JP2003049207A - Method for manufacturing sintered compact, and compact to be sintered for spark plasma sintering - Google Patents

Method for manufacturing sintered compact, and compact to be sintered for spark plasma sintering

Info

Publication number
JP2003049207A
JP2003049207A JP2001237062A JP2001237062A JP2003049207A JP 2003049207 A JP2003049207 A JP 2003049207A JP 2001237062 A JP2001237062 A JP 2001237062A JP 2001237062 A JP2001237062 A JP 2001237062A JP 2003049207 A JP2003049207 A JP 2003049207A
Authority
JP
Japan
Prior art keywords
sintered
sintered body
powder
sintering
plasma sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001237062A
Other languages
Japanese (ja)
Other versions
JP4617027B2 (en
Inventor
Hiroyuki Takehisa
浩之 武久
Masao Tokita
正雄 鴇田
Masayuki Sonoda
雅之 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Sumitomo Coal Mining Co Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd, Fuji Heavy Industries Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP2001237062A priority Critical patent/JP4617027B2/en
Publication of JP2003049207A publication Critical patent/JP2003049207A/en
Application granted granted Critical
Publication of JP4617027B2 publication Critical patent/JP4617027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a sintered compact by which a sintered compact with superior strength, durability, etc., can be obtained and also to provide a compact to be sintered for spark plasma sintering by which the sintered compact with superior strength, durability, etc., can be obtained through spark plasma sintering. SOLUTION: The atmosphere of aluminum alloy powder is regulated to near vacuum to remove substances causing material degradation, such as water and hydroxides, and further, pressing is carried out to a bulk density at which no entering of the substances causing material degradation takes place. Then spark plasma sintering is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、放電プラズマ焼結
法、プラズマ活性化焼結法及び放電焼結法などのパルス
通電加圧焼結法により生成される焼結体の製造方法及び
放電プラズマ焼結により焼結される被焼結体に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered body produced by a pulse current pressure sintering method such as a discharge plasma sintering method, a plasma activated sintering method and a discharge sintering method, and a discharge plasma. The present invention relates to a body to be sintered that is sintered.

【0002】[0002]

【従来の技術】従来、焼結体の製造方法として、ホット
プレス焼結、熱間等方加圧焼結(HIP法)等により焼
結体を生成するものが知られている。これらの製造方法
により粉末の焼結を行う場合、まず、被焼結粉体の雰囲
気圧力を略真空となるまで減じて、被焼結粉体から水、
水酸化物等を除去する。そして、被焼結粉体をほぼ10
0%のかさ密度(粉体の空間に占める割合)となるまで
加圧して被焼結体とした後、この被焼結体を焼結して焼
結体を生成する。被焼結体がほぼ100%のかさ密度で
あることから、水、水酸化物等の材質劣化物が被焼結体
の粒子間に侵入することはなく、粒子間の結合が良好な
焼結体を得ることができる。しかし、粒子間の結合は温
度・圧力により達成されるため、焼結には高温・長時間
を要するといった短所もある。
2. Description of the Related Art Conventionally, as a method for producing a sintered body, a method of producing a sintered body by hot press sintering, hot isostatic pressing (HIP method) or the like is known. When sintering the powder by these manufacturing methods, first, the atmospheric pressure of the powder to be sintered is reduced to a substantially vacuum, water from the powder to be sintered,
Remove hydroxides, etc. Then, about 10
The pressure is applied to a bulk density (ratio of the powder occupying the space) to 0% to obtain a sintered body, and then the sintered body is sintered to produce a sintered body. Since the material to be sintered has a bulk density of almost 100%, deterioration of the material such as water and hydroxide does not penetrate into the particles of the material to be sintered, and the bonding between particles is good. You can get the body. However, since the bonding between particles is achieved by temperature and pressure, there is a disadvantage that sintering requires high temperature and long time.

【0003】一方、近年、放電プラズマ焼結法、プラズ
マ活性化焼結法及び放電焼結法などのパルス通電加圧焼
結法により被焼結体を焼結する焼結体の製造方法も知ら
れるようになった。放電プラズマ焼結は、ホットプレス
焼結、熱間等方加圧焼結等に比べ、低い温度域での被焼
結体の焼結が可能であるとともに、短時間で焼結を行う
ことができるという利点を有しており、産業界等におい
て注目されている。
On the other hand, in recent years, there has been known a method for producing a sintered body by sintering a sintered body by a pulse current pressure sintering method such as a discharge plasma sintering method, a plasma activated sintering method and a discharge sintering method. Came to be. Compared to hot press sintering, hot isostatic pressing sintering, etc., spark plasma sintering can sinter the sintered body in a low temperature range and can perform sintering in a short time. It has the advantage of being able to do so, and is attracting attention in the industrial world.

【0004】放電プラズマ焼結法(SPS法:Spark Pl
asma Sintering)では、通常グラファイト製の焼結型に
出発原料粉末を充填し、機械的圧力を加え、圧粉体を形
成しつつ(あるいは圧粉体を形成後)数10〜300K
Hz程度の周波数のON−OFF直流パルス電流を印加
する。このため、放電プラズマ焼結法では粒子の再配列
を促進しながらパルス通電初期にミクロな火花放電現象
を誘起させ、その時生じる放電プラズマ・放電衝撃圧力
及び粒界でのジュール発熱などの熱拡散とON−OFF
パルス通電効果による電界拡散を複合的に焼結駆動力と
して用いることを特徴としている。
Spark plasma sintering method (SPS method: Spark Pl)
In asma Sintering), a starting material powder is usually filled in a sintering die made of graphite, and mechanical pressure is applied to form a green compact (or after forming the green compact) for several tens to 300K.
An ON-OFF DC pulse current with a frequency of about Hz is applied. For this reason, in the spark plasma sintering method, a micro spark discharge phenomenon is induced at the initial stage of pulse current application while promoting particle rearrangement, and discharge plasma, discharge impact pressure, and thermal diffusion such as Joule heat generation at grain boundaries that occur at that time. ON-OFF
It is characterized in that the electric field diffusion due to the pulse current effect is used as a sintering driving force in a composite manner.

【0005】アルミニウム合金材料やチタン系材料など
の高活性金属については、粒子表面にアルミナ(Al
2O3)、チタニア(TiO2)などの酸化被膜を形成しやす
いため、一般的に常圧焼結法、ホットプレス法、HIP
法(熱間等方加圧焼結法)などの従来焼結法では容易に
かつ短時間で良質な焼結体を得ることは難しく、難焼結
材料と言われている。SPS法では、これらの出発原料
粉末の粒子表面の浄化・活性化作用により除去しつつ粒
間結合を効果的に進行させ、容易に短時間で緻密な焼結
体を得られることが知られている。また、CIP法(冷
間等方加圧法)等で50〜80%程度の仮成形体を予め
準備し、あるいはSPS法、常圧法などで仮焼結体を作
製した後2段処理とし、SPS法で高密度焼結体を得る
手法などが実施されている。更に、かさ密度を100%
とした上でパルス通電を行い、結合度を向上させて焼結
体を作製することも行われている。
For highly active metals such as aluminum alloy materials and titanium-based materials, alumina (Al
2 O 3 ), titania (TiO 2 ) and other oxide films are easy to form, so normal pressure sintering, hot pressing, HIP
It is difficult to obtain a high-quality sintered body easily and in a short time by the conventional sintering method such as the method (hot isostatic pressing method), and it is said to be a difficult-to-sinter material. It is known that in the SPS method, the intergranular bond is effectively advanced while removing by the cleaning / activating action of the particle surface of these starting material powders, and a dense sintered body can be easily obtained in a short time. There is. In addition, a CIP method (cold isotropic pressing method) or the like is used to prepare a 50% to 80% temporary molded body in advance, or a SPS method, a normal pressure method, or the like is used to prepare a temporary sintered body, which is then subjected to a two-stage treatment. The method of obtaining a high-density sintered body by the method is implemented. Furthermore, the bulk density is 100%
Then, pulse current is applied to improve the degree of coupling to produce a sintered body.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記放
電プラズマ焼結を用いた焼結体の製造方法においては、
加圧焼結過程の初期段階で出発原料粒子表面が加圧変形
することにより、当接面における粒子表面の酸化被膜、
不純物は、その当接変形粒界に残留することとなり、O
N−OFFパルス通電による浄化、活性化効果は十分寄
与することができない。その結果、適正焼結条件下のS
PS焼結体の機械的性質は密度、硬さ等でほぼ相対密度
100%、圧縮強度、硬さは溶製材と同等以上の高品質
なものが得られるが、引張り強度(伸び)、耐久性など
に優れた焼結体を得ることが困難であるという問題点が
あった。
However, in the method for producing a sintered body using the above-mentioned discharge plasma sintering,
Due to the pressure deformation of the starting material particle surface in the initial stage of the pressure sintering process, an oxide film on the particle surface at the contact surface,
Impurities will remain at the contact-deformation grain boundaries, and O
Purification and activation effects due to N-OFF pulse energization cannot sufficiently contribute. As a result, S under proper sintering conditions
Mechanical properties of PS sintered body are 100% relative density in terms of density and hardness, compressive strength and hardness are as high as or better than those of ingot, but tensile strength (elongation), durability However, there is a problem that it is difficult to obtain an excellent sintered body.

【0007】本発明は、前記事情に鑑みてなされたもの
であり、その目的とするところは、強度、耐久性等に優
れた焼結体を得ることのできる焼結体の製造方法を提供
することにある。また、他の目的とするところは、放電
プラズマ焼結により強度、耐久性等に優れた焼結体を得
ることのできる放電プラズマ焼結用被焼結体を提供する
ことにある。即ち、アルミニウム合金のような高活性金
属の粉末焼結において、出発原料粉末段階で予め封缶状
態で大気と接触することなく当該粉末の表面処理を行
い、その後封缶状態で大気と接触することなくかさ密度
80〜90%にすることで当接変形粒子界面の残留酸化
被膜・不純物はなくなりON−OFFパルス通電後の熱
拡散、電界拡散効果が十分発揮されることとなる。ま
た、かさ密度を90%以下とすることにより、適度に気
孔部を残し、酸化被膜が形成されてもパルス通電による
火花放電誘起効果を十分活用することが可能となる。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a sintered body capable of obtaining a sintered body excellent in strength, durability and the like. Especially. Another object of the present invention is to provide a sintered body for discharge plasma sintering, which can obtain a sintered body excellent in strength, durability and the like by discharge plasma sintering. That is, in powder sintering of a highly active metal such as an aluminum alloy, at the starting raw material powder stage, the powder is surface-treated in advance in a canned state without contact with the atmosphere, and then in contact with the atmosphere in a canned state. By setting the bulk density to 80 to 90%, the residual oxide film / impurities on the interface of the contact-deformed particles are eliminated, and the thermal diffusion and electric field diffusion effects after ON-OFF pulse energization are sufficiently exhibited. Further, by setting the bulk density to 90% or less, it becomes possible to adequately utilize the spark discharge inducing effect due to the pulse energization even if the oxide film is formed by leaving the pores appropriately.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、例えば図1乃至図5に示すように、請求項1記載の
発明では、被焼結粉体Aが封入された容器2を加熱して
前記容器内の空気を前記容器外へ排出する空気排出工程
302と、前記空気排出工程において前記空気が排出さ
れた前記容器内の前記被焼結粉体を、材質劣化物Cが内
部まで侵入しないかさ密度Dとなるよう加圧する加圧工
程303と、前記加圧工程にて圧縮された前記被焼結粉
体を放電プラズマ焼結により焼結する焼結工程305と
を有することを特徴とする。尚、ここでいうかさ密度と
は、被焼結粉体の空間に占める割合のことである。
In order to achieve the above object, for example, as shown in FIGS. 1 to 5, in the invention of claim 1, the container 2 in which the powder to be sintered A is enclosed is heated. The air inside the container is discharged to the outside of the container by an air discharging step 302, and the powder to be sintered inside the container from which the air is discharged in the air discharging step is penetrated into the inside by the deteriorated material C. It has a pressurizing step 303 of pressurizing so as to obtain a bulk density D and a sintering step 305 of sintering the powder to be sintered compressed in the pressurizing step by spark plasma sintering. To do. Here, the bulk density is the ratio of the powder to be sintered to the space.

【0009】請求項1の発明によれば、空気排出工程に
て容器内の空気を排出し、被焼結粉体の雰囲気圧力を略
真空状態にまで低下させることにより、被焼結粉体から
水酸化物、水等の材質劣化物が除去される。そして、材
質劣化物が除去された被焼結粉体は、加圧工程にて材質
劣化物が内部まで侵入しないかさ密度となるまで加圧さ
れる。加圧された被焼結粉体は、焼結工程にて放電プラ
ズマ焼結により焼結され、被焼結粉体から焼結体が生成
される。このとき、被焼結粉体に水酸化物、水等の材質
劣化物がほとんど混入していないので、焼結体内に気孔
が残留することはないし、例えば、生成された焼結体が
高温に曝された際に焼結体内で水素が発生することもな
い。従って、強度、耐久性等に優れ、内部組織が良好な
焼結体を得ることができる。
According to the first aspect of the present invention, the air in the container is discharged in the air discharging step, and the atmospheric pressure of the powder to be sintered is reduced to a substantially vacuum state. Deteriorated materials such as hydroxide and water are removed. Then, the powder to be sintered from which the deteriorated material has been removed is pressed in a pressing step until the deteriorated material does not penetrate into the inside and has a bulk density. The pressed powder to be sintered is sintered by discharge plasma sintering in a sintering process, and a sintered body is generated from the powder to be sintered. At this time, since almost no deterioration products such as hydroxide and water are mixed in the powder to be sintered, pores do not remain in the sintered body. Hydrogen will not be generated in the sintered body when exposed. Therefore, it is possible to obtain a sintered body that is excellent in strength, durability and the like and has a good internal structure.

【0010】請求項2記載の発明では、請求項1記載の
焼結体の製造方法において、前記かさ密度は80%〜9
0%であることを特徴とする。
According to a second aspect of the present invention, in the method for producing a sintered body according to the first aspect, the bulk density is 80% to 9%.
It is characterized by being 0%.

【0011】請求項2記載の発明によれば、請求項1の
作用に加え、加圧工程にて被焼結粉体のかさ密度を80
%以上とすることにより、被焼結粉体への材質劣化物の
内部への侵入が確実に防止される。また、加圧は粉体表
面の酸化被膜に亀裂を生じさせ、アルミニウム合金の素
地を露出させるので、焼結時の結合をより強固にするこ
とにも寄与する。また、被焼結粉体のかさ密度を90%
以下とすることにより、被焼結粉体の粒子間には適度な
空隙が形成され、焼結工程にて効率よく放電プラズマ焼
結が行われる。従って、強度、耐久性等に極めて優れた
焼結体を確実得ることができる。
According to the second aspect of the invention, in addition to the function of the first aspect, the bulk density of the powder to be sintered is 80 in the pressing step.
When the content is at least%, the deterioration of the material into the powder to be sintered can be reliably prevented from entering the inside. Further, the pressurization causes cracks in the oxide film on the powder surface and exposes the base material of the aluminum alloy, which also contributes to strengthening the bond during sintering. Also, the bulk density of the powder to be sintered is 90%.
By the following, an appropriate void is formed between the particles of the powder to be sintered, and the discharge plasma sintering is efficiently performed in the sintering step. Therefore, it is possible to surely obtain a sintered body having extremely excellent strength and durability.

【0012】請求項3記載の発明では、請求項1または
2の焼結体の製造方法において、前記加圧工程にて前記
被焼結粉体を常温で加圧することを特徴とする。
According to a third aspect of the present invention, in the method for producing a sintered body according to the first or second aspect, the powder to be sintered is pressed at room temperature in the pressing step.

【0013】請求項3記載の発明によれば、請求項1ま
たは2の作用に加え、加圧工程にて、常温(冷間)で被
焼結粉体が加圧され、被焼結粉体が熱的要因により変質
することはない。従って、さらに強度・耐久性等に優れ
た焼結体を得ることができる。
According to the invention of claim 3, in addition to the operation of claim 1 or 2, in the pressing step, the powder to be sintered is pressed at room temperature (cold), and the powder to be sintered is pressed. Does not change due to thermal factors. Therefore, it is possible to obtain a sintered body having further excellent strength and durability.

【0014】請求項4記載の発明では、請求項1乃至3
の何れか1項記載の焼結体の製造方法において、前記被
焼結粉体はアルミニウム合金粉体であることを特徴とす
る。
In the invention described in claim 4, claims 1 to 3 are provided.
In the method for producing a sintered body according to any one of items 1 to 3, the powder to be sintered is an aluminum alloy powder.

【0015】請求項4記載の発明によれば、請求項1乃
至3の何れか1項の作用に加え、アルミニウム合金の焼
結体が生成される。従って、航空機、自動車、宇宙機器
等に極めて有用な焼結体を得ることができる。
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3, a sintered body of an aluminum alloy is produced. Therefore, it is possible to obtain a sintered body that is extremely useful for aircraft, automobiles, space equipment and the like.

【0016】請求項5記載の発明では、放電プラズマ焼
結により焼結される放電プラズマ焼結用被焼結体Bであ
って、所定の真空圧力条件の下で、被焼結粉体Aを材質
劣化物Cが内部まで侵入しないかさ密度Dとなるよう加
圧して得られたことを特徴とする。
In a fifth aspect of the present invention, there is provided a sintered body B for spark plasma sintering which is sintered by discharge plasma sintering, wherein the powder to be sintered A is sintered under a predetermined vacuum pressure condition. It is characterized in that it is obtained by pressurizing so that the deteriorated material C does not penetrate into the inside and has a bulk density D.

【0017】請求項5記載の発明によれば、被焼結粉体
の雰囲気圧力を所定の真空圧力条件とすることで、被焼
結粉体から水酸化物、水等の材質劣化物が除去される。
そして、材質劣化物が除去された被焼結粉体を、材質劣
化物が内部まで侵入しないかさ密度となるよう加圧する
ので、これにより得られた放電プラズマ焼結用被焼結体
に材質劣化物が内部まで混入することはない。即ち、こ
の被焼結体が放電プラズマ焼結により焼結されて生成さ
れた焼結体に、気孔が残留することはないし、例えば、
生成された焼結体が高温に曝された際に焼結体内で水素
が発生することもない。また、加圧は粉体表面の酸化被
膜に亀裂を生じさせるので、アルミニウム合金の素地を
露出させ、焼結時の結合がより強固になる。従って、強
度、耐久性等に優れ、内部組織が良好な焼結体を得るこ
とができる。
According to the fifth aspect of the present invention, by setting the atmospheric pressure of the powder to be sintered to a predetermined vacuum pressure condition, the deteriorated material such as hydroxide and water is removed from the powder to be sintered. To be done.
Then, the powder to be sintered from which the deteriorated material has been removed is pressed so that the deteriorated material does not penetrate into the interior so that the powder has a bulk density. No matter is mixed inside. That is, pores do not remain in the sintered body produced by sintering the body to be sintered by spark plasma sintering.
Hydrogen is not generated in the sintered body when the produced sintered body is exposed to high temperature. Further, the pressurization causes cracks in the oxide film on the surface of the powder, so that the base material of the aluminum alloy is exposed and the bond during sintering becomes stronger. Therefore, it is possible to obtain a sintered body that is excellent in strength, durability and the like and has a good internal structure.

【0018】[0018]

【発明の実施の形態】図1乃至図6は本発明の一実施形
態を示すもので、図1は真空脱ガス装置の概略説明図、
図2はプレス装置の概略説明図、図3は焼結体製造装置
の概略説明図、図4は焼結体の製造方法の工程を示す工
程説明図である。
1 to 6 show one embodiment of the present invention. FIG. 1 is a schematic explanatory view of a vacuum degassing apparatus,
2 is a schematic explanatory view of a press machine, FIG. 3 is a schematic explanatory view of a sintered body manufacturing apparatus, and FIG. 4 is a process explanatory view showing steps of a sintered body manufacturing method.

【0019】この真空脱ガス装置1は、被焼結粉体とし
てのアルミニウム合金粉体Aの入った容器2を脱ガスす
るものであり、図1に示すように、アルミニウム合金粉
体Aが封入される容器2、アルミニウム合金粉体Aを加
熱するためのヒータ3aを有する加熱機構3、容器2内
の空気を排出する空気排出機構4等から成っている。加
熱機構3及び空気排出機構4は制御部5に接続され、こ
の制御部5には、予め設定された真空雰囲気圧力P、脱
ガス温度T、脱ガス時間t等が記憶されている。ここ
で、真空雰囲気圧力P、脱ガス温度T、脱ガス時間t
は、容器2の空気を排出する際の圧力、温度及び時間で
ある。本実施形態においては、真空雰囲気圧力条件とし
ての真空雰囲気圧力Pは約10-3torr、脱ガス温度Tは
約400℃、脱ガス時間tは約2時間にそれぞれ設定さ
れている。
The vacuum degassing apparatus 1 degasses the container 2 containing the aluminum alloy powder A as the powder to be sintered, and as shown in FIG. 1, the aluminum alloy powder A is enclosed. And a heating mechanism 3 having a heater 3a for heating the aluminum alloy powder A, an air discharging mechanism 4 for discharging the air in the container 2, and the like. The heating mechanism 3 and the air discharging mechanism 4 are connected to a control unit 5, and the control unit 5 stores preset vacuum atmosphere pressure P, degassing temperature T, degassing time t, and the like. Here, vacuum atmosphere pressure P, degassing temperature T, degassing time t
Are pressure, temperature and time when the air in the container 2 is discharged. In this embodiment, the vacuum atmosphere pressure P as the vacuum atmosphere pressure condition is set to about 10 −3 torr, the degassing temperature T is set to about 400 ° C., and the degassing time t is set to about 2 hours.

【0020】また、このプレス装置100は、脱ガスが
完了した容器2をプレスするものであり、図2に示すよ
うに、容器2とともにアルミニウム合金粉体Aを圧縮可
能な加圧部材101と、加圧部材101を加圧駆動する
加圧機構102と、これに接続した制御部103とを有
している。このプレス装置100によりプレスされた容
器2内のアルミニウム合金粉体Aは、所定のかさ密度の
放電プラズマ焼結用の被焼結体Bとなる。ここで、制御
部103には予め設定された設定かさ密度Dが記憶され
ている。設定かさ密度Dは80%〜90%に設定され、
本実施形態においては80%前半となっている。
The pressing device 100 presses the container 2 which has been completely degassed, and as shown in FIG. 2, a pressing member 101 capable of compressing the aluminum alloy powder A together with the container 2, The pressure member 101 has a pressure mechanism 102 for driving the pressure member 101 and a control unit 103 connected to the pressure mechanism 102. The aluminum alloy powder A in the container 2 pressed by the pressing device 100 becomes a sintered body B for spark plasma sintering having a predetermined bulk density. Here, the control unit 103 stores a preset bulk density D. The set bulk density D is set to 80% to 90%,
In the present embodiment, it is in the first half of 80%.

【0021】また、この焼結体製造装置200は、真空
脱ガス装置1とプレス装置100とにより生成された放
電プラズマ焼結用の被焼結体Bから、放電プラズマ焼結
によりアルミニウム合金焼結体を生成するものである。
焼結体製造装置200は、粉体、被焼結体等を収容する
チャンバー201と、チャンバー201内に配置され、
粉体、被焼結体等を圧縮可能な上下一対の加圧部材20
2と、各加圧部材202に接続され各加圧部材202を
介してアルミニウム合金粉体Aに通電可能な電極部20
3とを有している。また、焼結体製造装置200は、チ
ャンバー201内の空気を排出する空気排出機構204
と、チャンバー201内に気体のAr(アルゴン)を注
入する気体注入機構205と、アルミニウム合金粉体A
の近傍の温度を測定する温度センサ206と、各加圧部
材202を加圧駆動する加圧機構207と、各電極部2
03に接続され通電制御可能な電源208とを有してい
る。空気排出機構204と、気体注入機構205と、温
度センサ206と、加圧機構207とは、それぞれ制御
部208に接続され、制御部208には焼結条件Sが記
憶されている。ここで、焼結条件Sは、放電プラズマ焼
結用の被焼結体Bに通電して焼結体を生成する際の焼結
電圧、焼結時間、焼結圧力等の各種条件である。
Further, the sintered body manufacturing apparatus 200 includes a sintered body B for spark plasma sintering generated by the vacuum degassing apparatus 1 and the pressing apparatus 100, and an aluminum alloy sintered by spark plasma sintering. It is what creates the body.
The sintered body manufacturing apparatus 200 is arranged in the chamber 201 and a chamber 201 for containing powder, a body to be sintered, and the like.
A pair of upper and lower pressurizing members 20 capable of compressing powder, sintered body, etc.
2 and an electrode part 20 connected to each pressure member 202 and capable of conducting electricity to the aluminum alloy powder A through each pressure member 202.
3 and 3. The sintered body manufacturing apparatus 200 also includes an air discharge mechanism 204 for discharging the air in the chamber 201.
A gas injection mechanism 205 for injecting gaseous Ar (argon) into the chamber 201, and an aluminum alloy powder A
Temperature sensor 206 for measuring the temperature in the vicinity of the pressure sensor, a pressure mechanism 207 for pressure-driving each pressure member 202, and each electrode unit 2
03, and a power source 208 capable of controlling energization. The air discharging mechanism 204, the gas injecting mechanism 205, the temperature sensor 206, and the pressurizing mechanism 207 are connected to the control unit 208, and the sintering condition S is stored in the control unit 208. Here, the sintering conditions S are various conditions such as a sintering voltage, a sintering time, and a sintering pressure when the sintered body B for spark plasma sintering is energized to generate a sintered body.

【0022】以下、真空脱ガス装置1、プレス装置10
0、焼結体製造装置200によりアルミニウム合金粉体
Aからアルミニウム合金焼結体を生成する製造方法につ
いて、図4に示す工程説明図を参照して説明する。図4
に示すように、この焼結体の製造方法は、アルミニウム
合金粉体Aを容器2内に封入する封入工程301と、真
空脱ガス装置1により容器2内の空気を排出する空気排
出工程302と、プレス装置100によりアルミニウム
合金粉体Aを加圧する加圧工程303と、容器2から放
電プラズマ焼結用の被焼結体Bを取り出す取出工程30
4と、焼結体製造装置200により被焼結体Bを焼結す
る焼結工程305とを有している。
Hereinafter, the vacuum degassing apparatus 1 and the pressing apparatus 10
0, a manufacturing method for producing an aluminum alloy sintered body from the aluminum alloy powder A by the sintered body manufacturing apparatus 200 will be described with reference to the process explanatory diagram shown in FIG. Figure 4
As shown in FIG. 3, the method for manufacturing the sintered body includes an encapsulation step 301 for enclosing the aluminum alloy powder A in the container 2 and an air exhaust step 302 for exhausting the air in the container 2 by the vacuum degassing device 1. A pressurizing step 303 of pressurizing the aluminum alloy powder A by the press device 100, and an extracting step 30 of taking out the sintered body B for spark plasma sintering from the container 2.
4 and a sintering step 305 in which the sintered body B is sintered by the sintered body manufacturing apparatus 200.

【0023】封入工程301においては、アルミニウム
合金粉体Aをアルミニウム製の容器2内に封入する。本
実施形態においては、容器2は上面を開口して形成さ
れ、アルミニウム合金粉体Aを容器2内に入れた後、上
面を閉塞する蓋を容器2に溶接することにより、アルミ
ニウム合金粉体Aが容器2内に封入される。ここで、容
器2の蓋には空気排出用の排出管が設けられており、こ
の排出管には真空脱ガス装置1の空気排出機構4が接続
されている。
In the enclosing step 301, the aluminum alloy powder A is enclosed in the container 2 made of aluminum. In the present embodiment, the container 2 is formed by opening the upper surface, and after the aluminum alloy powder A is put into the container 2, a lid that closes the upper surface is welded to the container 2 to obtain the aluminum alloy powder A. Is enclosed in the container 2. Here, a discharge pipe for discharging air is provided on the lid of the container 2, and the air discharge mechanism 4 of the vacuum degassing apparatus 1 is connected to the discharge pipe.

【0024】空気排出工程302において、図1に示す
真空脱ガス装置1の制御部5は、加熱機構3を作動して
アルミニウム合金粉体Aが脱ガス温度Tとなるよう制御
する。そして、空気排出機構4を脱ガス時間tだけ駆動
させ、アルミニウム合金粉体Aが封入された容器2内の
空気を排出管を通じて排出し、容器2内の圧力を真空雰
囲気圧力Pとなるまで減じる。これにより、アルミニウ
ム合金粉体Aから水、水酸化物等の材質劣化物Cが除去
される。この後、排出管をかしめてアルミニウム合金粉
体Aの雰囲気圧力が真空雰囲気圧力Pに保たれるように
する。
In the air discharging step 302, the controller 5 of the vacuum degassing apparatus 1 shown in FIG. 1 operates the heating mechanism 3 to control the aluminum alloy powder A to the degassing temperature T. Then, the air discharge mechanism 4 is driven for the degassing time t, the air in the container 2 in which the aluminum alloy powder A is enclosed is discharged through the discharge pipe, and the pressure in the container 2 is reduced to the vacuum atmosphere pressure P. . As a result, the deteriorated material C such as water and hydroxide is removed from the aluminum alloy powder A. After that, the discharge pipe is caulked so that the atmospheric pressure of the aluminum alloy powder A is maintained at the vacuum atmospheric pressure P.

【0025】加圧工程303においては、容器2内の圧
力が真空雰囲気圧力Pに保たれた状態で、アルミニウム
合金粉体Aの温度が常温となると、図2に示すプレス装
置100の制御部103は、加圧機構102を駆動さ
せ、加圧部材101によりアルミニウム合金粉体Aを圧
縮し、アルミニウム合金粉体Aが設定かさ密度Dとなる
ようにする。これにより、図5に示すような、材質劣化
物Cが粒子間に侵入することのない放電プラズマ焼結用
の被焼結体Bが得られる。また、加圧圧縮は、粉体表面
の酸化被膜に亀裂を生じさせ、アルミニウム合金の素地
を露出させるので、焼結時の結合をより強固にする。
In the pressurizing step 303, when the temperature of the aluminum alloy powder A reaches normal temperature while the pressure inside the container 2 is kept at the vacuum atmosphere pressure P, the control unit 103 of the press device 100 shown in FIG. In order to drive the pressing mechanism 102, the pressing member 101 compresses the aluminum alloy powder A so that the aluminum alloy powder A has a set bulk density D. As a result, a material B to be sintered for spark plasma sintering in which the deteriorated material C does not enter between the particles as shown in FIG. 5 is obtained. Further, the pressure compression causes cracks in the oxide film on the surface of the powder and exposes the base material of the aluminum alloy, so that the bond during sintering becomes stronger.

【0026】次に、取出工程304において容器2から
被焼結体Bを取り出した後、図3に示す放電プラズマ焼
結装置200に被焼結体Bをセットする。そして、焼結
工程305にて電極部203に通電し、被焼結体Bの放
電プラズマ焼結を行う。これにより、アルミニウム合金
粉体Aの焼結体が生成される。ここで、放電プラズマ焼
結用の被焼結体Bは、図5に示すように、粒子間に適度
な空隙を有していることから、効率よく焼結が行われ
る。
Next, in a take-out step 304, the body B to be sintered is taken out from the container 2, and then the body B to be sintered is set in the discharge plasma sintering apparatus 200 shown in FIG. Then, in the sintering step 305, the electrode portion 203 is energized to perform spark plasma sintering of the body B to be sintered. As a result, a sintered body of the aluminum alloy powder A is produced. Here, since the sintered body B for spark plasma sintering has appropriate voids between the particles as shown in FIG. 5, the sintering is performed efficiently.

【0027】図6に本実施形態の焼結体の製造方法で得
られた焼結体の内部組織を示す。図6に示すように、本
実施形態の製造方法で生成された焼結体は、粉末間の境
界が少なく、充分に粒間結合され、内部組織が良好なも
のとなっている。これに対し、図7に示すように、放電
プラズマ焼結を用いた従来の製造方法で得られた焼結体
は、粉末間の境界には残留酸化被膜や不純物層が多く、
充分な粒間結合がなされていない。従って、図8に示す
ように、本実施形態の製造方法で得られた焼結体は、従
来の製造方法で得られる焼結体に比べ、強度、耐久性等
に優れたものとなっている。
FIG. 6 shows the internal structure of the sintered body obtained by the method for producing a sintered body of this embodiment. As shown in FIG. 6, the sintered body produced by the manufacturing method of the present embodiment has few boundaries between powders, is sufficiently intergranularly bonded, and has a good internal structure. On the other hand, as shown in FIG. 7, the sintered body obtained by the conventional manufacturing method using spark plasma sintering has many residual oxide films and impurity layers at the boundaries between the powders.
There is not sufficient intergranular bonding. Therefore, as shown in FIG. 8, the sintered body obtained by the manufacturing method of the present embodiment is superior in strength, durability, etc. to the sintered body obtained by the conventional manufacturing method. .

【0028】このように、本実施形態の焼結体の製造方
法によれば、放電プラズマ焼結用の被焼結体Bに水酸化
物、水等の材質劣化物が内部まで混入しないようにした
ので、生成された焼結体に気孔が残留することはない。
また、生成された焼結体を高温に曝しても、水素が発生
したりすることもない。従って、強度、耐久性等に優
れ、内部組織が良好な焼結体を得ることができる。
As described above, according to the method for manufacturing a sintered body of this embodiment, the material B such as hydroxide and water is prevented from being deteriorated into the sintered body B for spark plasma sintering. Therefore, pores do not remain in the produced sintered body.
Further, even if the produced sintered body is exposed to a high temperature, hydrogen is not generated. Therefore, it is possible to obtain a sintered body that is excellent in strength, durability and the like and has a good internal structure.

【0029】また、本実施形態の焼結体の製造方法によ
れば、放電プラズマ焼結用の被焼結体Bの設定かさ密度
を80%〜90%としたので、被焼結体Bへの材質劣化
物Cの内部への侵入が防止されるとともに、効率よく放
電プラズマ焼結が行われるようにしたので、強度、耐久
性等に極めて優れた焼結体を確実に得ることができる。
Further, according to the method for manufacturing a sintered body of the present embodiment, the set bulk density of the sintered body B for spark plasma sintering is set to 80% to 90%. Since the material deteriorated material C is prevented from entering the inside and the discharge plasma sintering is efficiently performed, it is possible to reliably obtain a sintered body having extremely excellent strength and durability.

【0030】また、本実施形態の焼結体の製造方法によ
れば、アルミニウム合金粉末Aを常温にて加圧し、アル
ミニウム合金粉末Aが熱的要因により変質することがな
いようにしたので、これによっても、強度・耐久性等に
優れた焼結体を得ることができる。
Further, according to the method for manufacturing a sintered body of the present embodiment, the aluminum alloy powder A is pressed at room temperature to prevent the aluminum alloy powder A from being deteriorated by thermal factors. Also, a sintered body having excellent strength and durability can be obtained.

【0031】また、本実施形態の焼結体の製造方法によ
れば、アルミニウム合金粉末Aを用いたので、アルミニ
ウム合金の焼結体が生成される。従って、航空機、自動
車、宇宙機器等に極めて有用な焼結体を得ることができ
る。
Further, according to the method for manufacturing a sintered body of this embodiment, since the aluminum alloy powder A is used, a sintered body of an aluminum alloy is produced. Therefore, it is possible to obtain a sintered body that is extremely useful for aircraft, automobiles, space equipment and the like.

【0032】また、本実施形態の放電プラズマ焼結用の
被焼結体Bによれば、放電プラズマ焼結されて生成され
た焼結体に、気孔が残留することはない。また、生成さ
れた焼結体を高温に曝した際に、水素が発生することも
ない。従って、強度、耐久性等に優れ、内部組織が良好
な焼結体を得ることができる。また、空気排出工程に加
え、被焼結粉体Aが封入された容器2に対して還元ガス
を送り込み、粉体表面の酸化被膜を還元処理して減少さ
せれば、焼結体をより強固に結合させることができる。
Further, according to the sintered body B for spark plasma sintering of the present embodiment, pores do not remain in the sintered body produced by spark plasma sintering. Further, hydrogen is not generated when the produced sintered body is exposed to high temperature. Therefore, it is possible to obtain a sintered body that is excellent in strength, durability and the like and has a good internal structure. In addition to the air discharging step, if a reducing gas is sent to the container 2 in which the powder to be sintered A is enclosed and the oxide film on the powder surface is reduced and reduced, the sintered body becomes stronger. Can be combined with.

【0033】尚、前記実施形態においては、空気排出工
程302、加圧工程303、焼結工程305の各工程
を、脱ガス装置1、プレス装置100、焼結体製造装置
200で別々に行うものを示したが、焼結体製造装置
を、容器内の空気を排出し、アルミニウム合金粉体を圧
縮するよう構成し、全行程301〜305を焼結体製造
装置のみで行うようにしてもよい。
In the above embodiment, the air discharging step 302, the pressurizing step 303, and the sintering step 305 are separately performed by the degassing apparatus 1, the pressing apparatus 100, and the sintered body manufacturing apparatus 200. However, the sintered body manufacturing apparatus may be configured so that the air in the container is discharged and the aluminum alloy powder is compressed, and all the steps 301 to 305 may be performed only by the sintered body manufacturing apparatus. .

【0034】また、前記実施形態においては、被焼結粉
体としてアルミニウム合金粉体Aを用いたものを示した
が、例えば、鉄、チタン等のような、アルミニウム以外
の金属を含有する被焼結粉体であってもよい。
In the above embodiment, the aluminum alloy powder A is used as the powder to be sintered, but the powder to be sintered containing a metal other than aluminum, such as iron and titanium. It may be a binding powder.

【0035】さらに、脱ガス装置1の加熱機構3、プレ
ス装置100の加圧機構102、焼結体製造装置200
の加圧機構207等の構成も任意であり、その他、前記
実施形態の具体的な細部構造等についても適宜に変更可
能であることは勿論である。
Further, the heating mechanism 3 of the degassing device 1, the pressing mechanism 102 of the pressing device 100, the sintered body manufacturing device 200.
It is needless to say that the configuration of the pressurizing mechanism 207 and the like is also arbitrary, and that the specific detailed structure and the like of the above embodiment can be appropriately changed.

【0036】[0036]

【発明の効果】以上詳述したように、本発明によれば、
強度、耐久性等に優れた焼結体を得ることができる。
As described in detail above, according to the present invention,
It is possible to obtain a sintered body having excellent strength and durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す真空脱ガス装置の概
略ブロック図である。
FIG. 1 is a schematic block diagram of a vacuum degassing apparatus showing an embodiment of the present invention.

【図2】プレス装置の概略ブロック図である。FIG. 2 is a schematic block diagram of a press device.

【図3】焼結体製造装置の概略ブロック図である。FIG. 3 is a schematic block diagram of a sintered body manufacturing apparatus.

【図4】焼結体の製造方法の工程説明図である。FIG. 4 is a process explanatory diagram of a method for manufacturing a sintered body.

【図5】被焼結粉体を加圧して得られた放電プラズマ焼
結用被焼結体の概念図である。
FIG. 5 is a conceptual view of a sintered body for spark plasma sintering obtained by pressurizing a powder to be sintered.

【図6】本発明の焼結体の内部組織を示した図である。FIG. 6 is a diagram showing an internal structure of a sintered body of the present invention.

【図7】従来の焼結体の内部組織を示した図である。FIG. 7 is a diagram showing an internal structure of a conventional sintered body.

【図8】本発明の製造方法によって得られた焼結体と従
来の製造方法によって得られた焼結体の引張強度を示し
た図である。
FIG. 8 is a diagram showing tensile strengths of a sintered body obtained by the production method of the present invention and a sintered body obtained by a conventional production method.

【符号の説明】[Explanation of symbols]

1 脱ガス装置 2 容器 3 加熱機構 4 空気排出機構 5 制御部 100 プレス装置 101 加圧部材 102 加圧機構 103 制御部 200 焼結体製造装置 203 電極部 209 制御部 302 空気排出工程 303 加圧工程 305 焼結工程 A アルミニウム合金粉体 B 放電プラズマ焼結用の被焼結体 C 材質劣化物 D 設定かさ密度 1 Degassing device 2 containers 3 heating mechanism 4 Air discharge mechanism 5 control unit 100 press machine 101 pressure member 102 pressure mechanism 103 control unit 200 Sintered body manufacturing equipment 203 Electrode part 209 Control unit 302 Air discharge process 303 Pressurizing process 305 Sintering process A Aluminum alloy powder B Sintered object for spark plasma sintering C Material deterioration D setting bulk density

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鴇田 正雄 東京都港区西新橋三丁目20番4号 住友石 炭鉱業株式会社内 (72)発明者 園田 雅之 東京都港区西新橋三丁目20番4号 住友石 炭鉱業株式会社内 Fターム(参考) 4K018 AA15 BA08 BC08 CA02 CA12 DA23 DA32    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masao Tokita             Sumitomo Stone, 3-20-4, Nishishimbashi, Minato-ku, Tokyo             Coal Mining Co., Ltd. (72) Inventor Masayuki Sonoda             Sumitomo Stone, 3-20-4, Nishishimbashi, Minato-ku, Tokyo             Coal Mining Co., Ltd. F term (reference) 4K018 AA15 BA08 BC08 CA02 CA12                       DA23 DA32

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被焼結粉体が封入された容器を加熱して
前記容器内の空気を前記容器外へ排出する空気排出工程
と、 前記空気排出工程において前記空気が排出された前記容
器内の前記被焼結粉体を、材質劣化物が内部まで侵入し
ないかさ密度となるよう加圧する加圧工程と、 前記加圧工程にて圧縮された前記被焼結粉体を放電プラ
ズマ焼結により焼結する焼結工程とを有することを特徴
とする焼結体の製造方法。
1. An air discharging step of heating a container in which powder to be sintered is enclosed to discharge the air in the container to the outside of the container, and the inside of the container in which the air is discharged in the air discharging step. A pressurizing step of pressurizing the powder to be sintered so that a deteriorated material does not penetrate into the interior so that the powder has a bulk density, and the powder to be sintered compressed in the pressurizing step is subjected to spark plasma sintering. A method of manufacturing a sintered body, comprising: a sintering step of sintering.
【請求項2】 前記かさ密度は80%〜90%であるこ
とを特徴とする請求項1記載の焼結体の製造方法。
2. The method for producing a sintered body according to claim 1, wherein the bulk density is 80% to 90%.
【請求項3】 前記加圧工程にて前記被焼結粉体を常温
で加圧することを特徴とする請求項1または2記載の焼
結体の製造方法。
3. The method for producing a sintered body according to claim 1, wherein the powder to be sintered is pressed at room temperature in the pressing step.
【請求項4】 前記被焼結粉体はアルミニウム合金粉体
であることを特徴とする請求項1乃至3の何れか1項記
載の焼結体の製造方法。
4. The method for producing a sintered body according to claim 1, wherein the powder to be sintered is an aluminum alloy powder.
【請求項5】 放電プラズマ焼結により焼結されるもの
であって、 所定の真空雰囲気圧力条件の下で、被焼結粉体を材質劣
化物が内部まで侵入しないかさ密度となるよう加圧して
得られたことを特徴とする放電プラズマ焼結用被焼結
体。
5. Sintered by discharge plasma sintering, wherein the powder to be sintered is pressed under a predetermined vacuum atmosphere pressure condition so as to have a bulk density so that the deteriorated material does not penetrate into the inside. An object to be sintered for spark plasma sintering, which is obtained by:
JP2001237062A 2001-08-03 2001-08-03 Method for manufacturing sintered body Expired - Fee Related JP4617027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237062A JP4617027B2 (en) 2001-08-03 2001-08-03 Method for manufacturing sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237062A JP4617027B2 (en) 2001-08-03 2001-08-03 Method for manufacturing sintered body

Publications (2)

Publication Number Publication Date
JP2003049207A true JP2003049207A (en) 2003-02-21
JP4617027B2 JP4617027B2 (en) 2011-01-19

Family

ID=19068208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237062A Expired - Fee Related JP4617027B2 (en) 2001-08-03 2001-08-03 Method for manufacturing sintered body

Country Status (1)

Country Link
JP (1) JP4617027B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111586A1 (en) * 2014-01-22 2015-07-30 日本軽金属株式会社 Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator
US10343951B2 (en) 2015-07-21 2019-07-09 Nippon Light Metal Company, Ltd. Magnesium fluoride sintered compact, method for manufacturing magnesium fluoride sintered compact, neutron moderator, and method for manufacturing neutron moderator
CN112692281A (en) * 2020-11-23 2021-04-23 北京理工大学 Preparation method of secondary hardening ultrahigh-strength steel by utilizing SPS sintering and deformation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356604A (en) * 1989-07-25 1991-03-12 Sumitomo Coal Mining Co Ltd Method and apparatus for electric discharge sintering
JPH09324228A (en) * 1996-06-04 1997-12-16 Hitachi Ltd Metallic member containing dispersed solid lubricant grain, and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356604A (en) * 1989-07-25 1991-03-12 Sumitomo Coal Mining Co Ltd Method and apparatus for electric discharge sintering
JPH09324228A (en) * 1996-06-04 1997-12-16 Hitachi Ltd Metallic member containing dispersed solid lubricant grain, and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111586A1 (en) * 2014-01-22 2015-07-30 日本軽金属株式会社 Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator
JP6085782B2 (en) * 2014-01-22 2017-03-01 日本軽金属株式会社 Magnesium fluoride sintered body manufacturing method, neutron moderator manufacturing method, and neutron moderator
JPWO2015111586A1 (en) * 2014-01-22 2017-03-23 日本軽金属株式会社 Magnesium fluoride sintered body manufacturing method, neutron moderator manufacturing method, and neutron moderator
AU2015210075B2 (en) * 2014-01-22 2017-04-20 Cancer Intelligence Care Systems, Inc. Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator
US9868673B2 (en) 2014-01-22 2018-01-16 Nippon Light Metal Company, Ltd. Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator
US10343951B2 (en) 2015-07-21 2019-07-09 Nippon Light Metal Company, Ltd. Magnesium fluoride sintered compact, method for manufacturing magnesium fluoride sintered compact, neutron moderator, and method for manufacturing neutron moderator
CN112692281A (en) * 2020-11-23 2021-04-23 北京理工大学 Preparation method of secondary hardening ultrahigh-strength steel by utilizing SPS sintering and deformation

Also Published As

Publication number Publication date
JP4617027B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4037901B2 (en) Method for producing aluminum composite material
EP0336569B1 (en) Hot isostatic pressing of powders to form high density contacts
JP5243235B2 (en) Improved process for producing metal matrix composites
JP4465662B2 (en) Method for producing metal powder and method for producing target material
JPS61183422A (en) Production of porous body
JP2003049207A (en) Method for manufacturing sintered compact, and compact to be sintered for spark plasma sintering
KR20090132799A (en) Method for manufacturing magnesium-alloy by using complex powder metallurgy process
JP4453362B2 (en) Diffusion bonding apparatus and diffusion bonding method
JP4355431B2 (en) Piston manufacturing method
JPH0313506A (en) Apparatus and method for working under hot isostatic pressure
JP2001226703A (en) Die for electric sintering and processing
JPH10251057A (en) Sintering method of calcium phosphate ceramic material
JP2006249462A (en) Method for producing electrode, and electrode
JPH11228248A (en) Joining of ceramic to metal and joined body
JP2000016873A (en) Sintering with discharge plasma
JP3855916B2 (en) Shearing device
JP2001279303A (en) METHOD OF MANUFACTURING Ti-Al INTERMETALLIC COMPOUND MEMBER
JPH0860203A (en) Production of compacted and sintered body of high melting point metal powder
JP4083272B2 (en) Method of joining ceramic and metal and joined body
JP2017144475A (en) Titanium double layer material and manufacturing method thereof
JP3481815B2 (en) Method of manufacturing electrode plate for electric upsetter
JPH11222607A (en) Method for joining ceramic and metal and joined body thereby
JPH0433782A (en) Manufacture of composite material made of intermetallic compound partly at least
JPH08260003A (en) Hot isostatic pressing method
EP1344592B1 (en) Method for sintering tungsten powder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees