JP2003055397A - Linearly arranged metal nano fine particle aggregate and method for producing the same - Google Patents

Linearly arranged metal nano fine particle aggregate and method for producing the same

Info

Publication number
JP2003055397A
JP2003055397A JP2001247557A JP2001247557A JP2003055397A JP 2003055397 A JP2003055397 A JP 2003055397A JP 2001247557 A JP2001247557 A JP 2001247557A JP 2001247557 A JP2001247557 A JP 2001247557A JP 2003055397 A JP2003055397 A JP 2003055397A
Authority
JP
Japan
Prior art keywords
metal
metal nanoparticles
aggregate
linearly arranged
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001247557A
Other languages
Japanese (ja)
Other versions
JP3625436B2 (en
Inventor
Maki Ogiso
真樹 小木曽
Toshimi Shimizu
敏美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Japan Science and Technology Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001247557A priority Critical patent/JP3625436B2/en
Publication of JP2003055397A publication Critical patent/JP2003055397A/en
Application granted granted Critical
Publication of JP3625436B2 publication Critical patent/JP3625436B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a metal nano fine particle aggregate in which metal nano fine particles are linearly arranged in a mutually separated state, and to provide a method for producing the same. SOLUTION: This method for producing the metal nano fine particle aggregate in which metal nano fine particles are linearly arranged in a mutually separated state comprises chemically reducing a hybrid nanofiber produced by adding a metal ion to a two-headed peptide lipid in water with a relatively weak reducing agent in an amount of 2 to 5 equivalents based on the two- headed peptide lipid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、線状に配列した金
属のみからなるナノ微粒子の集合体を製造する方法に関
し、より詳細には、平均直径が1〜3nmである金属ナ
ノ微粒子がそれぞれ離隔して、隣接する各金属ナノ微粒
子の中心間平均距離が2〜5nm、平均長さが20〜2
00nmに渡って線状に配列した金属ナノ粒子の集合体
及びその製造方法に関する。この線状に配列した金属ナ
ノ微粒子の集合体は、ナノ電子部品やナノ磁性材料とし
て電子・情報・エレクトロニクス分野などの工業分野で
利用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aggregate of nanoparticles which are composed only of linearly arranged metals, and more specifically, metal nanoparticles having an average diameter of 1 to 3 nm are separated from each other. The average distance between the centers of adjacent metal nanoparticles is 2 to 5 nm, and the average length is 20 to 2
The present invention relates to an aggregate of metal nanoparticles arranged linearly over 00 nm and a method for producing the same. This aggregate of metal nanoparticles arranged linearly can be used as a nanoelectronic component or a nanomagnetic material in the industrial fields such as the fields of electronics, information and electronics.

【0002】[0002]

【従来の技術】従来、金ナノ微粒子を結合したヌクレオ
チド鎖を自己集合により2重螺旋構造を形成させ1次元
配列させる方法が知られている(例えば、A. P. Alicis
atos et. Al., Nature 1996, 382, 609-611)。しか
し、この方法では金ナノ微粒子を5nm以下の間隔で4
個以上配列させることは出来なかった。一方、本発明者
らは既に双頭型ペプチド脂質と金属イオンから形成させ
た銅複合化ペプチド脂質から成るナノファイバーを、双
頭型ペプチド脂質に対して5〜10当量の還元剤を用い
て化学的に還元することを特徴とする、金属ナノワイヤ
ーの製造方法を提供しているが(特願2001−064
322)、この場合得られるのは金属が線状に連続的に
連結したナノワイヤーであった。
2. Description of the Related Art Heretofore, there has been known a method of self-assembling a double-stranded helical structure in which nucleotide chains bound with gold nanoparticles are arranged one-dimensionally (for example, AP Alicis).
atos et. Al., Nature 1996, 382, 609-611). However, in this method, gold nanoparticles are used at intervals of 5 nm or less.
It was not possible to arrange more than one. On the other hand, the present inventors chemically prepared a nanofiber composed of a copper-complexed peptide lipid formed from a double-headed peptide lipid and a metal ion, chemically by using 5 to 10 equivalents of a reducing agent with respect to the double-headed peptide lipid. A method for producing metal nanowires, which is characterized by reduction, is provided (Japanese Patent Application No. 2001-064).
322), in this case, what was obtained was a nanowire in which the metal was continuously connected linearly.

【0003】[0003]

【発明が解決しようとする課題】本発明は、これまで形
成させることができなかった金属ナノ微粒子がそれぞれ
離隔して線状に配列した金属ナノ粒子の集合体及びその
製造方法を提供することを目的としてなされたものであ
る。
DISCLOSURE OF THE INVENTION The present invention provides a metal nanoparticle aggregate in which metal nanoparticles which could not be formed heretofore are arranged in a linear array with a space therebetween, and a method for producing the same. It was done for the purpose.

【0004】[0004]

【課題を解決するための手段】本発明者は、金属ナノ微
粒子がそれぞれ離隔して線状に配列した金属ナノ粒子の
集合体を開発するため鋭意研究を重ねた結果、水中で双
頭型ペプチド脂質に金属イオンを加えることにより生成
するハイブリッドナノファイバーを、双頭型ペプチド脂
質に対して2〜5当量の比較的弱い還元剤を用いて、化
学的に還元することによって、このような金属ナノ微粒
子が離隔して一次元的に配列した集合体を製造しうるこ
とを見いだした。
[Means for Solving the Problems] As a result of intensive research conducted by the present inventors to develop an assembly of metal nanoparticles in which metal nanoparticles are arranged in a linear array with separation from each other, as a result, a double-headed peptide lipid in water is obtained. By chemically reducing the hybrid nanofibers produced by adding a metal ion to the double-headed peptide lipid with a relatively weak reducing agent in an amount of 2 to 5 equivalents, such metal nanoparticles can be obtained. It has been found that it is possible to manufacture an assembly that is one-dimensionally arranged apart from each other.

【0005】即ち、本発明は、一般式(I) (式中、Valはバリン残基、mは1〜3、nは6〜1
8を表す。)で表される双頭型ペプチド脂質及び金属イ
オンから形成された金属複合化ペプチド脂質から成るナ
ノファイバーを、該双頭型ペプチド脂質に対し2〜5当
量の比較的弱い還元剤を用いて還元することから成る線
状に配列した金属ナノ微粒子の集合体の製法である。前
記金属イオンとして銅(II)イオンを用い、前記還元剤
としてヒドラジンを用い、前記金属複合化ペプチド脂質
の初期濃度が25〜50ミリモル/リットルのナノファ
イバーを水溶液中で還元してもよい。この初期濃度とは
還元剤を添加する前の水溶液中の濃度をいう。また、本
発明は、金属ナノ微粒子がそれぞれ離隔して線状に配列
した金属ナノ粒子の集合体であって、該金属ナノ微粒子
の平均粒径が1〜3nmであり、隣接する各金属ナノ微
粒子の中心間平均距離が2〜5nmであって、その配列
の平均長さが20〜200nmである線状に配列した金
属ナノ粒子の集合体である。前記金属は銅であることが
好ましい。
That is, the present invention has the general formula (I) (In the formula, Val is a valine residue, m is 1 to 3, and n is 6-1.
Represents 8. ) A nanofiber composed of a double-headed peptide lipid represented by the formula (1) and a metal-complexed peptide lipid formed from a metal ion is reduced with a relatively weak reducing agent in an amount of 2 to 5 equivalents relative to the double-headed peptide lipid. Is a method for producing an aggregate of metal nanoparticles that are linearly arranged. Copper (II) ions may be used as the metal ions, hydrazine may be used as the reducing agent, and nanofibers having an initial concentration of the metal complexed peptide lipid of 25 to 50 mmol / liter may be reduced in an aqueous solution. This initial concentration refers to the concentration in the aqueous solution before adding the reducing agent. In addition, the present invention is an assembly of metal nanoparticles in which the metal nanoparticles are arranged in a line and are spaced apart from each other, wherein the metal nanoparticles have an average particle diameter of 1 to 3 nm, and each adjacent metal nanoparticle. The average distance between centers of 2 to 5 nm, and the average length of the array is 20 to 200 nm, which is an aggregate of linearly arranged metal nanoparticles. The metal is preferably copper.

【0006】[0006]

【発明の実施の形態】本発明の線状に配列した金属ナノ
微粒子の集合体の製造方法は、下記一般式(I) (式中、m及びnは上記と同様である。)で表わされる
双頭型ペプチド脂質をアルカリ金属塩として含む水溶液
に金属イオンを加えることによりナノファイバーのコロ
イド状分散液とし、更に還元剤を加えることから成る。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing an aggregate of linearly arranged metal nanoparticles according to the present invention is described by the following general formula (I). (In the formula, m and n are the same as above.) A colloidal dispersion of nanofibers is prepared by adding metal ions to an aqueous solution containing a double-headed peptide lipid represented by the formula as an alkali metal salt, and further a reducing agent is added. It consists of

【0007】本発明において用いられる下記一般式
(I) (式中、m及びnは上記と同様である。)で表わされる
構造を有する双頭型ペプチド脂質は、光学活性なL−バ
リン残基又はD−バリン残基のオリゴマーと長鎖のジカ
ルボン酸がアミド結合を介して連結したものであり、オ
リゴペプチド鎖のC端を両端にもつ。オリゴペプチド鎖
を構成するバリン残基は下式 で表され、光学活性はすべてD体又はL体のいずれかで
あることが必要である。
The following general formula (I) used in the present invention (In the formula, m and n are the same as above.) The double-headed peptide lipid having a structure is composed of an optically active oligomer of L-valine residue or D-valine residue and a long-chain dicarboxylic acid. It is linked via an amide bond and has the C-terminal of the oligopeptide chain at both ends. The valine residue that constitutes the oligopeptide chain has the following formula It is necessary that all of the optical activities are in D-form or L-form.

【0008】異なる光学活性体のものが含まれるとナノ
ファイバーが形成されず、粒状のアモルファス固体とな
る。mは1〜3であり、mが4以上であると化合物の溶
解性が悪くなり、本発明のナノファイバーの製造が困難
となる。また、nは直鎖状アルキレン基の長さを与え、
6〜18である。このアルキレン基の例としては、ヘキ
シレン基、ヘプチレン基、オクチレン基、ノニレン基、
デシレン基、ウンデシレン基、ドデシレン基、テトラデ
シレン基、ヘキサデシレン基、オクタデシレン基などが
挙げられる。nが6より小さいと、ナノファイバーは形
成しにくいし、一方、18より大きいと水性媒体中に形
成される沈殿がアモルファス球体となる。
When different optically active substances are contained, nanofibers are not formed, and a granular amorphous solid is obtained. m is 1 to 3, and when m is 4 or more, the solubility of the compound is deteriorated and the production of the nanofiber of the present invention becomes difficult. N is the length of the linear alkylene group,
6-18. Examples of this alkylene group include a hexylene group, a heptylene group, an octylene group, a nonylene group,
Examples thereof include a decylene group, an undecylene group, a dodecylene group, a tetradecylene group, a hexadecylene group, and an octadecylene group. When n is smaller than 6, nanofibers are difficult to form, while when it is larger than 18, the precipitate formed in the aqueous medium becomes amorphous spheres.

【0009】まず、この双頭型脂質をアルカリ金属塩と
する。この方法は任意である。ここで用いるアルカリ金
属としてはナトリウムやカリウムが好ましい。次に、水
溶液中でこれに金属イオンを加えると、自己集積の結
果、ナノファイバーのコロイド状分散液が形成される。
この際の温度等の条件に特に制限はないが、攪拌を良好
に行うことが好ましい。この金属イオンとしては、Mn
2+、Fe3+、Co 、Ni2+、Cu2+、Zn
2+などが用いられ、好ましくはCu2+が用いられ
る。このような金属イオンを反応液中に導入する方法と
してはいかなる方法を用いてもよいが、金属塩として導
入するのが簡便である。この塩として無機酸塩や有機酸
塩などを用いてもよい。
First, the double-headed lipid is changed to an alkali metal salt. This method is arbitrary. The alkali metal used here is preferably sodium or potassium. Next, metal ions are added to this in an aqueous solution resulting in the self-assembly of a nanofiber colloidal dispersion.
The conditions such as temperature at this time are not particularly limited, but it is preferable to perform good stirring. As this metal ion, Mn
2+, Fe 3+, Co 2 + , Ni 2+, Cu 2+, Zn
2+ or the like is used, and Cu 2+ is preferably used. Any method may be used as a method for introducing such a metal ion into the reaction solution, but it is convenient to introduce it as a metal salt. An inorganic acid salt or an organic acid salt may be used as this salt.

【0010】このコロイド状分散液に還元剤を加えると
線状に配列した金属ナノ微粒子の集合体が生成する。こ
の際の温度条件に特に制限はないが、大気中ではなく窒
素やアルゴン雰囲気下中であることが好ましい。還元剤
としては比較的弱い還元剤が好ましく、水素化ホウ素ナ
トリウムや水素化アルミニウムリチウムなどでは強すぎ
て、これらを用いると塊状の沈殿を生じ、1次元に配列
した金属ナノ微粒子の集合体は形成しない。従って、こ
れらよりも還元力の弱い還元剤が適当であり、特にヒド
ラジンを用いることが好ましい。
When a reducing agent is added to this colloidal dispersion, an aggregate of linearly arranged metal nanoparticles is formed. The temperature conditions at this time are not particularly limited, but it is preferable that the temperature is not in the air but in a nitrogen or argon atmosphere. A relatively weak reducing agent is preferable as the reducing agent, and sodium borohydride, lithium aluminum hydride, etc. are too strong, and when these are used, agglomerate precipitation occurs, and an aggregate of one-dimensionally arranged metal nanoparticles is formed. do not do. Therefore, a reducing agent having a reducing power weaker than these is suitable, and it is particularly preferable to use hydrazine.

【0011】金属複合化ペプチド脂質の初期濃度は25
〜50ミリモル/リットルが好ましい。また、還元剤の
量は、双頭型ペプチド脂質に対し2〜5当量であること
が好ましい。初期濃度が25ミリモル/リットル以下で
は還元剤の量が2〜5当量の時に、何も構造体を形成し
ないし、50ミリモル/リットル以上では大きな塊状と
なり線状に配列した金属ナノ微粒子の集合体を形成しな
い。還元剤が2当量より少ないと、還元はほとんど起こ
らないし、5当量より多いと大きな塊状となる。
The initial concentration of the metal complexed peptide lipid is 25
~ 50 mmol / l is preferred. Moreover, the amount of the reducing agent is preferably 2 to 5 equivalents relative to the double-headed peptide lipid. When the initial concentration is 25 mmol / liter or less, no structure is formed when the amount of the reducing agent is 2 to 5 equivalents, and when it is 50 mmol / liter or more, an aggregate of metal nanoparticles in a large lump and linearly arranged. Does not form. If the reducing agent is less than 2 equivalents, the reduction hardly occurs, and if it is more than 5 equivalents, large lumps are formed.

【0012】このようにして、コロイド状分散液を撹伴
しながら還元剤を加えると、この溶液が徐々に変化し、
数時間後に線状に配列した金属ナノ微粒子の集合体が形
成する。このナノ微粒子の集合体は、各粒子が離隔しな
がら線状に配列しており、粒子の平均直径は1〜3nm
であり、各粒子の中心間平均距離は2〜5nmであり、
この一次元配列の平均長さは20〜200nmである。
このような線状に配列した金属ナノ微粒子の集合体は、
双頭型脂質のアルカリ金属塩に金属イオンを加えた結果
自己集積して生成するナノファイバー上に各金属ナノ微
粒子が配列したものであり、図1に示すように、各金属
ナノ微粒子が離隔しながら一列に整列したものである。
Thus, when the reducing agent was added while stirring the colloidal dispersion, the solution gradually changed,
After several hours, an aggregate of linearly arranged metal nanoparticles is formed. In this aggregate of nanoparticles, the particles are arranged in a linear manner while being separated from each other, and the average diameter of the particles is 1 to 3 nm.
And the average distance between the centers of the particles is 2 to 5 nm,
The average length of this one-dimensional array is 20 to 200 nm.
An aggregate of such metal nanoparticles arranged linearly is
Each metal nanoparticle is arrayed on the nanofibers that are self-assembled as a result of adding metal ions to the alkali metal salt of the double-headed lipid. As shown in FIG. 1, each metal nanoparticle is separated from each other. They are arranged in a line.

【0013】[0013]

【実施例】以下、実施例により本発明を例証するが、本
発明はこれらによってなんら限定されるものではない。製造例1 t−ブチルオキシカルボニル−L−バリン10.9g
(50.0ミリモル)、p−トルエンスルホン酸塩1
9.0g(50.0ミリモル)及びトリエチルアミン
7.0ml(50.0ミリモル)をジクロロメタン15
0mlに溶解し、−5℃でかきまぜながら、水溶性カル
ボジイミドである1−エチル3−(3−ジメチルアミノ
プロピル)カルボジイミド塩酸塩10.5g(55.0
ミリモル)を含むジクロロメタン溶液100mlを加
え、一昼夜かきまぜた。このジクロロメタン溶液を10
重量%クエン酸水溶液、水、4重量%炭酸水素ナトリウ
ム水溶液、水で各2回ずつ洗浄し、有機層を無水硫酸ナ
トリウムで乾燦した。減圧下で溶媒を完全に留去し、無
色透明オイルのt−ブチルオキシカルボニル−L−バリ
ル−L−バリンベンジルエステルを得た。このオイルを
酢酸エチル100mlに溶解し、4N−塩化水素/酢酸
エチル120mlを加え、4時間かきまぜた。減圧下で
溶媒を完全に留去し、得られた白色沈殿にジエチルエー
テルを加えよく洗浄し、白色固体のL−バリル−L−バ
リンベンジルエステル塩酸塩13.8g(収率80%)
を得た。
EXAMPLES The present invention will be illustrated below with reference to Examples.
The invention is not limited to these.Production example 1 t-Butyloxycarbonyl-L-valine 10.9 g
(50.0 mmol), p-toluenesulfonate 1
9.0 g (50.0 mmol) and triethylamine
7.0 ml (50.0 mmol) of dichloromethane 15
Dissolve in 0 ml and stir at -5 ° C while stirring
Bodiimide 1-ethyl 3- (3-dimethylamino)
Propyl) carbodiimide hydrochloride 10.5 g (55.0
100 ml of a dichloromethane solution containing
Well, I stirred it all day and night. Add this dichloromethane solution to 10
Wt% citric acid aqueous solution, water, 4 wt% sodium hydrogen carbonate
It is washed twice each with aqueous solution of water and water, and the organic layer is dried over anhydrous sodium sulfate.
I dried it with thorium. The solvent was completely distilled off under reduced pressure.
T-Butyloxycarbonyl-L-Vari of transparent oil
Lu-L-valine benzyl ester was obtained. This oil
Dissolved in 100 ml of ethyl acetate, 4N-hydrogen chloride / acetic acid
120 ml of ethyl was added and stirred for 4 hours. Under reduced pressure
The solvent was completely distilled off, and the obtained white precipitate was diluted with diethyl ether.
Tell and wash well to obtain white solid L-valyl-L-
Phosphorus benzyl ester hydrochloride 13.8 g (yield 80%)
Got

【0014】1,10−デカンジカルボン酸0.46g
(2ミリモル)と1−ヒドロキシベンゾトリアゾール
0.674g(4.4ミリモル)をN,N−ジメチルホ
ルムアミド10mlに溶解し、−5℃でかきまぜなが
ら、1−エチル3−(3−ジメチルアミノプロピル)カ
ルボジイミド塩酸塩0.90g(4.4ミリモル)を含
むジクロロメタン溶液10mlを加えた。1時間後、上
記L−バリル−L−バリンベンジルエステル塩酸塩1.
51g(4.4ミリモル)を含むジクロロメタン溶液1
0ml、引き続きトリエチルアミン0.62ml(4.
4ミリモル)を加え、徐々に室温に戻しながら一昼夜か
き混ぜた。減圧下、溶媒を完全に留去し、得られた白色
沈殿をろ紙上で10重量%クエン酸水溶液50ml、水
20ml、4重量%炭酸水素ナトリウム水溶液50m
l、水20mlの順に洗浄した。白色固体としてN,
N’ビス(L−バリル−L−バリンベンジルエステル)
デカン−1,10−ジカルボキサミド0.98g(収率
61%)を得た。この化合物0.5g(0.62ミリモ
ル)をジメチルホルムアミド100mlに溶解し、触媒
として10重量%パラジウム/炭素を0.25g加え、
接触水素還元を行った。6時間後、触媒をセライトを用
いてろ別したのち、溶媒を減圧下で留去し無色オイルを
得た。得られたオイルを水−エタノール混合溶媒を用い
て結晶化させ、白色個体を得た。分析の結果この白色固
体はN,N’ビス(L−バリル−L−バリン)デカン−
1,10−ジカルボキサミド(一般式(I)において、
m=2,n=10に相当する。)であった。
0.46 g of 1,10-decanedicarboxylic acid
(2 mmol) and 0.674 g (4.4 mmol) of 1-hydroxybenzotriazole were dissolved in 10 ml of N, N-dimethylformamide, and 1-ethyl 3- (3-dimethylaminopropyl) was stirred with stirring at -5 ° C. 10 ml of a dichloromethane solution containing 0.90 g (4.4 mmol) of carbodiimide hydrochloride was added. After 1 hour, the above L-valyl-L-valine benzyl ester hydrochloride 1.
Dichloromethane solution 1 containing 51 g (4.4 mmol)
0 ml, followed by 0.62 ml of triethylamine (4.
(4 mmol) was added, and the mixture was stirred overnight while gradually returning to room temperature. The solvent was completely distilled off under reduced pressure, and the obtained white precipitate was filtered on a filter paper to give 50 ml of 10% by weight citric acid aqueous solution, 20 ml of water, and 50 m of 4% by weight aqueous sodium hydrogen carbonate solution.
1, and washed with 20 ml of water in this order. N as a white solid,
N'bis (L-valyl-L-valine benzyl ester)
Decane-1,10-dicarboxamide (0.98 g, yield 61%) was obtained. 0.5 g (0.62 mmol) of this compound was dissolved in 100 ml of dimethylformamide, and 0.25 g of 10 wt% palladium / carbon was added as a catalyst.
Catalytic hydrogen reduction was performed. After 6 hours, the catalyst was filtered off using Celite, and the solvent was evaporated under reduced pressure to give a colorless oil. The obtained oil was crystallized using a water-ethanol mixed solvent to obtain a white solid. As a result of the analysis, this white solid is N, N ′ bis (L-valyl-L-valine) decane-
1,10-dicarboxamide (in the general formula (I),
This corresponds to m = 2 and n = 10. )Met.

【0015】実施例1 上記製造例1で得た双頭型ペプチド脂質2.5ミリモル
をサンプル瓶にとり、これに2倍当量の水酸化ナトリウ
ム200mg(5ミリモル)を含む蒸留水75mlを加
え、超音波照射(バス型)を施すことにより双頭型ペプ
チド脂質を溶解させた。この水溶液をホットスターラー
上において、激しく撹伴しながら、常温で保持してお
き、これに100ミリモル/リットルの酢酸銅(II)を
25ml加えると徐々に溶液が濁り、青色のコロイド状
分散液が形成した。この青色コロイド状分散液を常温、
窒素雰囲気下中で撹伴しておき、1モル/リットルのヒ
ドラジン水溶液を12.5ml(12.5ミリモル)を
加えると、溶液が徐々に黄土色に変化し、およそ6時間
後に暗黄土色のコロイド状分散液が生じた。コロイド状
分散液を透過型電子顕微鏡観察することにより、隣接す
る各金属ナノ微粒子の中心間平均距離が2〜5nm、平
均長さが20〜200nmに渡って線状に配列した、平
均直径が1〜3nmである銅ナノ微粒子の集合体の形成
を確認した。図1に得られた線状に配列した銅ナノ微粒
子の集合体の透過型電子顕微鏡写真を示す。
[0015]Example 1 2.5 mmol of double-headed peptide lipid obtained in the above Production Example 1
In a sample bottle and add twice the equivalent of sodium hydroxide
75 ml of distilled water containing 200 mg (5 mmol) of
By applying ultrasonic wave (bath type), double-headed pep
The tide lipid was dissolved. This aqueous solution is a hot stirrer
Hold it at room temperature with vigorous stirring.
Then, add 100 mmol / liter of copper (II) acetate.
When 25 ml was added, the solution gradually became cloudy and became a blue colloid.
A dispersion formed. This blue colloidal dispersion is at room temperature,
Stir in a nitrogen atmosphere and use 1 mol / l
12.5 ml (12.5 mmol) of the aqueous solution of doradine
When added, the solution gradually changes to an ocher color for about 6 hours
A dark ocher colloidal dispersion subsequently formed. Colloidal
Observe the dispersion by observing it with a transmission electron microscope.
The average distance between the centers of the metal nanoparticles is 2-5 nm,
Flat lengths arranged linearly over a uniform length of 20 to 200 nm
Formation of aggregates of copper nanoparticles having a uniform diameter of 1 to 3 nm
It was confirmed. The linearly arranged copper nanoparticle obtained in FIG.
The transmission electron micrograph of the assembly of a child is shown.

【0016】[0016]

【発明の効果】本発明によれば、これまで合成化合物か
らは生成することができなかった金属ナノ微粒子がそれ
ぞれ離隔して線状に配列した金属ナノ粒子の集合体及
を、常温、大気圧下の穏やかな条件において容易に製造
することができる。本発明の線状に配列した金属ナノ粒
子の集合体は、ナノ電子部品やナノ磁性材料として利用
する電子・情報・エレクトロニクス分野など、その工業
的利用範囲は多岐にわたっている。
EFFECTS OF THE INVENTION According to the present invention, an aggregate of metal nanoparticles, which has heretofore been unable to be produced from a synthetic compound, are linearly arranged apart from each other at room temperature and atmospheric pressure. It can be easily manufactured under the mild conditions below. The aggregate of linearly arranged metal nanoparticles of the present invention has a wide range of industrial applications in the fields of electronics, information, and electronics used as nanoelectronic components and nanomagnetic materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】線状に配列した銅ナノ微粒子の集合体の透過型
電子顕微鏡写真である。
FIG. 1 is a transmission electron micrograph of an assembly of linearly arranged copper nanoparticles.

【図2】図1の透過型電子顕微鏡写真をトレースした図
である。
FIG. 2 is a diagram in which the transmission electron micrograph of FIG. 1 is traced.

フロントページの続き (72)発明者 清水 敏美 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 Fターム(参考) 4H045 AA10 AA20 AA30 BA11 BA52 BA55 EA45 EA65 FA44 4K017 AA03 BA05 CA09 DA01 DA02 EJ02 FB07 4K018 AA03 BA02 BB01 BB05 BD01 BD10 Continued front page    (72) Inventor Toshimi Shimizu             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba Center, National Institute of Advanced Industrial Science and Technology F-term (reference) 4H045 AA10 AA20 AA30 BA11 BA52                       BA55 EA45 EA65 FA44                 4K017 AA03 BA05 CA09 DA01 DA02                       EJ02 FB07                 4K018 AA03 BA02 BB01 BB05 BD01                       BD10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I) (式中、Valはバリン残基、mは1〜3、nは6〜1
8を表す。)で表される双頭型ペプチド脂質及び金属イ
オンから形成された金属複合化ペプチド脂質から成るナ
ノファイバーを、該双頭型ペプチド脂質に対し2〜5当
量の還元剤を用いて還元することから成る線状に配列し
た金属ナノ微粒子の集合体の製法。
1. The general formula (I) (In the formula, Val is a valine residue, m is 1 to 3, and n is 6-1.
Represents 8. A nanofiber comprising a metal-complexed peptide lipid formed from a double-headed peptide lipid represented by) and a metal ion, is reduced with a reducing agent in an amount of 2 to 5 equivalents to the double-headed peptide lipid. A method for producing an aggregate of metal nanoparticles arranged in a pattern.
【請求項2】 前記金属イオンとして銅(II)イオンを
用い、前記還元剤としてヒドラジンを用い、前記金属複
合化ペプチド脂質の初期濃度が25〜50ミリモル/リ
ットルのナノファイバーを水溶液中で還元することを特
徴とする請求項1に記載の線状に配列した金属ナノ微粒
子の集合体の製法。
2. A nanofiber having an initial concentration of the metal complexed peptide lipid of 25 to 50 mmol / liter is reduced in an aqueous solution by using copper (II) ion as the metal ion and hydrazine as the reducing agent. The method for producing an assembly of linearly arranged metal nanoparticles according to claim 1.
【請求項3】 金属ナノ微粒子がそれぞれ離隔して線状
に配列した金属ナノ粒子の集合体であって、該金属ナノ
微粒子の平均粒径が1〜3nmであり、隣接する各金属
ナノ微粒子の中心間平均距離が2〜5nmであって、そ
の配列の平均長さが20〜200nmである線状に配列
した金属ナノ粒子の集合体。
3. An aggregate of metal nanoparticles, in which the metal nanoparticles are arranged in a line and are spaced apart from each other, wherein the metal nanoparticles have an average particle diameter of 1 to 3 nm, and the metal nanoparticles are adjacent to each other. An aggregate of linearly arranged metal nanoparticles having an average center-to-center distance of 2 to 5 nm and an average length of the arrangement of 20 to 200 nm.
【請求項4】 前記金属が銅である請求項3に記載の線
状に配列した金属ナノ粒子の集合体。
4. The aggregate of linearly arranged metal nanoparticles according to claim 3, wherein the metal is copper.
JP2001247557A 2001-08-17 2001-08-17 Aggregates of linearly arranged metal nanoparticles and production method thereof Expired - Lifetime JP3625436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001247557A JP3625436B2 (en) 2001-08-17 2001-08-17 Aggregates of linearly arranged metal nanoparticles and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247557A JP3625436B2 (en) 2001-08-17 2001-08-17 Aggregates of linearly arranged metal nanoparticles and production method thereof

Publications (2)

Publication Number Publication Date
JP2003055397A true JP2003055397A (en) 2003-02-26
JP3625436B2 JP3625436B2 (en) 2005-03-02

Family

ID=19076874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247557A Expired - Lifetime JP3625436B2 (en) 2001-08-17 2001-08-17 Aggregates of linearly arranged metal nanoparticles and production method thereof

Country Status (1)

Country Link
JP (1) JP3625436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096806A1 (en) * 2007-02-09 2008-08-14 National Institute Of Advanced Industrial Science And Technology Fine hollow fibrous organic nanotube containing silver nanocluster and process for producing the same
JP2013064191A (en) * 2011-08-30 2013-04-11 Fujifilm Corp Collagen peptide-coated copper nanoparticle, collagen peptide-coated copper nanoparticle dispersion, method for preparing collagen peptide-coated copper nanoparticle, conductive ink, method for preparing conductive film, and conductor wiring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096806A1 (en) * 2007-02-09 2008-08-14 National Institute Of Advanced Industrial Science And Technology Fine hollow fibrous organic nanotube containing silver nanocluster and process for producing the same
JPWO2008096806A1 (en) * 2007-02-09 2010-05-27 独立行政法人産業技術総合研究所 Silver nanocluster-containing fine hollow fiber organic nanotube and method for producing the same
JP5158805B2 (en) * 2007-02-09 2013-03-06 独立行政法人産業技術総合研究所 Silver nanocluster-containing fine hollow fiber organic nanotube and method for producing the same
JP2013064191A (en) * 2011-08-30 2013-04-11 Fujifilm Corp Collagen peptide-coated copper nanoparticle, collagen peptide-coated copper nanoparticle dispersion, method for preparing collagen peptide-coated copper nanoparticle, conductive ink, method for preparing conductive film, and conductor wiring

Also Published As

Publication number Publication date
JP3625436B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
JP3560333B2 (en) Metal nanowire and method for producing the same
V Singh et al. Biological synthesis of copper oxide nano particles using Escherichia coli
CN102259834B (en) Method for manufacturing asymmetric tetrahedron assembly structure with chiral signal
US20060246482A1 (en) Linker molecules for selective metallisation of nucleic acids and their uses
He et al. High-concentration silver colloid stabilized by a cationic gemini surfactant
US6762331B2 (en) Synthesis of organic nanotubes and synthesis of ultrathin nanowires using same as templates
US10464136B2 (en) Preparation method of copper nano-structures
JP3699086B2 (en) Fine hollow fiber
Aryal et al. Immobilization of collagen on gold nanoparticles: preparation, characterization, and hydroxyapatite growth
JP2003055397A (en) Linearly arranged metal nano fine particle aggregate and method for producing the same
KR101066545B1 (en) Metal Nanoparticles of Various Sizes and Shapes Having Functional Groups and Method for Preparing the Same
CN108579633B (en) Preparation method of rare earth nano particle/polystyrene composite microsphere
JP4331927B2 (en) Inorganic nanoparticle-organic compound composite and one-dimensional array integrated structure thereof
KR101021960B1 (en) Gold Nanoparticles of Various Sizes and Shapes Coated with Polymer and Method for Preparing Thereof
US20070292338A1 (en) Transition Metal Oxide Nano-Tube
WO2006019008A1 (en) Polymer-modified nanoparticle
Kwak et al. pH-sensitive transformation of the peptidic bolaamphiphile self-assembly: Exploitation for the pH-triggered chemical reaction
Tang et al. Heterogeneous gold nanoparticles stabilized by collagen and their application in catalytic reduction of 4-nitrophenol
Suzuki et al. Hydrogel Formation Using New l‐Lysine‐Based Low‐Molecular‐Weight Compounds with Positively Charged Pendant Chains
JP2009233825A (en) Method for mass-producing metal-complexed organic nanotube
CN111266600A (en) Efficient preparation method of multilevel spherical rhodium nanocrystals
KR101657040B1 (en) Nanofibril conjugate for detection of metal ion and preparation method thereof
CN111635752B (en) Gold nanorod/DNA/carbon dot nano hybrid material and preparation method and application thereof
CN110823876B (en) Preparation method and application of optical composite metal nano material
WO2011052637A1 (en) Nanoparticle surface modifying agent, metal nanoparticle, and method of manufacturing nanoparticle surface modifying agent

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040824

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Ref document number: 3625436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term