JP2003048708A - Device for manufacturing carbon - Google Patents

Device for manufacturing carbon

Info

Publication number
JP2003048708A
JP2003048708A JP2001238555A JP2001238555A JP2003048708A JP 2003048708 A JP2003048708 A JP 2003048708A JP 2001238555 A JP2001238555 A JP 2001238555A JP 2001238555 A JP2001238555 A JP 2001238555A JP 2003048708 A JP2003048708 A JP 2003048708A
Authority
JP
Japan
Prior art keywords
carbon
gas
catalyst
reaction
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001238555A
Other languages
Japanese (ja)
Inventor
Yoshifumi Kichise
良文 吉瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001238555A priority Critical patent/JP2003048708A/en
Publication of JP2003048708A publication Critical patent/JP2003048708A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device for manufacturing carbon in which carbon can be precipitated at a low temperature by using a catalyst containing iron as the main component. SOLUTION: A mixture gas containing carbon dioxide, methane and other carbon sources is made to flow in a preliminary reaction tank 5 filled with a catalyst of 30 wt.% Ni/SiO2 . The gas is converted into a mixture gas of carbon dioxide, methane, hydrogen and carbon monoxide at 550 deg.C reaction temperature by a heating furnace 6. Then the gas is made to flow in a main reaction tank 9 filled with catalyst of 50 wt.% Fe/SiO2 essentially comprising iron to subject the carbon dioxide to the catalytic reduction with hydrogen at a low temperature of 400 deg.C with a heating furnace 6a to precipitate carbon on the surface of the catalyst.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、二酸化炭素、メタ
ン及びその他、炭素源を含む混合ガスから炭素を製造す
る装置に係わり、特に、金属触媒を用いて二酸化炭素を
固定化し、触媒の表面に炭素を析出し製造する炭素製造
装置に関する。 【0002】 【従来の技術】大気中の温室効果ガス濃度を低減するた
めに、いろいろな方法が研究されている。大気中の二酸
化炭素(CO)や、発電所、製鉄所、セメント工場な
どから大量に排出されるCOを排出源で固定して再資
源化する方法の一つに、例えば、水素(H)雰囲気下
でCOを還元し、微粉状炭素に変換する方法が考案さ
れている。その変換方式は、大気や排ガスからCO
分離するC0分離装置や、その分離されたCOを濃
縮するCO濃縮装置、COとH(又はCH )を
触媒存在下で反応させて微粉状炭素を生成するCO
(又はCH)反応装置などから構成されている。
このCO/H(又はCH)反応装置(以下、二酸
化炭素固定化装置という)は、例えば、SiOやAl
を担体とするNi、Coなどの触媒を備え、H
(又はCHが触媒反応により炭素と水素に分解しその
水素)と固定化するCOとを取り込み、触媒存在下で
反応させて連続的に水素と水を生成する。その反応式
は、CO+2H→C+2HO−96.0kJ/m
olである。二酸化炭素と水素の反応式から判るように
二酸化炭素1mol当たり96.0kJの熱量を発生す
る。また、二酸化炭素固定化装置で生成した水蒸気(H
O)を凝縮する凝縮部が設けられ、その凝縮部を通す
ことによって、生成した水を排出する。 【0003】図3に、従来の二酸化炭素固定化によって
炭素を製造する炭素製造装置の構成を示す。固定化する
二酸化炭素とメタン(又は水素)ガスが、所定の混合比
にされてガス供給口21から供給ガスとして装置内に供
給される。コンプレッサ22は、供給ガスの圧力を高め
熱交換器23に導入する。熱交換器23は、反応槽25
の排気管28からの高温の排気ガスの予熱を吸収して、
コンプレッサ22からの供給ガスを暖める。ここで熱交
換された供給ガスは、ガス導入口24から反応槽25に
導入される。図4に、COと、CHを分解してでき
るHを触媒存在下で反応させて微粉状炭素を生成する
反応槽25を示す。反応槽25は、内部に触媒27を入
れた反応器25aが設けられ、この反応器25aは、下
部からの供給ガスが触媒27の間を上部に通りぬけるこ
とができ、触媒27が外部の加熱炉34の遠赤外線ヒー
タ36によって500〜600℃程度に加熱される。触
媒27としてSiOやAlを担体とするNi、
Coなどの触媒が用いられる。加熱された触媒27に供
給ガスが触れ、メタンガスは触媒反応により炭素と水素
に分解する。そして二酸化炭素はその水素と反応して、
炭素と水(水蒸気)になる。炭素は、触媒表面に着床し
固定化炭素35となる。反応時に発生した温度の高い余
剰の水素、水蒸気、未反応の二酸化炭素、メタンが反応
槽25から排出される。そのガスは熱交換器23を通
り、熱交換され凝縮器29に入り冷却されて、水蒸気は
凝縮し、水となって外部に排出される。残りの未反応の
ガスは冷却されて元のガス供給管に戻り、再び外部から
の二酸化炭素・メタン(又は水素)の供給ガスと混合さ
れて、コンプレッサ22で圧縮される。そして固定化装
置を再び循環する。 【0004】所定時間、反応ガスを循環させたのち、固
定化装置の電源を止めて、定期的に固定化した炭素を触
媒27と共に反応槽25から取り出す作業を行う。反応
槽25の下部に設けられた触媒/炭素排出口30を開放
にして、反応器25aの下部に設けられた触媒流動槽保
持機構26をレリーズする。反応器25aの内部に固定
化され触媒27上に付着した固定化炭素35が、触媒2
7と共に下方に降下し、触媒/炭素排出口30から排出
される。排出された固定化炭素35と触媒27は触媒炭
素分離器31に貯められる。この両者を機械的に振動さ
せて触媒27上に付着した炭素を剥離し、サイクロンで
触媒27と炭素を分離して、炭素のみを外部に取りだ
す。炭素が分離された触媒は、触媒再生器32に導入さ
れ、活性剤を入れて新しい触媒に再生される。再生され
た触媒27は再び、反応槽25の上部に設けられた触媒
供給口33から反応槽25の内部の反応器25aに導入
される。この作業を繰り返し、二酸化炭素から炭素を固
定化し、炭素が分離され製造される。 【0005】 【発明が解決しようとする課題】従来の炭素製造装置は
以上のように構成されており、SiOやAl
担体とする粉末、球状等のNi、Coなどの触媒27が
用いられるが、Ni、Coなどの触媒27は高価なもの
であるため、最近、安価な鉄を主成分とする触媒を用い
る方法が考案されている。しかし、鉄を主成分とする触
媒は、反応温度が700℃以上の高温が必要であるとい
う問題がある。 【0006】本発明は、このような事情に鑑みてなされ
たものであって、鉄を主成分とする触媒を用いて低温で
炭素を析出することができる炭素製造装置を提供するこ
とを目的とする。 【0007】 【課題を解決するための手段】上記の目的を達成するた
め、本発明の炭素製造装置は、二酸化炭素とメタンおよ
びその他の炭素源を含む混合ガスを供給ガス源として二
酸化炭素を固定化し炭素を製造する炭素製造装置におい
て、前記混合ガスを二酸化炭素、メタン、水素、一酸化
炭素の混合ガスに変換するプレ反応槽と、その変換され
た混合ガスを、鉄を主成分とする金属触媒が用いられ、
低温にて水素と二酸化炭素を接触還元反応させて表面に
炭素を析出させる本反応槽とを備えたものである。 【0008】本発明の炭素製造装置は上記のように構成
されており、供給ガスの反応系に直列にプレ反応槽と本
反応槽を設け、プレ反応槽で、まず二酸化炭素とメタン
の混合ガスを二酸化炭素、メタン、水素、一酸化炭素の
混合ガスに変換し、その後、本反応槽で、鉄を主成分と
する金属触媒を用いて、低温にて二酸化炭素を水素と接
触還元反応をさせ表面に炭素を析出させている。そのた
め、NiおよびCoなどの触媒に比べて安価なFeを主
成分とする触媒を用いて、Ni、Co並みの低温にて炭
素析出反応を行うことができる。 【0009】 【発明の実施の形態】本発明の炭素製造装置の一実施例
を、図1を参照しながら説明する。図1は本発明の炭素
製造装置の炭素生成能を測定した概略構成図を示す。本
炭素製造装置は、触媒30wt%Ni/SiOが充填
された触媒充填部7とその触媒充填部7を550℃に加
熱できる加熱炉6とを備え、反応ガスが二酸化炭素、メ
タン、水素、一酸化炭素の混合ガスに変換されるプレ反
応槽5と、プレ反応槽5で生成した水を除去する水トラ
ップ8と、変換された混合ガスを、鉄を主成分とする触
媒50wt%Fe/SiOが充填された触媒充填部7
aとその触媒充填部7aを400℃に加熱できる加熱炉
6aとを備え、二酸化炭素が水素と接触還元反応して触
媒表面に炭素を析出する本反応槽9と、本反応槽9で生
成する水を除去する水トラップ8aとから構成されてい
る。 【0010】本炭素製造装置は、プレ反応槽5と本反応
槽9とを直列に接続配置し、反応ガスを、プレ反応槽5
と鉄を主成分とする触媒を用いた本反応槽9の2ステッ
プによって、550〜400℃の低温で反応させるもの
である。以下に、内部標準ガスとしてのNガス1、反
応ガスとしてのCOガス2及びCHガス3と、これ
らの各ガスを所定の混合比に混合するガス混合器4と、
ガス組成比を分析するためのガスクロマトグラフ10を
用いて、本発明の炭素製造装置の炭素生成能を測定する
場合の各部の機能と反応過程を、図1に示す構成図に沿
って順次説明する。 【0011】内部標準ガスとしてのNガス1は、反応
ガスに混合して反応流路に流され、出力側のガスクロマ
トグラフ10による分析時に、反応ガスの組成比の標準
ガスとして用いられ、10%の混合比で流される。ガス
混合器4は、Nガス1、COガス2、CHガス3
が混合され、CO ガス2とCHガス3が70:30
の割合で混合される。そして総流量は、断面を20mm
径に換算すると、200ml/min程度に設定され
る。 【0012】プレ反応槽5は、触媒充填部7と加熱炉6
から構成され、触媒充填部7は、触媒30wt%Ni/
SiOが充填され、加熱炉6は、触媒充填部7を55
0℃に加熱できるものである。そして、反応ガスのCH
ガスが触媒により、最初にCH=C+2H+9
0.1kj/molの吸熱反応をし、水素を発生する。
そして、二酸化炭素、メタン、水素、一酸化炭素の混合
ガスに変換される。 【0013】触媒充填部7の触媒は、30wt%Ni/
SiOが用いられる。その調製方法は、硝酸ニッケル
Ni(NO・6HO、140gを、イオン交換
水約500ccに溶解した水溶液に、SiO担体(A
EROSIL380)70gを入れ、十分に混練を行っ
たものを、100℃、3hr乾燥させた後、電気炉に
て、300℃、4hr焼成を行って調製される。 【0014】水トラップ8は、反応ガスがCH+CO
=2C+2HO−5.9kj/molの反応を行
い、少量の熱を加えるだけで炭素と水を生成するので、
その蒸気を冷却して凝縮し、ドレインの凝縮した水を外
部に排出する。 【0015】本反応槽9は、触媒充填部7aと加熱炉6
aから構成され、触媒充填部7aは鉄を主成分とする触
媒50wt%Fe/SiOが充填され、加熱炉6a
は、触媒充填部7aを400℃に加熱できるものであ
る。プレ反応槽5で変換された混合ガスは、400℃に
加熱された触媒50wt%Fe/SiOにより、二酸
化炭素が水素と接触還元反応して、CO+2H=C
+2HO−96kj/molが行われ、反応が一定に
進行している時、全体の反応は、CH+CO=2C
+2HO−5.9kj/molとなり、少量の熱を外
部から加えるだけで、触媒表面に炭素を析出する。 【0016】触媒充填部7aの触媒は、50wt%Fe
/SiOが用いられる。その調製方法は、プレ反応槽
5用の触媒の調製方法において、硝酸ニッケルNi(N
・6HOの代りに、硝酸鉄Fe(NO
・9HO348gを、イオン交換水約500ccに溶
解した水溶液に、SiO担体(AEROSIL38
0)50gを入れ、十分に混練を行ったものを、100
℃、3hr乾燥させた後、電気炉にて、300℃、4h
r焼成を行って調製される。 【0017】水トラップ8aは、反応ガスがCH+C
=2C+2HO−5.9kj/molの反応を行
い、少量の熱を加えるだけで炭素と水を生成するので、
その蒸気を冷却して凝縮し、ドレインの凝縮した水を外
部に排出する。 【0018】ガスクロマトグラフ10は、反応後のガス
を、バルブ11を介して導き、そのガス組成比を分析す
るものである。基準となる標準ガスはNガス1が用い
られ、反応ガス(COガス2、CHガス3)と一緒
に10%混合比で混合されて反応流路に流される。本反
応槽9からの反応後のガスは、反応しなかった余剰のC
ガス2、CHガス3や、Hガス、COガス、水
蒸気と標準ガスのNガス1である。ガスクロマトグラ
フ10はNガス1を基準として、これらのガス組成比
を分析する。本装置は、分析データにより各ガスの混合
割合、混合ガスの流量、プレ反応槽5及び本反応槽9の
反応温度等を制御し、最適に触媒表面に炭素を析出する
ことができる。 【0019】実施例の反応後ガス組成比(%)につい
て、図2にそのグラフを示す。図2は、内径20mmの
石英管に上記触媒をそれぞれ充填し、プレ反応槽5と本
反応槽9を直列に接続して固定床にし、図1に示すよう
な流通式反応により、COガス2とCHガス3を供
給し、プレ反応槽5を定温反応にて30分間反応させた
後、本反応槽9を昇温させ、定温反応を行った本反応槽
9でのデータ例を示す。縦軸が反応後ガス組成比
(%)、横軸は反応時間(min)を示す。反応条件
は、触媒量がプレ反応槽5では0.05g、本反応槽9
では0.5g、反応温度がプレ反応槽5では550℃、
本反応槽9では400℃、COガス2とCHガス3
の比は7:3、総流量は200ml/minである。 【0020】図から判るように、プレ反応槽5を定温反
応にて30分間反応させた後、本反応槽9を昇温させ、
定温反応を行っているので、まず、反応ガスのCH
スが触媒により、最初にCH=C+2H+90.1
kj/molの吸熱反応をし、CHが減少して、H
を発生している。そして、スタート時にはメタン、二酸
化炭素、一酸化炭素であった混合ガスが、メタン、水
素、二酸化炭素、一酸化炭素の混合ガスに変換されてい
ることが判る。同時に炭素も生成し始めている。そして
本反応槽9の温度が400℃に定温度になると、全体の
反応は、CH+CO=2C+2HO−5.9kj
/molとなり、少量の熱を外部から加えるだけで、触
媒表面に炭素を析出し、メタン、水素、二酸化炭素、少
量の一酸化炭素の排出ガスとなることが判る。そして、
温度を下げることによりスタート時のメタン、二酸化炭
素、一酸化炭素の混合ガスに戻る。そして、本実施例で
得られた炭素/触媒比は5/1であった。 【0021】 【発明の効果】本発明の炭素製造装置は上記のように構
成されており、二酸化炭素とメタンが混合された供給ガ
スを、プレ反応槽と本反応槽が直列に配置された反応流
路に流し、触媒30wt%Ni/SiOが充填された
プレ反応槽で、550℃の反応温度で二酸化炭素、メタ
ン、水素、一酸化炭素の混合ガスに変換し、その後、鉄
を主成分とする触媒50wt%Fe/SiOが充填さ
れた本反応槽に流し、400℃の低温にて二酸化炭素を
水素と接触還元反応をさせて表面に炭素を析出させる。
そのため、NiおよびCoなどの触媒に比べて安価なF
eを主成分とする触媒を用いて、Ni、Co並みの低温
にて炭素を製造することができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to carbon dioxide, meta
And other gas mixtures containing carbon sources.
In particular, carbon dioxide is produced using a metal catalyst.
Carbon production by immobilizing and depositing carbon on the surface of the catalyst
Related to the device. [0002] 2. Description of the Related Art For reducing greenhouse gas concentrations in the atmosphere,
For this purpose, various methods have been studied. Diacids in the atmosphere
Carbonized (CO2) And power plants, steelworks, cement plants
CO emissions from large quantities2Fixed at the emission source and refunded
One of the methods for source conversion is, for example, hydrogen (H2) Under atmosphere
And CO2A method for reducing carbon and converting it into finely divided carbon
Have been. The conversion method uses CO2 from air and exhaust gas.2To
C0 to separate2Separation device and its separated CO2The dark
CO that shrinks2Concentrator, CO2And H2(Or CH 4)
CO that reacts in the presence of a catalyst to produce finely divided carbon2/
H2(Or CH4) It consists of a reaction device and the like.
This CO2/ H2(Or CH4) Reactor (hereinafter referred to as diacid
Is called, for example, SiO 22And Al
2O3With a catalyst such as Ni or Co using2
(Or CH4Is decomposed into carbon and hydrogen by a catalytic reaction,
Hydrogen) and immobilized CO2And in the presence of a catalyst
The reaction produces hydrogen and water continuously. The reaction formula
Is CO2+ 2H2→ C + 2H2O-96.0 kJ / m
ol. As can be seen from the reaction formula of carbon dioxide and hydrogen
Generates 96.0 kJ of heat per mole of carbon dioxide
You. In addition, water vapor (H
2O) is provided with a condensing section for condensing, and the condensing section is passed through
Thereby, the generated water is discharged. FIG. 3 shows the conventional carbon dioxide fixation.
1 shows a configuration of a carbon production apparatus for producing carbon. Immobilize
The specified mixing ratio of carbon dioxide and methane (or hydrogen) gas
And supplied as supply gas from the gas supply port 21 into the apparatus.
Paid. The compressor 22 increases the pressure of the supply gas.
The heat is introduced into the heat exchanger 23. The heat exchanger 23 includes a reaction tank 25.
Absorbs the preheating of the hot exhaust gas from the exhaust pipe 28 of
The supply gas from the compressor 22 is warmed. Heat exchange here
The exchanged supply gas is supplied from the gas inlet 24 to the reaction tank 25.
be introduced. FIG.2And CH4Can be disassembled
H2In the presence of a catalyst to produce finely divided carbon
The reaction tank 25 is shown. The reaction tank 25 contains a catalyst 27 therein.
Reactor 25a is provided, which reactor 25a
Gas from the section passes through the upper part between the catalysts 27.
And the catalyst 27 is connected to the far-infrared heater of the external heating furnace 34.
It is heated to about 500 to 600 ° C. by the heater 36. Touch
SiO 2 as the medium 272And Al2O3Ni as a carrier,
A catalyst such as Co is used. Supplied to the heated catalyst 27.
The supply gas touches, and methane gas is converted into carbon and hydrogen by a catalytic reaction.
Decompose into And carbon dioxide reacts with the hydrogen,
It becomes carbon and water (steam). The carbon deposits on the catalyst surface
It becomes immobilized carbon 35. High temperature residue generated during the reaction
Excess hydrogen, steam, unreacted carbon dioxide and methane react
It is discharged from the tank 25. The gas passes through heat exchanger 23
Heat is exchanged, enters the condenser 29 and is cooled.
Condensed and discharged as water. Remaining unreacted
The gas is cooled and returns to the original gas supply pipe, and again from outside
Mixed with carbon dioxide / methane (or hydrogen) supply gas
And compressed by the compressor 22. And fixing equipment
Cycle the device again. After circulating the reaction gas for a predetermined time,
Turn off the power of the stabilizing device and periodically touch the immobilized carbon.
The work of taking out from the reaction tank 25 together with the medium 27 is performed. reaction
Open catalyst / carbon outlet 30 provided in the lower part of tank 25
Then, a catalyst fluidized tank provided at the lower part of the reactor 25a is maintained.
The holding mechanism 26 is released. Fixed inside the reactor 25a
The immobilized carbon 35 adhered on the catalyst 27 is converted into the catalyst 2
7 and descends from the catalyst / carbon outlet 30
Is done. The discharged immobilized carbon 35 and the catalyst 27
It is stored in the element separator 31. The two are mechanically vibrated.
To separate the carbon adhering to the catalyst 27, and use a cyclone
Separate catalyst 27 and carbon and take only carbon outside
You. The catalyst from which the carbon has been separated is introduced into the catalyst regenerator 32.
It is regenerated to a new catalyst by adding an activator. Played
The catalyst 27 is again placed in the upper portion of the reaction tank 25.
Introduced into the reactor 25a inside the reaction tank 25 from the supply port 33
Is done. Repeat this process to fix carbon from carbon dioxide.
And carbon is separated and produced. [0005] The conventional carbon production apparatus is
It is configured as described above,2And Al2O3To
A powder 27 as a carrier, a spherical catalyst such as Ni or Co 27
Used, but the catalyst 27 such as Ni or Co is expensive
Therefore, recently, inexpensive iron-based catalysts have been used.
Methods have been devised. However, iron-based touch
It is said that the medium must have a high reaction temperature of 700 ° C or higher.
Problem. The present invention has been made in view of such circumstances.
At low temperatures using an iron-based catalyst.
To provide a carbon production apparatus capable of depositing carbon
aimed to. [0007] SUMMARY OF THE INVENTION In order to achieve the above object,
Therefore, the carbon production device of the present invention is
Gas mixture containing carbon and other carbon sources
In carbon production equipment that fixes carbon oxide and produces carbon
The gas mixture with carbon dioxide, methane, hydrogen,
Pre-reactor that converts to a gas mixture of carbon,
The mixed gas, using a metal catalyst containing iron as a main component,
Catalytic reduction reaction between hydrogen and carbon dioxide at low temperature on the surface
And a reaction vessel for depositing carbon. [0008] The carbon production apparatus of the present invention is configured as described above.
The pre-reactor and the reactor are connected in series with the supply gas reaction system.
A reaction tank is provided, and in the pre-reaction tank, first, carbon dioxide and methane
Gas mixture of carbon dioxide, methane, hydrogen, carbon monoxide
After conversion to a mixed gas, iron is the main component in this reactor.
Carbon dioxide and hydrogen at low temperature using
A catalytic reduction reaction is performed to deposit carbon on the surface. That
Therefore, Fe, which is cheaper than catalysts such as Ni and Co, is mainly used.
Using a catalyst as a component, coal at a low temperature comparable to Ni and Co
An elementary precipitation reaction can be performed. [0009] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the carbon production apparatus of the present invention
Will be described with reference to FIG. FIG. 1 shows the carbon of the present invention.
FIG. 2 shows a schematic configuration diagram in which the carbon production ability of a production apparatus is measured. Book
The carbon production equipment uses a catalyst of 30 wt% Ni / SiO2Is filled
The heated catalyst filling section 7 is heated to 550 ° C.
A heating furnace 6 capable of heating, the reaction gas being carbon dioxide,
Pre-converted to a gas mixture of tan, hydrogen and carbon monoxide
A reaction tank 5 and a water tiger for removing water generated in the pre-reaction tank 5
Step 8 and the converted mixed gas are contacted with iron as a main component.
Medium 50wt% Fe / SiO2Filled with catalyst 7
heating furnace capable of heating a and its catalyst filling portion 7a to 400 ° C.
6a, and carbon dioxide reacts with hydrogen in a catalytic reduction reaction
This reaction tank 9 deposits carbon on the medium surface, and
And a water trap 8a for removing formed water.
You. [0010] The present carbon production apparatus comprises a pre-reaction tank 5 and a main reaction vessel.
The tank 9 is connected in series and the reaction gas is supplied to the pre-reaction tank 5.
Step 2 of this reaction tank 9 using a catalyst containing iron and a main component of iron.
That react at a low temperature of 550-400 ° C
It is. Below, N as the internal standard gas2Gas 1, anti
CO as reactive gas2Gas 2 and CH4Gas 3 and this
A gas mixer 4 for mixing these gases at a predetermined mixing ratio;
Gas chromatograph 10 for analyzing gas composition ratio
To measure the carbon production capacity of the carbon production apparatus of the present invention.
The function and the reaction process of each part in the case are shown in FIG.
Will be sequentially described. N as an internal standard gas2Gas 1 reacts
The gas is mixed with the gas and passed through the reaction channel.
The standard of the composition ratio of the reaction gas at the time of analysis by the graph 10
It is used as a gas and is flowed at a mixing ratio of 10%. gas
The mixer 4 is N2Gas 1, CO2Gas 2, CH4Gas 3
Is mixed with CO 2Gas 2 and CH4Gas 3 is 70:30
Are mixed in proportions. And the total flow rate is 20 mm in cross section.
When converted to a diameter, it is set to about 200 ml / min.
You. The pre-reaction tank 5 includes a catalyst filling section 7 and a heating furnace 6.
And the catalyst filling section 7 has a catalyst content of 30 wt% Ni /
SiO2And the heating furnace 6 sets the catalyst charging section 7 to 55
It can be heated to 0 ° C. And the reaction gas CH
4The gas is first catalyzed by CH4= C + 2H2+9
An endothermic reaction of 0.1 kj / mol generates hydrogen.
And a mixture of carbon dioxide, methane, hydrogen and carbon monoxide
Converted to gas. The catalyst in the catalyst filling section 7 contains 30 wt% Ni /
SiO2Is used. Its preparation method is nickel nitrate
Ni (NO3)2・ 6H2O, 140g, ion exchange
An aqueous solution dissolved in about 500 cc of water is added with SiO2Carrier (A
70 g of EROSIL380) and mix well
After drying at 100 ° C for 3 hours,
It is prepared by baking at 300 ° C. for 4 hours. The water trap 8 has a reaction gas of CH4+ CO
2= 2C + 2H2O-5.9 kj / mol reaction was performed.
It produces carbon and water with just a small amount of heat,
The steam is cooled and condensed, and the condensed water at the drain is removed.
Discharge to the department. The reaction tank 9 comprises a catalyst charging section 7a and a heating furnace 6
a, and the catalyst-filled portion 7a is a catalyst mainly composed of iron.
Medium 50wt% Fe / SiO2Is filled, and the heating furnace 6a
Is capable of heating the catalyst filling section 7a to 400 ° C.
You. The mixed gas converted in the pre-reactor 5 is heated to 400 ° C.
Heated catalyst 50 wt% Fe / SiO2By diacid
Catalytic reaction with hydrogen reacts with hydrogen to produce CO22+ 2H2= C
+ 2H2O-96 kj / mol is performed and the reaction is constant
When proceeding, the overall reaction is CH4+ CO2= 2C
+ 2H2O-5.9 kj / mol, and remove a small amount of heat
Just by adding from the part, carbon is deposited on the catalyst surface. The catalyst in the catalyst filling section 7a contains 50 wt% Fe
/ SiO2Is used. The preparation method is pre-reactor
In a method for preparing a catalyst for No. 5, nickel nitrate Ni (N
O3)2・ 6H2Instead of O, iron nitrate Fe (NO3)3
・ 9H2Dissolve 348 g of O in about 500 cc of deionized water.
In the dissolved aqueous solution, add SiO2Carrier (AEROSIL38
0) Add 50 g, knead well, and add 100 g
After drying for 3 hours at 300 ° C in an electric furnace,
It is prepared by performing r firing. In the water trap 8a, the reaction gas is CH4+ C
O2= 2C + 2H2O-5.9 kj / mol reaction was performed.
It produces carbon and water with just a small amount of heat,
The steam is cooled and condensed, and the condensed water at the drain is removed.
Discharge to the department. The gas chromatograph 10 is a gas after the reaction.
Through the valve 11 to analyze the gas composition ratio.
Things. The standard gas used as the reference is N2Gas 1 used
Reaction gas (CO2Gas 2, CH4With gas 3)
At a mixing ratio of 10% and flow through the reaction channel. Book
The gas after the reaction from the reaction tank 9 is a surplus of unreacted C
O2Gas 2, CH4Gas 3 or H2Gas, CO gas, water
N of steam and standard gas2Gas 1. Gas chromatograph
10 is N2The composition ratio of these gases based on Gas 1
To analyze. This device mixes each gas according to the analysis data.
Ratio, flow rate of mixed gas, pre-reactor 5 and main reactor 9
Control reaction temperature, etc. to optimally deposit carbon on the catalyst surface
be able to. Regarding the gas composition ratio (%) after the reaction in the examples,
FIG. 2 shows the graph. FIG. 2 shows an inner diameter of 20 mm.
Each of the above catalysts was filled in a quartz tube, and pre-reactor 5 and
The reaction tanks 9 are connected in series to form a fixed bed, as shown in FIG.
CO2 by a simple flow reaction2Gas 2 and CH4Supply gas 3
The pre-reactor 5 was reacted at a constant temperature for 30 minutes.
Thereafter, the temperature of the reaction tank 9 was raised, and the reaction tank in which the constant temperature reaction was performed was performed.
9 shows an example of data. The vertical axis is the gas composition ratio after the reaction
(%), And the horizontal axis shows the reaction time (min). Reaction conditions
Means that the catalyst amount is 0.05 g in the pre-reactor 5 and the
0.5 g, the reaction temperature is 550 ° C. in the pre-reactor 5,
In this reaction tank 9, 400 ° C., CO2Gas 2 and CH4Gas 3
Is 7: 3, and the total flow rate is 200 ml / min. As can be seen from FIG.
After reacting for 30 minutes, the temperature of the reaction tank 9 was raised,
Since a constant temperature reaction is performed, first, the reaction gas CH4Moth
Is first catalyzed by CH4= C + 2H2+90.1
Endothermic reaction of kj / mol, CH4Decreases and H2
Has occurred. And when starting, methane and diacid
Gas mixture of carbon monoxide and carbon monoxide
Is converted to a gas mixture of carbon dioxide, carbon dioxide and carbon monoxide.
You can see that At the same time, carbon has begun to form. And
When the temperature of the reaction tank 9 reaches a constant temperature of 400 ° C.,
The reaction is CH4+ CO2= 2C + 2H2O-5.9kj
/ Mol, and a small amount of heat can be applied
Deposits carbon on the surface of the medium, methane, hydrogen, carbon dioxide,
It can be seen that the amount of exhaust gas is carbon monoxide. And
Methane and carbon dioxide at the start by lowering the temperature
Return to a mixed gas of carbon and carbon monoxide. And in this embodiment
The resulting carbon / catalyst ratio was 5/1. [0021] The carbon production apparatus of the present invention is constructed as described above.
And a supply gas mixture of carbon dioxide and methane.
The reaction flow in which the pre-reactor and the main reactor are arranged in series.
And the catalyst 30wt% Ni / SiO2Filled
In a pre-reaction tank, carbon dioxide and meta
To a mixed gas of hydrogen, hydrogen and carbon monoxide, and then
50% by weight Fe / SiO based catalyst2Is filled
At the low temperature of 400 ° C.
A catalytic reduction reaction with hydrogen precipitates carbon on the surface.
Therefore, F is less expensive than catalysts such as Ni and Co.
Using a catalyst containing e as the main component, low temperature comparable to Ni and Co
Can produce carbon.

【図面の簡単な説明】 【図1】 本発明の炭素製造装置の一実施例を示す図で
ある。 【図2】 本発明の炭素製造装置の反応温度400℃に
おける反応時間に対する反応後ガス組成比を示す図であ
る。 【図3】 従来の炭素製造装置の構成を示す図である。 【図4】 従来の炭素製造装置の反応槽を示す図であ
る。 【符号の説明】 1…Nガス 2…COガス 3…CHガス 4…ガス混合器 5…プレ反応槽 6、6a…加熱炉 7、7a…触媒充填部 8、8a…水トラップ 9…本反応槽 10…ガスクロマトグラフ 11…バルブ 21…ガス供給口 22…コンプレッサ 23…熱交換器 24…ガス導入口 25…反応槽 25a…反応器 26…触媒流動槽保持機構 27…触媒 28…排気管 29…凝縮器 30…触媒/炭素排出口 31…触媒炭素分離器 32…触媒再生器 33…触媒供給口 34…加熱炉 35…固定化炭素 36…遠赤外線ヒータ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing one embodiment of a carbon production apparatus of the present invention. FIG. 2 is a view showing a gas composition ratio after reaction with respect to a reaction time at a reaction temperature of 400 ° C. in the carbon production apparatus of the present invention. FIG. 3 is a diagram showing a configuration of a conventional carbon production apparatus. FIG. 4 is a diagram showing a reaction tank of a conventional carbon production apparatus. [Description of Signs] 1 ... N 2 gas 2 ... CO 2 gas 3 ... CH 4 gas 4 ... Gas mixer 5 ... Pre-reaction tank 6, 6a ... Heating furnace 7, 7a ... Catalyst filling section 8, 8a ... Water trap 9 ... This reaction tank 10... Gas chromatograph 11... Valve 21. Tube 29 Condenser 30 Catalyst / carbon discharge port 31 Catalytic carbon separator 32 Catalyst regenerator 33 Catalyst supply port 34 Heating furnace 35 Fixed carbon 36 Far infrared heater

Claims (1)

【特許請求の範囲】 【請求項1】二酸化炭素とメタンおよびその他の炭素源
を含む混合ガスを供給ガス源として二酸化炭素を固定化
し炭素を製造する炭素製造装置において、前記混合ガス
を二酸化炭素、メタン、水素、一酸化炭素の混合ガスに
変換するプレ反応槽と、その変換された混合ガスを、鉄
を主成分とする金属触媒が用いられ、低温にて水素と二
酸化炭素を接触還元反応させて表面に炭素を析出させる
本反応槽とを備えたことを特徴とする炭素製造装置。
Claims: 1. A carbon production apparatus for producing carbon by immobilizing carbon dioxide using a mixed gas containing carbon dioxide and methane and other carbon sources as a supply gas source, wherein the mixed gas is carbon dioxide, A pre-reaction tank that converts a mixed gas of methane, hydrogen, and carbon monoxide, and the converted mixed gas is subjected to a catalytic reduction reaction of hydrogen and carbon dioxide at a low temperature using a metal catalyst containing iron as a main component. And a reaction tank for depositing carbon on the surface.
JP2001238555A 2001-08-07 2001-08-07 Device for manufacturing carbon Pending JP2003048708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238555A JP2003048708A (en) 2001-08-07 2001-08-07 Device for manufacturing carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238555A JP2003048708A (en) 2001-08-07 2001-08-07 Device for manufacturing carbon

Publications (1)

Publication Number Publication Date
JP2003048708A true JP2003048708A (en) 2003-02-21

Family

ID=19069445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238555A Pending JP2003048708A (en) 2001-08-07 2001-08-07 Device for manufacturing carbon

Country Status (1)

Country Link
JP (1) JP2003048708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514669A (en) * 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide
KR20210058516A (en) * 2019-11-14 2021-05-24 주식회사 포스코 Device for manufacturing cabon dust

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193920A (en) * 1992-01-23 1993-08-03 Hitachi Ltd Method and device for converting carbon dioxide
JP2001087627A (en) * 1999-09-20 2001-04-03 Shimadzu Corp Carbon dioxide fixing apparatus
JP2001187333A (en) * 1999-12-28 2001-07-10 Shimadzu Corp Reaction tank for fixing carbon dioxide and method of producing carbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193920A (en) * 1992-01-23 1993-08-03 Hitachi Ltd Method and device for converting carbon dioxide
JP2001087627A (en) * 1999-09-20 2001-04-03 Shimadzu Corp Carbon dioxide fixing apparatus
JP2001187333A (en) * 1999-12-28 2001-07-10 Shimadzu Corp Reaction tank for fixing carbon dioxide and method of producing carbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514669A (en) * 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide
JP2018104282A (en) * 2012-04-16 2018-07-05 シーアストーン リミテッド ライアビリティ カンパニー Method for producing solid carbon by reducing carbon dioxide
KR20210058516A (en) * 2019-11-14 2021-05-24 주식회사 포스코 Device for manufacturing cabon dust
KR102308018B1 (en) 2019-11-14 2021-09-30 주식회사 포스코 Device for manufacturing cabon dust

Similar Documents

Publication Publication Date Title
CN104401942B (en) Prepare hydrogen-containing gas and the system and method for nanocarbon product and the purposes of the system and equipment In Oil Service Station
US11772979B2 (en) Metal-decorated barium calcium aluminum oxide catalyst for NH3 synthesis and cracking and methods of forming the same
CN102427879B (en) Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar-containing gas, and method for regenerating catalyst for reforming tar
Gao et al. N-desorption or NH3 generation of TiO2-loaded Al-based nitrogen carrier during chemical looping ammonia generation technology
NO20023081L (en) Process and apparatus for obtaining increased production rate of thermal chemical reactions
JPH0130761B2 (en)
KR100719484B1 (en) Compact Steam Reformer Utilizing Metal-Monolith-Washcoated Catalyst and Preparation Method of Hydrogen Gas Using The Catalyst
JPH11106770A (en) Method and apparatus for power generation with dimethyl ether modification gas
AU2004200944A1 (en) Process and Apparatus for Preparing Hydrogen Chloride
JP2003048708A (en) Device for manufacturing carbon
CN100412173C (en) Process for pretreatment of coke oven gas and partial oxidation preparation of synthetic raw gas
CN112473678A (en) Catalyst for wet-process coke quenching steam mixed reforming of methane and preparation method thereof
JP2004523459A (en) How to use molybdenum carbide catalyst
EP2711336B1 (en) Non-co2 emitting manufacturing method for synthesis gas
JP2734481B2 (en) Methanol reforming method
JP2004500980A (en) Production of hydrogen by partial oxidation of methanol.
CN113996334A (en) For N2Direct oxidation of CH by O4Preparation method of Cu-SSZ-13 molecular sieve catalyst for preparing methanol
JP2003082355A (en) Coke oven and its operation method
JPS6160117B2 (en)
JP4205459B2 (en) Hydrocarbon reforming method
JP2023141702A (en) Deposition method of solid-state carbon, and deposition system of solid-state carbon
JP3574008B2 (en) Carbon dioxide fixation device
KR102579471B1 (en) System and process for producing syngas and carbon monoxide using dioxide dry sorbents
KR100570375B1 (en) Synthesis gas production system and method
JP2001046864A (en) Carbon dioxide fixing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920