formation method and device
JPH07211902A (en) * 1994-01-19 1995-08-11 Sony Corp Mis type transistor and its manufacture
TW466615B (en) * 1996-12-23 2001-12-01 Lucent Technologies Inc A gate structure for integrated circuit fabrication
JP4160167B2 (en) * 1997-06-30 2008-10-01 株式会社東芝 Manufacturing method of semiconductor device
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
JP3523093B2 (en) * 1997-11-28 2004-04-26 株式会社東芝 Semiconductor device and manufacturing method thereof
JP3357861B2 (en) * 1998-06-04 2002-12-16 株式会社東芝 MIS semiconductor device and nonvolatile semiconductor memory device
JP2000058832A (en) * 1998-07-15 2000-02-25 Texas Instr Inc <Ti> Oxyzirconium nitride and/or hafnium gate dielectrics
JP2000106432A (en) * 1998-09-29 2000-04-11 Nec Corp Manufacture of gate insulating film and semiconductor device using that
JP2000208508A (en) * 1999-01-13 2000-07-28 Texas Instr Inc <Ti> Vacuum deposition of high-dielectric material made of silicate
KR100768642B1 (en) * 1999-07-08 2007-10-18 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device and method for producing the same
US6337289B1 (en) * 1999-09-24 2002-01-08 Applied Materials. Inc Method and apparatus for integrating a metal nitride film in a semiconductor device
US6291319B1 (en) * 1999-12-17 2001-09-18 Motorola, Inc. Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
JP2001185548A (en) * 1999-12-22 2001-07-06 Fujitsu Ltd Semiconductor device and manufacturing method thereof
US6287897B1 (en) * 2000-02-29 2001-09-11 International Business Machines Corporation Gate dielectric with self forming diffusion barrier
EP1326271A4 (en) * 2000-09-18 2005-08-24 Tokyo Electron Ltd Method for film formation of gate insulator, apparatus for film formation of gate insulator, and cluster tool
JP2002134739A (en) * 2000-10-19 2002-05-10 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2002314072A (en) * 2001-04-19 2002-10-25 Nec Corp Semiconductor device with high dielectric thin film and manufacturing method therefor, and film-forming method for dielectric film
JP3773448B2 (en) * 2001-06-21 2006-05-10 松下電器産業株式会社 Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194652A (en) * 2001-06-21 2007-08-02 Matsushita Electric Ind Co Ltd Semiconductor device
JP2006032948A (en) * 2004-07-10 2006-02-02 Samsung Electronics Co Ltd Method of forming composite dielectric film and method of manufacturing semiconductor device using said composite dielectric film
JP2015069989A (en) * 2013-09-26 2015-04-13 三菱電機株式会社 Method of manufacturing silicon carbide semiconductor device
JP2016111253A (en) * 2014-12-09 2016-06-20 豊田合成株式会社 Semiconductor device and manufacturing method thereof
US10026808B2 (en) 2014-12-09 2018-07-17 Toyoda Gosei Co., Ltd. Semiconductor device including insulating film that includes negatively charged microcrystal

Also Published As

Publication number Publication date
JP2011018926A (en) 2011-01-27
JP4165076B2 (en) 2008-10-15
JP2003008005A (en) 2003-01-10
JP2008078675A (en) 2008-04-03
JP4047075B2 (en) 2008-02-13
JP4712560B2 (en) 2011-06-29
JP3773448B2 (en) 2006-05-10
JP4713518B2 (en) 2011-06-29
JP2006165589A (en) 2006-06-22
JP2007194652A (en) 2007-08-02
JP2003008011A (en) 2003-01-10

Similar Documents

Publication Publication Date Title
JP4047075B2 (en) Semiconductor device
JP4647311B2 (en) Method for forming dielectric stack
US7473994B2 (en) Method of producing insulator thin film, insulator thin film, method of manufacturing semiconductor device, and semiconductor device
CN100367513C (en) Semiconductor device and its manufacturing method
US7737511B2 (en) Semiconductor device and method of manufacturing the same
US8198184B2 (en) Method to maximize nitrogen concentration at the top surface of gate dielectrics
US8012824B2 (en) Process to make high-K transistor dielectrics
KR100729354B1 (en) Methods of manufacturing semiconductor device in order to improve the electrical characteristics of a dielectric
WO2009133515A1 (en) Gate structure for field effect transistor
JP2000049349A (en) Manufacture for field-effect device in integrated circuit
WO2005038929A1 (en) Method for manufacturing semiconductor device
JP4261276B2 (en) Manufacturing method of semiconductor device
EP1794782A1 (en) Semiconductor device and method of forming the same
JPWO2004073072A1 (en) MIS type semiconductor device and method for manufacturing MIS type semiconductor device
KR20050061077A (en) Method for forming dielectric layer in semiconductor device
KR20040086495A (en) Method of manufacturing semiconductor device, semiconductor device and apparatus for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4047075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term