JP2003045441A - Method for manufacturing high polymer electrolyte fuel cell - Google Patents

Method for manufacturing high polymer electrolyte fuel cell

Info

Publication number
JP2003045441A
JP2003045441A JP2001233210A JP2001233210A JP2003045441A JP 2003045441 A JP2003045441 A JP 2003045441A JP 2001233210 A JP2001233210 A JP 2001233210A JP 2001233210 A JP2001233210 A JP 2001233210A JP 2003045441 A JP2003045441 A JP 2003045441A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
catalyst
hydrogen ion
ion conductive
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001233210A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hori
堀  喜博
Takeshi Yonamine
毅 与那嶺
Yasuo Takebe
安男 武部
Kazuhito Hado
一仁 羽藤
Makoto Uchida
誠 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001233210A priority Critical patent/JP2003045441A/en
Publication of JP2003045441A publication Critical patent/JP2003045441A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for sticking hydrogen ion conductive high polymer electrolyte to thinly and uniformly to catalyst powder when sticking it to the catalyst powder when manufacturing catalyst powder of a fuel cell, requiring no measure such as an explosion-proof construction for a process and a device in an inert gas atmosphere for ignition caused by combustion of a catalyst. SOLUTION: A solvent is removed by fluidizing the catalyst powder in a dry atmosphere, and spraying the hydrogen ion conductive high polymer solution containing 25% or more moisture in the solvent or a dispersion to the catalyst powder, and sufficiently drying it, and the only hydrogen conductive high polymer electrolyte is uniformly stuck to the surface of the catalyst powder for electrode reaction. An inlet 5 for the gas to fluidizingly dry the catalyst powder, a granulating plate 6, an agitating blade 7, a pulse jet 9, a high pressure spray 11 to spray the hydrogen ion conductive high polymer electrolyte solution or the dispersion and a fluidizing part 2 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子電解質型燃
料電池の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】高分子電解質を用いた燃料電池は、水素
を含有する燃料ガスと、空気など酸素を含有する燃料ガ
スとを、電気化学的に反応させることで、電力と熱とを
同時に発生させるものである。その構造は、まず、水素
イオンを選択的に輸送する高分子電解質膜の両面に、白
金系の金属触媒を担持したカーボン粉末を触媒体とし、
これに水素イオン伝導性高分子電解質を混合したもので
触媒反応層を形成する。次に、この触媒反応層の外面
に、燃料ガスの通気性と、電子伝導性を併せ持つ、例え
ば撥水処理を施したカーボンペーパーで拡散層を形成す
る。この触媒反応層と拡散層とを合わせて電極と呼ぶ。
2. Description of the Related Art In a fuel cell using a polymer electrolyte, a fuel gas containing hydrogen and a fuel gas containing oxygen such as air are electrochemically reacted to simultaneously generate electric power and heat. It is what makes me. The structure is such that first, on both sides of a polymer electrolyte membrane that selectively transports hydrogen ions, a carbon powder carrying a platinum-based metal catalyst is used as a catalyst body,
A mixture of this and a hydrogen ion conductive polymer electrolyte forms a catalytic reaction layer. Next, a diffusion layer is formed on the outer surface of the catalytic reaction layer by using, for example, water repellent carbon paper having both fuel gas permeability and electron conductivity. The catalytic reaction layer and the diffusion layer are collectively called an electrode.

【0003】次に、燃料を供給する燃料ガスが外部に漏
れたり、燃料ガスと酸化剤ガスとが互いに混合しないよ
うに、電極の周囲には高分子電解質膜を挟んでガスシー
ル材やガスケットを配置する。このシール材やガスケッ
トは、電極及び高分子電解質膜と一体化し、これをMEA
(電極電解質膜接合体)と呼ぶ。MEAの外側には、これ
を機械的に固定するとともに、隣接したMEAを互いに電
気的に直列に接続するための導電性セパレータ板を配置
する。セパレータ板のMEAと接触する部分には、電極面
に反応ガスを供給し、生成ガスや余剰ガスを運び去るた
めのガス流路を形成する。ガス流路はセパレータ板とを
別に設けることもできるが、セパレータの表面に溝を設
けてガス流路とする方式が一般的である。
Next, in order to prevent the fuel gas supplying the fuel from leaking to the outside and the fuel gas and the oxidant gas from mixing with each other, a gas sealing material or a gasket is provided around the electrodes with a polymer electrolyte membrane sandwiched therebetween. Deploy. This sealing material and gasket are integrated with the electrode and the polymer electrolyte membrane, and the MEA
It is called (electrode-electrolyte membrane assembly). A conductive separator plate for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is arranged outside the MEA. A gas flow path for supplying the reaction gas to the electrode surface and carrying away the generated gas and the surplus gas is formed in a portion of the separator plate that is in contact with the MEA. The gas flow path may be provided separately from the separator plate, but it is common to provide a groove on the surface of the separator to form the gas flow path.

【0004】高分子電解質型燃料電池の電極の拡散層
は、撥水処理を施したカーボン不織布などの多孔質カー
ボン層で構成されることが一般的である。また、触媒反
応層または高分子電解質膜の保湿を目的として、触媒反
応層と拡散層との界面に撥水カーボン層を設けることも
ある。撥水カーボン層は、まず、カーボン粒子と、界面
活性剤を含んだポリフルオロテトラエチレンの微粒子の
ディスパージョンを混合し、これを乾燥あるいはろ過な
どの手法によりカーボン粒子とポリフルオロテトラエチ
レン微粒子の混合体を得る。次に、これに水または有機
溶媒を加えてインク化する。拡散層であるカーボン不織
布などの片面に、スクリーン印刷法やスプレー塗工法、
ドクターブレード法やロールコーター法などでこのイン
クを塗工し、300℃から400℃程度の温度で焼成す
ることによって界面活性剤を焼散することで、撥水カー
ボン層を形成することが一般的である。このとき撥水カ
ーボン層は、電極触媒層と隣接するように配置する。
The diffusion layer of the electrode of the polymer electrolyte fuel cell is generally composed of a porous carbon layer such as a carbon non-woven fabric that has been subjected to a water repellent treatment. A water repellent carbon layer may be provided at the interface between the catalytic reaction layer and the diffusion layer for the purpose of keeping the catalytic reaction layer or the polymer electrolyte membrane moist. The water-repellent carbon layer is prepared by first mixing carbon particles and a dispersion of fine particles of polyfluorotetraethylene containing a surfactant, and then drying or filtering the mixture to mix the carbon particles and the fine particles of polyfluorotetraethylene. Get the body. Next, water or an organic solvent is added thereto to form an ink. On one side such as carbon nonwoven fabric which is a diffusion layer, screen printing method or spray coating method,
It is common to form a water-repellent carbon layer by coating this ink by a doctor blade method or a roll coater method, and then burning the surface-active agent by baking at a temperature of about 300 to 400 ° C. Is. At this time, the water-repellent carbon layer is arranged so as to be adjacent to the electrode catalyst layer.

【0005】一方、触媒反応層は、一般に白金系の貴金
属触媒を担持したカーボン粉末と水素イオン伝導性高分
子電解質との混合物を薄く塗布することで形成する。現
在、水素イオン伝導性高分子電解質としては、パーフル
オロカーボンスルホン酸が一般的に使用されている。触
媒反応層の形成方法は、白金などの触媒を担持したカー
ボン粉末と、エタノールなどのアルコール系溶媒に高分
子電解質を溶解させた高分子電解質溶液とを混合し、こ
れにイソプロピルアルコールやブチルアルコールなどの
比較的高沸点の有機溶媒を添加することでインク化し、
このインクをスクリーン印刷法やスプレー塗工法、ドク
ターブレード法やロールコーター法などを用いて塗布す
る。
On the other hand, the catalytic reaction layer is generally formed by thinly applying a mixture of a carbon powder carrying a platinum-based noble metal catalyst and a hydrogen ion conductive polymer electrolyte. At present, perfluorocarbon sulfonic acid is generally used as the hydrogen ion conductive polymer electrolyte. The catalyst reaction layer is formed by mixing carbon powder supporting a catalyst such as platinum and a polymer electrolyte solution prepared by dissolving a polymer electrolyte in an alcohol solvent such as ethanol, and then adding isopropyl alcohol or butyl alcohol. Ink is formed by adding the organic solvent of relatively high boiling point of
This ink is applied using a screen printing method, a spray coating method, a doctor blade method, a roll coater method, or the like.

【0006】ところで、高分子電解質を用いた燃料電池
においては、一般に触媒を担持したカーボン粉末の表面
に比較的薄い水素イオン伝導性高分子電解質の層をでき
るだけ均一に付けるほど、また、できるだけ多くの触媒
に水素イオン伝導性高分子電解質の層を付着させるほど
電極の性能が高くなる。
By the way, in a fuel cell using a polymer electrolyte, generally, a relatively thin layer of a hydrogen ion conductive polymer electrolyte is applied to a surface of carbon powder carrying a catalyst as uniformly as possible, and as many as possible. The more the layer of hydrogen ion conductive polymer electrolyte is attached to the catalyst, the higher the performance of the electrode.

【0007】現在市販されている水素イオン伝導性高分
子電解質溶液は、10%程度の濃度である。このため、
触媒を担持したカーボン粉末に水素イオン伝導性高分子
電解質を混合する場合は、触媒担持カーボン粉末に大量
の溶媒を含む高分子電解質溶液を混合しなければならな
い。そのため、インクの粘度は低下し、スクリーン印刷
法などで必要な十分な高粘度のインクが得ることができ
ない。このために、インクの溶媒を蒸発させ高粘度のイ
ンクを得る手法もあるが、均一なインクを調製すること
が困難である。そこで、あらかじめ水素イオン伝導性高
分子電解質溶液を蒸発乾固させ、これにイソプロピルア
ルコールやブチルアルコールなどの比較的高沸点の有機
溶媒に再溶解させ、所望の濃度の水素イオン伝導性高分
子電解質溶液を調製し、これを用いてインク化する方法
も用いられてきた。
The hydrogen ion conductive polymer electrolyte solution currently on the market has a concentration of about 10%. For this reason,
When the hydrogen ion conductive polymer electrolyte is mixed with the carbon powder supporting the catalyst, the polymer electrolyte solution containing a large amount of solvent must be mixed with the carbon powder supporting the catalyst. Therefore, the viscosity of the ink is lowered, and it is not possible to obtain an ink having a sufficiently high viscosity required by the screen printing method or the like. Therefore, there is a method of evaporating the solvent of the ink to obtain a highly viscous ink, but it is difficult to prepare a uniform ink. Therefore, the hydrogen ion conductive polymer electrolyte solution is evaporated to dryness in advance and redissolved in an organic solvent having a relatively high boiling point, such as isopropyl alcohol or butyl alcohol, to obtain a hydrogen ion conductive polymer electrolyte solution having a desired concentration. Also, a method of preparing and producing an ink using the same has been used.

【0008】一方、触媒表面に水素イオン伝導性高分子
電解質の層を均一に付着させるために、触媒粉末を乾燥
雰囲気中で流動させ、水素イオン伝導性高分子電解質溶
液を噴霧し、十分に乾燥させ、水素イオン伝導性高分子
電解質をコーティングした触媒粉末を調製し、同様に比
較的高沸点の有機溶媒に再溶解させてインク化する方法
も用いられてきた。しかし、水素イオン伝導性高分子電
解質溶液は、エタノ−ルなどの可燃性溶媒を用いている
ために、不活性ガス雰囲気で前記工程を行うことが必要
であった。
On the other hand, in order to uniformly deposit a layer of the hydrogen ion conductive polymer electrolyte on the surface of the catalyst, the catalyst powder is made to flow in a dry atmosphere, the hydrogen ion conductive polymer electrolyte solution is sprayed and dried sufficiently. A method has also been used in which a catalyst powder coated with a hydrogen ion conductive polymer electrolyte is prepared, and similarly dissolved in an organic solvent having a relatively high boiling point to form an ink. However, since the hydrogen ion conductive polymer electrolyte solution uses a flammable solvent such as ethanol, it is necessary to perform the above step in an inert gas atmosphere.

【0009】[0009]

【発明が解決しようとする課題】燃料電池を実用化する
ためには、更なる効率の向上が必要である。そのために
は、触媒層中の触媒担持カーボン粉末の表面に比較的薄
い水素イオン伝導性高分子電解質の層をできるだけ均一
に、また、できるだけ多くの触媒に水素イオン伝導性高
分子電解質の層を付着させることが重要である。
In order to put the fuel cell into practical use, it is necessary to further improve the efficiency. For that purpose, a relatively thin layer of hydrogen ion conductive polymer electrolyte is deposited on the surface of the catalyst-supporting carbon powder in the catalyst layer as uniformly as possible, and a layer of hydrogen ion conductive polymer electrolyte is attached to as many catalysts as possible. It is important to let

【0010】しかしながら、従来の方法では、水素イオ
ン伝導性高分子電解質溶液を蒸発乾固させた場合に、溶
液中に溶解している水素イオン伝導性高分子電解質が、
溶媒の減少とともに周囲の水素イオン伝導性高分子電解
質同士としだいに凝集し、最終的には、大きな水素イオ
ン伝導性高分子電解質の凝集体が生じていた。そして、
これを高粘度のインクにするために高沸点有機溶媒に溶
解させた場合でも、水素イオン伝導性高分子電解質の比
較的大きな凝集体が触媒担持カーボン粉末に付着するだ
けであった。その結果、均一に触媒粉末に水素イオン伝
導性高分子電解質を付着させようとすると、水素イオン
伝導性高分子電解質を過剰に導入する必要があり、反応
ガスの拡散性が阻害されるために電極の性能が低下する
という問題があった。また、逆に反応ガスの拡散性の確
保を優先させると、水素イオン伝導性高分子電解質の量
を減らす結果、触媒粉末の一部に水素イオン伝導性高分
子電解質が付着していないものが発生してくるため、電
池の性能が低下するという問題があった。
However, in the conventional method, when the hydrogen ion conductive polymer electrolyte solution is evaporated to dryness, the hydrogen ion conductive polymer electrolyte dissolved in the solution is
As the amount of solvent decreased, the surrounding hydrogen ion conductive polymer electrolytes gradually aggregated with each other, and eventually large hydrogen ion conductive polymer electrolyte aggregates were formed. And
Even when it was dissolved in a high-boiling point organic solvent to obtain a high-viscosity ink, a relatively large aggregate of the hydrogen ion conductive polymer electrolyte was merely attached to the catalyst-supporting carbon powder. As a result, when trying to uniformly attach the hydrogen ion conductive polymer electrolyte to the catalyst powder, it is necessary to excessively introduce the hydrogen ion conductive polymer electrolyte, and the diffusibility of the reaction gas is hindered. However, there was a problem that the performance of the machine deteriorated. Conversely, if priority is given to ensuring the diffusivity of the reaction gas, the amount of hydrogen ion conductive polymer electrolyte is reduced, and as a result, some of the catalyst powder does not have hydrogen ion conductive polymer electrolyte attached. Therefore, there was a problem that the performance of the battery deteriorates.

【0011】[0011]

【課題を解決するための手段】以上の前記課題を解決す
るためには、触媒粉末を乾燥雰囲気中で流動させ、水素
イオン伝導性高分子電解質溶液または分散液を噴霧し、
十分に乾燥させ、水素イオン伝導性高分子電解質をコー
ティングした触媒粉末を調製する方法が考えられる。し
かし、水素イオン伝導性高分子電解質溶液は、エタノ−
ル、イソプロパノ−ルなどの可燃性溶媒を用いているた
めに、噴霧工程において触媒燃焼に伴う発火などの危険
がある。これに対して、装置内を不活性ガス雰囲気した
り、装置の防爆構造などの対策が必要であった。本発明
は上記課題を解決するもので、水素イオン伝導性高分子
電解質が触媒粉末に薄く均一に付着させることを可能と
し、水素イオン伝導性高分子電解質溶液の溶媒が少なく
とも25%以上の水を用いているための触媒燃焼に伴う
発火などに対して、不活性ガス雰囲気での工程や装置の
防爆構造などの対策などを必要としない製造方法を提供
することができる。
In order to solve the above problems, the catalyst powder is made to flow in a dry atmosphere and a hydrogen ion conductive polymer electrolyte solution or dispersion is sprayed,
A method of preparing a catalyst powder which is sufficiently dried and coated with a hydrogen ion conductive polymer electrolyte can be considered. However, the hydrogen ion conductive polymer electrolyte solution is
Since a flammable solvent such as hydrogen chloride and isopropanol is used, there is a risk of ignition accompanying catalyst combustion in the spraying process. On the other hand, it was necessary to take measures such as creating an inert gas atmosphere inside the device and providing an explosion-proof structure for the device. Means for Solving the Problems The present invention solves the above-mentioned problems, and enables the hydrogen ion conductive polymer electrolyte to be thinly and uniformly attached to the catalyst powder, and the solvent of the hydrogen ion conductive polymer electrolyte solution is at least 25% It is possible to provide a manufacturing method that does not require measures such as a process in an inert gas atmosphere or an explosion-proof structure of an apparatus against ignition or the like due to catalytic combustion because it is used.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図1を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIG.

【0013】図1は、スプレードライ式装置の一つの概
念図である。この装置においては、下部円柱状容器1に
触媒粉末を入れ、11の高圧スプレーから11aにした
がって、水素イオン伝導性高分子電解質溶液または分散
液を噴霧することができる。また、触媒粉末は、5のガ
ス導入口から供給される一定温度の空気により容器内で
乾燥させることができる。導入した空気は、ガス流れ方
向を示した矢印5a、5bにしたがって、流通する。そ
して、下部円柱形状容器部1の外周縁部に設けたスリッ
トと、造粒プレート6を設けてあり、流動風量が外周に
向かって大きくなるように開孔した通気スリットを通過
し、下部円柱状容器1の内部に吹き上がる。この空気に
よる流動風により、下部円柱状容器1に投入した触媒担
持粒子を逆円錐上に広がった流動部2で流動させること
ができる。
FIG. 1 is a conceptual view of a spray-dry type apparatus. In this apparatus, the catalyst powder can be placed in the lower cylindrical container 1 and the hydrogen ion conductive polymer electrolyte solution or dispersion can be sprayed from 11 high pressure sprays according to 11a. Further, the catalyst powder can be dried in the container by the air having a constant temperature supplied from the gas introduction port 5. The introduced air flows according to the arrows 5a and 5b indicating the gas flow direction. Then, a slit provided on the outer peripheral edge of the lower cylindrical container portion 1 and a granulating plate 6 are provided, and the air passes through a ventilation slit that is opened so that the amount of flowing air increases toward the outer periphery, and the lower cylindrical shape It blows up inside the container 1. By the flowing air of the air, the catalyst-supported particles put in the lower cylindrical container 1 can be made to flow in the flowing portion 2 spread on the inverted cone.

【0014】さらに、造粒プレート6の上部に撹拌羽根
7を設けてあり、これにより、沈降してきた触媒担持粒
子は、造粒プレート6と撹拌羽根7の間のギャップ8で
造粒することができる。また、撹拌羽根7は触媒担持粒
子を撹拌、流動させる役目と、粉砕する役目を果たすこ
とができる。パルスジェット9は、下部円柱状容器1の
側面に設けた圧縮ガス噴射ノズルである。高圧ガス流れ
方向を示す9aに従って、撹拌羽根7の中心部に位置す
る円錐状の衝突ターゲット10に向かって、高圧ジェッ
トを間欠的に吹き込めるようにした。これにより、流動
状態の触媒担持粒子をジェット粉砕で一次粒子まで粉砕
することができる。
Further, a stirring blade 7 is provided on the upper part of the granulating plate 6, whereby the catalyst-supported particles that have settled can be granulated in the gap 8 between the granulating plate 6 and the stirring blade 7. it can. In addition, the stirring blade 7 can serve to stir and flow the catalyst-supported particles and to serve to crush the particles. The pulse jet 9 is a compressed gas injection nozzle provided on the side surface of the lower cylindrical container 1. The high-pressure jet was intermittently blown toward the conical collision target 10 located at the center of the stirring blade 7 according to 9a indicating the high-pressure gas flow direction. As a result, the catalyst-supported particles in a fluidized state can be crushed into primary particles by jet crushing.

【0015】また、系内に導入された空気は、上部円柱
状容器部3に配置されたバグフィルター4によって、電
極反応触媒粉末をフィルトレーションし、空気のみをガ
ス流れ方向を示す5cにしたがい系外に排出できる。
Further, the air introduced into the system is subjected to filtration of the electrode reaction catalyst powder by the bag filter 4 arranged in the upper cylindrical container portion 3, and only air is subjected to 5c indicating the gas flow direction. Can be discharged outside the system.

【0016】上記図1の装置により、触媒粉末を流動さ
せ、撹拌、粉砕しながら、水素イオン伝導性高分子電解
質溶液または分散液を噴霧することができ、造粒も乾燥
もさせることができる。
With the apparatus shown in FIG. 1, the hydrogen ion conductive polymer electrolyte solution or dispersion can be sprayed while the catalyst powder is made to flow, stirred and pulverized, and it can be granulated and dried.

【0017】この方法では、触媒粉末に、溶媒中の水分
が25%以上の水素イオン伝導性高分子電解質の溶液ま
たは分散液を噴霧すると、触媒粉末の表面に、水素イオ
ン伝導性高分子電解質が均一に付着する。これを乾燥す
ることで溶媒を除去し、電極反応用の触媒粉末の表面に
水素イオン伝導性高分子のみを均一に付着させることが
できる。このとき、水分が25%以上含む溶媒を用いる
ことで噴霧工程中に触媒燃焼による樹脂の劣化防止や不
活性ガスを使用することが不要になる効果がある。ま
た、粉砕工程が加わることで、粒子の状態が細かく粉砕
され、噴霧しにくい部分の触媒部分が表面に現れ、水素
イオン伝導性高分子電解質が付着することが可能とな
り、電池特性が向上する。
In this method, when the catalyst powder is sprayed with a solution or dispersion of a hydrogen ion conductive polymer electrolyte having a water content in the solvent of 25% or more, the hydrogen ion conductive polymer electrolyte is formed on the surface of the catalyst powder. Attach evenly. By drying this, the solvent can be removed and only the hydrogen ion conductive polymer can be uniformly attached to the surface of the catalyst powder for electrode reaction. At this time, by using a solvent containing 25% or more of water, there is an effect that it becomes unnecessary to prevent deterioration of the resin due to catalytic combustion and to use an inert gas during the spraying process. In addition, the addition of the pulverization step pulverizes the state of the particles finely, the catalyst portion of the portion which is difficult to be sprayed appears on the surface, and the hydrogen ion conductive polymer electrolyte can be attached to improve the battery characteristics.

【0018】[0018]

【実施例】次に本発明の具体例を説明する。EXAMPLES Next, specific examples of the present invention will be described.

【0019】(実施例1)本実施例では、まず、図1に
示す装置で触媒粉末に水素イオン伝導性高分子電解質が
付着したものを調整し、その後それを用いてMEAを作
製した。
Example 1 In this example, first, a catalyst powder to which a hydrogen ion conductive polymer electrolyte was attached was prepared by the apparatus shown in FIG. 1, and then MEA was produced using the catalyst powder.

【0020】30nmの平均一次粒子径を持つ導電性カ
ーボン粒子であるケッチェンブラックEC(オランダ
国、AKZO Chemie社)に、平均粒径約30Å
の白金粒子を50重量%担持したものを、空気極側の触
媒担持粒子とした。またケッチェンブラックECに平均
粒径約30Åの白金粒子とルテニウム粒子をそれぞれ2
5重量%担持したものを燃料極側の触媒担持粒子とし
た。
Ketjen Black EC (AKZO Chemie, Netherlands), which is a conductive carbon particle having an average primary particle diameter of 30 nm, has an average particle diameter of about 30Å.
50% by weight of the platinum particles were used as the catalyst supporting particles on the air electrode side. In addition, each of Ketjen Black EC contains 2 platinum particles and 2 ruthenium particles each having an average particle size of about 30Å.
The particles supporting 5 wt% were used as the catalyst supporting particles on the fuel electrode side.

【0021】図1で示した装置を用い、この触媒担持粒
子の表面に水素イオン伝導性高分子電解質の溶液を噴霧
しながら乾燥し、触媒担持粒子の表面に、水素イオン伝
導性高分子電解質を接合した。ここで、水素イオン伝導
性高分子は10重量%濃度のパーフルオロカーボンスル
ホン酸(デュポン社製SE10072)を用いた。
Using the apparatus shown in FIG. 1, the catalyst-supported particles are dried while spraying a solution of the hydrogen ion conductive polymer electrolyte on the surfaces thereof, and the catalyst-supported particles are coated with the hydrogen ion conductive polymer electrolyte. Joined. Here, as the hydrogen ion conductive polymer, 10% by weight concentration of perfluorocarbon sulfonic acid (SE10072 manufactured by DuPont) was used.

【0022】装置を用いた工程での詳細な条件は、次の
通りである。触媒担持粒子としての白金を担持したケッ
チェンブラックの投入量は、40g。水素イオン伝導性
高分子電解質の溶液の投入量は185g。高圧スプレー
11による水素イオン伝導性高分子電解質溶液の噴霧速
度は2g/分。窒素ガス入り口温度は、100℃。窒素
ガス風量は0.06m3/分。撹拌羽根7の回転速度は
300rpm。パルスジェット9のOn/Off間隔
は、1回/12秒このようにして得た触媒体は、一次粒
子のレベルで、表面に水素イオン伝導性高分子電解質を
均一に配置しており、また、複次粒子の平均粒径を5μ
mとすることができた。
Detailed conditions in the process using the apparatus are as follows. The amount of Ketjenblack supporting platinum as catalyst supporting particles was 40 g. The amount of the hydrogen ion conductive polymer electrolyte solution charged was 185 g. The spray rate of the hydrogen ion conductive polymer electrolyte solution by the high pressure spray 11 is 2 g / min. Nitrogen gas inlet temperature is 100 ° C. Nitrogen gas flow rate is 0.06 m 3 / min. The rotation speed of the stirring blade 7 is 300 rpm. The On / Off interval of the pulse jet 9 is once for 12 seconds. The catalyst body thus obtained has the hydrogen ion conductive polymer electrolyte uniformly arranged on the surface at the level of primary particles, and Average particle size of secondary particles is 5μ
could be m.

【0023】この触媒体を窒素雰囲気中でエチレングリ
コ−ルと混合し、電極触媒層用のペースト状のインクを
調製した。つぎに、外寸が20cm×32cmの水素イ
オン伝導性高分子電解質膜(デュポン社製ナフィオン1
12)の裏表両面に、電極触媒層用ペーストをスクリー
ン印刷法により塗布した。形成後の反応電極中に含まれ
る白金量は、0.5mg/cm2となるよう調製し、こ
のときの電極触媒層の平均厚みは20μmになるように
調整した。
This catalyst was mixed with ethylene glycol in a nitrogen atmosphere to prepare a paste ink for the electrode catalyst layer. Next, a hydrogen ion conductive polymer electrolyte membrane having an outer size of 20 cm × 32 cm (Dafon Nafion 1
The electrode catalyst layer paste was applied to both the front and back sides of 12) by screen printing. The amount of platinum contained in the reaction electrode after formation was adjusted to 0.5 mg / cm 2, and the average thickness of the electrode catalyst layer at this time was adjusted to 20 μm.

【0024】一方、電極の拡散層となるカーボンペーパ
ーを撥水処理した。外寸16cm×20cm、厚み36
0μmの導電性カーボン粒子のカーボン不織布(東レ
製、TGP―H―120)を、フッ素樹脂含有の水性デ
ィスパージョン(ダイキン工業製、ネオフロンND1)
に含浸した後、これを乾燥し、400℃で30分加熱す
ることで、撥水性を与えた。さらに、このカーボン不織
布の一方の面に、導電性カーボン粉末とPTFE微粉末
を分散させた水溶液とを混合したインクを、スクリーン
印刷法を用いて塗布することで撥水層を形成した。この
とき、撥水層の一部を、カーボン不織布の中に埋め込ん
だ。
On the other hand, the carbon paper to be the diffusion layer of the electrode was subjected to water repellent treatment. External size 16 cm x 20 cm, thickness 36
A carbon nonwoven fabric of 0 μm conductive carbon particles (TGP-H-120 manufactured by Toray) is used as an aqueous dispersion containing a fluororesin (Daikin Industries, Neoflon ND1).
After being impregnated in the solution, it was dried and heated at 400 ° C. for 30 minutes to give water repellency. Further, an ink obtained by mixing conductive carbon powder and an aqueous solution in which PTFE fine powder was dispersed was applied to one surface of this carbon nonwoven fabric by a screen printing method to form a water repellent layer. At this time, a part of the water repellent layer was embedded in the carbon nonwoven fabric.

【0025】つぎに、空気極側の触媒層と燃料極側の触
媒層とを水素イオン伝導性高分子電解質膜の裏表に形成
したのち、前述のカーボンペーパーを撥水層の塗布した
面が触媒層の側に接するようにホットプレスで接合し、
これを電極電解質膜接合体(MEA)とした。さらに、
同時に、作製したMEAの水素イオン伝導性高分子電解
質膜の外周部にゴム製のガスケット板を接合し、冷却水
と燃料ガス及び酸化剤ガス流通用のマニホールド穴を形
成した。
Next, after forming a catalyst layer on the air electrode side and a catalyst layer on the fuel electrode side on both sides of the hydrogen ion conductive polymer electrolyte membrane, the surface on which the above-mentioned carbon paper is coated with the water repellent layer is the catalyst. Join with a hot press so that it touches the side of the layer,
This was used as an electrode electrolyte membrane assembly (MEA). further,
At the same time, a gasket plate made of rubber was joined to the outer peripheral portion of the produced hydrogen ion conductive polymer electrolyte membrane of MEA to form manifold holes for circulating cooling water, fuel gas and oxidant gas.

【0026】つぎに、外寸が20cm×32cm、厚み
が1.3mm、ガス流路および冷却水流路の深さが0・
5mmの樹脂含浸黒鉛板から構成したセパレータを準備
し、セパレータ2枚を用い、MEAシートの一方の面に
酸化剤ガス流路が形成されたセパレータを、裏面に燃料
ガス流路が形成されたセパレータを重ね合わせ、これを
単電池とした。この単電池を2セル積層した後、冷却水
路溝を形成したセパレータでこの2セル積層電池を挟み
込み、このパターンを繰り返して100セル積層の電池
スタックを作製した。このとき、電池スタックの両端部
には、ステンレス製の集電板と電気絶縁材料の絶縁板、
さらに端板と締結ロッドで固定した。このときの締結圧
はセパレータの面積あたり15kgf/cm2とした。
Next, the outer dimensions are 20 cm × 32 cm, the thickness is 1.3 mm, and the depths of the gas passage and the cooling water passage are 0.
A separator composed of a 5 mm resin-impregnated graphite plate was prepared, two separators were used, a separator having an oxidant gas flow channel formed on one surface of an MEA sheet, and a separator having a fuel gas flow channel formed on the back surface. Were piled up to form a single cell. After stacking 2 cells of the unit cell, the 2 cell stack battery was sandwiched between separators having cooling water channel grooves, and this pattern was repeated to fabricate a 100 cell stack battery stack. At this time, at both ends of the battery stack, a stainless steel collector plate and an insulating plate made of an electrically insulating material,
Furthermore, it fixed with the end plate and the fastening rod. The fastening pressure at this time was 15 kgf / cm 2 per area of the separator.

【0027】このように作製した本実施例の高分子電解
質型燃料電池を、80℃に保持し、燃料極側に75℃の
露点となるよう加湿・加温した空気を供給した。その結
果、電流を外部に出力しない無負荷時には、98Vの電
池開放電圧を得た。
The polymer electrolyte fuel cell of this example produced in this manner was maintained at 80 ° C., and humidified and heated air was supplied to the fuel electrode side so that the dew point was 75 ° C. As a result, a battery open circuit voltage of 98 V was obtained when no load was applied and the current was not output to the outside.

【0028】この電池を複数枚積層して、燃料利用率8
5%、酸素利用率60%、電流密度0.7A/cm2
条件で連続発電試験を行い、出力特性の時間変化を測定
した。その結果、本実施例の電池は、8000時間以上
にわたって約14.8kW(66V−224A)の電池
出力を維持することを確認した。
A plurality of these cells are stacked to obtain a fuel utilization rate of 8
A continuous power generation test was performed under the conditions of 5%, oxygen utilization rate of 60%, and current density of 0.7 A / cm 2 , and the time change of output characteristics was measured. As a result, it was confirmed that the battery of this example maintained a battery output of about 14.8 kW (66V-224A) over 8000 hours or more.

【0029】なお、以上では触媒体を、エチレングリコ
−ルと混合し、電極触媒層用のペースト状のインクを調
製したが、インク溶媒塗工用インクにするために、ブタ
ノ−ル、イソプロパノールヘキサン、ヘプタンを用いて
も、同様の高性能が得られることを確認した。
In the above, the catalyst was mixed with ethylene glycol to prepare a paste-like ink for the electrode catalyst layer. However, in order to prepare an ink for ink solvent coating, butanol, isopropanol hexane were used. It was confirmed that the same high performance could be obtained by using heptane.

【0030】(実施例2)本実施例では、乾燥時間を短
縮する目的で、エタノ−ル溶媒からなる9重量%の水素
イオン伝導性高分子電解質(旭硝子社製/フレミオン)
に、水をエタノ−ル溶媒に対して2分の1重量導入し
た。この水素イオン伝導性高分子電解質混合溶液を27
0g用いて、触媒担持粒子に噴霧し、高分子電解質型燃
料電池を実施例1に基づき作製した。また、水素イオン
伝導性高分子電解質溶液を噴霧する際には、噴霧速度を
3g/分とした。これ以外の高分子電解質型燃料電池作
製条件は全て、実施例1と同一とした。その結果、調製
された触媒体は、一次粒子のレベルで水素イオン伝導性
高分子電解質を均一に配置しており、また、複次粒子の
平均粒径を10μmにしたものが得られた。また、燃料
電池の評価方法も、実施例1と同じにした。その結果、
電流を外部に出力しない無負荷時には、98Vの電池開
放電圧を得た。
(Example 2) In this example, for the purpose of shortening the drying time, 9% by weight of a hydrogen ion conductive polymer electrolyte consisting of an ethanol solvent (manufactured by Asahi Glass Co., Ltd./Flemion).
Into the solvent, 1/2 weight of water was introduced into the ethanol solvent. This hydrogen ion conductive polymer electrolyte mixed solution
Using 0 g, the catalyst-supported particles were sprayed and a polymer electrolyte fuel cell was produced based on Example 1. Further, when the hydrogen ion conductive polymer electrolyte solution was sprayed, the spraying rate was 3 g / min. All other conditions for producing the polymer electrolyte fuel cell were the same as in Example 1. As a result, in the prepared catalyst body, the hydrogen ion conductive polymer electrolyte was uniformly arranged at the level of primary particles, and the average particle size of the secondary particles was 10 μm. The evaluation method of the fuel cell was the same as in Example 1. as a result,
A battery open circuit voltage of 98 V was obtained when no load was applied and the current was not output to the outside.

【0031】また、この電池を複数枚積層して、燃料利
用率85%、酸素利用率60%、電流密度0.7A/c
2の条件で連続発電試験を行い、出力特性の時間変化
を測定した。その結果、本実施例の電池は、8000時
間以上にわたって約14.7kW(66V−224A)
の電池出力を維持することを確認した。
Further, by stacking a plurality of these cells, the fuel utilization rate is 85%, the oxygen utilization rate is 60%, and the current density is 0.7 A / c.
A continuous power generation test was performed under the condition of m 2 and the time change of the output characteristics was measured. As a result, the battery of this example has about 14.7 kW (66V-224A) over 8000 hours.
It was confirmed that the battery output of was maintained.

【0032】(比較例1)比較のために、9重量%の水
素イオン伝導性高分子電解質を溶解したエタノールに、
10gの水を加えて、希釈した混合溶液を195g用い
て、触媒担持粒子に水素イオン伝導性高分子電解質を噴
霧し、高分子電解質型燃料電池を実施例1に基づき作製
した。さらに、装置内は窒素雰囲気にして行った。以下
の高分子電解質型燃料電池作製条件は全て、実施例1と
同一とした。その結果、また、複次粒子の平均粒径を1
0μmにしたものが得られた。また、燃料電池の評価方
法も、実施例1と同じにした。その結果、電流を外部に
出力しない無負荷時には、98Vの電池開放電圧を得
た。
(Comparative Example 1) For comparison, ethanol containing 9% by weight of a hydrogen ion conductive polymer electrolyte was dissolved,
A hydrogen-ion conductive polymer electrolyte was sprayed on the catalyst-supported particles by using 195 g of a mixed solution obtained by adding 10 g of water and diluting it to prepare a polymer electrolyte fuel cell based on Example 1. Further, the inside of the apparatus was set to a nitrogen atmosphere. All the following polymer electrolyte fuel cell production conditions were the same as in Example 1. As a result, the average particle size of the secondary particles is also 1
What was made 0 μm was obtained. The evaluation method of the fuel cell was the same as in Example 1. As a result, a battery open circuit voltage of 98 V was obtained when no load was applied and the current was not output to the outside.

【0033】また、この電池を燃料利用率85%、酸素
利用率60%、電流密度0.7A/cm2の条件で連続
発電試験を行い、出力特性の時間変化を測定した。その
結果、本実施例の電池の初期特性は約11.6kW(6
5V−224A)、5000時間経過後特性は初期の約
半分にまで低下していた。
Further, this battery was subjected to a continuous power generation test under the conditions of a fuel utilization rate of 85%, an oxygen utilization rate of 60% and a current density of 0.7 A / cm 2 , and the time change of the output characteristics was measured. As a result, the initial characteristics of the battery of this example were about 11.6 kW (6
5V-224A), after 5000 hours, the characteristics were reduced to about half of the initial values.

【0034】前記比較例の特性が、実施例と比べて優れ
ていないのは、触媒に用いられているカ−ボンの細孔中
に存在していた酸素によって触媒燃焼が局所的に発生
し、水素イオン伝導性高分子電解質を分解したためと考
えられる。
The characteristics of the comparative example are not superior to those of the examples, because the catalytic combustion locally occurs due to oxygen existing in the pores of the carbon used in the catalyst, It is considered that the hydrogen ion conductive polymer electrolyte was decomposed.

【0035】[0035]

【発明の効果】以上のように本発明によれば、水素イオ
ン伝導性高分子電解質が触媒担持粒子表面へ付着する際
に生じていた水素イオン伝導性高分子電解質の凝集サイ
ズを小さくすることが可能となる。さらに、水素イオン
伝導性高分子電解質を分散した分散液または水素イオン
伝導性高分子電解質溶液の溶媒が少なくとも25%以上
の水を含む溶媒を用いることで、高分子電解質の触媒燃
焼などによる分解を低減できる。その結果、触媒担持粒
子表面へに緻密に付着することが可能となり、反応ガス
拡散性に有利に作用し、電池の特性を向上させる。
As described above, according to the present invention, it is possible to reduce the aggregate size of the hydrogen ion conductive polymer electrolyte which was generated when the hydrogen ion conductive polymer electrolyte was attached to the surface of the catalyst supporting particles. It will be possible. Furthermore, by using a dispersion in which the hydrogen ion conductive polymer electrolyte is dispersed or a solvent of the hydrogen ion conductive polymer electrolyte solution containing at least 25% or more of water, decomposition of the polymer electrolyte due to catalytic combustion or the like is performed. It can be reduced. As a result, it becomes possible to adhere to the surface of the catalyst-supporting particles densely, which has an advantageous effect on the reaction gas diffusivity and improves the battery characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例で用いた製造装置の概念を示す図FIG. 1 is a diagram showing a concept of a manufacturing apparatus used in a first embodiment.

【符号の説明】[Explanation of symbols]

1 下部円柱状容器部 2 流動部 3 上部円柱状容器部 4 バグフィルター 5 ガス導入口 6 造粒プレート 7 撹拌羽根 8 造粒プレートと撹拌羽根との間のギャップ 9 パルスジェット 10 衝突ターゲット 11 高圧スプレー 12 カーボン微粉末上に担持された触媒 13 触媒粉末の集合体 14 パルスジェットにより粉砕された、触媒粉末の集
合体 15 スプレーから噴霧されたイオン導電性高分子電解
質溶液 16 噴霧された溶液中にある水素イオン伝導性高分子
電解質 17 触媒粉末
1 Lower Cylindrical Container Section 2 Flow Section 3 Upper Cylindrical Container Section 4 Bag Filter 5 Gas Inlet 6 Granulation Plate 7 Stirring Blade 8 Gap Between Granulation Plate and Stirring Blade 9 Pulse Jet 10 Collision Target 11 High Pressure Spray 12 catalyst supported on fine carbon powder 13 aggregate of catalyst powder 14 aggregate of catalyst powder ground by pulse jet 15 ion-conducting polyelectrolyte solution sprayed from spray 16 in sprayed solution Hydrogen ion conductive polymer electrolyte 17 Catalyst powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武部 安男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 羽藤 一仁 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H018 AA06 BB00 BB06 BB08 HH05 5H026 AA06 BB00 BB03 BB04 CX04 HH05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuo Takebe             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Kazuhito Hato             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Makoto Uchida             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 5H018 AA06 BB00 BB06 BB08 HH05                 5H026 AA06 BB00 BB03 BB04 CX04                       HH05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素イオン伝導性高分子電解質膜と、前
記水素イオン伝導性高分子電解質膜の両面に配置した一
対の電極と、前記電極の一方に燃料ガスを供給排出し、
他方に酸化剤ガスを供給排出するガス流路を有する一対
の導電性セパレータを具備した高分子電解質型燃料電池
において、前記燃料電池の触媒層は、触媒と水素イオン
伝導性高分子電解質からなり、その製造方法は触媒の粉
末を乾燥雰囲気中に流動させ、この中に水素イオン伝導
性高分子電解質を分散した分散液または水素イオン伝導
性高分子電解質溶液を噴霧し、造粒された複次粒子を得
る工程において、水素イオン伝導性高分子電解質を分散
した分散液または水素イオン伝導性高分子電解質溶液の
溶媒が少なくとも25%以上の水を含む溶媒に分散され
ていることを特徴とする高分子電解質型燃料電池の製造
方法。
1. A hydrogen ion conductive polymer electrolyte membrane, a pair of electrodes arranged on both sides of the hydrogen ion conductive polymer electrolyte membrane, and a fuel gas is supplied to and discharged from one of the electrodes,
On the other hand, in a polymer electrolyte fuel cell comprising a pair of conductive separators having a gas flow path for supplying and discharging an oxidant gas, the catalyst layer of the fuel cell comprises a catalyst and a hydrogen ion conductive polymer electrolyte, The production method is such that the catalyst powder is flown in a dry atmosphere, and a dispersion liquid in which a hydrogen ion conductive polymer electrolyte is dispersed or a hydrogen ion conductive polymer electrolyte solution is sprayed into the granulated secondary particles. In the step of obtaining, a polymer having a dispersion of a hydrogen ion conductive polymer electrolyte or a solvent of a hydrogen ion conductive polymer electrolyte solution dispersed in a solvent containing at least 25% of water. Method for manufacturing electrolyte fuel cell.
【請求項2】 請求項1記載の燃料電池用電極の製造方
法において、水素イオン伝導性高分子電解質ならびに撥
水材を分散した分散液または溶液を触媒に噴霧し、付着
することを特徴とする高分子電解質型燃料電池の製造方
法。
2. The method for manufacturing a fuel cell electrode according to claim 1, wherein a dispersion or solution in which a hydrogen ion conductive polymer electrolyte and a water repellent material are dispersed is sprayed onto a catalyst and adhered thereto. Method for manufacturing polymer electrolyte fuel cell.
【請求項3】 請求項2記載の水素イオン導伝性高分子
電解質ならびに撥水材を同時に、または各々触媒に噴霧
し、付着させる工程を有することを特徴とする高分子電
解質型燃料電池の製造方法。
3. A process for producing a polymer electrolyte fuel cell, comprising a step of spraying the hydrogen ion conductive polymer electrolyte and the water repellent material according to claim 2 at the same time, or spraying them onto a catalyst to adhere them. Method.
【請求項4】 請求項2記載の水素イオン導伝性高分子
電解質ならびに撥水材を触媒に噴霧し、付着させる工程
において、水素イオン導伝性高分子電解質を触媒に噴霧
した後、撥水材を噴霧し、付着させることを特徴とする
高分子電解質型燃料電池の製造方法。
4. In the step of spraying and adhering the hydrogen ion conductive polymer electrolyte and the water repellent material according to claim 2 on the catalyst, the water ion repellent polymer electrolyte is sprayed on the catalyst and then the water repellent material is sprayed. A method for producing a polymer electrolyte fuel cell, which comprises spraying and adhering a material.
【請求項5】 請求項4記載の高分子電解質型燃料電池
の製造方法において、触媒が造粒される工程と造粒され
た触媒が粉砕される工程と水素イオン伝導性高分子電解
質を分散した分散液または溶液を触媒に噴霧する工程と
噴霧後に乾燥する工程と撥水材分散した分散液または溶
液を触媒に噴霧する工程と噴霧後乾燥する工程を行うこ
とを特徴とする高分子電解質型燃料電池の製造方法。
5. The method for producing a polymer electrolyte fuel cell according to claim 4, wherein a step of granulating the catalyst, a step of pulverizing the granulated catalyst, and a hydrogen ion conductive polymer electrolyte are dispersed. A polymer electrolyte fuel comprising a step of spraying a dispersion or solution on a catalyst, a step of drying after spraying, a step of spraying a dispersion or solution in which a water repellent material is dispersed on a catalyst, and a step of drying after spraying. Battery manufacturing method.
JP2001233210A 2001-08-01 2001-08-01 Method for manufacturing high polymer electrolyte fuel cell Pending JP2003045441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233210A JP2003045441A (en) 2001-08-01 2001-08-01 Method for manufacturing high polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233210A JP2003045441A (en) 2001-08-01 2001-08-01 Method for manufacturing high polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2003045441A true JP2003045441A (en) 2003-02-14

Family

ID=19065009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233210A Pending JP2003045441A (en) 2001-08-01 2001-08-01 Method for manufacturing high polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2003045441A (en)

Similar Documents

Publication Publication Date Title
JP4944345B2 (en) POLYMER ELECTROLYTE FUEL CELL, AND METHOD AND DEVICE FOR PRODUCING THE ELECTRODE
EP1231656B1 (en) Polymer electrolytic fuel cell and method for producing the same
CA2561942C (en) Powder catalyst material, method for producing same and electrode for solid polymer fuel cell using same
JP2004281305A (en) Fuel cell and its manufacturing method
KR100474939B1 (en) Polymer Electrolyte Fuel Cell and manufacture Method for Polymer Electrolyte Fuel Cell
KR101164874B1 (en) Method for manufacturing mea using low temperature transfer methods, mea manufactured using the method and fuel cell using the mea
JPWO2003077336A1 (en) POLYMER ELECTROLYTE FUEL CELL MANUFACTURING METHOD AND POLYMER ELECTROLYTE MEMBRANE FUEL CELL
JP4423856B2 (en) Fuel cell and its manufacturing method
JP2003109605A (en) Electrode for high molecular electrolyte fuel cell and method of manufacturing the same
JP2013020816A (en) Membrane electrode assembly and manufacturing method therefor, and fuel cell
WO2004036678A1 (en) Manufacturing process for fuel cell, and fuel cell apparatus
JP2003109602A (en) High molecular electrolyte fuel cell and method of manufacturing the same
EP1059686A2 (en) Polymer electrolyte fuel cell
JP2004158290A (en) Polymer electrolyte fuel cell and method of manufacturing its electrode
JP2004139789A (en) Catalyst powder for fuel cell and its manufacturing method as well as polyelectrolyte membrane/electrode joint body and polyelectrolyte fuel cell equipped with the same
JP2004349076A (en) Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same
JP2003282067A (en) Composition and manufacturing method of polymerelectrolyte type fuel cell catalyst layer
JP2003109601A (en) Catalyst layer for high molecular electrolyte fuel cell and method of manufacturing the same
JP2003282075A (en) Fuel cell, and manufacturing method of the same
JP2003282074A (en) Electrode for fuel cell, and manufacturing method of the same
JP2007323824A (en) Manufacturing method of electrode for fuel cell and electrode for fuel cell
JP2005285670A (en) Manufacturing method of film/electrode assembly for polymer electrolyte type fuel cell
JP2003045439A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell, electrolyte membrane/electrode assembly using it, and polymer electrolyte fuel cell
JP2003045441A (en) Method for manufacturing high polymer electrolyte fuel cell
CN116581308B (en) Dry membrane electrode preparation method of membrane fuel cell