JP2003047846A - Catalyst and method for reforming dimethyl ether - Google Patents

Catalyst and method for reforming dimethyl ether

Info

Publication number
JP2003047846A
JP2003047846A JP2001238658A JP2001238658A JP2003047846A JP 2003047846 A JP2003047846 A JP 2003047846A JP 2001238658 A JP2001238658 A JP 2001238658A JP 2001238658 A JP2001238658 A JP 2001238658A JP 2003047846 A JP2003047846 A JP 2003047846A
Authority
JP
Japan
Prior art keywords
dimethyl ether
catalyst
reforming
carrier
solid acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001238658A
Other languages
Japanese (ja)
Other versions
JP4831800B2 (en
Inventor
Shigeru Nojima
野島  繁
Satonobu Yasutake
聡信 安武
Masanao Yonemura
将直 米村
Satoru Watanabe
渡辺  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001238658A priority Critical patent/JP4831800B2/en
Publication of JP2003047846A publication Critical patent/JP2003047846A/en
Application granted granted Critical
Publication of JP4831800B2 publication Critical patent/JP4831800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst and a method for reforming dimethyl ether, by which it is made possible to carry out the reforming reaction of dimethyl ether at a low temperature of <=700 deg.C and to efficiently produce concentrated hydrogen. SOLUTION: This catalyst for reforming dimethyl ether is prepared by supporting active metals including at least Pt on a carrier having functions as a solid acid. This method for reforming dimethyl ether uses the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ジメチルエーテル
から効率的に水素を製造するためのジメチルエーテル改
質触媒およびジメチルエーテル改質方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a dimethyl ether reforming catalyst and a dimethyl ether reforming method for efficiently producing hydrogen from dimethyl ether.

【0002】[0002]

【従来の技術】燃料電池は、水素と酸素から水を得る電
池反応によって起電力を得ている。原料の水素は、原燃
料と水を改質触媒の存在下に反応させて得られる。この
ような燃料電池のうち、固体高分子型燃料電池(PEF
C:Polymer Electrolyte Fue
l Cell)が優れた性能を発揮できるものとして注
目されている。このような固体高分子型燃料電池では、
水素を燃料とし、アノード(燃料極)、カソード(空気
極)における電極反応によって起電力を得ている。
2. Description of the Related Art Fuel cells obtain electromotive force by a cell reaction in which water is obtained from hydrogen and oxygen. Raw material hydrogen is obtained by reacting raw fuel and water in the presence of a reforming catalyst. Among such fuel cells, polymer electrolyte fuel cells (PEF)
C: Polymer Electrolyte Fue
l Cell) is attracting attention as a material capable of exhibiting excellent performance. In such a polymer electrolyte fuel cell,
Using hydrogen as fuel, electromotive force is obtained by electrode reaction at the anode (fuel electrode) and cathode (air electrode).

【0003】上記原燃料としては、メタノール、エタノ
ールが用いられていたが、ジメチルエーテルも採用の選
択枝として採用されつつある。ジエチルエーテルと水
(水蒸気)から、以下の反応によって、水素と一酸化炭
素を生成する。 CH3OCH3+H2O→2CO+4H2 ・・・・・(1) このようなジメチルエーテルの改質は、従来、700℃
以上の高温でRuまたはNiを触媒にして改質を行なっ
ていた。上記触媒では、副反応であるメタネーション反
応が併発し、水素の生成量が少ないため、700℃以上
の高温にすることで、平衡的にメタンの副生を抑制して
いた。 CH3OCH3+H2O→(2CO+4H2)→2CH4+2H2O・・・(2 ) しかし、ジメチルエーテルを700℃以上の高温にする
のには、大規模な装置を設ける必要があり、PEFC装
置の大きさをコンパクト化するにあたって改善が望まれ
ていた。
Although methanol and ethanol have been used as the above-mentioned raw fuel, dimethyl ether is being adopted as an option. Hydrogen and carbon monoxide are produced from diethyl ether and water (steam) by the following reaction. CH 3 OCH 3 + H 2 O → 2CO + 4H 2 (1) Such reforming of dimethyl ether has conventionally been performed at 700 ° C.
At the above high temperature, reforming was carried out using Ru or Ni as a catalyst. In the above catalyst, a methanation reaction, which is a side reaction, occurs concurrently, and the amount of hydrogen produced is small. Therefore, by raising the temperature to 700 ° C. or higher, the by-production of methane was balancedly suppressed. CH 3 OCH 3 + H 2 O → (2CO + 4H 2 ) → 2CH 4 + 2H 2 O (2) However, in order to raise the temperature of dimethyl ether to 700 ° C. or higher, a large-scale device must be installed, and PEFC Improvements have been desired in reducing the size of the device.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記事情に対
してなされたもので、ジメチルエーテルの改質反応を7
00℃以下の低温でも行うことを可能とし、かつ高濃度
の水素を効率良く生成することができるジメチルエーテ
ル改質触媒およびジメチルエーテルの改質方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it has been proposed that a dimethyl ether reforming reaction is performed.
An object of the present invention is to provide a dimethyl ether reforming catalyst and a method for reforming dimethyl ether, which can be carried out even at a low temperature of 00 ° C. or lower and which can efficiently generate high concentration hydrogen.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るジメチルエーテル改質触媒は、固体酸
作用を有する担体に、少なくともPtを含む活性金属を
担持させたことを特徴とする。このように、固体酸作用
を有する担体が以下の逐次反応式(3)を促進し、ま
た、Ptを含む活性金属が以下の逐次反応式(4)を促
進するとともに、メタネーション活性も低いため、約4
50℃の低温でも、高濃度の水素を効率良く生成するこ
とができる。 CH3OCH3+H2O→2CH3OH ・・・・・(3) CH3OH→CO+2H2 ・・・・・(4) ジメチルエーテル改質反応は、上記逐次反応式で進行す
ると推定できる。式(3)は平衡上転化率が高くない
が、式(3)と式(4)が逐次で進行することによって
効率的に高濃度の水素を生成することができる。
To achieve the above object, the dimethyl ether reforming catalyst according to the present invention is characterized in that a carrier having a solid acid action is loaded with an active metal containing at least Pt. Thus, the carrier having a solid acid action promotes the following sequential reaction formula (3), the active metal containing Pt promotes the following sequential reaction formula (4), and the methanation activity is low. , About 4
High concentration hydrogen can be efficiently generated even at a low temperature of 50 ° C. CH 3 OCH 3 + H 2 O → 2CH 3 OH (3) CH 3 OH → CO + 2H 2 (4) It can be estimated that the dimethyl ether reforming reaction proceeds according to the above-mentioned sequential reaction formula. Equation (3) does not have a high conversion rate on equilibrium, but it is possible to efficiently generate high-concentration hydrogen by sequentially advancing equation (3) and equation (4).

【0006】上記固体酸作用を有する担体としては、γ
アルミナ、θアルミナ、アナターゼ型チタニア、ジルコ
ニア、ゼオライトおよびメタロシリケートから成るグル
ープから選ばれた少なくとも1種か、またはTi、S
i、AlおよびZrから成るグループから選ばれた少な
くとも2種以上の複合酸化物が好適である。そして、固
体酸作用を有する担体の固体酸量は、ピリジン吸着量で
0.1mmol/gを超えることが好適である。上記P
tを含む活性金属としては、Ptと、Fe、Mn、Z
n、Cu、W、P、S、Co、CrおよびSnから成る
グループから選ばれた少なくとも1種との組み合わせが
好適である。
As the carrier having the above solid acid action, γ
At least one selected from the group consisting of alumina, θ-alumina, anatase type titania, zirconia, zeolite and metallosilicate, or Ti, S
At least two or more complex oxides selected from the group consisting of i, Al and Zr are suitable. The solid acid amount of the carrier having a solid acid action is preferably more than 0.1 mmol / g in terms of pyridine adsorption amount. Above P
As the active metal containing t, Pt, Fe, Mn, Z
A combination with at least one selected from the group consisting of n, Cu, W, P, S, Co, Cr and Sn is preferable.

【0007】また、本発明は、別の側面において、上記
したジメチルエーテル改質触媒を用いたジメチルエーテ
ルの改質方法である。このようなジメチルエーテル改質
方法では、ジメチルエーテルに対し、水と酸素を加え、
部分酸化反応も生じさせるようにすることが好適であ
る。このように酸素を加えることによって、ジメチルエ
ーテル改質反応と上記部分酸化反応とを併発させ、オー
トサーマル反応を行うようにすることができる。
The present invention, in another aspect, is a method for reforming dimethyl ether using the above-mentioned dimethyl ether reforming catalyst. In such a dimethyl ether reforming method, water and oxygen are added to dimethyl ether,
It is preferable to cause a partial oxidation reaction. By adding oxygen in this way, the dimethyl ether reforming reaction and the partial oxidation reaction can be caused to occur simultaneously, and the autothermal reaction can be carried out.

【0008】[0008]

【発明の実施の形態】以下、本発明に係るジメチルエー
テル改質触媒とジメチルエーテル改質方法をその実施の
形態等についてさらに詳細に説明する。本発明に係るジ
メチルエーテル改質触媒は、固体酸作用を有する担体
に、少なくともPtを含む活性金属を担持させたことを
特徴とする。このような担体としては、γアルミナ(A
23)、θアルミナ(Al23)、アナターゼ型チタ
ニア(TiO2)、ジルコニア(ZrO2)、ゼオライ
ト、メタロシリケート等を用いることができる。また、
担体として、Ti、Si、AlおよびZrから成るグル
ープから選ばれた少なくとも2種以上の複合酸化物を用
いることもできる。これらの複合酸化物は主に共沈法等
によって調製される。複合酸化物の例として、シリカ・
アルミナ、シリカ・チタニア、チタニア・アルミナ、ア
ルミナ・ジルコニア等がある。これらの固体酸作用を有
する担体の固体酸量は、ピリジン吸着量で0.1mmo
l/gを超えるものが好適である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the dimethyl ether reforming catalyst and the dimethyl ether reforming method according to the present invention will be described in more detail with reference to embodiments thereof. The dimethyl ether reforming catalyst according to the present invention is characterized in that an active metal containing at least Pt is supported on a carrier having a solid acid action. As such a carrier, γ-alumina (A
l 2 O 3 ), θ-alumina (Al 2 O 3 ), anatase type titania (TiO 2 ), zirconia (ZrO 2 ), zeolite, metallosilicate and the like can be used. Also,
As the carrier, at least two kinds of complex oxides selected from the group consisting of Ti, Si, Al and Zr can be used. These complex oxides are mainly prepared by a coprecipitation method or the like. As an example of a complex oxide, silica
Alumina, silica / titania, titania / alumina, alumina / zirconia, etc. are available. The solid acid amount of these carriers having a solid acid action is 0.1 mmo in terms of pyridine adsorption amount.
Those exceeding 1 / g are preferable.

【0009】上記担体に担持される金属としては、少な
くともPtを含む活性金属を用いる。Ptはメタネーシ
ョン活性が低いため、700℃以下の低温でも、高収量
の水素を生成することができる。さらに、Ptは水蒸気
改質反応と部分酸化反応を促進するため、酸素を加える
ことにより、高収量の水素を生成することができる。P
tは含浸法またはイオン交換法によって担体に担持でき
る。Ptの助触媒として、Fe、Mn、Zn、Cu、
W、P、S、Co、CrおよびSnから成るグループか
ら選ばれた少なくとも1種を用いることができる。Pt
を担体に担持した後、助触媒を主に含浸法等によって担
体に担持できる。
As the metal supported on the carrier, an active metal containing at least Pt is used. Since Pt has a low methanation activity, a high yield of hydrogen can be generated even at a low temperature of 700 ° C. or lower. Further, since Pt promotes the steam reforming reaction and the partial oxidation reaction, a high yield of hydrogen can be generated by adding oxygen. P
t can be supported on the carrier by an impregnation method or an ion exchange method. As a Pt promoter, Fe, Mn, Zn, Cu,
At least one selected from the group consisting of W, P, S, Co, Cr and Sn can be used. Pt
After being loaded on the carrier, the cocatalyst can be loaded on the carrier mainly by an impregnation method or the like.

【0010】さらに、本発明に係るジメチルエーテル改
質方法は、上記によって得られたジメチルエーテル改質
触媒を用いることを特徴とする。また、ジメチルエーテ
ルに対し、水(水蒸気)と酸素(空気)を加え、部分酸
化反応も生じさせるようにすることができる。部分酸化
反応をさらに適量に併発することによりオートサーマル
反応として実施することができる。これにより、約45
0℃の低温でも、ジメチルエーテルの転化率を向上させ
ることができる。このとき、ジメチルエーテルに対し
て、空気と水蒸気は、空気/ジメチルエーテル(C1ベ
ース)=0〜3(モル比)で、水蒸気/ジメチルエーテ
ル(C1ベース)=0〜5(モル比)で混合することが
好ましいが、特にこれに限定されない。
Furthermore, the dimethyl ether reforming method according to the present invention is characterized by using the dimethyl ether reforming catalyst obtained as described above. Further, water (steam) and oxygen (air) can be added to dimethyl ether to cause a partial oxidation reaction. The partial oxidation reaction can be carried out as an autothermal reaction by further concurrently generating an appropriate amount. With this, about 45
Even at a low temperature of 0 ° C., the conversion rate of dimethyl ether can be improved. At this time, with respect to dimethyl ether, air and water vapor may be mixed at air / dimethyl ether (C1 base) = 0 to 3 (molar ratio) and water vapor / dimethyl ether (C1 base) = 0 to 5 (molar ratio). Preferred, but not limited to this.

【0011】[0011]

【実施例】実施例1(触媒の調製) (触媒1の調製)担体として比表面積150m2/gの
γ型アルミナ粉末(以下γ−Al23(γアルミナ)と
もいう)を蒸発皿に入れ、塩化白金酸水溶液をγ−Al
23に滴下し、100℃のホットプレート上にて滴下し
た水分を蒸発させた。粉末を攪拌させながら均一に白金
が担持されるようにし、このような含浸法にて担体に対
して1重量%の白金(Pt)を担持した。上記γ−Al
23担持Pt触媒粉末を120℃で12時間乾燥させた
後、550℃で5時間空気雰囲気下にて焼成を行った。
次に、本触媒粉末にアルミナゾルバインダー2%を添加
して、3mmφの粒状触媒を成型した後、500℃で5
時間焼成した。本粒状触媒を触媒1とした。
Example 1 (Preparation of catalyst) (Preparation of catalyst 1) γ-type alumina powder (hereinafter also referred to as γ-Al 2 O 3 (γ-alumina)) having a specific surface area of 150 m 2 / g was used as a carrier in an evaporation dish. Put chloroplatinic acid aqueous solution into γ-Al
2 O 3 was dropped, and the dropped water was evaporated on a hot plate at 100 ° C. While stirring the powder, platinum was uniformly loaded, and 1% by weight of platinum (Pt) was loaded on the carrier by such an impregnation method. Γ-Al
The 2 O 3 -supported Pt catalyst powder was dried at 120 ° C. for 12 hours and then calcined at 550 ° C. for 5 hours in an air atmosphere.
Next, 2% of alumina sol binder was added to the catalyst powder to form a 3 mmφ granular catalyst, and then the mixture was heated at 500 ° C. for 5 minutes.
Burned for hours. This granular catalyst was designated as catalyst 1.

【0012】(触媒2〜6の調製)上記触媒1の調製法
において、γアルミナの代わりに,比表面積120m2
/gのθアルミナ、比表面積80m2/gのアナターゼ
型チタニア、ジルコニア、H型のペンタシル型ゼオライ
ト(SiO2/Al23モル比40)、H型のメタロシ
リケート(SiO2/Al23モル比30、SiO2/F
23モル比600、SiO2/Co23モル比50
0)を用いて、触媒1と同様な方法にて白金を担持し
て、粉末触媒2〜6を調製した。さらに、触媒1と同様
な方法により、3mmφの粒状触媒を調製した後、50
0℃で5時間焼成して、触媒2〜6を得た。
(Preparation of Catalysts 2 to 6) In the above preparation method of Catalyst 1, a specific surface area of 120 m 2 was used in place of γ-alumina.
/ G of θ-alumina, specific surface area 80m 2 / g of anatase type titania, zirconia, H type pentasil type zeolite (SiO 2 / Al 2 O 3 molar ratio 40), H type metallosilicate (SiO 2 / Al 2 O). 3 molar ratio 30, SiO 2 / F
e 2 O 3 molar ratio 600, SiO 2 / Co 2 O 3 molar ratio 50
0) was used to carry platinum in the same manner as in catalyst 1 to prepare powder catalysts 2 to 6. Furthermore, after a granular catalyst having a diameter of 3 mm was prepared by the same method as the catalyst 1, 50
Calcination was performed at 0 ° C. for 5 hours to obtain catalysts 2 to 6.

【0013】(触媒7〜11の調製)上記触媒1の調製
法において、γアルミナの代わりとして、TiO2・S
iO2複合酸化物(TiO2:SiO2=80:20(重
量比)、比表面積150m2/g)、TiO2・Al23
複合酸化物(TiO2・Al23=50:50(重量
比)、比表面積160m2/g)、Al23・ZrO2
合酸化物(Al23:ZrO2=90:10(重量比)、
比表面積200m2/g)、TiO2・ZrO2複合酸化
物(TiO2:ZrO2=50:50(重量比)、比表面
積100m2/g)、SiO2・Al23複合酸化物(S
iO2:Al23=90:10(重量比)、比表面積1
50m2/g)を調製した。調製方法は、各々の金属の
硝酸塩又は塩化物の水溶液に対してアンモニアを滴下
し、pH=7付近にて共沈法により複合酸化物を得た。
この複合酸化物を乾燥した後、焼成を600℃で5時間
行った。そして、触媒1と同様な方法にて白金を担持し
て、粉末触媒7〜11を調製した。さらに、触媒1と同
様な方法により、3mmφの粒状触媒を調製した後、5
00℃で5時間焼成して、触媒7〜11を得た。
(Preparation of catalysts 7 to 11) In the preparation method of the above catalyst 1, TiO 2 .S was used instead of γ-alumina.
iO 2 composite oxide (TiO 2 : SiO 2 = 80: 20 (weight ratio), specific surface area 150 m 2 / g), TiO 2 · Al 2 O 3
Composite oxide (TiO 2 · Al 2 O 3 = 50: 50 (weight ratio), specific surface area 160 m 2 / g), Al 2 O 3 · ZrO 2 composite oxide (Al 2 O 3 : ZrO 2 = 90: 10) (Weight ratio),
Specific surface area 200 m 2 / g), TiO 2 · ZrO 2 composite oxide (TiO 2 : ZrO 2 = 50: 50 (weight ratio), specific surface area 100 m 2 / g), SiO 2 · Al 2 O 3 composite oxide ( S
iO 2 : Al 2 O 3 = 90: 10 (weight ratio), specific surface area 1
50 m 2 / g) was prepared. As for the preparation method, ammonia was added dropwise to an aqueous solution of a nitrate or chloride of each metal, and a complex oxide was obtained by a coprecipitation method at around pH = 7.
After drying this composite oxide, firing was performed at 600 ° C. for 5 hours. Then, platinum was loaded in the same manner as the catalyst 1 to prepare powder catalysts 7 to 11. Further, a 3 mmφ granular catalyst was prepared in the same manner as in Catalyst 1, and then 5
Calcination was performed at 00 ° C. for 5 hours to obtain catalysts 7 to 11.

【0014】(触媒12〜21の調製)上記触媒1の調
製法において、γ−Al23担持Pt触媒粉末に対し
て、助触媒としてFe、Mn、Zn、Cu、W、P、
S、Co、Cr、Snを担持するため、各金属のアンモ
ニウム塩又は硝酸塩の水溶液にγ−Al23担持Pt触
媒粉末を浸漬して、各々の金属で0.5%担持させ、乾
燥させた後、600℃で5時間焼成を行った。さらに、
触媒1と同様な方法により3mmφの粒状触媒を調製し
た後、500℃で5時間焼成して、触媒12〜21を得
た。
(Preparation of catalysts 12 to 21) In the preparation method of the above catalyst 1, Fe, Mn, Zn, Cu, W, P as a co-catalyst was added to the γ-Al 2 O 3 -supported Pt catalyst powder.
In order to support S, Co, Cr, and Sn, γ-Al 2 O 3 -supported Pt catalyst powder is immersed in an aqueous solution of ammonium salt or nitrate of each metal to support 0.5% of each metal, and dried. After that, firing was performed at 600 ° C. for 5 hours. further,
A 3 mmφ granular catalyst was prepared by a method similar to that of the catalyst 1, and then calcined at 500 ° C. for 5 hours to obtain catalysts 12 to 21.

【0015】(触媒22の調製)上記触媒1の調製法に
おいて、γアルミナに担持する白金の担持法として、含
浸法の代わりにイオン交換法を用いた。白金原料として
ジニトロジアミン白金水溶液(0.1M溶液)100m
lを用いて、これにγアルミナを10g添加し、40℃
で3時間攪拌し、陽イオン交換を行った。そして濾過し
た後、イオン交換水で水洗し、触媒1と同様な方法にて
乾燥焼成し、3mmφに調製した後、500℃で5時間
焼成して、触媒22を得た。なお、本触媒22の白金担
持量は1.2重量%であった。
(Preparation of catalyst 22) In the preparation method of catalyst 1 described above, an ion exchange method was used as a method for supporting platinum supported on γ-alumina instead of the impregnation method. 100m of dinitrodiamine platinum aqueous solution (0.1M solution) as platinum raw material
10 g of γ-alumina was added to this, and the temperature was 40 ° C.
After stirring for 3 hours, cation exchange was performed. Then, after filtering, it was washed with ion-exchanged water, dried and calcined in the same manner as the catalyst 1, adjusted to 3 mmφ, and calcined at 500 ° C. for 5 hours to obtain a catalyst 22. The amount of platinum supported on this catalyst 22 was 1.2% by weight.

【0016】(触媒23、24の調製)上記触媒1の調
製法において、γアルミナに担持する白金として0.3
%、2%をそれぞれ担持した触媒を調製した。触媒1と
同様な方法にて乾燥焼成し、3mmφに調製した後、5
00℃で5時間焼成して、触媒23、24を得た。
(Preparation of catalysts 23 and 24) In the preparation method of the catalyst 1 described above, 0.3 as platinum supported on γ-alumina was used.
%, 2% were respectively supported to prepare a catalyst. After drying and firing in the same manner as in Catalyst 1 to prepare 3 mmφ, 5
The catalyst was calcined at 00 ° C. for 5 hours to obtain catalysts 23 and 24.

【0017】(比較触媒1〜3の調製)上記触媒1の調
製法において、γアルミナに担持する触媒として、塩化
白金酸の代わりに、塩化ルテニウム、塩化ニッケル、塩
化ロジウムの各水溶液を各々含浸して粉末触媒化し、各
々金属でRu:1%、Ni:13%、Rh:1%を担持
させた。さらに、触媒1と同様な方法にて乾燥焼成し、
3mmφに調製した後、500℃で5時間焼成して、比
較触媒1〜3を得た。
(Preparation of Comparative Catalysts 1 to 3) In the preparation method of Catalyst 1 above, as a catalyst supported on γ-alumina, each aqueous solution of ruthenium chloride, nickel chloride and rhodium chloride was impregnated in place of chloroplatinic acid. And powder-catalyzed to support Ru: 1%, Ni: 13%, and Rh: 1% by metal. Further, it is dried and calcined in the same manner as the catalyst 1,
After being adjusted to 3 mmφ, it was calcined at 500 ° C. for 5 hours to obtain comparative catalysts 1 to 3.

【0018】(比較触媒4、5の調製)上記触媒1の調
製法において、γアルミナの代わりに、αアルミナ(比
表面積3m2/g)、非晶質SiO2(比表面積30m2
/g)を用いてPtを担持させた。さらに、触媒1と同
様な方法にて乾燥焼成し、3mmφに調製した後、50
0℃で5時間焼成して、比較触媒4、5を得た。
(Preparation of Comparative Catalysts 4 and 5) In the preparation method of the above catalyst 1, α-alumina (specific surface area 3 m 2 / g), amorphous SiO 2 (specific surface area 30 m 2 ) were used in place of γ-alumina.
/ G) was used to support Pt. Further, after being dried and calcined in the same manner as the catalyst 1 to prepare 3 mmφ, 50
It was calcined at 0 ° C. for 5 hours to obtain comparative catalysts 4 and 5.

【0019】実施例2(酸量測定方法)触媒担体の主要
な物性値である固体酸量の測定を触媒学会方法に準じ
て、以下の方法により行った。方法はパルス反応器を用
いた。ピリジン昇温脱離法により行った。昇温脱離法は
サンプル12.5mg、キャリヤーガスHe流量45m
l/minの条件でサンプルの前処理をHe気流中、4
50℃で30分間行った後、サンプルを150℃に保持
して、ピリジンを0.2μl、繰り返し5回パルス供給
した。次に、150の吸着温度から750℃まで昇温速
度30℃/minで昇温し、脱離したピリジン量を水素
炎イオン検出器で測定して、固体酸量を求めた。上記触
媒1〜24、比較触媒1〜4で用いた触媒の固体酸量を
以下の表1に示す。
Example 2 (Method for measuring acid content) The solid acid content, which is the main physical property value of the catalyst carrier, was measured by the following method in accordance with the Society of Catalysis. The method used a pulse reactor. It was carried out by the pyridine temperature programmed desorption method. Thermal desorption method is 12.5 mg sample, carrier gas He flow rate is 45 m
The pretreatment of the sample was performed in a He air flow at a rate of 1 / min for 4
After 30 minutes at 50 ° C., the sample was kept at 150 ° C. and 0.2 μl of pyridine was repeatedly pulsed 5 times. Next, the temperature was raised from the adsorption temperature of 150 to 750 ° C. at a temperature rising rate of 30 ° C./min, and the amount of desorbed pyridine was measured by a hydrogen flame ion detector to determine the amount of solid acid. The solid acid amounts of the catalysts used in Catalysts 1 to 24 and Comparative Catalysts 1 to 4 are shown in Table 1 below.

【0020】[0020]

【表1】 [Table 1]

【0021】実施例3 (ジメチルエーテル水蒸気改質試験:反応条件1)上記
触媒1〜24、比較触媒1〜5を用いて、以下の条件に
おいてジメチルエーテルの水蒸気改質試験を行った。原
料はジメチルエーテル(CH3OCH3)と水蒸気と空気
を[水蒸気/ジメチルエーテル(C1ベース)]=4.
0(モル比)の条件で混合させ、20cc充填した触媒
層(3mmφペレット充填:円筒形:径26mmφ、長
さ25mm)を触媒層平均温度450℃、550℃、6
50℃に保持し、上記原料をGHSV5000h-1(流
量100L/h)で供給した。
Example 3 (Dimethyl ether steam reforming test: reaction condition 1) Using the above catalysts 1 to 24 and comparative catalysts 1 to 5, a steam reforming test of dimethyl ether was conducted under the following conditions. The raw materials are dimethyl ether (CH 3 OCH 3 ), steam and air [steam / dimethyl ether (C1 base)] = 4.
The catalyst layer (3 mmφ pellet filling: cylindrical shape: diameter 26 mmφ, length 25 mm) was mixed under the condition of 0 (molar ratio) and filled with 20 cc, and the catalyst layer average temperature 450 ° C., 550 ° C., 6
The temperature was maintained at 50 ° C., and the above raw materials were supplied at GHSV 5000 h −1 (flow rate 100 L / h).

【0022】反応管出口ガス組成の炭化水素はガスクロ
マトグラムで分析した。ジメチルエーテル転化率(η)
は=[1−出口ジメチルエーテル/入口ジメチルエーテ
ル(C1ベース)]×100にて求めた。また、生成物
の水素濃度、副生するCH4濃度(いずれもドライベー
ス)もガスクロマトグラフ法にて求めた。上記触媒の活
性評価試験結果を表2に示す。
Hydrocarbons having a gas composition at the outlet of the reaction tube were analyzed by a gas chromatogram. Dimethyl ether conversion (η)
= [1-outlet dimethyl ether / inlet dimethyl ether (C1 base)] × 100. Further, the hydrogen concentration of the product and the CH 4 concentration of by-product (both are dry bases) were also determined by gas chromatography. Table 2 shows the results of the activity evaluation test of the above catalyst.

【0023】[0023]

【表2】 [Table 2]

【0024】上記結果より、本発明に係る触媒1〜24
はいずれの反応温度においてもジメチルエーテル転化率
90%以上、水素濃度60%以上、CH4副生率5%以
下となり、低温で高効率にて水素を製造できることを確
認した。しかし、比較触媒1〜5は何れも550℃以下
においてCH4の副生が多く、水素濃度が低かった。よ
って、高濃度の水素を製造するためには、650℃付近
の高温が必要であることがわかる。なお、本発明の触媒
1〜24において、十分な水素製造活性を有し、かつC
4が少ない理由として、メタネーション作用が低いP
tを活性金属に用いたことと、水とジメチルエーテルの
吸着力が強く、加水分解作用を有する0.1mmol/
g以上の固体酸量を持つ担体を用いたこととによると考
えられる。
From the above results, the catalysts 1 to 24 according to the present invention
Is the conversion rate of dimethyl ether at any reaction temperature
90% or more, hydrogen concentration 60% or more, CHFourBy-product rate of 5% or less
Below, we confirmed that hydrogen can be produced with high efficiency at low temperature.
I confirmed. However, the comparative catalysts 1 to 5 are all 550 ° C. or lower.
At CHFourThe hydrogen concentration was low. Yo
Therefore, in order to produce high concentration hydrogen, around 650 ℃
It can be seen that the high temperature is required. The catalyst of the present invention
1 to 24 have sufficient hydrogen production activity, and C
H FourThe reason is that P is low in methanation action.
t was used as the active metal and that of water and dimethyl ether
0.1 mmol / with strong adsorptivity and hydrolysis
It is considered that it is because a carrier having a solid acid amount of g or more was used.
available.

【0025】実施例4 上記触媒1を用いて、実施例3で行った水蒸気改質条件
において、空気/ジメチルエーテル(C1ベース):
1.5、2.5(モル比)の空気を供給し、オートサー
マル条件において活性評価を行った。さらに、水蒸気/
ジメチルエーテル(C1ベース)モル比の影響について
も検討を行った。表3に触媒温度450℃、550℃の
試験条件と活性評価結果を示す(Run番号30〜3
4)。
Example 4 Using the above catalyst 1, under the steam reforming conditions carried out in Example 3, air / dimethyl ether (C1 based):
Air was supplied at 1.5 and 2.5 (molar ratio), and the activity was evaluated under autothermal conditions. In addition, steam /
The influence of the dimethyl ether (C1 base) molar ratio was also examined. Table 3 shows the test conditions at catalyst temperatures of 450 ° C. and 550 ° C. and the activity evaluation results (Run numbers 30 to 3).
4).

【0026】[0026]

【表3】 [Table 3]

【0027】表3に示す試験結果より、本発明に係る触
媒1を用いて、空気を添加したオートサーマル条件や部
分酸化条件、および種々の空気、水蒸気分圧条件におい
ても450℃程度で十分なジメチルエーテル分解活性を
有し、さらにCH4の副生も無いことを確認した。
From the test results shown in Table 3, using the catalyst 1 according to the present invention, about 450 ° C. is sufficient even under autothermal conditions and partial oxidation conditions in which air is added, and various air and steam partial pressure conditions. It was confirmed that the compound had a dimethyl ether decomposition activity and that CH 4 was not a byproduct.

【0028】[0028]

【発明の効果】上記したところから明らかなように、本
発明によれば、ジメチルエーテルの改質反応を700℃
以下の低温でも行うことを可能とし、かつ高濃度の水素
を効率良く生成することができるジメチルエーテル改質
触媒およびジメチルエーテルの改質方法が提供される。
As is apparent from the above, according to the present invention, the dimethyl ether reforming reaction is conducted at 700 ° C.
Provided are a dimethyl ether reforming catalyst and a method for reforming dimethyl ether, which can be carried out at the following low temperatures and can efficiently generate high concentration hydrogen.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/89 B01J 27/185 M 27/02 29/44 M 27/185 29/88 M 29/44 32/00 29/88 37/30 32/00 C01B 3/32 Z 37/30 B01J 23/64 104M C01B 3/32 103M (72)発明者 米村 将直 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 渡辺 悟 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G040 EA01 EA06 EA07 EC02 EC03 EC07 4G069 AA03 AA08 BA01A BA01B BA04A BA04B BA05A BA05B BA07A BB06A BB06B BC22A BC22B BC31A BC31B BC35A BC35B BC58A BC58B BC60A BC60B BC62A BC62B BC66A BC66B BC67A BC67B BC75A BC75B BD07A BD07B BD08A BD08B CC40 DA05 EA02Y EC22X EC22Y EC30 FA01 FA02 FB09 FB14 FB26 FB30 FB61 ZA10B ZA37B ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 23/89 B01J 27/185 M 27/02 29/44 M 27/185 29/88 M 29/44 32 / 00 29/88 37/30 32/00 C01B 3/32 Z 37/30 B01J 23/64 104M C01B 3/32 103M (72) Inventor Masanao Yonemura 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Satoru Watanabe 4-6-22 Kannon-shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture BA01B BA04A BA04B BA05A BA05B BA07A BB06A BB06B BC22A BC22B BC31A BC31B BC35A BC35B BC58A BC58B BC60A BC60B BC62A BC62B BC66A BC66B BC67A BC67B BC75A BC75B BD07A BD07B BD08A BD08B CC40 DA05 C30 FA01 FA02 FB09 FB14 FB26 FB30 FB61 ZA10B ZA37B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 固体酸作用を有する担体に、少なくとも
Ptを含む活性金属を担持させたことを特徴とするジメ
チルエーテル改質触媒。
1. A dimethyl ether reforming catalyst characterized in that an active metal containing at least Pt is supported on a carrier having a solid acid action.
【請求項2】 上記固体酸作用を有する担体がγアルミ
ナ、θアルミナ、アナターゼ型チタニア、ジルコニア、
ゼオライトおよびメタロシリケートから成るグループか
ら選ばれた少なくとも1種の担体であるか、またはT
i、Si、AlおよびZrから成るグループから選ばれ
た少なくとも2種以上の複合酸化物であることを特徴と
する請求項1のジメチルエーテル改質触媒。
2. The carrier having a solid acid action is γ-alumina, θ-alumina, anatase-type titania, zirconia,
At least one carrier selected from the group consisting of zeolites and metallosilicates, or T
The dimethyl ether reforming catalyst according to claim 1, which is a composite oxide of at least two kinds selected from the group consisting of i, Si, Al and Zr.
【請求項3】 上記固体酸作用を有する担体の固体酸量
が、ピリジン吸着量で0.1mmol/gを超えること
を特徴とする請求項1または2のジメチルエーテル改質
触媒。
3. The dimethyl ether reforming catalyst according to claim 1, wherein the carrier having a solid acid action has a solid acid amount of more than 0.1 mmol / g in terms of pyridine adsorption amount.
【請求項4】 上記Ptを含む活性金属がPtと、F
e、Mn、Zn、Cu、W、P、S、Co、Crおよび
Snから成るグループから選ばれた少なくとも1種との
組み合わせであることを特徴とする請求項1〜3のいず
れかのジメチルエーテル改質触媒。
4. The active metal containing Pt is Pt and F.
A combination with at least one member selected from the group consisting of e, Mn, Zn, Cu, W, P, S, Co, Cr and Sn. Quality catalyst.
【請求項5】 請求項1〜4のいずれかのジメチルエー
テル改質触媒を用いてジメチルエーテルを改質すること
を特徴とするジメチルエーテル改質方法。
5. A dimethyl ether reforming method, which comprises reforming dimethyl ether using the dimethyl ether reforming catalyst according to claim 1.
【請求項6】 ジメチルエーテルに対し、水と酸素を加
え、部分酸化反応も生じさせるようにしたことを特徴と
する請求項5のジメチルエーテル改質方法。
6. The method for reforming dimethyl ether according to claim 5, wherein water and oxygen are added to dimethyl ether to cause a partial oxidation reaction.
【請求項7】 請求項6のジメチルエーテル改質方法に
おいて、ジメチルエーテル改質反応と上記部分酸化反応
とによって、オートサーマル反応を行うようにしたこと
を特徴とするジメチルエーテル改質方法。
7. The dimethyl ether reforming method according to claim 6, wherein an autothermal reaction is performed by the dimethyl ether reforming reaction and the partial oxidation reaction.
JP2001238658A 2001-08-07 2001-08-07 Dimethyl ether reforming catalyst and dimethyl ether reforming method Expired - Lifetime JP4831800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238658A JP4831800B2 (en) 2001-08-07 2001-08-07 Dimethyl ether reforming catalyst and dimethyl ether reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238658A JP4831800B2 (en) 2001-08-07 2001-08-07 Dimethyl ether reforming catalyst and dimethyl ether reforming method

Publications (2)

Publication Number Publication Date
JP2003047846A true JP2003047846A (en) 2003-02-18
JP4831800B2 JP4831800B2 (en) 2011-12-07

Family

ID=19069536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238658A Expired - Lifetime JP4831800B2 (en) 2001-08-07 2001-08-07 Dimethyl ether reforming catalyst and dimethyl ether reforming method

Country Status (1)

Country Link
JP (1) JP4831800B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095738A (en) * 2003-09-24 2005-04-14 Mitsubishi Gas Chem Co Inc Catalyst for steam reforming of dimethyl ether having solid acid-containing coating layer
JP2007001795A (en) * 2005-06-22 2007-01-11 Kansai Electric Power Co Inc:The Dimethyl ether reforming system and its operation method
JP2007131519A (en) * 2005-10-14 2007-05-31 Osaka Gas Co Ltd Method for producing hydrogen-containing gas
JP2014100684A (en) * 2012-11-21 2014-06-05 Nissan Motor Co Ltd Hydrogen-generating catalyst and system using hydrogen-generating catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165936A (en) * 1992-09-03 1994-06-14 Chisso Corp Platinum catalyst supported on alumina
WO1999048804A1 (en) * 1998-03-24 1999-09-30 Johnson Matthey Public Limited Company Catalytic generation of hydrogen
JPH11278803A (en) * 1998-01-21 1999-10-12 Haldor Topsoe As Production of hydrogen rich gas
JP2000000466A (en) * 1998-04-17 2000-01-07 Nkk Corp Catalyst for production of synthetic gas and production of synthetic gas
JP2001096159A (en) * 1999-09-29 2001-04-10 Daihatsu Motor Co Ltd Dimethyl ether reforming catalyst and fuel cell device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06165936A (en) * 1992-09-03 1994-06-14 Chisso Corp Platinum catalyst supported on alumina
JPH11278803A (en) * 1998-01-21 1999-10-12 Haldor Topsoe As Production of hydrogen rich gas
WO1999048804A1 (en) * 1998-03-24 1999-09-30 Johnson Matthey Public Limited Company Catalytic generation of hydrogen
JP2000000466A (en) * 1998-04-17 2000-01-07 Nkk Corp Catalyst for production of synthetic gas and production of synthetic gas
JP2001096159A (en) * 1999-09-29 2001-04-10 Daihatsu Motor Co Ltd Dimethyl ether reforming catalyst and fuel cell device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095738A (en) * 2003-09-24 2005-04-14 Mitsubishi Gas Chem Co Inc Catalyst for steam reforming of dimethyl ether having solid acid-containing coating layer
JP2007001795A (en) * 2005-06-22 2007-01-11 Kansai Electric Power Co Inc:The Dimethyl ether reforming system and its operation method
JP2007131519A (en) * 2005-10-14 2007-05-31 Osaka Gas Co Ltd Method for producing hydrogen-containing gas
JP2014100684A (en) * 2012-11-21 2014-06-05 Nissan Motor Co Ltd Hydrogen-generating catalyst and system using hydrogen-generating catalyst

Also Published As

Publication number Publication date
JP4831800B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
KR101164024B1 (en) Cobalt based catalysts for reforming of methane by carbon dioxide, and production method of synthesis gas using them
US20100168257A1 (en) Metal-doped nickel oxides as catalysts for the methanation of carbon monoxide
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
Le et al. The impact of Ce-Zr addition on nickel dispersion and catalytic behavior for CO 2 methanation of Ni/AC catalyst at low temperature
WO2002078840A1 (en) Catalyst for reforming hydrocarbon and method for preparation thereof, and process for reforming hydrocarbon using said catalyst
JP2004522672A (en) Suppression of methanation activity by water gas conversion catalyst
US8609577B2 (en) Catalyst for steam reforming of methanol
WO2003092888A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
JP5096712B2 (en) Carbon monoxide methanation method
MX2008006912A (en) Process conditions for pt-re bimetallic water gas shift catalysts
JPH11276893A (en) Metal fine particle-supported hydrocarbon modifying catalyst and its production
WO2003086627A1 (en) Modification catalyst composition
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JP4831800B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
WO2014182020A1 (en) Monolith catalyst for carbon dioxide reforming reaction, production method for same, and production method for synthesis gas using same
KR100579945B1 (en) Catalyst for water-gas shift reaction of carbon monoxide
Rosso et al. Preferential CO oxidation over Pt/3A zeolite catalysts in H 2-rich gas for fuel cell application
JP2001054734A (en) Catalyst for selectively oxidizing carbon monoxide, selective removal of carbon monoxide and catalyst and method for purifying hydrogen
US20050096212A1 (en) Catalyst for the conversion of carbon monoxide
JP4175452B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
Soloviev Oxidative reforming of methane on structured Ni-Al 2 O 3/cordierite catalysts
JP2000345175A (en) Selective removal of carbon monoxide
JP4890057B2 (en) Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same
JPH02307802A (en) Method for reforming methanol
JP2003146615A (en) Method for manufacturing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4831800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term