JP2003040674A - Resistor and its manufacturing method and its holding device - Google Patents

Resistor and its manufacturing method and its holding device

Info

Publication number
JP2003040674A
JP2003040674A JP2001224635A JP2001224635A JP2003040674A JP 2003040674 A JP2003040674 A JP 2003040674A JP 2001224635 A JP2001224635 A JP 2001224635A JP 2001224635 A JP2001224635 A JP 2001224635A JP 2003040674 A JP2003040674 A JP 2003040674A
Authority
JP
Japan
Prior art keywords
less
resistor
value
temperature
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001224635A
Other languages
Japanese (ja)
Inventor
Masashi Sakagami
勝伺 坂上
Masaki Terasono
正喜 寺園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001224635A priority Critical patent/JP2003040674A/en
Publication of JP2003040674A publication Critical patent/JP2003040674A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resistor with homogeneous small tan δ, and little fluctuation in the same series of products even in the case of the diameter or thickness of a substrate is large, and to provide its manufacturing method and its holding device capable of processing the held product uniformly. SOLUTION: The resistor is made of a ceramic sintered compact. The mean value of the relative density of which is measured at a plurality of parts including a peripheral part and a center part, is >=98%, the mean value of volume resistivity value is <=10<7> -10<12> Ωcm at 50 deg.C, the mean value of dielectric loss is <=50×10<-4> at 1 MHz and difference between maximum value and minimum value of the dielectric loss is <=50% of the mean loss value. So, in the case of processing the held product held with a electrostatic chuck 1, the fluctuation of processing in the same surface even for the large product such as the maximum diameter is >=200 mm and thickness is >=0.5 mm, can be made small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、抵抗体及びその製
造方法並びに保持装置に関するものであり、特に電子機
能材料用部材及び、半導体製造装置等におけるウエハの
保持や搬送に好適に用いられる保持装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistor, a method of manufacturing the same, and a holding device, and particularly to a member for electronically functional material, and a holding device that is preferably used for holding and carrying a wafer in a semiconductor manufacturing apparatus or the like. It is about.

【0002】[0002]

【従来技術】液晶を含む半導体デバイスの製造に用いる
半導体製造装置において、シリコンウエハ等の半導体を
加工したり、搬送するためには、シリコンウエハ等を保
持する必要がある。特に、静電的にシリコンウエハを保
持する静電チャックは、真空中や腐食性ガス雰囲気での
使用が可能であり、半導体の製造に適しているため、多
用されている。
2. Description of the Related Art In a semiconductor manufacturing apparatus used for manufacturing a semiconductor device including liquid crystal, it is necessary to hold a silicon wafer or the like in order to process or carry a semiconductor such as a silicon wafer or the like. In particular, an electrostatic chuck that electrostatically holds a silicon wafer is widely used because it can be used in a vacuum or in a corrosive gas atmosphere and is suitable for manufacturing semiconductors.

【0003】AlNは耐食性が高く、熱伝導が高く熱衝
撃性に比較的強いため静電チャックの主成分として用い
られている。このAlNは、50℃における体積固有抵
抗が1×1014Ωcm以上と絶縁体であるが、特に、最
近では、特に200℃以下で使用される静電チャックに
おいて、シリコンウエハの保持のためにより高い吸着力
が要求されており、より高い吸着力を得るためには、抵
抗を低くすることが提案されている。
AlN is used as a main component of an electrostatic chuck because it has high corrosion resistance, high thermal conductivity and relatively high thermal shock resistance. This AlN is an insulator having a volume resistivity of 1 × 10 14 Ωcm or more at 50 ° C., but recently, it is higher for holding a silicon wafer particularly in an electrostatic chuck used at 200 ° C. or less. Adsorption force is required, and it has been proposed to reduce the resistance in order to obtain higher adsorption force.

【0004】特に、不純物の少ないAlN焼結体は、耐
食性に優れるため、特に腐食性ガス雰囲気で寿命が長く
なり、部品交換の期間を延ばし、メンテナンスのための
装置の停止を少なくできるとともに、静電チャックから
半導体の製造工程に混入する不純物を減少できるため、
スループットを向上し、不良を削減することができる。
In particular, an AlN sintered body containing few impurities has excellent corrosion resistance, so that it has a long life especially in a corrosive gas atmosphere, prolongs the period for parts replacement, and can reduce the stoppage of the device for maintenance, as well as keep it quiet. Since impurities mixed in the semiconductor manufacturing process from the electric chuck can be reduced,
Throughput can be improved and defects can be reduced.

【0005】このようなAlNを得るために、焼結助剤
を少なくする必要があるものの、焼結助剤が少ないと焼
結体の緻密が不十分となり、ボイドが発生し、静電チャ
ックの耐食性や均熱性を損なう恐れがあった。そのた
め、焼結を促進するために、焼成中に加圧を行いながら
焼成する必要があり、ホットプレス(以下HPと略
す)、ガス圧焼成(以下GPSと略す)や熱間等方プレ
ス焼成(以下HIPと略す)などが用いられている。
In order to obtain such AlN, it is necessary to reduce the amount of the sintering aid, but if the amount of the sintering aid is small, the density of the sintered body will be insufficient and voids will be generated, resulting in electrostatic chucking. There was a risk of impairing corrosion resistance and soaking. Therefore, in order to promote sintering, it is necessary to perform firing while applying pressure during firing, such as hot press (hereinafter abbreviated as HP), gas pressure firing (hereinafter abbreviated as GPS) and hot isotropic press firing ( Hereinafter, abbreviated as HIP) and the like are used.

【0006】特にHPは、ガスを多量に使う必要がな
く、一軸加圧により焼結できるため、環境に不要なガス
を放出させることなく短時間で焼結体を得ることができ
るという特徴をもち、抵抗体及び静電チャックの製造に
適している。
Particularly, HP does not need to use a large amount of gas and can be sintered by uniaxial pressurization, so that a sintered body can be obtained in a short time without releasing unnecessary gas to the environment. Suitable for manufacturing resistors and electrostatic chucks.

【0007】例えば、高純度のAlNの成形体中に金属
電極を埋設し、HP焼成によって作製し、Al以外の金
属元素の含有量が100ppm以下で、室温での体積固
有抵抗を1×109〜1×1013Ωcmとした直径が2
00mm以上の静電チャックが特開平10−72260
号公報で提案されている。
For example, a metal electrode is embedded in a molded body of high-purity AlN and manufactured by HP firing. The content of metal elements other than Al is 100 ppm or less, and the volume resistivity at room temperature is 1 × 10 9. ~ 1 × 10 13 Ωcm diameter is 2
An electrostatic chuck of 00 mm or more is disclosed in Japanese Patent Laid-Open No. 10-72260.
It has been proposed in the publication.

【0008】また、AlNの明度を小さくし、その色を
黒色に近づけて、輻射効率の大きくして、製品の色むら
発生を防止する静電チャックが特開平9−48669号
公報に開示されている。
Further, Japanese Patent Application Laid-Open No. 9-48669 discloses an electrostatic chuck which reduces the lightness of AlN and makes its color close to black to increase the radiation efficiency to prevent the occurrence of color unevenness of products. There is.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開平
10−72260号公報に記載されたAlN焼結体は、
緻密性には優れるものの、最大直径が200mm以上に
なると、ボイドの分布が不均一になったり、不純物成分
が偏在すると、誘電損失(以後tanδと言うことがあ
る)のばらつきが大きくなる。その結果、高周波電圧に
よる発熱が基板の面内において異なるため、被保持物に
温度差が生じ、処理が不均一になって不良が増え、製品
の信頼性が低下するという問題があった。
However, the AlN sintered body described in Japanese Patent Laid-Open No. 10-72260 has the following problems.
Although the density is excellent, when the maximum diameter is 200 mm or more, the void distribution becomes non-uniform, and the impurity components are unevenly distributed, resulting in large variations in dielectric loss (hereinafter sometimes referred to as tan δ). As a result, the heat generated by the high frequency voltage is different in the plane of the substrate, which causes a temperature difference in the object to be held, resulting in non-uniform processing, increasing defects, and lowering the reliability of the product.

【0010】また、特開平9−48669号公報に記載
された静電チャックに用いられている抵抗体は、AlO
N結晶相が局在するため、AlNとの位相のずれが生じ
てtanδが100×10-4以上と高く、高周波電圧に
よって発熱が不均一かつ緩慢に発生する。その結果、被
保持物の温度が不均一になり、生産性を低下させるとい
う問題があった。
The resistor used in the electrostatic chuck disclosed in Japanese Patent Laid-Open No. 9-48669 is AlO.
Since the N crystal phase is localized, a phase shift from AlN occurs, tan δ is as high as 100 × 10 −4 or more, and heat generation is nonuniformly and slowly caused by a high frequency voltage. As a result, the temperature of the object to be held becomes non-uniform, and there is a problem that productivity is reduced.

【0011】従って、本発明は、基板の直径や厚みが大
きい場合においても、tanδが小さくかつ均一で、同
一製品内の誘電損失ばらつきが少ない抵抗体及びその製
造方法並びに被保持物の処理を均一に行うことのできる
保持装置を提供することを目的とする。
Therefore, according to the present invention, even if the diameter and thickness of the substrate are large, the tan δ is small and uniform, and the variation of dielectric loss in the same product is small, the manufacturing method thereof and the treatment of the held object are uniform. It is an object of the present invention to provide a holding device that can be used for the above.

【0012】[0012]

【課題を解決するための手段】本発明は、誘電損失のば
らつきを抑制するため、HP焼成において最高保持温度
までの収縮速度を制御すること及び粉体からの脱ガス促
進が有効であり、また、抵抗体の面内における誘電損失
を均一にすることによって、保持装置の処理の均一性を
高めることができるという知見に基づくものである。
According to the present invention, in order to suppress variations in dielectric loss, it is effective to control the contraction rate up to the maximum holding temperature in HP firing and promote degassing from powder. It is based on the finding that the uniformity of the treatment of the holding device can be improved by making the dielectric loss in the plane of the resistor uniform.

【0013】即ち、本発明の抵抗体は、最大直径が20
0mm以上、厚みが0.5mm以上のセラミック焼結体
からなり、外周部及び中心部を含む複数の部位で測定し
た相対密度の平均値が98%以上、50℃の体積固有抵
抗値の平均値が107〜101 2Ωcm、周波数1MHz
における誘電損失の平均値が50×10-4以下、誘電損
失の最大値と最小値の差が前記平均値の50%以下であ
ることを特徴とするものである。これにより、大きな製
品であっても、例えば静電チャックとして被処理物の処
理を行った場合、同一面内における前記処理のばらつき
を小さくすることができる。
That is, the resistor of the present invention has a maximum diameter of 20.
It is composed of a ceramic sintered body having a thickness of 0 mm or more and a thickness of 0.5 mm or more, the average value of relative densities measured at a plurality of sites including the outer peripheral portion and the central portion is 98% or more, and the average value of the volume resistivity values at 50 ° C. There 10 7 ~10 1 2 Ωcm, frequency 1MHz
The average value of the dielectric loss is 50 × 10 −4 or less, and the difference between the maximum value and the minimum value of the dielectric loss is 50% or less of the average value. As a result, even if a large product is used, for example, when an object to be processed is processed as an electrostatic chuck, it is possible to reduce variations in the processing within the same plane.

【0014】特に、AlNを主結晶相とし、炭素を1重
量%以下、酸素を0.2〜3重量%、Al以外の金属を
合計で0.5重量%以下の割合で含むとともに、前記炭
素含有量の面内ばらつきが30%以下、前記金属の総量
の面内ばらつきが20%以下であることが好ましい。こ
れにより、金属やカーボンといった不純物やAlON等
の異相を制御して大型基板の高純度を維持しつつ、耐食
性や熱伝導性をより高くできるとともに、誘電損失のば
らつきを更に抑制できる。
Particularly, AlN is used as a main crystal phase, carbon is contained in an amount of 1% by weight or less, oxygen is contained in an amount of 0.2 to 3% by weight, and a metal other than Al is contained in a total amount of 0.5% by weight or less. The in-plane variation of the content is preferably 30% or less, and the in-plane variation of the total amount of the metal is preferably 20% or less. This makes it possible to control impurities such as metals and carbon and heterogeneous phases such as AlON to maintain high purity of a large-sized substrate, improve corrosion resistance and thermal conductivity, and further suppress variations in dielectric loss.

【0015】また、前記セラミック焼結体のレーザーラ
マン分光測定スペクトルにおいて、100〜133cm
-1付近のピーク強度I1と665〜680cm-1付近のピ
ーク強度I6との比率I1/I6が0.4以下であることが好
ましい。これにより、大型基板の異相の生成を制御し
て、耐食性や均熱性をより高くできるとともに、更に誘
電損失のばらつきを更に抑制できる。
In the laser Raman spectroscopic measurement spectrum of the ceramic sintered body, 100 to 133 cm
It is preferable ratio I 1 / I 6 between the peak intensity I 1 and 665~680Cm -1 peak intensity I 6 near the vicinity of -1 is 0.4 or less. As a result, it is possible to control the generation of different phases in the large-sized substrate, improve corrosion resistance and heat uniformity, and further suppress variations in dielectric loss.

【0016】また、本発明の抵抗体の製造方法はセラミ
ック粉末及び/又は成形体を最高保持温度で焼成し、最
大直径が200mm以上、厚みが0.5mm以上のセラ
ミック焼結体を作製するのに際して、常温から最高保持
温度までの収縮速度を2mm/min以下に制御すると
ともに、焼成開始から1200℃の焼成温度まで、装置
内の真空度を1Pa以下に保持することを特徴とするも
のである。この方法により、緻密化と誘電損失の制御が
容易となり、基板の密度や誘電損失の面内ばらつきが少
ない抵抗体を実現できる。
In the method for producing a resistor of the present invention, the ceramic powder and / or the compact is fired at the maximum holding temperature to produce a ceramic sintered body having a maximum diameter of 200 mm or more and a thickness of 0.5 mm or more. At this time, the shrinkage rate from room temperature to the maximum holding temperature is controlled to 2 mm / min or less, and the degree of vacuum in the apparatus is maintained to 1 Pa or less from the start of firing to the firing temperature of 1200 ° C. . By this method, densification and control of dielectric loss can be facilitated, and a resistor having less in-plane variation in substrate density and dielectric loss can be realized.

【0017】特に、AlN粉末を主体とし、炭素を1重
量%以下、酸素を0.2〜3重量%含むセラミック粉末
をホットプレス型内に装填し、該セラミック粉末に0.
04〜3MPaのホットプレス圧力を加えた後に加熱を
開始し、1200〜1600℃の温度範囲においてN2
ガスを導入して装置内の雰囲気圧力を1〜300kPa
にするとともに、1200〜2300℃の温度範囲にお
いてホットプレス圧力を3〜15MPa以上に上昇さ
せ、2000℃以上の最最高保持温度で焼成することが
好ましい。この方法により、基板中の不純物の制御が容
易となり、基板の誘電損失の面内ばらつきを更に低減で
きる。
In particular, a ceramic powder containing AlN powder as a main component and containing carbon in an amount of 1% by weight or less and oxygen in an amount of 0.2 to 3% by weight was loaded into a hot press mold, and the ceramic powder was filled with 0.
Heating is started after applying a hot pressing pressure of 04 to 3 MPa, and N 2 in a temperature range of 1200 to 1600 ° C.
Introduce gas to increase the atmospheric pressure in the device to 1 to 300 kPa
In addition, it is preferable to increase the hot pressing pressure to 3 to 15 MPa or more in the temperature range of 1200 to 2300 ° C. and to fire at the maximum holding temperature of 2000 ° C. or more. By this method, the impurities in the substrate can be easily controlled, and the in-plane variation of the dielectric loss of the substrate can be further reduced.

【0018】また、本発明の保持装置は、基板と、該基
板の一主面に設けられた被保持物の載置面と、該載置面
と対向して設けられた電極とを具備し、少なくとも前記
載置面が上記のいずれかに記載の抵抗体からなることを
特徴とする。本発明の抵抗体を用いた保持部材は、誘電
損失の面内ばらつきが小さいため、プラズマ分布が均一
で高周波電極をかけた際の基板温度差の不均一を抑制
し、生産性や信頼性の高いセラミック抵抗体及び保持装
置を実現できる。
Further, the holding device of the present invention comprises a substrate, a mounting surface for the object to be held provided on one main surface of the substrate, and an electrode provided so as to face the mounting surface. At least the mounting surface described above is made of any one of the resistors described above. Since the holding member using the resistor of the present invention has a small in-plane variation of the dielectric loss, the plasma distribution is uniform and the unevenness of the substrate temperature difference when the high frequency electrode is applied is suppressed, and the productivity and reliability are improved. A high ceramic resistor and holding device can be realized.

【0019】[0019]

【発明の実施の形態】本発明の抵抗体は、本発明の抵抗
体は、基板の主面に対して誘電損失の面内ばらつきが顕
著になる最大直径が200mm以上、厚みが0.5mm
以上の板状のセラミック焼結体からなり、外周部及び中
心部を含む複数の部位で測定した相対密度の平均が98
%以上であることが重要である。ここで、複数の部位と
は、最大直径が200mm以上の略中心である中心部
と、最大直径の縁端部とを含み、30部位以上、特に5
0部位以上での測定を行う。測定点はほぼ等間隔に配置
されていることが、均一性をより正確に評価する点で好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The resistor of the present invention has a maximum diameter of 200 mm or more and a thickness of 0.5 mm at which the in-plane variation of the dielectric loss becomes remarkable with respect to the main surface of the substrate.
It is composed of the above plate-shaped ceramic sintered body, and the average of relative densities measured at a plurality of portions including the outer peripheral portion and the central portion is 98.
% Or more is important. Here, the plurality of parts includes a central part having a maximum diameter of approximately 200 mm or more, which is substantially the center, and an edge part having the maximum diameter, and 30 parts or more, particularly 5 parts.
Measure at 0 or more sites. It is preferable that the measurement points are arranged at substantially equal intervals in order to evaluate the uniformity more accurately.

【0020】相対密度が98%未満では、機械的特性が
低下し、大型・薄型形状では容易に破壊されるためであ
り、また、粒界相や粒子の3重点等に発生するボイドが
減少し、tanδを50×10-4以下にすることが困難
となるためであり、特に99%以上、更には99.5%
以上が好ましい。なお、相対密度については、まずアル
キメデス法から嵩密度をもとめた後、理論密度と比較
し、相対密度を算出した。
When the relative density is less than 98%, the mechanical properties are deteriorated, and it is easily broken in a large and thin shape, and the voids generated in the grain boundary phase and the triple points of the grains are reduced. , Tan δ of 50 × 10 −4 or less is difficult, and particularly 99% or more, and further 99.5%.
The above is preferable. Regarding the relative density, first, the bulk density was obtained from the Archimedes method, and then the relative density was compared with the theoretical density to calculate the relative density.

【0021】また、外周部及び中心部を含む複数の部位
において測定した50℃の体積固有抵抗値の平均を10
7〜1012Ωcmとすることで、必要十分な電荷の移動
を可能にし、例えば静電チャックに用いた場合に優れた
吸着特性を実現できる。50℃の体積固有抵抗値の平均
値は、電荷移動量、すなわち電流を低く抑制する点で、
特に108〜1011Ωcm、更には、108〜1010Ωc
mであることが好ましい。
Further, the average of the volume resistivity values at 50 ° C. measured at a plurality of parts including the outer peripheral part and the central part is 10
By setting it to 7 to 10 12 Ωcm, necessary and sufficient movement of charges can be made possible, and excellent adsorption characteristics can be realized when used for an electrostatic chuck, for example. The average value of the volume resistivity values at 50 ° C. is that the charge transfer amount, that is, the current is suppressed to a low level,
Especially 10 8 to 10 11 Ωcm, and further 10 8 to 10 10 Ωc
It is preferably m.

【0022】そして、本発明によれば、外周部及び中心
部を含む複数の部位において周波数1MHzでtanδ
の平均値、最大値、最小値を測定した時、平均値50×
10 -4以下であることが重要であり、特に、40×10
-4以下、更には30×10-4以下が好ましい。tanδ
が50×10-4より大きくなると、電圧を印加するとエ
ネルギー損失が大きくなり、基板の発熱量が大きくな
り、基板保持面の温度が上昇しやすくなり、ウエハ処理
温度の制御が困難になる。
According to the present invention, the outer peripheral portion and the center
Tan δ at a frequency of 1MHz in multiple parts including
When the average value, maximum value, and minimum value of
10 -FourIt is important that it is less than or equal to 40 × 10
-FourBelow, further 30 × 10-FourThe following are preferred. tan δ
Is 50 × 10-FourThe larger the voltage, the more
The energy loss increases and the heat generation of the board increases.
Therefore, the temperature of the substrate holding surface easily rises, and wafer processing
It becomes difficult to control the temperature.

【0023】さらに、上記tanδの最大値Txと最小
値Tnの差が平均値TAの50%以下であることが重要で
あり、特に30%以下、更には20%以下が好ましい。
これを式で示すと、(Tx−Tn)/TA<0.5とな
る。
Further, it is important that the difference between the maximum value T x and the minimum value T n of tan δ is 50% or less of the average value T A , particularly 30% or less, and further preferably 20% or less.
When indicating this in the formula, the (T x -T n) / T A <0.5.

【0024】このばらつきが大きくなると、基板面内の
発熱量が異なり、均熱性を保てなくなるため、基板保持
面の温度の均熱化がばらつき、ウエハ処理温度の制御が
困難になる。tanδの最大値と最小値の差が平均値の
50%以下にすることで、面内ばらつきを小さくでき、
静電チャックに応用した場合、部位による電流密度の差
が小さくなるため、最大値が高いtanδを有する部位
でも発熱が安定してエッチング効率の安定化をはかるこ
とができ、スループットを高めて生産性を高めることが
できる。
If this variation becomes large, the amount of heat generated in the substrate surface is different, and the temperature uniformity cannot be maintained. Therefore, the temperature uniformity of the substrate holding surface varies, and it becomes difficult to control the wafer processing temperature. By setting the difference between the maximum value and the minimum value of tan δ to be 50% or less of the average value, in-plane variation can be reduced,
When applied to an electrostatic chuck, the difference in current density between parts is small, so heat generation is stable and etching efficiency can be stabilized even in parts with a high maximum tan δ, increasing throughput and increasing productivity. Can be increased.

【0025】また、本発明によれば、AlNを主結晶相
とすることが好ましい。主結晶相をAlNにすると、ハ
ロゲンを含むプラズマやガス等に対する耐食性が高く、
熱伝導率が高いため耐熱衝撃性に優れるとともに、Al
N結晶は半導体になることが可能なため、体積固有抵抗
値を変えることができ、外周部及び中心部を含む複数の
部位において測定した50℃の体積固有抵抗値の平均を
107〜1012Ωcmに制御することが容易となる。
Further, according to the present invention, it is preferable to use AlN as the main crystal phase. When the main crystal phase is AlN, the corrosion resistance to plasma and gas containing halogen is high,
It has excellent thermal shock resistance due to its high thermal conductivity,
Since the N crystal can be a semiconductor, the volume resistivity value can be changed, and the average of the volume resistivity values at 50 ° C. measured at a plurality of sites including the outer peripheral portion and the central portion is 10 7 to 10 12 It becomes easy to control to Ωcm.

【0026】さらに、炭素を1重量%以下、特に0.5
重量%以下の割合で含むことが好ましい。この炭素は導
電性粒界相の形成に関係があると考えられ、炭素量を1
重量%以下にすることにより、AlとCを含む高抵抗の
化合物を部分的に形成するのを防止し、比誘電率のばら
つきをより小さくする効果がある。
Further, the carbon content is 1% by weight or less, particularly 0.5.
It is preferably contained in a proportion of not more than wt%. This carbon is considered to be related to the formation of the conductive grain boundary phase, and the carbon content is 1
The content of less than or equal to wt% has an effect of preventing partial formation of a high-resistance compound containing Al and C and further reducing variations in relative dielectric constant.

【0027】また、炭素含有量の面内ばらつきが30%
以下、特に20%以下、更には10%以下であることが
好ましい。この炭素は導電性粒界相の形成に関係がある
と考えられ、炭素量を1重量%以下にすることにより、
AlとCを含む高抵抗の化合物を部分的に形成するのを
防止し、tanδの平均値を低く抑制し、面内ばらつき
を30%以下にすることで、tanδのばらつきをより
小さくする効果がある。
The in-plane variation of carbon content is 30%.
It is preferably 20% or less, more preferably 10% or less. It is considered that this carbon is related to the formation of the conductive grain boundary phase, and by setting the carbon amount to 1% by weight or less,
By preventing partial formation of a high-resistance compound containing Al and C, suppressing the average value of tan δ to be low, and setting the in-plane variation to 30% or less, it is possible to further reduce the tan δ variation. is there.

【0028】さらに、酸素を0.2〜3重量%、特に
0.3〜2重量%、更には0.4〜1重量%の割合で含
むことが好ましい。酸素量は、体積固有抵抗値と強く関
連しており、酸素の含有量が上記の範囲であれば、電荷
の移動体となる粒界相が3次元的に連続して形成され、
且つこの導電経路を分断する高抵抗の化合物(AlON
やポリタイプ等)の形成を抑制しやすいため、tanδ
を安定化させることが容易となる。
Further, it is preferable to contain oxygen in an amount of 0.2 to 3% by weight, particularly 0.3 to 2% by weight, and further 0.4 to 1% by weight. The oxygen amount is strongly related to the volume resistivity value, and if the oxygen content is in the above range, the grain boundary phase that becomes the charge transfer body is formed three-dimensionally continuously.
In addition, a high resistance compound (AlON
Tanδ because it is easy to suppress the formation of
It becomes easy to stabilize.

【0029】さらにまた、焼結助剤成分は含まれていて
も良いが、セラミック焼結体の耐食性及び誘電率のばら
つきを小さくするため、実質的に焼結助剤成分を含まな
いことが好ましい。具体的には、Al以外の金属が合計
で0.5重量%以下、特に0.1重量%以下、更には
0.05重量%以下、且つその金属の合計の面内ばらつ
きが20%以下、特に15%以下、更には10%以下で
あることが好ましい。これにより、金属のAlN粒への
固溶による抵抗の過剰低下を防ぎ、また高tanδ化合
物の特定の部位における形成を防止することで、tan
δの面内ばらつきを小さくしやすく、安定させることが
容易となる。
Further, although a sintering additive component may be contained, it is preferable that the sintering additive component is not substantially contained in order to reduce variations in corrosion resistance and dielectric constant of the ceramic sintered body. . Specifically, the total amount of metals other than Al is 0.5 wt% or less, particularly 0.1 wt% or less, further 0.05 wt% or less, and the total in-plane variation of the metal is 20% or less, In particular, it is preferably 15% or less, more preferably 10% or less. This prevents the resistance from excessively decreasing due to the solid solution of the metal in the AlN grains, and prevents the formation of a high tan δ compound at a specific site.
The in-plane variation of δ can be easily reduced and stabilized.

【0030】金属不純物としては、硼素(以下、Bと略
する)、硅素(以下、Siと略する)、カルシウム(以
下、Caと略する)、ナトリウム(以下、Naと略す
る)、鉄(以下、Feと略する)等が挙げられる。特
に、B、Si、Fe、Na及びCaの含有量は、各々1
000ppm以下、特に500ppm以下、更には25
0ppm以下であることが好ましい。
The metal impurities include boron (hereinafter abbreviated as B), silicon (hereinafter abbreviated as Si), calcium (hereinafter abbreviated as Ca), sodium (hereinafter abbreviated as Na), iron (hereinafter abbreviated as Na). Hereinafter, abbreviated as Fe) and the like. In particular, the contents of B, Si, Fe, Na and Ca are each 1
000ppm or less, especially 500ppm or less, and further 25
It is preferably 0 ppm or less.

【0031】これらの元素はAlNに固溶して体積固有
抵抗を変化させる傾向が強いため、特に焼結体中に偏在
していると体積固有抵抗のばらつきの原因となる傾向が
ある。なお、実際には、各金属の含有量を分析し、多い
順から10種類の金属の合計量を上記のAl以外の金属
の含有量とした。なお、実際には、各金属の含有量を分
析し、多い順から10種類の金属の合計量を上記のAl
以外の金属の含有量とした。分析法としては、蛍光X線
分析またはICP分析が好ましい。
Since these elements have a strong tendency to form a solid solution in AlN to change the volume resistivity, if they are unevenly distributed in the sintered body, they tend to cause variations in the volume resistivity. In addition, actually, the content of each metal was analyzed, and the total amount of 10 kinds of metals in descending order was defined as the content of the metal other than Al. In addition, actually, the content of each metal is analyzed, and the total amount of 10 kinds of metals from the most
Content of metals other than As the analysis method, fluorescent X-ray analysis or ICP analysis is preferable.

【0032】AlN結晶相中のAl原子とN原子は、4
配位のウルツァイト構造であり、アルミニウム原子と3
つの窒素原子によってsp3混成軌道を形成している。
従って、AlN結晶のレーザーラマン分光測定スペクト
ルは、図1に示すように、ウルツァイト構造の対称ピー
クとして、900〜910cm-1(a)及び610〜6
30cm-1付近(d)にc軸対称ピーク、670〜68
0cm-1付近(b)、660cm-1付近(c)及び24
0〜260cm-1(e)にa軸対称ピークのピークを示
す。
Al atoms and N atoms in the AlN crystal phase are 4
It is a coordinated wurtzite structure, with aluminum atoms and 3
Two nitrogen atoms form an sp3 hybrid orbit.
Therefore, the laser Raman spectroscopic measurement spectrum of the AlN crystal shows 900 to 910 cm −1 (a) and 610 to 6 as symmetric peaks of the wurtzite structure as shown in FIG.
C-axis symmetric peak near 30 cm -1 (d), 670-68
0 cm -1 vicinity (b), 660cm -1 near (c) and 24
The peak of the a-axis symmetrical peak is shown at 0 to 260 cm −1 (e).

【0033】そして、本発明によれば、AlNを主結晶
相とする焼結体のレーザーラマン分光測定スペクトル
は、図1に示すように、100〜133cm-1付近に異
相のピークfが観察される。このピークfの強度をI1
670〜680cm-1付近のピークcの強度をI6とした
とき、ピーク強度の比率I1/I6が0.4以下、特に0.
3以下、更には0.2以下であることが好ましい。
According to the present invention, in the laser Raman spectroscopic measurement spectrum of the sintered body containing AlN as the main crystal phase, as shown in FIG. 1, a peak f of a different phase is observed near 100 to 133 cm -1. It The intensity of this peak f is I 1 ,
When the intensity of the peak c in the vicinity of 670 to 680 cm −1 is I 6 , the peak intensity ratio I 1 / I 6 is 0.4 or less, and particularly 0.
It is preferably 3 or less, more preferably 0.2 or less.

【0034】AlONや金属化合物といった異相が発生
した場合に、100〜133cm-1付近のピーク強度I1
が高くなる傾向を示し、その結果tanδの平均値が大
きくなる。従って、I1/I6が0.4以下にすることによ
ってtanδのばらつきを抑制できる傾向があり、静電
チャックに応用した場合、エッチング等の処理時の基板
温度が均一で、安定した処理を行うことができる。
When a heterogeneous phase such as AlON or a metal compound is generated, the peak intensity I 1 near 100 to 133 cm -1
Tends to increase, and as a result, the average value of tan δ increases. Therefore, when I 1 / I 6 is 0.4 or less, the variation of tan δ tends to be suppressed, and when applied to an electrostatic chuck, the substrate temperature during processing such as etching is uniform and stable processing can be performed. It can be carried out.

【0035】以上のように構成された本発明の抵抗体
は、誘電損失のばらつきが非常に小さいため、例えば静
電チャックに使用した場合に、吸着特性に優れ、被処理
物の処理を均一に行うことができ、また、生産性を高め
ることができる。
Since the resistor of the present invention having the above-mentioned structure has a very small variation in dielectric loss, when it is used in, for example, an electrostatic chuck, it has excellent adsorption characteristics and can uniformly process the object to be processed. It can be performed and productivity can be increased.

【0036】次に、本発明の抵抗体を作製する方法につ
いて説明する。
Next, a method for producing the resistor of the present invention will be described.

【0037】まず、出発原料として純度99%以上、平
均粒子径が5μm以下、好ましくは3μm以下のAlN
粉末を用意する。このAlN粉末中の炭素含有量を1重
量%以下、酸素含有量を0.2〜3重量%、Al以外の
金属の含有量は0.5重量%以下に抑制することが好ま
しい。これにより、焼成して得られた焼結体中の炭素含
有量、酸素含有量及びAl以外の金属の含有量を、それ
ぞれ1重量%以下、0.2〜3重量%、0.5重量%以
下にすることが容易となる。
First, as a starting material, AlN having a purity of 99% or more and an average particle diameter of 5 μm or less, preferably 3 μm or less.
Prepare powder. It is preferable that the carbon content in the AlN powder is 1 wt% or less, the oxygen content is 0.2 to 3 wt%, and the content of metals other than Al is 0.5 wt% or less. Thereby, the carbon content, the oxygen content, and the content of metals other than Al in the sintered body obtained by firing are 1% by weight or less, 0.2 to 3% by weight, and 0.5% by weight, respectively. It becomes easy to do the following.

【0038】なお、AlN粉末の酸素量が0.2重量%
に満たない場合には、Al23、SiO2等の酸化物を
添加することにより、酸素の含有量が0.2〜3重量%
の範囲になるように調整することができる。
The oxygen content of the AlN powder was 0.2% by weight.
When the content is less than 0.2%, the content of oxygen is 0.2 to 3% by weight by adding oxides such as Al 2 O 3 and SiO 2.
It can be adjusted to fall within the range.

【0039】金属不純物としては、B、Si、Ca、N
a、Fe等が挙げられる。これらは、焼結体中に残留し
やすいため、1000ppm以下、特に500ppm以
下、更には250ppm以下であることが好ましい。
Metallic impurities include B, Si, Ca, N
a, Fe, etc. are mentioned. Since these easily remain in the sintered body, it is preferably 1000 ppm or less, particularly 500 ppm or less, and further preferably 250 ppm or less.

【0040】なお、実際には、各金属の含有量を分析
し、多い順から10種類の金属の合計量を上記のAl以
外の金属の含有量とした。分析法としては、蛍光X線分
析またはICP分析が好ましい。
Actually, the content of each metal was analyzed, and the total amount of 10 kinds of metals from the highest to the lowest was defined as the content of metals other than Al. As the analysis method, fluorescent X-ray analysis or ICP analysis is preferable.

【0041】次に、上記のAlN粉末をカーボンモール
ド内のカーボンからなる直径200mm以上のホットプ
レス型(以下HP型と言う)内に均一に充填する。この
AlN粉末は、粉末のまま充填してもよいが、原料粉末
にバインダを添加して予めHP型形状に予備成形してお
き、この成形体をHP型内に装填しても良い。成形の方
法は、金型プレス、CIP、テープ成形、鋳込み等の成
型方法を用いることができる。成形体は、成形の時に必
要なバインダ成分を除去した後にHP型内に装填する。
なお、成形体の内部に電極を成形してもよい。
Next, the above AlN powder is uniformly filled in a hot press mold (hereinafter referred to as HP mold) made of carbon in a carbon mold and having a diameter of 200 mm or more. This AlN powder may be filled as it is, but it is also possible to add a binder to the raw material powder and preform it into an HP shape in advance, and then load this compact into the HP die. As a molding method, a molding method such as die pressing, CIP, tape molding, or casting can be used. The molded body is loaded into the HP mold after removing the binder component required at the time of molding.
The electrodes may be molded inside the molded body.

【0042】HP型に充填されたAlN粉体に0.04
〜3MPaのホットプレス圧力(以下HP圧力と言う)
を加えた後に加熱を開始することが好ましい。HP圧力
が0.04MPaより小さいと充填が不十分で、充填密
度のばらつきが生じやすく、充填密度が低い部分で焼結
時の緻密化を阻害することがある。また、HP圧力が3
MPaより大きいとAlN粉末の表面に化学的に付着し
た水分等が抜けにくくなり、焼成の緻密を阻害する恐れ
がある。
0.04 for AlN powder filled in HP type
Hot press pressure of ~ 3 MPa (hereinafter referred to as HP pressure)
It is preferable to start heating after the addition of. If the HP pressure is less than 0.04 MPa, the filling is insufficient and the packing density tends to fluctuate, which may hinder the densification at the time of sintering in a portion having a low packing density. Also, HP pressure is 3
When it is higher than MPa, water or the like chemically attached to the surface of the AlN powder becomes difficult to escape, and there is a possibility that the denseness of firing may be hindered.

【0043】また、本発明によれば、600〜800℃
の間で原料やスペーサーやカーボンHP型等のカーボン
と装置からのガス放出がピークとなり、さらに800〜
1200℃では、スペーサーやカーボンHP型等のカー
ボンと装置及び原料からの酸素が反応して、COガスが
発生する。このCOガスが多量に残留すると、高温でA
lN原料と反応してAlCやAlOC化合物を生成して
緻密化を阻害する原因や異相生成の原因となり、その結
果誘電損失が大きくなるため、昇温開始時から1200
℃まで装置内の真空度を1kPa以下に排気することが
重要である。装置内の真空度は特に0.5Pa以下、更
には0.1Pa以下、より好適には0.01Pa以下が
好ましい。これにより、焼結性や特性に及ぼす有害なガ
スを容易に除去できる。
Further, according to the present invention, 600 to 800 ° C.
During this period, gas emission from the raw materials, carbon such as spacers and carbon HP type, and the equipment peaks, and
At 1200 ° C., carbon such as spacers and carbon HP type reacts with oxygen from the apparatus and raw materials to generate CO gas. If a large amount of this CO gas remains, A
It reacts with the 1N raw material to form AlC and AlOC compounds, which causes densification and heterogeneous phase formation. As a result, the dielectric loss becomes large.
It is important to exhaust the degree of vacuum in the apparatus to 1 kPa or less up to ° C. The degree of vacuum in the apparatus is preferably 0.5 Pa or less, more preferably 0.1 Pa or less, and even more preferably 0.01 Pa or less. As a result, it is possible to easily remove the harmful gas that affects the sinterability and characteristics.

【0044】さらに、1200〜1600℃の温度範囲
においてN2ガスを導入して装置内の圧力を1〜300
kPaにすることが好ましい。つまり、N2ガス導入時
の温度を1200〜1600℃とする。1200℃未満
の温度でN2ガスを導入して装置内の圧力を1〜300
kPaにすると、発生するCOガスが残留して、緻密化
阻害や異相生成の原因となる。1600℃より高い温度
まで真空を保つと、HP型や離型材のカーボンと反応し
てAlCやAlOC化合物を生成して緻密化阻害や異相
生成の原因となることがある。特に、1250〜155
0℃、更には1300〜1500℃の温度範囲において
2ガスを導入し、装置内の圧力を、特に80〜200
kPa、更には100〜200kPaにすることが好ま
しい。
Further, the pressure in the apparatus is adjusted to 1 to 300 by introducing N 2 gas in the temperature range of 1200 to 1600 ° C.
It is preferably kPa. That is, the temperature at the time of introducing N 2 gas is set to 1200 to 1600 ° C. The pressure in the apparatus is adjusted to 1 to 300 by introducing N 2 gas at a temperature lower than 1200 ° C.
When the pressure is set to kPa, the generated CO gas remains and causes densification inhibition and heterophase formation. If the vacuum is maintained at a temperature higher than 1600 ° C., it may react with the carbon of the HP type or the release material to form AlC or AlOC compounds, which may cause densification inhibition or heterophase formation. Especially 1250-155
N 2 gas is introduced in the temperature range of 0 ° C., and further 1300 to 1500 ° C., and the pressure in the apparatus is set to 80 to 200
It is preferably kPa, more preferably 100 to 200 kPa.

【0045】また、1200〜2300℃の温度範囲に
おいてホットプレス圧力を3〜15MPaに上昇させる
ことが好ましい。1200℃未満で加圧すると、H2
等のガスの除去が不十分となり、緻密化を阻害する恐れ
があり、2300℃を超えて加圧すると、部分的に焼結
が開始し、密度ばらつきの原因となり、抵抗値のばらつ
きが大きくなる傾向がある。ホットプレス圧力は、特に
5〜10MPaの圧力で、特に1200〜1650℃、
更には1200〜1600℃の温度範囲において加える
ことが好ましい。
Further, it is preferable to increase the hot press pressure to 3 to 15 MPa in the temperature range of 1200 to 2300 ° C. When pressurized below 1200 ° C, H 2 O
If the pressure exceeds 2300 ° C, sintering will start partially, causing density variations, and variations in resistance value will increase. Tend. The hot press pressure is 5 to 10 MPa, particularly 1200 to 1650 ° C.
Furthermore, it is preferable to add in the temperature range of 1200 to 1600 ° C.

【0046】次いで、2000℃〜2300℃の最高保
持温度まで昇温し、温度を一定時間保持して相対密度の
平均値が98%以上、特に99%以上、更には99.5
%以上となるになるように焼成する。最高保持温度を2
000℃以上とすることによってAlN焼結体の50℃
の体積固有抵抗値を107〜1012Ωcmにすることが
容易となり、その面内ばらつきを小さくすることができ
る。2000℃未満では、密度が98%に満たず、しか
も1012Ωmより高い抵抗値を示す。特に2000〜2
300℃、更には2050〜2200℃が、体積固有抵
抗値の制御の点で好ましい。
Next, the temperature is raised to the maximum holding temperature of 2000 ° C. to 2300 ° C., and the temperature is held for a certain period of time so that the average value of the relative density is 98% or more, particularly 99% or more, and further 99.5.
Bake so that it becomes more than%. Maximum holding temperature is 2
By setting the temperature above 000 ° C, the AlN sintered body will reach 50 ° C.
It becomes easy to make the volume resistivity value of 10 7 to 10 12 Ωcm, and the in-plane variation can be reduced. If the temperature is less than 2000 ° C., the density is less than 98% and the resistance value is higher than 10 12 Ωm. Especially 2000-2
300 ° C., and more preferably 2050 to 2200 ° C. are preferable from the viewpoint of controlling the volume resistivity value.

【0047】なお、焼成においては、一定の保持時間に
おいて、温度と圧力を保持することが好ましい。保持時
間は試料の量や組成によって異なるものの、焼結が進む
のを考慮すると20分以上、特に1時間以上であること
が好ましい。
In the firing, it is preferable to keep the temperature and the pressure for a certain holding time. Although the holding time varies depending on the amount and composition of the sample, it is preferably 20 minutes or more, particularly 1 hour or more in consideration of the progress of sintering.

【0048】そして、本発明によれば、常温から昇温し
て上記の最高保持温度に達するまでのAlN粉末及び/
又は成形体の収縮速度を2mm/min以下に制御する
ことが重要である。常温から最高保持温度までの収縮速
度は、AlN粉末及び/又は成形体の焼結挙動に影響
し、収縮速度が2mm/minより大きいと焼結が進む
部位と進まない部位が生じて、密度、体積固有抵抗値及
び比誘電率のばらつきが大きくなる。特に、収縮速度を
1.5mm/min以下、更には1mm/min以下に
することが好ましい。
Further, according to the present invention, the AlN powder and //
Alternatively, it is important to control the shrinkage speed of the molded body to 2 mm / min or less. The shrinkage rate from room temperature to the maximum holding temperature affects the sintering behavior of the AlN powder and / or the molded body, and when the shrinkage rate is higher than 2 mm / min, there are portions where sintering proceeds and portions where sintering does not proceed, and density, Variations in volume resistivity and relative permittivity become large. In particular, it is preferable that the shrinkage speed is 1.5 mm / min or less, and further 1 mm / min or less.

【0049】なお、粉末や成形体をHP型に装填し、加
熱前に0.04〜3MPaの圧力を加えたときの成形体
の上端面を基準として、この上端面の変位の経時変化を
測定し、単位時間に対する変位量を収縮速度とする。換
言すれば、室温から最高保持温度までの収縮曲線から、
傾きを接線でとることができ、その最大傾きから算出し
た収縮速度の最大値が2mm/min以下かどうかを判
断する。
It should be noted that the powder or the compact was loaded into an HP mold, and the change with time of the displacement of the upper end face was measured with reference to the upper end face of the compact when a pressure of 0.04 to 3 MPa was applied before heating. Then, the amount of displacement per unit time is defined as the contraction speed. In other words, from the shrinkage curve from room temperature to the maximum holding temperature,
The slope can be taken as a tangent line, and it is determined whether or not the maximum value of the contraction speed calculated from the maximum slope is 2 mm / min or less.

【0050】このようにして作製した本発明の抵抗体
は、tanδの面内ばらつきが小さく、静電チャックと
して好適に用いることができる。
The resistor of the present invention manufactured in this manner has a small in-plane variation of tan δ and can be suitably used as an electrostatic chuck.

【0051】次に、本発明の保持装置を、Siウエハな
どを静電的に吸着する静電チャックを例にとって説明す
る。
Next, the holding device of the present invention will be described by taking an electrostatic chuck that electrostatically attracts a Si wafer or the like as an example.

【0052】図2は、単極タイプの静電チャック1の例
である。円板形状の基板2の一主面3にSiウエハなど
の被保持物を載置する載置面4が設けられている。この
載置面4に対向するように、一主面3の反対の主面に電
極5が設けられている。
FIG. 2 shows an example of a monopolar type electrostatic chuck 1. A mounting surface 4 on which an object to be held such as a Si wafer is mounted is provided on one main surface 3 of the disk-shaped substrate 2. An electrode 5 is provided on the main surface opposite to the one main surface 3 so as to face the mounting surface 4.

【0053】そして、載置面4が、上記の本発明の抵抗
体からなることが重要である。即ち、基板2は、実質的
に本発明の抵抗体からなるものであればよい。また、載
置面4が本発明の抵抗体からなっていれば、基板2が電
極5に平行な層状セラミックスの積層体からなっていて
もかまわない。
It is important that the mounting surface 4 is made of the above-mentioned resistor of the present invention. That is, the substrate 2 may be made of the resistor of the present invention. Further, if the mounting surface 4 is made of the resistor of the present invention, the substrate 2 may be made of a laminated body of layered ceramics parallel to the electrodes 5.

【0054】載置面4に載置されたSiウエハ等の被保
持物と電極5との間に電圧が印可され、載置面4と電極
5との間に電流がわずかにながれて静電的な吸着が起こ
る。なお、図2には記載してないが、外部から電極5に
電圧を供給するための接続端子が含まれることは言うま
でもない。
A voltage is applied between the electrode 5 and an object to be held, such as a Si wafer, placed on the placing surface 4, and a slight current flows between the placing surface 4 and the electrode 5, resulting in electrostatic discharge. Adsorption occurs. Although not shown in FIG. 2, it goes without saying that a connection terminal for supplying a voltage to the electrode 5 from the outside is included.

【0055】また、図3は本発明である保持装置の他の
例である。これは、双極タイプの静電チャック11であ
り、円板形状の基板12の一主面13にSiウエハなど
の被保持物を載置する載置面14が設けられており、基
板12の内部には一対の電極15が設けられている。こ
の電極15は、載置面14に対向するように配置されて
いる。
FIG. 3 shows another example of the holding device according to the present invention. This is a bipolar type electrostatic chuck 11, in which a mounting surface 14 on which a held object such as a Si wafer is mounted is provided on one main surface 13 of a disk-shaped substrate 12, and inside the substrate 12. Is provided with a pair of electrodes 15. The electrode 15 is arranged so as to face the mounting surface 14.

【0056】そして、載置面14が、上記の本発明の抵
抗体からなることが重要である。即ち、基板12は、実
質的に本発明の抵抗体からなり、内部に電極15を埋設
させればよい。また、基板12を載置面14を含む上部
基板12aと下部基板12bとに分割し、上部基板12
aに本発明の抵抗体を用い、下部基板12bに他のセラ
ミックスを用いても差し支えない。
It is important that the mounting surface 14 is made of the above-mentioned resistor of the present invention. That is, the substrate 12 is substantially made of the resistor of the present invention, and the electrode 15 may be embedded inside. Further, the substrate 12 is divided into an upper substrate 12a including the mounting surface 14 and a lower substrate 12b, and the upper substrate 12a
It is possible to use the resistor of the present invention for a and use other ceramics for the lower substrate 12b.

【0057】一対の電極15には、正、負の電圧がそれ
ぞれ印加され、載置面14に載置されたSiウエハ等の
被保持物と電極15との間に電流がわずかにながれて静
電的な吸着が起こる。なお、図3には記載してないが、
外部から電極15に電圧を供給するための電気配線及び
接続端子が含まれることは言うまでもない。
Positive and negative voltages are applied to the pair of electrodes 15, respectively, and a slight current flows between the electrode 15 and a held object such as a Si wafer mounted on the mounting surface 14 to cause static electricity. Electro-adsorption occurs. Although not shown in FIG. 3,
It goes without saying that an electric wiring and a connection terminal for supplying a voltage to the electrode 15 from the outside are included.

【0058】処理装置によってはプラズマを発生する容
器内で用いられるため、被保持物の近傍にプラズマを発
生させるために、基板の内部又は裏面にプラズマ電極が
設けられてなることが重要である。これにより、装置構
造の簡略化や小型化に大きく寄与できるとともに、プラ
ズマの制御が容易になる。
Since some processing apparatuses are used in a container for generating plasma, it is important to provide a plasma electrode inside or on the back surface of the substrate in order to generate plasma near the object to be held. This can greatly contribute to simplification and downsizing of the device structure and facilitate plasma control.

【0059】さらには、所望により、冷却用の冷媒の通
路をセラミック平板内に設けたり、ペルチェ素子などの
冷却用装置を内蔵することもできる。
Further, if desired, a cooling medium passage may be provided in the ceramic flat plate, or a cooling device such as a Peltier element may be incorporated.

【0060】本発明の抵抗体を、少なくとも載置面に用
いた場合、載置面4、14の誘電正接tanδのばらつ
きが小さいため、最大直径が200mm以上、電極と載
置面との距離が0.5mm以上の本発明の保持装置は、
載置面4、14について誘電正接tanδのばらつきが
少ないセラミック抵抗体を用いた保持部材は、面内で均
一な処理を可能にすることができる。この優れた吸着特
性は、特に−70〜100℃の温度範囲において顕著で
ある。
When the resistor of the present invention is used at least on the mounting surface, since the variation of the dielectric loss tangent tan δ of the mounting surfaces 4 and 14 is small, the maximum diameter is 200 mm or more and the distance between the electrode and the mounting surface is small. The holding device of the present invention of 0.5 mm or more,
The holding member using the ceramic resistor with little variation in the dielectric loss tangent tan δ on the mounting surfaces 4 and 14 can enable uniform treatment within the surface. This excellent adsorption property is particularly remarkable in the temperature range of -70 to 100 ° C.

【0061】上記の構成を有する本発明の保持装置は、
基板の直径や厚みが大きい場合においても面内のtan
δが均一で、製品内の不純物成分のばらつきが少なく、
生産性や信頼性の高いセラミック抵抗体及び保持装置を
提供することができる。
The holding device of the present invention having the above structure is
In-plane tan even when the diameter or thickness of the substrate is large
δ is uniform, there is little variation in impurity components in the product,
It is possible to provide a ceramic resistor and a holding device with high productivity and high reliability.

【0062】[0062]

【実施例】原料として平均粒子径1μmの還元窒化法の
AlN粉末を用いた。このAlN粉末に対して所望によ
り平均粒子径1μmの炭素粉末、Al23粉末、B粉
末、Na粉末、Ca粉末を加えた。そして、炭素量、酸
素量及びAl以外の金属量が表1に示す組成になるよう
に混合した。
Example As a raw material, an AlN powder obtained by a reduction nitriding method having an average particle diameter of 1 μm was used. If desired, carbon powder, Al 2 O 3 powder, B powder, Na powder, and Ca powder having an average particle diameter of 1 μm were added to this AlN powder. Then, the carbon amount, the oxygen amount, and the metal amount other than Al were mixed so as to have the composition shown in Table 1.

【0063】これらの混合粉末をエタノールとともに混
合し、混合粉末を作製した。この混合粉末を直径210
mmのHP型に直接充填するものと、予備成形を行って
からHP型に充填するものとに分けた。なお、予備成形
を行うための混合粉末には、混合時にバインダとしてパ
ラフィンワックスを9重量%添加してあり、成形後に窒
素雰囲気中600℃で8時間脱脂を行ってからHP型に
装填した。次いで、上記のHP型をホットプレス装置に
装填し、表1に示す条件で焼成した。
These mixed powders were mixed with ethanol to prepare mixed powders. This mixed powder has a diameter of 210
mm HP molds were directly filled, and pre-formed HP molds were filled. Paraffin wax was added as a binder in an amount of 9% by weight to the mixed powder for preforming, and the mixture was degreased in a nitrogen atmosphere at 600 ° C. for 8 hours and then loaded into an HP mold. Next, the above HP type was loaded into a hot press machine and fired under the conditions shown in Table 1.

【0064】得られた焼結体を加工し、直径202m
m、厚み6mmの形状にした。この焼結体を用いて、中
心部及び外周部を含む30部位において誘電損失、体積
固有抵抗及び吸着特性を測定した。
The obtained sintered body was processed to have a diameter of 202 m.
m and a thickness of 6 mm. Using this sintered body, dielectric loss, volume resistivity and adsorption characteristics were measured at 30 sites including the central part and the outer peripheral part.

【0065】即ち、誘電正接は、直径50mmのサイズ
にAg性導電性ペーストにて、電極を形成し、0.5〜
10mmの各厚みに対して、1MHzの周波数で、ブリ
ッジ回路法により測定した。また、体積固有抵抗は、J
IS C2141:1922に基づいた3端子法によ
り、50℃で測定した。
That is, the dielectric loss tangent is 0.5 to 50 mm in diameter, an electrode is formed from Ag conductive paste, and
It was measured by a bridge circuit method at a frequency of 1 MHz for each thickness of 10 mm. The volume resistivity is J
It was measured at 50 ° C. by a three-terminal method based on IS C2141: 1922.

【0066】さらに、吸着特性は、図2に示した構造を
有する静電チャックを作製し、一辺が25mmの直方体
Siを被処理物として、載置面の30部位において吸着
力及び電荷が除去されるまでの除電時間を測定し、それ
ぞれ平均値、最大値、最小値を算出し、ばらつきを評価
した。ばらつきは、最大値と最小値との差を平均値で割
った値とした。
Further, regarding the adsorption characteristic, an electrostatic chuck having the structure shown in FIG. 2 was manufactured, and a rectangular parallelepiped Si having a side of 25 mm was used as an object to be treated, and the adsorption force and electric charge were removed at 30 parts of the mounting surface. The static elimination time was measured, the average value, the maximum value and the minimum value were calculated, and the variation was evaluated. The variation was a value obtained by dividing the difference between the maximum value and the minimum value by the average value.

【0067】なお、吸着力は50℃で500Vを印加
し、印加から30秒後までの吸着力の時間依存性を測定
した。吸着力が飽和するまでの時間(飽和時間)と、電
圧の印加を停止し吸着力がなくなるまでの時間(除電時
間)を測定した。即ち、飽和時間は、電圧印加30秒後
の吸着力を100%とした時、90%の吸着力を示す時
間とした。また、除電時間は、電圧の印加停止から吸着
力が500Paまで低下するのに要した時間とした。
The adsorption force was 500 V at 50 ° C., and the time dependency of the adsorption force was measured 30 seconds after the application. The time until the adsorption force was saturated (saturation time) and the time until the application of voltage was stopped and the adsorption force disappeared (static elimination time) were measured. That is, the saturation time was a time showing 90% of the suction force when the suction force after applying the voltage for 30 seconds was 100%. The static elimination time was the time required for the adsorption force to drop to 500 Pa after the voltage application was stopped.

【0068】次に、上記の測定に用いた焼結体を中心部
及び外周部を含む30部位に分け、それぞれの部位毎に
相対密度、酸素含有量、炭素含有量及びカソードルミネ
ッセンススペクトルを測定した。即ち、相対密度は、ま
ずアルキメデス法から嵩密度をもとめた後、焼結体を粉
砕してJISR1620に基づいたヘリウム置換法によ
って得られた真密度と比較して算出した。
Next, the sintered body used for the above measurement was divided into 30 parts including the central part and the outer peripheral part, and the relative density, oxygen content, carbon content and cathodoluminescence spectrum were measured for each part. . That is, the relative density was calculated by first obtaining the bulk density from the Archimedes method, then crushing the sintered body, and comparing it with the true density obtained by the helium substitution method based on JISR1620.

【0069】焼結体中の酸素量は日本セラミック協会J
CMR004(Si34)を標準試料として、堀場製作
所製EMGA−650FA装置を用いて行った。また、
炭素量は、校正用標準試料JSS171−7及びJSS
150−14を用いて堀場製作所EMIA−511型炭
素分析装置を用いた。
The amount of oxygen in the sintered body is J
CMR004 (Si 3 N 4 ) was used as a standard sample, and EMGA-650FA device manufactured by Horiba Ltd. was used. Also,
Carbon content is the standard sample for calibration JSS171-7 and JSS
The HORIBA, Ltd. EMIA-511 type carbon analyzer was used using 150-14.

【0070】AlNのラマンスペクトル分析は、日本分
光製NR1800レーザーラマン分光光度計を用い、レ
ーザーは、コーヒーレント社INNOVA70を使用し
た。測定条件は、レーザー波長514.5nmとし、モ
ノクロメーターはトリプル、感度0.05×10nA/
FSとして、積算回数を6回として測定した。結果を表
1及び表2に示した。
For Raman spectrum analysis of AlN, NR1800 laser Raman spectrophotometer manufactured by JASCO Corporation was used, and as laser, INNOVA70 manufactured by Coffeelent Co. was used. The measurement conditions were a laser wavelength of 514.5 nm, a monochromator triple, and a sensitivity of 0.05 × 10 nA /
As FS, the number of times of integration was 6 and the measurement was performed. The results are shown in Tables 1 and 2.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【表2】 [Table 2]

【0073】本発明の試料No.1〜4、6〜9及び1
2、13は、吸着力の平均値が20kPa以上、吸着力
のばらつきが30%以下、徐電時間の平均値が10se
c以下、除電時間のばらつきが5sec以下であった。
Sample No. of the present invention. 1-4, 6-9 and 1
In Nos. 2 and 13, the average value of the adsorption force is 20 kPa or more, the variation of the adsorption force is 30% or less, and the average value of the slow discharge time is 10 se.
c or less, and the variation in static elimination time was 5 sec or less.

【0074】一方、体積固有抵抗の平均値が1013Ωc
mと高い本発明の範囲外の試料No.5は、吸着力及び
除電時間のばらつきが100%と非常に大きな値を示し
た。
On the other hand, the average value of volume resistivity is 10 13 Ωc.
m, which is as high as m, outside the scope of the present invention. In No. 5, the dispersion of the adsorption force and the static elimination time showed a very large value of 100%.

【0075】また、誘電損失の平均値とばらつきがいず
れも大きい本発明の範囲外の試料No.10及び試料N
o.11は、吸着力のばらつきが40%以上と大きな値
を示した。
Further, sample No. out of the range of the present invention in which both the average value and the variation of the dielectric loss are large. 10 and sample N
o. No. 11 had a large variation of 40% or more in the adsorption force.

【0076】さらに、誘電損失のばらつきが大きい本発
明の範囲外の試料No.14は、吸着力のばらつきが5
0%であり、除電時間が25sec以上、除電時間のば
らつきが20sec以上であった。
Further, the sample No. having a large variation in dielectric loss was outside the scope of the present invention. 14 has a variation in suction force of 5
It was 0%, the static elimination time was 25 sec or more, and the variation in the static elimination time was 20 sec or more.

【0077】さらにまた、開始温度から1200℃まで
の雰囲気圧力が高い本発明の範囲外の試料No.15
は、除電時間が40secと長く、除電時間のばらつき
は30sec以上であった。
Furthermore, the sample No. out of the range of the present invention in which the atmospheric pressure from the starting temperature to 1200 ° C. is high. 15
The static elimination time was as long as 40 seconds, and the variation in static elimination time was 30 seconds or more.

【0078】[0078]

【発明の効果】焼結体の直径や厚みが大きい場合におい
ても焼結体の面内における誘電損失のばらつきを制御す
ることにより、製品内のばらつきが少なく、信頼性の高
い静電チャックとして好適に用いることのできる抵抗体
及び被保持物を均一に処理できる保持装置を提供でき
る。
[Effects of the Invention] Even when the diameter or thickness of the sintered body is large, by controlling the dispersion of the dielectric loss within the surface of the sintered body, there is little dispersion within the product, and it is suitable as a highly reliable electrostatic chuck. It is possible to provide a holding device capable of uniformly treating a resistor and a held object that can be used for.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の抵抗体のラマンスペクトルを示すチャ
ート図である。
FIG. 1 is a chart showing a Raman spectrum of a resistor of the present invention.

【図2】本発明の保持装置の一例である静電チャックの
構造を示す断面図である。
FIG. 2 is a cross-sectional view showing a structure of an electrostatic chuck which is an example of a holding device of the present invention.

【図3】本発明の保持装置の一例である静電チャックの
他の構造を示す断面図である。
FIG. 3 is a cross-sectional view showing another structure of the electrostatic chuck which is an example of the holding device of the present invention.

【符号の説明】[Explanation of symbols]

a、d・・・AlNのc軸対称ピーク b、c、e・・・AlNのa軸対称ピーク f・・・異相のピーク a, d ... AlN c-axis symmetrical peak b, c, e ... AlN a-axis symmetrical peak f ... peak of different phase

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA36 BA60 BA61 BA73 BB36 BB60 BB61 BB73 BC42 BC52 BC54 BD21 BD23 BE01 5F031 CA02 HA02 HA03 HA16 PA11 PA18    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G001 BA36 BA60 BA61 BA73 BB36                       BB60 BB61 BB73 BC42 BC52                       BC54 BD21 BD23 BE01                 5F031 CA02 HA02 HA03 HA16 PA11                       PA18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】最大直径が200mm以上、厚みが0.5
mm以上のセラミック焼結体からなり、外周部及び中心
部を含む複数の部位で測定した相対密度の平均値が98
%以上、50℃の体積固有抵抗値の平均値が107〜1
12Ωcm、周波数1MHzにおける誘電損失の平均値
が50×10-4以下、誘電損失の最大値と最小値の差が
前記平均値の50%以下であることを特徴とする抵抗
体。
1. A maximum diameter of 200 mm or more and a thickness of 0.5.
The average value of the relative densities measured at a plurality of sites including the outer peripheral portion and the central portion is 98, which is made of a ceramic sintered body having a diameter of at least mm.
% Or more, the average value of the volume resistivity values at 50 ° C. is 10 7 to 1
A resistor characterized in that the average value of the dielectric loss at 0 12 Ωcm and a frequency of 1 MHz is 50 × 10 −4 or less, and the difference between the maximum value and the minimum value of the dielectric loss is 50% or less of the average value.
【請求項2】AlNを主結晶相とし、炭素を1重量%以
下、酸素を0.2〜3重量%、Al以外の金属を合計で
0.5重量%以下の割合で含むとともに、前記炭素含有
量の面内ばらつきが30%以下、前記金属の総量の面内
ばらつきが20%以下であることを特徴とする請求項1
記載の抵抗体。
2. AlN as a main crystalline phase, containing carbon in an amount of 1% by weight or less, oxygen in an amount of 0.2 to 3% by weight, and metals other than Al in a total amount of 0.5% by weight or less. The in-plane variation of the content is 30% or less, and the in-plane variation of the total amount of the metal is 20% or less.
The resistor described.
【請求項3】前記セラミック焼結体のレーザーラマン分
光測定スペクトルにおいて、100〜133cm-1付近
のピーク強度I1と665〜680cm-1付近のピーク強
度I6との比率I1/I6が0.4以下であることを特徴とす
る請求項2記載の抵抗体。
3. A laser Raman spectroscopic measurement spectrum of the ceramic sintered body, the ratio I 1 / I 6 between the peak intensity I 1 and 665~680Cm -1 vicinity of the peak intensity I 6 near 100~133Cm -1 The resistor according to claim 2, wherein the resistance is 0.4 or less.
【請求項4】セラミック粉末及び/又は成形体を最高保
持温度で焼成し、最大直径が200mm以上、厚みが
0.5mm以上のセラミック焼結体を作製するのに際し
て、常温から最高保持温度までの収縮速度を2mm/m
in以下に制御するとともに、焼成開始から1200℃
の焼成温度まで、装置内の真空度を1Pa以下に保持す
ることを特徴とする抵抗体の製造方法。
4. A ceramic powder and / or a compact is fired at a maximum holding temperature to produce a ceramic sintered body having a maximum diameter of 200 mm or more and a thickness of 0.5 mm or more, from room temperature to the maximum holding temperature. Shrink speed is 2 mm / m
Controlled to below in and 1200 ° C from the start of firing
The method for producing a resistor, wherein the vacuum degree in the apparatus is maintained at 1 Pa or less up to the firing temperature of.
【請求項5】AlN粉末を主体とし、炭素を1重量%以
下、酸素を0.2〜3重量%含むセラミック粉末をホッ
トプレス型内に装填し、該セラミック粉末に0.04〜
3MPaのホットプレス圧力を加えた後に加熱を開始
し、1200〜1600℃の温度範囲においてN2ガス
を導入して装置内の雰囲気圧力を1〜300kPaにす
るとともに、1200〜2300℃の温度範囲において
ホットプレス圧力を3〜15MPa以上に上昇させ、2
000℃以上の最高保持温度で焼成することを特徴とす
る請求項4記載の抵抗体の製造方法。
5. A ceramic powder containing AlN powder as a main component and containing carbon in an amount of 1% by weight or less and oxygen in an amount of 0.2 to 3% by weight is loaded into a hot press mold, and 0.04 to
Heating is started after applying a hot press pressure of 3 MPa, N 2 gas is introduced in the temperature range of 1200 to 1600 ° C. to set the atmospheric pressure in the apparatus to 1 to 300 kPa, and in the temperature range of 1200 to 2300 ° C. Increase the hot press pressure to 3 to 15 MPa or higher, and
The method for producing a resistor according to claim 4, wherein the firing is performed at a maximum holding temperature of 000 ° C or higher.
【請求項6】基板と、該基板の一主面に設けられた被保
持物の載置面と、該載置面と対向して設けられた電極と
を具備し、少なくとも前記載置面が請求項1乃至3のい
ずれかに記載の抵抗体からなることを特徴とする保持装
置。
6. A substrate, a mounting surface for a held object provided on one main surface of the substrate, and an electrode provided so as to face the mounting surface, and at least the mounting surface described above. A holding device comprising the resistor according to any one of claims 1 to 3.
JP2001224635A 2001-07-25 2001-07-25 Resistor and its manufacturing method and its holding device Pending JP2003040674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001224635A JP2003040674A (en) 2001-07-25 2001-07-25 Resistor and its manufacturing method and its holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001224635A JP2003040674A (en) 2001-07-25 2001-07-25 Resistor and its manufacturing method and its holding device

Publications (1)

Publication Number Publication Date
JP2003040674A true JP2003040674A (en) 2003-02-13

Family

ID=19057761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001224635A Pending JP2003040674A (en) 2001-07-25 2001-07-25 Resistor and its manufacturing method and its holding device

Country Status (1)

Country Link
JP (1) JP2003040674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035689A1 (en) * 2008-09-26 2010-04-01 京セラ株式会社 Electrostatic chuck
WO2015137270A1 (en) * 2014-03-10 2015-09-17 住友大阪セメント株式会社 Dielectric material and electrostatic chucking device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315867A (en) * 1996-03-29 1997-12-09 Ngk Insulators Ltd Aluminum nitride sintered compact, metal embedded article, electronic functional material and electrostatic chuck

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09315867A (en) * 1996-03-29 1997-12-09 Ngk Insulators Ltd Aluminum nitride sintered compact, metal embedded article, electronic functional material and electrostatic chuck

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035689A1 (en) * 2008-09-26 2010-04-01 京セラ株式会社 Electrostatic chuck
JP2010080678A (en) * 2008-09-26 2010-04-08 Kyocera Corp Electrostatic chuck
WO2015137270A1 (en) * 2014-03-10 2015-09-17 住友大阪セメント株式会社 Dielectric material and electrostatic chucking device
KR20160131007A (en) 2014-03-10 2016-11-15 스미토모 오사카 세멘토 가부시키가이샤 Dielectric material and electrostatic chucking device
JPWO2015137270A1 (en) * 2014-03-10 2017-04-06 住友大阪セメント株式会社 Dielectric material, electrostatic chuck device
US9944561B2 (en) 2014-03-10 2018-04-17 Sumitomo Osaka Cement Co., Ltd. Dielectric material and electrostatic chucking device

Similar Documents

Publication Publication Date Title
KR100268481B1 (en) Aluminium nitride sintered body, metal embedded article, electronic functional material and electrostatic chunk
EP0896362B1 (en) Semiconductor supporting device
JP2009173537A (en) High-purity low-resistivity electrostatic chuck
KR100345083B1 (en) Aluminum nitride sintered body, electronic functional material, and electrostatic chuck
KR100278904B1 (en) Method for producing aluminum nitride based composite, electronic functional material, electrostatic chuck and aluminum nitride based composite
EP2189431B1 (en) Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same
US8231964B2 (en) Aluminum oxide sintered body, method for producing the same and member for semiconductor producing apparatus
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
JP3740383B2 (en) Holding device
KR20230042679A (en) Composite sintered body and method of manufacturing composite sintered body
JP2003040674A (en) Resistor and its manufacturing method and its holding device
JPWO2019163710A1 (en) Manufacturing method of composite sintered body, semiconductor manufacturing equipment member and composite sintered body
JP2003012376A (en) Resistor and its manufacturing method and holding device for the same
TWI812009B (en) Beryllium oxide pedestals
JP2001342070A (en) Ceramic resistive element and holding material
JP3865966B2 (en) Plasma-resistant member and manufacturing method thereof
JP3965467B2 (en) Ceramic resistor, method for manufacturing the same, and electrostatic chuck
JP3605347B2 (en) Method for producing ceramics with built-in electrodes, adsorption device and semiconductor production device
JP2003292377A (en) Ceramic member for semiconductor device
JPH11147767A (en) Production of aluminum nitride sintered product
JP2004153209A (en) Member for plasma processing device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301