JP3740383B2 - Holding device - Google Patents

Holding device Download PDF

Info

Publication number
JP3740383B2
JP3740383B2 JP2001159632A JP2001159632A JP3740383B2 JP 3740383 B2 JP3740383 B2 JP 3740383B2 JP 2001159632 A JP2001159632 A JP 2001159632A JP 2001159632 A JP2001159632 A JP 2001159632A JP 3740383 B2 JP3740383 B2 JP 3740383B2
Authority
JP
Japan
Prior art keywords
less
value
volume resistivity
measured
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001159632A
Other languages
Japanese (ja)
Other versions
JP2002348175A (en
Inventor
勝伺 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001159632A priority Critical patent/JP3740383B2/en
Publication of JP2002348175A publication Critical patent/JP2002348175A/en
Application granted granted Critical
Publication of JP3740383B2 publication Critical patent/JP3740383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、保持装置に関するものであり、特に電子機能材料用部材及び、半導体製造装置等におけるウエハの保持や搬送に好適に用いられる保持装置に関するものである。
【0002】
【従来技術】
液晶を含む半導体デバイスの製造に用いる半導体製造装置において、シリコンウエハ等の半導体を加工したり、搬送するためには、シリコンウエハ等を保持する必要がある。特に、静電的にシリコンウエハを保持する静電チャックは、
真空中や腐食性ガス雰囲気での使用が可能であり、半導体の製造に適しているため、多用されている。
【0003】
窒化アルミニウムは耐食性が高く、熱伝導が高く熱衝撃性に比較的強いため静電チャックの主成分として用いられている。この窒化アルミニウムは、50℃における体積固有抵抗が1×1014Ωcm以上と絶縁体であるが、特に、最近では、特に200℃以下で使用される静電チャックにおいて、シリコンウエハの保持のためにより高い吸着力が要求されており、より高い吸着力を得るためには、抵抗を低くすることが提案されている。
【0004】
特に、不純物の少ない窒化アルミニウム焼結体は、耐食性に優れるため、特に腐食性ガス雰囲気で寿命が長くなり、部品交換の期間を延ばし、メンテナンスのための装置の停止を少なくできるため、スループットを向上できる。このような窒化アルミニウムは、焼結助剤が少ないため、加圧下での焼成方法、例えばホットプレスや熱間等方プレス等の方法が用いられる。
【0005】
例えば、特開平10−72260号公報では高純度の窒化アルミニウムの成形体中に金属電極を埋設し、ホットプレス焼成によって作製し、Al以外の金属元素の含有量が100ppm以下で、室温での体積固有抵抗を1×109〜1×1013Ωcmとした直径が200mm以上の静電チャックが提案されている。
【0006】
また、特開平11−100270号公報では、電子スピン共鳴法によるスペクトルから得られたアルミニウムの単位mg当たりのスピン数を5×1012spin/mg以下とするとともに、100℃〜500℃までの体積抵抗率を1×107〜1×1014Ωcmとすることによって、従来よりも広い温度範囲で体積抵抗率の変化を小さくした静電チャックが開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平10−72260号公報に記載された窒化アルミニウム焼結体は、緻密性には優れるものの、吸着特性に影響を及ぼす体積固有抵抗が、特に、0.5mm以上と厚みが大きい場合には、面内でばらつきが大きくなる傾向があるため、製品の信頼性が低下するという問題があった。
【0008】
また、特開平11−100270号公報に記載された静電チャックは、従来に比べて広い温度範囲で体積抵抗率の変化が小さくなったものの、一つの基板面内での体積固有抵抗がばらつきやすく、特に、基板が大きい、又は基板が厚い場合には、部位によっては印加電圧を停止しても吸着が維持され、いわゆる残留吸着が発生しやすいという問題があった。
【0009】
したがって、本発明は、基板の直径や厚みが大きい場合においても面内の体積固有抵抗が均一で、製品内のばらつきが少なく、信頼性の高い保持装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、密度及び粒子径差の基板面内でのばらつきを制御することにより、体積固有抵抗のばらつきを小さくできるという知見に基づくものである。
【0011】
即ち、本発明の保持装置は、基板と、該基板の一主面に設けられた被保持物の載置面と、該載置面と対向して設けられた電極とを具備し、前記基板の少なくとも載置面が抵抗体からなる保持装置において、前記抵抗体が、最大直径が150mm以上、厚みが0.5mm以上のAlNを主結晶相とし、炭素の含有量が0.1重量%以下、酸素の含有量が0.2〜2重量%、Al以外の金属不純物の総量が700ppm以下、且つ前記金属不純物の総量の面内ばらつきが30%以下である焼結体からなり、少なくとも外周部及び中心部を含む複数の部位において測定した50℃の体積固有抵抗値の平均値が107〜1012Ωcmの抵抗体であって、前記部位において測定した相対密度の平均値が98%以上、該相対密度の最大値と最小値の差が1%以下、前記部位において測定した主結晶相の平均粒子径の最大値と最小値の差が3μm以下、前記体積固有抵抗値の最小値δminに対する最大値δmaxの比δmax/δminが100以下、0≦(12−logδmax)/d≦9であることを特徴とするものである。これにより、大きな製品であっても、基板の同一面内における体積固有抵抗値のばらつきを小さくできるため、本発明の抵抗体を用いた保持部材は、体積固有抵抗の面内ばらつきが小さいため、静電吸着のために印加されていた電圧を解除した時に、部分的な残留吸着が発生することを抑制し、離脱性の良好な保持部材を実現できる。
【0013】
特に、前記セラミック焼結体の少なくとも外周部及び中心部を含む複数の部位において測定した電子スピン共鳴によるスペクトルにおいて、Alのスピン数の平均値が10 13 spin/mg以下、且つ該Alのスピン数の最小値が最大値の70%以上であることが好ましい。これにより、AlN以外の不純物化合物が少なく、体積固有抵抗値のばらつきを小さくした焼結体を実現できる。
【0018】
【発明の実施の形態】
本発明の保持装置を構成する抵抗体は、体積固有抵抗値に関して基板の主面の面内ばらつきが顕著になる最大直径が150mm以上、厚みが0.5mm以上の板状のセラミック焼結体からなり、少なくとも外周部及び中心部を含む複数の部位において測定した50℃の体積固有抵抗値の平均値が10〜1012Ωcmの抵抗体に注目し、このばらつきを改善したものである。
【0019】
即ち、少なくとも外周部及び中心部を含む複数の部位において測定した相対密度の平均値が98%以上であることが重要である。これは、焼結体の密度が98%未満では、大きなボイドが発生し、体積固有抵抗を1×107〜1×1012Ωcmの範囲にすることが難しくなるためであり、特に99%以上が好ましい。
【0020】
また、相対密度の最大値と最小値の差が1%以下であることが重要であり、特に0.8%以下、更には0.5%以下であることが好ましい。この相対密度はボイドの発生と結晶粒子径に影響するため、相対密度の密度差が1%より大きいとボイドの多い部位と少ない部位ができ、あるいは粒子径の大きく異なる組織が部分的に形成されるため、均一な抵抗制御が困難になり、静電チャックとして用いた場合に吸着の離脱特性が低下する。
【0021】
なお、相対密度については、まずアルキメデス法から嵩密度をもとめた後、理論密度と比較し、相対密度を算出した。
【0022】
さらに、少なくとも外周部及び中心部を含む複数の部位において測定した主結晶相の平均粒子径は、特に制限はないものの、抵抗を低くしやすい点で、2μm以上、特に4μm以上、更には6μm以上であることが好ましい。そして、測定した部位毎の主結晶の平均粒子径を測定し、最大値と最小値の差が3μm以下になることが重要であり、特に2μm以下が好ましい。
【0023】
粒子径は、抵抗値に影響し、粒子径が大きいと、粒界の面積が小さくなるが、粒界幅が大きくなり、導電パスが大きくなるため、電子が通りやすくなり、見かけ上、抵抗が低くなる。従って、平均粒子径の最大値と最小値の差が3μmを超えると、基板内に抵抗値のばらつきを生じる。
【0024】
なお、本発明における平均粒子径の測定は、走査型電子顕微鏡を用いる。粒子径により使用する倍率は異なるものの、500〜3000倍の写真を撮影する。その際、基板の中心部と外周部とを含む任意の部位、好ましくは10箇所以上において、1部位当たり少なくとも100個の粒子径を測定して平均粒子径を算出する。次いで、上記の複数の部位における平均粒子径のうちで、最大値と最小値からその差を算出する。
【0025】
本発明の保持装置を構成する抵抗体は、前記主結晶相がAlNからなることが好ましい。主結晶相をAlNにすると、ハロゲンを含むプラズマやガス等に対する耐食性が高く、熱伝導率が高いため耐熱衝撃性に優れる。また、AlNは半導体になって体積固有抵抗値を変えることが可能であり、50℃の体積固有抵抗値の平均値を10〜1012Ωcmに制御することが容易となる。
【0026】
また、抵抗体中の炭素の含有量が0.1重量%以下、特に0.05重量%以下であることが好ましい。この炭素は導電性粒界相の形成に関係があると考えられ、炭素量を0.1重量%以下にすることにより、AlとCを含む高抵抗の化合物を部分的に形成するのを防止し、体積固有抵抗のばらつきをより小さくする効果がある。
【0027】
さらに、焼結体中の酸素の含有量は、0.2〜2重量%、特に0.3〜1.5重量%、更には0.3〜1重量%であることが好ましい。酸素量は、体積固有抵抗値と強く関連しており、酸素の含有量が上記の範囲であれば、電荷の移動体となる粒界相が3次元的に連続して形成され、且つこの導電経路を分断する高抵抗の化合物(AlONやポリタイプ等)の形成を抑制しやすいため、
体積固有抵抗を安定化させることが容易となる。
【0028】
さらにまた、Al以外の金属の含有量が700ppm以下、特に500ppm以下、更には300ppm以下、且つその金属不純物の総量の面内ばらつきが30%以下、特に20%以下、更には10%以下であることが好ましい。これにより、金属のAlN粒への固溶による抵抗の下げ過ぎを防ぎ、また高抵抗化合物の特定の部位における形成を防止することで、50℃の体積固有抵抗値の面内ばらつきを小さくしやすく、107〜1012Ωcmの範囲に安定させることが容易となる。
【0029】
金属不純物としては、硼素(以下、Bと略する)、カルシウム(以下、Caと略する)、ナトリウム(以下、Naと略する)、鉄(以下、Feと略する)等が挙げられる。特に、B、Siの含有量は100ppm以下、さらには50ppm以下が好ましい。また、Fe、Na及びCaの含有量は、各々300ppm以下、特に200ppm以下、さらには150ppm以下であることが好ましい。
【0030】
これらの元素は窒化アルミニウムに固溶して体積固有抵抗を変化させる傾向が強いため、特に焼結体中に偏在していると体積固有抵抗のばらつきの原因となる傾向がある。なお、実際には、各金属の含有量を分析し、多い順から10種類の金属の合計量を上記のAl以外の金属の含有量とした。なお、実際には、各金属の含有量を分析し、多い順から10種類の金属の合計量を上記のAl以外の金属の含有量とした。分析法としては、蛍光X線分析またはICP分析が好ましい。
【0031】
また、本発明の保持装置を構成する抵抗体は、少なくとも外周部及び中心部を含む複数の部位において測定した窒化アルミニウムの電子スピン共鳴によるスペクトルにおいて、Alの単位mg当たりのスピン数の平均値が1013spin/mg以下であることが重要である。高抵抗化合物が形成されるとAlのスピン数が1013spin/mg以上を越えてしまうため、AlN以外の異相の発生を抑制し、抵抗値ばらつきを小さくするために、上記の値にする必要がある。
【0032】
さらに、該Alのスピン数の最小値が最大値の70%以上であることが重要である。この比は、測定したAlのスピン数の面内ばらつきを示すものであり、該Alのスピン数の最小値が最大値の70%より小さいと、部分的に高い抵抗を有する層が形成され、抵抗値ばらつきが大きくなったり、残留吸着ばらつきが大きくなったりする。このような特徴を持つ焼結体は、AlOCや金属化合物といった異相の発生を抑制し、抵抗値ばらつきが小さく、静電チャックに応用した場合、残留吸着ばらつきが非常に小さく、残留吸着も少ない。
【0033】
さらに、本発明の保持装置を構成する抵抗体は、少なくとも外周部及び中心部を含む複数の部位において測定した50℃の体積固有抵抗値の最大値δmaxと最小値δminの比(δmax/δmin)が100以下であることが重要であり、特に80以下、さらには50以下が好ましい。これにより、体積固有抵抗の面内ばらつきを小さくでき、静電チャックに応用した場合、部位による電荷の移動速度の差が小さくなるため、最大値δmaxに近い体積固有抵抗を有する部位でも残留吸着を防止でき、スループットを高めて生産性を高めることができる。
【0034】
しかし、δmax/δminが100以下であっても、基板の厚みが大きくなると、電荷の移動が遅いため、静電チャックにおいては残留吸着が発生するため、δmax/δminが100以下と同時に0≦(12−logδmax)/d≦9を満足させることが重要であり、特に0≦(12−logδmax)/d≦8、更には0≦(12−logδmax)/d≦7が好ましい。これにより、基板の厚みが変わっても、一方の主面から、その主面に対抗する他の主面までに、電荷の移動時間を制御し、静電チャックにおいて残留吸着を防止することができる。
【0035】
なお、上記の式は、直行座標において、横軸がd、縦軸がlogδmaxになるように、測定点をプロットし、縦軸の切片が12(d=0、logδmax=12)、直線の傾きの傾きが−9〜0(0の時は横軸に平行)であることを意味しており、δmax (Ωcm)が厚みd(mm)変動に影響され難いことを示すものである。
【0036】
以上のように構成された本発明の保持装置を構成する抵抗体は、組織や組成のばらつきを小さく制御されており、体積固有抵抗のばらつきが非常に小さく、電荷の移動速度が十分早いため、静電チャックに使用した場合に、特性に優れ、生産性を高めることができる。
【0037】
次に、本発明の保持装置を構成する抵抗体を作製する方法について説明する。
【0038】
まず、出発原料として純度99%以上、平均粒子径が5μm以下、好ましくは3μm以下のAlN粉末を用意する。用いるAlN粉末は、還元窒化法、または直接窒化法のいずれの製造方法で作製した粉末でも良い。
【0039】
このAlN粉末中のAl以外の金属の含有量は700ppm以下、特に500ppm以下、更には300ppm以下が好ましい。これにより、焼結体中に残留するAl以外の金属の含有量を700ppm以下にすることが容易となる。
【0040】
金属不純物としては、B、Si、Ca、Na、Fe等が挙げられる。これらは、焼結体中に残留しやすいため、B、Siの含有量は100ppm以下、さらには50ppmが好ましい。また、Fe、Na及びCaの含有量は、合計で300ppm以下、特に200ppm以下、さらには100ppm以下であることが好ましい。
【0041】
なお、実際には、各金属の含有量を分析し、多い順から10種類の金属の合計量を上記のAl以外の金属の含有量とした。分析法としては、蛍光X線分析またはICP分析が好ましい。
【0042】
さらに、AlN粉末中の炭素の含有量を0.1重量%以下、酸素の含有量を0.2〜2重量%に抑制することが好ましい。これにより、焼結体中の炭素及び酸素の含有量を、それぞれ0.1重量%以下、0.2〜2重量%にすることが容易となる。
【0043】
なお、AlN粉末の酸素量が0.2重量%に満たない場合には、Al23、SiO2等の酸化物を添加することにより、酸素の含有量が0.2〜2重量%の範囲になるように調整することができる。
【0044】
次に、上記の原料粉末をカーボンモールド内のカーボンからなるホットプレス型(以下カーボン型と言う)内に均一に充填する。この原料粉末は、粉末のまま充填してもよいが、原料粉末にバインダを添加して予めカーボン型形状に予備成形しておき、この成形体をカーボン型内に装填しても良い。この際に、成形体の内部に電極を成形してもよい。成形の方法は、金型プレス、CIP、テープ成形、鋳込み等の成型方法を用いることができる。成形体は、成形の時に必要なバインダ成分を除去した後にカーボン型内に装填する。
【0045】
また、ホットプレス時に、成形体をカーボン型に装填し、上下からカーボン板で挟み込み、加圧する際に、焼結体とカーボン型との分離をよくするために窒化硼素や炭素を離形剤として用いることができるが、除去の容易さ及びAl以外の金属の侵入も抑制する効果からカーボンシートを用いることが好ましい。これにより、硼素の侵入を防ぐことができる。さらに、窒化硼素を塗布しなくても焼結体に付着したカーボンシートは薄いため、簡単に除去できる。
【0046】
カーボン型内の原料粉体に0.04〜4.5MPaのホットプレス圧力を加えた後昇温して、充填密度を向上させる。ホットプレス開始時の圧力が、0.04MPa以下であると充填性が不十分となり、充填密度のばらつきが生じやすく、充填密度が低い部分で焼結時の緻密化を阻害することがある。又、4.5MPa以上であると、原料粉末表面に化学的に付着した水分等が抜けにくくなり、焼成の緻密を阻害するおそれがある。
【0047】
特に、600〜800℃の間でガス放出がピークとなるため、昇温開始時から800℃まで、装置内を減圧にすることが好ましい。装置内の減圧条件は1Pa以下、特に0.5Paが好ましい。これにより、焼結性や特性に及ぼすガスを容易に除去できる。
【0048】
また、800〜1200℃の温度領域における装置内の真空度を常に10Pa以下に保持することが重要であり、特に5Pa以下、さらには2Pa以下が好ましい。800〜1200℃では、スペーサーやカーボン型等のカーボンと装置及び原料からの酸素が反応して、COガスが発生する。このCOガスが多量に残存すると、高温でAlN原料と反応してAlCやAlOC化合物を生成して緻密化を阻害したり、異相の生成原因となるため、この温度領域で真空度を10Pa以下に保持して排気することが必要となる。
【0049】
さらに、1200〜1600℃の温度範囲においてN2ガスを導入して装置内の圧力を1〜300kPaにすることが重要である。つまり、N2ガス導入時の温度を1200〜1600℃とする。1200℃の温度でN2ガスを導入して装置内の圧力を1〜300kPaにすると、発生するCOガスが残留して、緻密化阻害や異相生成の原因となる。1600℃より高い温度まで真空を保つと、カーボンシートと反応してAlCやAlOC化合物を生成して緻密化阻害や異相生成の原因となる。特に、1250〜1550℃、更には1300〜1500℃の温度範囲においてN2ガスを導入し、装置内の圧力を、特に80〜200kPa、更には100〜200kPaにすることが好ましい。
【0050】
次に、1200〜1700℃の温度範囲においてホットプレス圧力を5MPa以上に上昇させることが重要である。1200℃未満で加圧すると、H2O等のガスの除去が不十分となり、緻密化を阻害する恐れがあり、1700℃を超えて加圧すると、部分的に焼結が開始し、密度ばらつきの原因となり、抵抗値のばらつきが大きくなる。ホットプレス圧力は、特に8MPa以上の圧力で、特に1300〜1650℃、更には1400〜1600℃の温度範囲において加えることが好ましい。
【0051】
そして、相対密度の平均値が98%以上、該相対密度の最大値と最小値の差が1%以下、前記部位において測定した主結晶の平均粒子径の最大値と最小値の差が3μm以下になるように焼成する。
【0052】
即ち、1850℃〜2200℃の温度範囲において焼成することが重要である。これにより、107〜1012Ωcmの体積固有抵抗値で、その面内ばらつきの小さい焼結体を作製することができる。1850℃未満では、密度が98%に満たず、しかも1012Ωmより高い抵抗値を示す。また、2200℃を超えると、107Ωcmのよりも低い体積固有抵抗値になってしまう。
【0053】
なお、焼成においては、一定の保持時間において、温度と圧力を保持することが好ましい。保持時間は試料の量や組成によって異なるものの、焼結が進むのを考慮すると20分以上、特に1時間以上であることが好ましい。
【0054】
このようにして作製した上記の抵抗体は、密度及び結晶粒子径が制御され、体積固有抵抗値の面内ばらつきの小さな静電チャックに応用できる。
【0055】
本発明の保持装置を、ひとつの例としてSiウエハなどを静電的に吸着する静電チャックを例にとって説明する。
【0056】
図1は、単極タイプの静電チャック1の例である。円板形状の基板2の一主面3にSiウエハなどの被保持物を載置する載置面4が設けられている。この載置面4に対向するように、一主面3の反対の主面に電極5が設けられている。
【0057】
そして、載置面4が、上記の本発明の抵抗体からなることが重要である。即ち、基板2は、実質的に本発明の抵抗体からなるものであればよい。また、載置面4が本発明の抵抗体からなっていれば、基板2が電極5に平行な層状セラミックスの積層体からなっていてもかまわない。
【0058】
載置面4に載置されたSiウエハ等の被保持物と電極5との間に電圧が印可され、載置面4と電極5との間に電流がわずかにながれて静電的な吸着が起こる。なお、図1には記載してないが、外部から電極5に電圧を供給するための接続端子が含まれることは言うまでもない。
【0062】
処理装置によってはプラズマを発生する容器内で用いられる場合があり、その場合には、被保持物の近傍にプラズマを発生させるために、基板の内部又は裏面にプラズマ電極が設けられてなることが好ましい。これにより、装置構造の簡略化や小型化に大きく寄与できるとともに、プラズマの制御が容易になる。
【0063】
さらには、所望により、冷却用の冷媒の通路をセラミック平板内に設けたり、ペルチェ素子などの冷却用装置を内蔵することもできる。
【0064】
上記の抵抗体を、少なくとも載置面に用いた場合、最大直径が150mm以上、電極5、15と載置面4、14との距離が0.5mm以上の本発明の保持装置は、載置面4、14について体積固有抵抗値のばらつきが少ないため、この保持部材は、ウエハの脱離性が良く、信頼性の高い静電吸着をすることができる。この優れた吸着特性は、特に−70〜200℃の温度範囲において顕著である。
【0065】
上記の構成を有する本発明の保持装置は、ウエハの固定や搬送に好適であり、吸着力が高く、吸着の離脱応答性が向上し、スループットが速くなる。また、その製造方法においては、歩留まりが向上し、焼成後の熱処理も不要のため、製造コストを低減できる。
【0066】
【実施例】
原料として平均粒子径1μmの還元窒化法のAlN粉末を用いた。このAlN粉末の炭素含有量、酸素含有量及びAl以外の金属不純物量を表1に示した。また、所望により平均粒子径1μmの炭素粉末及び平均粒子径1μmのAl23粉末を添加し、硼素、Na、Ca、炭素、酸素及びAl以外の金属が表1に示す組成になるように混合した。
【0067】
これらの混合粉末をエタノールとともに混合し、混合粉末を作製した。この混合粉末を直径200mm、厚み6mmのカーボン型に直接充填するものと、予備成形を行ってからカーボン型に充填するものとに分けた。なお、予備成形を行うための混合粉末には、混合時にバインダとしてパラフィンワックスを9重量%添加してあり、成形後に窒素雰囲気中600℃で8時間脱脂を行ってからカーボン型に装填した。
【0068】
次に、上記のカーボン型をホットプレス装置に装填し、表1及び表2に示す条件で焼成した。なお、カーボン型と成形体との間には厚さ0.5mmのカーボンシートを挿入した。
【0069】
得られた焼結体の相対密度は、まずアルキメデス法から嵩密度をもとめた後、焼結体を粉砕してJISR1620に基づいたヘリウム置換法によって得られた真密度と比較して算出した。
【0070】
組成は焼結体の蛍光X線分析から分析した。なお、Al以外の金属の含有量は、金属不純物の多い方から10種類の元素の総量を算出した。また、酸素は、
日本セラミック協会JCMR004(Si34)を標準試料として、堀場製作所製EMGA−650FA装置を用いて行った。炭素は、校正用標準試料JSS171−7及びJSS150−14を用いて堀場製作所EMIA−511型炭素分析装置を用いた。
【0071】
体積固有抵抗は、JIS C2141:1922に基づいた3端子法により、50℃で測定した。この時、各試料を外周部と中心部を含む16箇所でそれぞれ測定し、平均値を算出した。そして、体積固有抵抗値の比δmax/δminの値を算出し、比として表2に示した。また、K=(12−logδmax)/dを算出した。
【0072】
平均粒子径の最大値と最小値の差の測定は、走査型電子顕微鏡により、1000倍の写真を上記と同様の16箇所で撮影し、それぞれの箇所で、100個の粒子径を測定して平均粒子径を求めた。この16箇所の平均粒子径のうち最大値及び最小値を選び、その差を算出した。
【0073】
Alのスピン数は、BRUKER社製ESP350E装置により、磁場掃引範囲285〜380mT、室温及び20Kの温度でマイクロ波9.44GHにてデータポイント数2000をとり、1:1のようにして測定し、平均値を算出するとともに、最大値に対する最小値を比として算出した。
【0074】
吸着特性は、図1に示した構造を有する静電チャックを作製し、吸着力、吸着力が飽和するまでの飽和時間、および電荷が除去されるまでの除電時間を測定し、評価した。即ち、吸着力は50℃で500Vを印加し、吸着力が飽和するまでの時間(飽和時間)と、電圧の印加を停止し吸着力がなくなるまでの時間(除電時間)を測定したもので、残留吸着の指標となるものである。なお、飽和時間は、電圧印加30秒後の吸着力を100%とした時、90%の吸着力を示す時間とした。また、除電時間は、電圧の印加停止から吸着力が500Paまで低下するのに要した時間とした。結果を表1及び表2に示した。
【0075】
【表1】

Figure 0003740383
【0076】
【表2】
Figure 0003740383
【0077】
相対密度、粒子径、Alスピン数、及び体積固有抵抗のばらつきが小さい本発明の試料No.1〜5、7〜20は、吸着力の平均値が15kPa以上、吸着力のばらつきが30%以下、徐電時間の平均値が18sec以下、除電時間のばらつきが15sec以下であった。
【0078】
一方、800〜1200℃の雰囲気圧力が20Paと高い本発明の範囲外の試料No.22は、相対密度の差が1.2%、粒子径の差が3.3μm、Alスピン数が1.3×1013spin/mgと大きく、その最小値が最大値の68%、Kが−0.5と小さかった。また、吸着力の平均値が14kPaと小さく、吸着力のばらつきが35%と大きく、残留吸着によりウエハが吸着されつづけ、徐電時間の測定ができなかった。
【0079】
また、雰囲気ガスとしてArを用いた高い本発明の範囲外の試料No.21は、相対密度の差が2%、粒子径の差が3.5μm、Alスピン数が3.3×1013spin/mgと大きく、その最小値が最大値の50%、Kが−0.7と小さかった。また、吸着力の平均値が11kPaと小さく、吸着力のばらつきが70%と大きく、残留吸着によりウエハが吸着されつづけ、徐電時間の測定ができなかった。
【0080】
さらに、ガス導入温度が1700℃と高い本発明の範囲外の試料No.23は、相対密度の差が1.5%、Alスピン数の最小値が最大値の40%、Kが−0.5であった。また、体積固有抵抗値が5×1013Ωcmと高かった。また、吸着力の平均値が12kPaと小さく、吸着力のばらつきが50%と大きく、残留吸着によりウエハが吸着されつづけ、徐電時間の測定ができなかった。
【0081】
さらにまた、雰囲気ガス導入後の雰囲気圧力が0.1kPaと小さい本発明の範囲外の試料No.24は、相対密度の差が2%、Alスピン数の最小値が最大値の55%、Kが−0.2であった。また、吸着力のばらつきが52%と大きく、徐電時間の平均が100secと長く、そのばらつきも40secと大きかった。
【0082】
また、雰囲気ガス導入後の雰囲気圧力が1000kPaと高い本発明の範囲外の試料No.25は、相対密度が97.5%と小さく、Alスピン数が4×1013spin/mgと大きく、その最小値が最大値の60%、体積固有抵抗値が3×1012Ωcm、その最小値に対する最大値の比が120、Kが−0.4であった。また、吸着力のばらつきが80%と大きく、徐電時間の平均が80secと長く、そのばらつきも20secと大きかった。
【0083】
さらに、ホットプレス開始時のホットプレス(HP)圧力が10MPaと大きい本発明の範囲外の試料No.26は、相対密度の差が2.5%、Alスピン数の最小値が最大値の65%、Kが−0.5であった。また、吸着力のばらつきが50%と大きく、徐電時間の平均が60secと長かった。
【0084】
さらにまた、ホットプレスによる焼成時のホットプレス圧力が4MPaと小さい本発明の範囲外の試料No.27は、相対密度が96%と小さく、その差が1.4%、Alスピン数が2×1013spin/mg、その最小値が最大値の70%、体積固有抵抗値が7×1013Ωcm、Kが−0.1であった。また、吸着力が13kPaと小さく、吸着力のばらつきが45%と大きく、徐電時間の平均が30secと長かった。
【0085】
また、焼成温度が1800℃と低い本発明の範囲外の試料No.6は、相対密度が95%と小さく、その差が1.5%、Alスピン数が3.2×1013spin/mg、その最小値が最大値の50%、体積固有抵抗値が1014Ωcm、Kが−1.0であった。また、吸着力が10kPaと小さく、吸着力のばらつきが100%と大きく、徐電時間の平均が50secと長く、そのばらつきも100secと大きかった。
【0086】
【発明の効果】
本発明の保持装置は、焼結体の相対密度、粒子径、Alスピン数、及び体積固有抵抗を制御することにより、体積固有抵抗の面内ばらつきを抑え、電気特性の安定した保持装置を実現できる。
【図面の簡単な説明】
【図1】本発明の保持装置の一例である静電チャックの構造を示す断面図である。
【符号の説明】
1・・・静電チャック
2・・・基板
3・・・一主面
4・・・載置面
5・・・電極[0001]
BACKGROUND OF THE INVENTION
The present inventionHolding deviceIn particular, the present invention relates to a member for an electronic functional material and a holding device suitably used for holding and transporting a wafer in a semiconductor manufacturing apparatus or the like.
[0002]
[Prior art]
In a semiconductor manufacturing apparatus used for manufacturing a semiconductor device including a liquid crystal, it is necessary to hold a silicon wafer or the like in order to process or transport a semiconductor such as a silicon wafer. In particular, an electrostatic chuck that electrostatically holds a silicon wafer
It can be used in a vacuum or in a corrosive gas atmosphere, and is suitable for manufacturing semiconductors.
[0003]
Aluminum nitride is used as a main component of an electrostatic chuck because of its high corrosion resistance, high thermal conductivity and relatively strong thermal shock resistance. This aluminum nitride has a volume resistivity of 1 × 10 5 at 50 ° C.14Ωcm or more is an insulator, but in particular, in recent years, particularly in an electrostatic chuck used at 200 ° C. or less, a higher adsorption force is required for holding a silicon wafer, so as to obtain a higher adsorption force. Has proposed to lower the resistance.
[0004]
In particular, the aluminum nitride sintered body with few impurities has excellent corrosion resistance, so it has a long life, especially in a corrosive gas atmosphere, extends the part replacement period, and reduces the number of equipment outages for maintenance, improving throughput. it can. Since such aluminum nitride has a small amount of sintering aid, a firing method under pressure, for example, a method such as hot pressing or hot isostatic pressing is used.
[0005]
For example, in Japanese Patent Application Laid-Open No. 10-72260, a metal electrode is embedded in a high purity aluminum nitride molded body and produced by hot press firing, and the content of metal elements other than Al is 100 ppm or less, and the volume at room temperature. Specific resistance is 1 × 109~ 1x1013An electrostatic chuck having a diameter of 200 mm or more with an Ωcm has been proposed.
[0006]
In JP-A-11-100300, the number of spins per mg of aluminum obtained from a spectrum obtained by electron spin resonance is set to 5 × 10.12Spin / mg or less, and volume resistivity from 100 ° C. to 500 ° C. is 1 × 107~ 1x1014An electrostatic chuck is disclosed in which the change in volume resistivity is reduced in a wider temperature range than before by setting the resistance to Ωcm.
[0007]
[Problems to be solved by the invention]
However, although the aluminum nitride sintered body described in JP-A-10-72260 is excellent in denseness, the volume resistivity affecting the adsorption characteristics is particularly large when the thickness is 0.5 mm or more. However, there is a problem that the reliability of the product is lowered because the variation tends to increase in the plane.
[0008]
In addition, the electrostatic chuck described in Japanese Patent Application Laid-Open No. 11-100300 has a small change in volume resistivity over a wider temperature range than the conventional one, but the volume resistivity within one substrate surface is likely to vary. In particular, when the substrate is large or thick, there is a problem that depending on the portion, the adsorption is maintained even when the applied voltage is stopped, and so-called residual adsorption is likely to occur.
[0009]
Therefore, according to the present invention, even when the diameter and thickness of the substrate are large, the in-plane volume resistivity is uniform, the variation in the product is small, and the reliability is high.Holding deviceThe purpose is to provide.
[0010]
[Means for Solving the Problems]
The present invention is based on the knowledge that the variation in volume resistivity can be reduced by controlling the variation in the substrate surface of the density and particle size difference.
[0011]
That is, the present inventionHolding deviceIsA substrate, a placement surface of an object to be held provided on one main surface of the substrate, and an electrode provided to face the placement surface, wherein at least the placement surface of the substrate is made of a resistor. In the holding device, the resistor isMaximum diameter is 150mm or more, thicknessdIs 0.5mm or moreAlN is the main crystal phase, the carbon content is 0.1 wt% or less, the oxygen content is 0.2 to 2 wt%, the total amount of metal impurities other than Al is 700 ppm or less, and the total amount of the metal impurities In-plane variation is 30% or lessAn average value of relative density measured at the above-mentioned part, which is made of a sintered body and has an average volume resistivity value of 10 7 to 10 12 Ωcm measured at a plurality of parts including at least the outer peripheral part and the central part. The value is 98% or more, the difference between the maximum value and the minimum value of the relative density is 1% or less, and the difference between the maximum value and the minimum value of the average particle diameter of the main crystal phase measured in the part is 3 μm or less.The ratio δmax / δmin of the maximum value δmax to the minimum value δmin of the volume specific resistance value is 100 or less, 0 ≦ (12−logδmax) / d ≦ 9It is characterized by being. As a result, even for a large product, the variation in volume resistivity value in the same plane of the substrate can be reduced.Therefore, since the holding member using the resistor of the present invention has small in-plane variation in volume resistivity, partial residual adsorption occurs when the voltage applied for electrostatic adsorption is released. It is possible to realize a holding member with good detachability.
[0013]
In particular, in the spectrum by electron spin resonance measured at a plurality of sites including at least the outer peripheral portion and the central portion of the ceramic sintered body, the average value of the Al spin number is 10 13 Spin / mg or less, and the minimum value of the Al spin number is 70% or more of the maximum value.It is preferable. Thereby, it is possible to realize a sintered body with a small amount of impurity compounds other than AlN and a small variation in volume resistivity.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Of the present inventionConfigure the holding deviceThe resistor has a maximum diameter of 150 mm or more and a thickness at which the in-plane variation of the main surface of the substrate becomes significant with respect to the volume resistivity.dIs made of a plate-like ceramic sintered body having a thickness of 0.5 mm or more, and the average value of volume resistivity values at 50 ° C. measured at a plurality of parts including at least the outer peripheral part and the central part is 107-1012Focusing on Ωcm resistors, this variation was improved.
[0019]
That is, it is important that the average value of the relative density measured at a plurality of parts including at least the outer peripheral part and the central part is 98% or more. This is because when the density of the sintered body is less than 98%, a large void is generated, and the volume resistivity is 1 × 10.7~ 1x1012This is because it becomes difficult to make the range of Ωcm, and 99% or more is particularly preferable.
[0020]
Further, it is important that the difference between the maximum value and the minimum value of the relative density is 1% or less, particularly 0.8% or less, more preferably 0.5% or less. Since this relative density affects the generation of voids and the crystal grain size, if the density difference between the relative densities is greater than 1%, there are parts with many voids and parts with small voids, or structures with greatly different particle diameters are partially formed. For this reason, uniform resistance control becomes difficult, and when used as an electrostatic chuck, the separation property of adsorption is deteriorated.
[0021]
As for the relative density, first, after obtaining the bulk density from the Archimedes method, the relative density was calculated by comparing with the theoretical density.
[0022]
Further, the average particle diameter of the main crystal phase measured at a plurality of sites including at least the outer peripheral portion and the central portion is not particularly limited, but is 2 μm or more, particularly 4 μm or more, more preferably 6 μm or more in that resistance is easily lowered. It is preferable that And it is important that the average particle diameter of the main crystal for each measured site is measured, and the difference between the maximum value and the minimum value is 3 μm or less, and particularly preferably 2 μm or less.
[0023]
The particle size affects the resistance value. When the particle size is large, the area of the grain boundary is reduced, but the grain boundary width is increased and the conductive path is increased. Lower. Therefore, when the difference between the maximum value and the minimum value of the average particle diameter exceeds 3 μm, the resistance value varies within the substrate.
[0024]
In addition, the measurement of the average particle diameter in this invention uses a scanning electron microscope. Although the magnification used depends on the particle size, a photograph of 500 to 3000 times is taken. At that time, at an arbitrary part including the central part and the outer peripheral part of the substrate, preferably 10 or more parts, the average particle diameter is calculated by measuring the particle diameter of at least 100 particles per part. Next, the difference is calculated from the maximum value and the minimum value among the average particle diameters at the plurality of sites.
[0025]
Of the present inventionConfigure the holding deviceIn the resistor, the main crystal phase is preferably made of AlN. When the main crystal phase is AlN, the corrosion resistance against plasma or gas containing halogen is high, and since the thermal conductivity is high, the thermal shock resistance is excellent. Moreover, AlN becomes a semiconductor and can change the volume resistivity value, and the average value of the volume resistivity values at 50 ° C. is 107-1012It becomes easy to control to Ωcm.
[0026]
Further, the carbon content in the resistor is preferably 0.1% by weight or less, particularly 0.05% by weight or less. This carbon is considered to be related to the formation of the conductive grain boundary phase. By making the amount of carbon 0.1% by weight or less, it is possible to prevent partial formation of a high resistance compound containing Al and C. In addition, there is an effect of reducing the variation of the volume resistivity.
[0027]
Furthermore, the oxygen content in the sintered body is preferably 0.2 to 2% by weight, particularly 0.3 to 1.5% by weight, and more preferably 0.3 to 1% by weight. The amount of oxygen is strongly related to the volume resistivity, and if the oxygen content is in the above range, a grain boundary phase serving as a charge transfer body is formed three-dimensionally and Because it is easy to suppress the formation of high-resistance compounds (such as AlON and polytype) that break the path,
It becomes easy to stabilize the volume resistivity.
[0028]
Furthermore, the content of metals other than Al is 700 ppm or less, particularly 500 ppm or less, further 300 ppm or less, and the in-plane variation of the total amount of the metal impurities is 30% or less, particularly 20% or less, further 10% or less. It is preferable. As a result, it is easy to reduce the in-plane variation of the volume resistivity value of 50 ° C. by preventing the resistance from being excessively lowered due to the solid solution of the metal in the AlN grains and by preventing the formation of the high resistance compound in a specific part. 107-1012It becomes easy to stabilize in the range of Ωcm.
[0029]
Examples of metal impurities include boron (hereinafter abbreviated as B), calcium (hereinafter abbreviated as Ca), sodium (hereinafter abbreviated as Na), iron (hereinafter abbreviated as Fe), and the like. In particular, the content of B and Si is preferably 100 ppm or less, and more preferably 50 ppm or less. Further, the contents of Fe, Na and Ca are preferably 300 ppm or less, particularly 200 ppm or less, and more preferably 150 ppm or less.
[0030]
Since these elements have a strong tendency to change the volume resistivity by being dissolved in aluminum nitride, the presence of uneven distribution in the sintered body tends to cause variations in volume resistivity. Actually, the content of each metal was analyzed, and the total amount of 10 kinds of metals was determined as the content of metals other than the above-mentioned Al in descending order. Actually, the content of each metal was analyzed, and the total amount of 10 kinds of metals was determined as the content of metals other than the above-mentioned Al in descending order. As an analysis method, fluorescent X-ray analysis or ICP analysis is preferable.
[0031]
In addition, the present inventionConfigure the holding deviceIn the resistor, the average value of the number of spins per unit mg of Al is 10 in the spectrum by electron spin resonance of aluminum nitride measured at a plurality of sites including at least the outer peripheral portion and the central portion.13It is important that it is below spin / mg. When a high resistance compound is formed, the spin number of Al is 1013Since it exceeds spin / mg or more, it is necessary to set the above value in order to suppress the occurrence of heterogeneous phases other than AlN and to reduce variations in resistance value.
[0032]
Furthermore, it is important that the minimum value of the Al spin number is 70% or more of the maximum value. This ratio indicates in-plane variation in the measured spin number of Al. When the minimum value of the Al spin number is smaller than 70% of the maximum value, a layer having a partially high resistance is formed, Resistance value variation becomes large, or residual adsorption variation becomes large. The sintered body having such characteristics suppresses the occurrence of heterogeneous phases such as AlOC and metal compounds, has a small resistance value variation, and when applied to an electrostatic chuck, has a very small residual adsorption variation and a small residual adsorption.
[0033]
Furthermore, the present inventionConfigure the holding deviceThe resistor is a maximum value δ of a volume resistivity value of 50 ° C. measured at a plurality of portions including at least the outer peripheral portion and the central portion.maxAnd the minimum value δminRatio (δmax/ Δmin) Is 100 or less, particularly 80 or less, more preferably 50 or less. As a result, the in-plane variation of the volume resistivity can be reduced, and when applied to an electrostatic chuck, the difference in charge transfer speed depending on the part is reduced.maxResidual adsorption can be prevented even at sites having a volume resistivity close to, and throughput can be increased to increase productivity.
[0034]
However, δmax/ ΔminEven if the thickness is 100 or lessdIncreases, the charge movement is slow, and residual adsorption occurs in the electrostatic chuck.max/ ΔminIs equal to or less than 100 and 0 ≦ (12−log δmax) / D ≦ 9 is important, especially 0 ≦ (12−log δ).max) / D ≦ 8, further 0 ≦ (12−log δ)max) / D ≦ 7. As a result, even when the thickness of the substrate changes, the charge transfer time can be controlled from one main surface to the other main surface that opposes the main surface, and residual adsorption can be prevented in the electrostatic chuck. .
[0035]
In the above equation, in the orthogonal coordinates, the horizontal axis is d and the vertical axis is log δ.maxThe measurement points are plotted so that the intercept of the vertical axis is 12 (d = 0, log δmax= 12), which means that the slope of the straight line is -9 to 0 (when 0, it is parallel to the horizontal axis), and δmax (Ωcm)Is thickd (mm)This indicates that it is less susceptible to fluctuations.
[0036]
The present invention configured as described above.Configure the holding deviceResistors are controlled to have small variations in structure and composition, have very small variations in volume resistivity, and have a sufficiently high charge transfer speed, so they have excellent characteristics and productivity when used in electrostatic chucks. Can be increased.
[0037]
Next, the present inventionConfigure the holding deviceA method for manufacturing the resistor will be described.
[0038]
First, an AlN powder having a purity of 99% or more and an average particle size of 5 μm or less, preferably 3 μm or less is prepared as a starting material. The AlN powder to be used may be a powder produced by either a reduction nitriding method or a direct nitriding method.
[0039]
The content of metals other than Al in the AlN powder is preferably 700 ppm or less, particularly 500 ppm or less, and more preferably 300 ppm or less. Thereby, it becomes easy to make content of metals other than Al remaining in a sintered compact 700 ppm or less.
[0040]
Examples of the metal impurity include B, Si, Ca, Na, and Fe. Since these are likely to remain in the sintered body, the content of B and Si is preferably 100 ppm or less, and more preferably 50 ppm. The total content of Fe, Na, and Ca is preferably 300 ppm or less, particularly 200 ppm or less, and more preferably 100 ppm or less.
[0041]
Actually, the content of each metal was analyzed, and the total amount of 10 kinds of metals was determined as the content of metals other than the above-mentioned Al in descending order. As an analysis method, fluorescent X-ray analysis or ICP analysis is preferable.
[0042]
Furthermore, it is preferable to suppress the carbon content in the AlN powder to 0.1% by weight or less and the oxygen content to 0.2 to 2% by weight. Thereby, it becomes easy to make content of carbon and oxygen in a sintered compact into 0.1 weight% or less and 0.2-2 weight%, respectively.
[0043]
When the oxygen content of the AlN powder is less than 0.2% by weight, Al2OThree, SiO2By adding an oxide such as, the oxygen content can be adjusted to be in the range of 0.2 to 2% by weight.
[0044]
Next, the raw material powder is uniformly filled into a hot press die (hereinafter referred to as a carbon die) made of carbon in a carbon mold. The raw material powder may be filled as it is, but a raw material powder may be added with a binder and preformed into a carbon mold shape in advance, and the compact may be loaded into the carbon mold. At this time, an electrode may be formed inside the molded body. As a molding method, a molding method such as a die press, CIP, tape molding, or casting can be used. The molded body is loaded into a carbon mold after removing the binder component necessary for molding.
[0045]
Also, during hot pressing, the compact is loaded into a carbon mold, sandwiched between carbon plates from above and below, and when pressed, boron nitride or carbon is used as a mold release agent to improve separation between the sintered compact and the carbon mold. Although it can be used, it is preferable to use a carbon sheet from the viewpoint of easy removal and the effect of suppressing the intrusion of metals other than Al. Thereby, the penetration | invasion of a boron can be prevented. Furthermore, since the carbon sheet attached to the sintered body is thin without applying boron nitride, it can be easily removed.
[0046]
A hot pressing pressure of 0.04 to 4.5 MPa is applied to the raw material powder in the carbon mold, and then the temperature is raised to improve the packing density. When the pressure at the start of hot pressing is 0.04 MPa or less, the filling property becomes insufficient, the filling density is likely to vary, and densification during sintering may be hindered at a portion where the filling density is low. On the other hand, if it is 4.5 MPa or more, moisture or the like chemically attached to the surface of the raw material powder is difficult to escape, and there is a risk of inhibiting the denseness of firing.
[0047]
In particular, since the gas emission peaks between 600 and 800 ° C., it is preferable to reduce the pressure in the apparatus from the start of temperature increase to 800 ° C. The pressure reduction condition in the apparatus is preferably 1 Pa or less, particularly preferably 0.5 Pa. Thereby, the gas which affects sinterability and a characteristic can be removed easily.
[0048]
In addition, it is important that the degree of vacuum in the apparatus in the temperature range of 800 to 1200 ° C. is always kept at 10 Pa or less, particularly 5 Pa or less, more preferably 2 Pa or less. At 800 to 1200 ° C., carbon such as spacers and carbon types reacts with oxygen from the apparatus and raw materials to generate CO gas. If a large amount of this CO gas remains, it reacts with the AlN raw material at a high temperature to generate AlC or AlOC compounds, thereby inhibiting densification or causing a heterogeneous phase. Therefore, the degree of vacuum is reduced to 10 Pa or less in this temperature range. It is necessary to hold and exhaust.
[0049]
Further, in the temperature range of 1200 to 1600 ° C., N2It is important to introduce a gas so that the pressure in the apparatus is 1 to 300 kPa. That is, N2The temperature at the time of gas introduction shall be 1200-1600 degreeC. N at a temperature of 1200 ° C2When gas is introduced and the pressure in the apparatus is set to 1 to 300 kPa, the generated CO gas remains, causing densification inhibition and heterogeneous phase generation. If the vacuum is maintained at a temperature higher than 1600 ° C., it reacts with the carbon sheet to produce AlC or AlOC compounds, which causes densification inhibition and heterogeneous phase formation. In particular, N in the temperature range of 1250 to 1550 ° C., and further 1300 to 1500 ° C.2It is preferable to introduce gas and set the pressure in the apparatus to 80 to 200 kPa, more preferably 100 to 200 kPa.
[0050]
Next, it is important to increase the hot press pressure to 5 MPa or more in a temperature range of 1200 to 1700 ° C. When pressurized below 1200 ° C, H2There is a risk that the removal of gases such as O will be insufficient, and densification may be hindered. When pressurization exceeds 1700 ° C., sintering partially starts, causing density variations and large variations in resistance values. Become. The hot press pressure is particularly preferably 8 MPa or more, particularly in the temperature range of 1300 to 1650 ° C., more preferably 1400 to 1600 ° C.
[0051]
The average value of the relative density is 98% or more, the difference between the maximum value and the minimum value of the relative density is 1% or less, and the difference between the maximum value and the minimum value of the average particle diameter of the main crystal measured in the part is 3 μm or less. Bake to become.
[0052]
That is, it is important to calcinate in the temperature range of 1850 ° C to 2200 ° C. As a result, 107-1012A sintered body having a volume resistivity of Ωcm and small in-plane variation can be produced. Below 1850 ° C., the density is less than 98% and 1012The resistance value is higher than Ωm. When the temperature exceeds 2200 ° C., 107The volume resistivity value is lower than Ωcm.
[0053]
In firing, it is preferable to maintain the temperature and pressure for a certain holding time. Although the holding time varies depending on the amount and composition of the sample, it is preferably 20 minutes or longer, particularly 1 hour or longer in consideration of the progress of sintering.
[0054]
Made in this wayaboveThe resistor can be applied to an electrostatic chuck in which the density and crystal particle diameter are controlled and the volume specific resistance value has small in-plane variation.
[0055]
The holding device of the present invention will be described by taking an electrostatic chuck that electrostatically attracts a Si wafer or the like as an example.
[0056]
FIG. 1 shows an example of a single-pole type electrostatic chuck 1. A mounting surface 4 is provided on one main surface 3 of the disk-shaped substrate 2 for mounting an object to be held such as a Si wafer. An electrode 5 is provided on the main surface opposite to the one main surface 3 so as to face the mounting surface 4.
[0057]
And it is important that the mounting surface 4 consists of the above-mentioned resistor of the present invention. That is, the board | substrate 2 should just consist of a resistor of this invention substantially. Further, if the mounting surface 4 is made of the resistor of the present invention, the substrate 2 may be made of a layered ceramic laminate parallel to the electrode 5.
[0058]
A voltage is applied between an object 5 to be held such as a Si wafer placed on the placement surface 4 and the electrode 5, and a slight current flows between the placement surface 4 and the electrode 5 for electrostatic adsorption. Happens. Although not shown in FIG. 1, it goes without saying that a connection terminal for supplying a voltage to the electrode 5 from the outside is included.
[0062]
Depending on the processing apparatus, it may be used in a container that generates plasma. In that case, in order to generate plasma in the vicinity of the object to be held, a plasma electrode may be provided inside or on the back surface of the substrate. preferable. This greatly contributes to the simplification and miniaturization of the device structure and facilitates plasma control.
[0063]
Furthermore, if desired, a cooling refrigerant passage may be provided in the ceramic plate, or a cooling device such as a Peltier element may be incorporated.
[0064]
aboveWhen the resistor is used at least on the placement surface, the holding device of the present invention having a maximum diameter of 150 mm or more and a distance between the electrodes 5 and 15 and the placement surfaces 4 and 14 of 0.5 mm or more is provided on the placement surface 4. , 14, there is little variation in the volume resistivity value, so that this holding member has good wafer detachability and can perform electrostatic adsorption with high reliability. This excellent adsorption property is particularly remarkable in the temperature range of -70 to 200 ° C.
[0065]
The holding device of the present invention having the above-described configuration is suitable for fixing and transporting a wafer, has a high suction force, improves the detachment response of the suction, and increases the throughput. Further, in the manufacturing method, the yield is improved and the heat treatment after firing is unnecessary, so that the manufacturing cost can be reduced.
[0066]
【Example】
A reducing nitriding AlN powder having an average particle diameter of 1 μm was used as a raw material. Table 1 shows the carbon content, oxygen content, and amount of metal impurities other than Al of the AlN powder. If desired, carbon powder with an average particle size of 1 μm and Al with an average particle size of 1 μm2OThreePowder was added and mixed so that metals other than boron, Na, Ca, carbon, oxygen and Al had the composition shown in Table 1.
[0067]
These mixed powders were mixed with ethanol to prepare mixed powders. This mixed powder was divided into one that was directly filled into a carbon mold having a diameter of 200 mm and a thickness of 6 mm, and one that was preliminarily molded and filled into a carbon mold. In addition, 9% by weight of paraffin wax was added as a binder at the time of mixing to the mixed powder for preforming, and after molding, degreasing was performed at 600 ° C. for 8 hours in a nitrogen atmosphere, and then the carbon powder was loaded.
[0068]
Next, the above carbon mold was loaded into a hot press apparatus and fired under the conditions shown in Tables 1 and 2. A carbon sheet having a thickness of 0.5 mm was inserted between the carbon mold and the molded body.
[0069]
The relative density of the obtained sintered body was calculated by first obtaining the bulk density from the Archimedes method and then pulverizing the sintered body and comparing it with the true density obtained by the helium replacement method based on JIS R1620.
[0070]
The composition was analyzed by fluorescent X-ray analysis of the sintered body. In addition, the content of metals other than Al was calculated as the total amount of 10 kinds of elements from the side with the most metal impurities. Also, oxygen is
Japan Ceramic Association JCMR004 (SiThreeNFour) As a standard sample, using an EMGA-650FA apparatus manufactured by Horiba. The carbon used the Horiba EMIA-511 type | mold carbon analyzer using the calibration standard samples JSS171-7 and JSS150-14.
[0071]
The volume resistivity was measured at 50 ° C. by a three-terminal method based on JIS C2141: 1922. At this time, each sample was measured at 16 locations including the outer peripheral portion and the central portion, and the average value was calculated. Then, the volume resistivity ratio δmax/ ΔminWas calculated and shown in Table 2 as a ratio. Also, K = (12−log δmax) / D was calculated.
[0072]
The difference between the maximum value and the minimum value of the average particle size is measured by taking a 1000 times photograph at 16 locations similar to the above with a scanning electron microscope and measuring 100 particle sizes at each location. The average particle size was determined. The maximum value and the minimum value were selected from the average particle diameters at the 16 locations, and the difference was calculated.
[0073]
The number of spins of Al was measured as 1: 1 using a BRUKER ESP350E apparatus with a magnetic field sweep range of 285 to 380 mT, a room temperature and a temperature of 20K, and a data point number of 2000 at a microwave of 9.44 GH. The average value was calculated, and the minimum value relative to the maximum value was calculated as a ratio.
[0074]
The adsorption characteristics were evaluated by preparing an electrostatic chuck having the structure shown in FIG. 1 and measuring the adsorption force, the saturation time until the adsorption force is saturated, and the static elimination time until the charge is removed. That is, the adsorption force was measured by applying 500 V at 50 ° C. and measuring the time until the adsorption force was saturated (saturation time) and the time until the application of the voltage was stopped and the adsorption force disappeared (static elimination time). It is an index of residual adsorption. The saturation time was a time showing 90% adsorption force when the adsorption force 30 seconds after voltage application was 100%. The static elimination time was the time required for the adsorption force to drop to 500 Pa after the voltage application was stopped. The results are shown in Tables 1 and 2.
[0075]
[Table 1]
Figure 0003740383
[0076]
[Table 2]
Figure 0003740383
[0077]
Sample No. of the present invention has small variations in relative density, particle diameter, Al spin number, and volume resistivity. In Nos. 1 to 5 and 7 to 20, the average value of the adsorption force was 15 kPa or more, the variation in the adsorption force was 30% or less, the average value of the slowing time was 18 seconds or less, and the variation in the static elimination time was 15 seconds or less.
[0078]
On the other hand, sample No. 8 outside the scope of the present invention has a high atmospheric pressure of 800 to 1200 ° C. and 20 Pa. No. 22 has a relative density difference of 1.2%, a particle diameter difference of 3.3 μm, and an Al spin number of 1.3 × 10 6.13Spin / mg was large, the minimum value was 68% of the maximum value, and K was -0.5. Further, the average value of the suction force was as small as 14 kPa, the dispersion of the suction force was as large as 35%, and the wafer was continuously sucked by the residual suction, so that the slow-down time could not be measured.
[0079]
In addition, the sample No. 5 outside the scope of the present invention using Ar as the atmospheric gas was used. No. 21 has a relative density difference of 2%, a particle diameter difference of 3.5 μm, and an Al spin number of 3.3 × 1013Spin / mg was large, the minimum value was 50% of the maximum value, and K was -0.7. In addition, the average value of the adsorption force was as small as 11 kPa, the variation in the adsorption force was as large as 70%, and the wafer was continuously adsorbed by the residual adsorption, and the slow-down time could not be measured.
[0080]
Furthermore, the sample introduction temperature outside the scope of the present invention, where the gas introduction temperature is as high as 1700 ° C. In No. 23, the difference in relative density was 1.5%, the minimum value of Al spin number was 40% of the maximum value, and K was -0.5. The volume resistivity value is 5 × 1013It was as high as Ωcm. Further, the average value of the suction force was as small as 12 kPa, the dispersion of the suction force was as large as 50%, the wafer was continuously attracted by the residual suction, and the slow-down time could not be measured.
[0081]
Furthermore, the sample pressure of the sample No. 1 outside the scope of the present invention, where the atmospheric pressure after introduction of the atmospheric gas is as small as 0.1 kPa. In No. 24, the relative density difference was 2%, the minimum value of Al spin number was 55% of the maximum value, and K was -0.2. Moreover, the dispersion | variation in adsorption | suction force was as large as 52%, the average slowing time was as long as 100 sec, and the dispersion was as large as 40 sec.
[0082]
In addition, the sample pressure of the sample No. outside the scope of the present invention was as high as 1000 kPa in atmospheric pressure after introducing the atmospheric gas. 25 has a relative density as small as 97.5% and an Al spin number of 4 × 1013Spin / mg is large, the minimum value is 60% of the maximum value, and the volume resistivity is 3 × 1012Ωcm, the ratio of the maximum value to the minimum value was 120, and K was −0.4. Moreover, the dispersion | variation in adsorption | suction force was as large as 80%, the average slowing time was as long as 80 seconds, and the dispersion | variation was also as large as 20 sec.
[0083]
Furthermore, sample No. 5 outside the scope of the present invention has a high hot press (HP) pressure of 10 MPa at the start of hot press. In No. 26, the relative density difference was 2.5%, the minimum value of the Al spin number was 65% of the maximum value, and K was -0.5. Moreover, the dispersion | variation in adsorption | suction force was as large as 50%, and the average of slowing time was as long as 60 sec.
[0084]
Furthermore, the sample No. 5 outside the scope of the present invention has a small hot press pressure of 4 MPa during firing by hot pressing. No. 27 has a relative density as small as 96%, a difference of 1.4%, and an Al spin number of 2 × 1013spin / mg, the minimum value is 70% of the maximum value, and the volume resistivity is 7 × 1013Ωcm and K were −0.1. Further, the adsorption force was as small as 13 kPa, the variation in adsorption force was as large as 45%, and the average slowing time was as long as 30 sec.
[0085]
Further, sample No. 1 outside the scope of the present invention having a firing temperature as low as 1800 ° C. No. 6 has a relative density as small as 95%, a difference of 1.5%, and an Al spin number of 3.2 × 1013spin / mg, the minimum value is 50% of the maximum value, and the volume resistivity is 1014Ωcm and K were −1.0. Further, the adsorption force was as small as 10 kPa, the variation in adsorption force was as large as 100%, the average slowing time was as long as 50 sec, and the variation was as large as 100 sec.
[0086]
【The invention's effect】
Of the present inventionHolding deviceBy controlling the relative density, particle diameter, Al spin number, and volume resistivity of the sintered body, the in-plane variation of volume resistivity was suppressed, and the electrical characteristics were stable.Holding deviceCan be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of an electrostatic chuck which is an example of a holding device of the present invention.
[Explanation of symbols]
1 ... Electrostatic chuck
2 ... Board
3 ... One main surface
4 ... Placement surface
5 ... Electrode

Claims (2)

基板と、該基板の一主面に設けられた被保持物の載置面と、該載置面と対向して設けられた電極とを具備し、前記基板の少なくとも載置面が抵抗体からなる保持装置において、前記抵抗体が、最大直径が150mm以上、厚みdが0.5mm以上のAlNを主結晶相とし、炭素の含有量が0.1重量%以下、酸素の含有量が0.2〜2重量%、Al以外の金属不純物の総量が700ppm以下、且つ前記金属不純物の総量の面内ばらつきが30%以下である焼結体からなり、少なくとも外周部及び中心部を含む複数の部位において測定した50℃の体積固有抵抗値の平均値が10〜1012Ωcmの抵抗体であって、前記部位において測定した相対密度の平均値が98%以上、該相対密度の最大値と最小値の差が1%以下、前記部位において測定した主結晶相の平均粒子径の最大値と最小値の差が3μm以下、前記体積固有抵抗値の最小値δminに対する最大値δmaxの比δmax/δminが100以下、0≦(12−logδ max )/d≦9であることを特徴とする保持装置。A substrate, a placement surface of an object to be held provided on one main surface of the substrate, and an electrode provided to face the placement surface, wherein at least the placement surface of the substrate is made of a resistor. In the holding device, the resistor has AlN having a maximum diameter of 150 mm or more and a thickness d of 0.5 mm or more as a main crystal phase, a carbon content of 0.1% by weight or less, and an oxygen content of 0.1%. 2 to 2% by weight, a total amount of metal impurities other than Al is 700 ppm or less, and a plurality of parts including at least an outer peripheral part and a central part, which are made of a sintered body having an in-plane variation of 30% or less of the total amount of the metal impurities A resistor having an average volume resistivity value of 10 7 to 10 12 Ωcm measured at 50 ° C. in which the average value of the relative density measured in the part is 98% or more, the maximum value and the minimum value of the relative density The difference in value is 1% or less. Difference between the maximum value and the minimum value of the average particle diameter of the main crystal phase was measured Te is 3μm or less, the ratio [delta] max / [delta] min of the maximum value [delta] max to the minimum value [delta] min of the volume resistivity of 100 or less, 0 ≦ (12−log δ max ) / d ≦ 9. 前記セラミック焼結体の少なくとも外周部及び中心部を含む複数の部位において測定した電子スピン共鳴によるスペクトルにおいて、Alのスピン数の平均値が1013spin/mg以下、且つ該Alのスピン数の最小値が最大値の70%以上であることを特徴とする請求項1記載の保持装置。In the spectrum by electron spin resonance measured at a plurality of sites including at least the outer peripheral part and the central part of the ceramic sintered body, the average value of the Al spin number is 10 13 spin / mg or less, and the minimum spin number of the Al The holding device according to claim 1, wherein the value is 70% or more of the maximum value.
JP2001159632A 2001-05-28 2001-05-28 Holding device Expired - Fee Related JP3740383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159632A JP3740383B2 (en) 2001-05-28 2001-05-28 Holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159632A JP3740383B2 (en) 2001-05-28 2001-05-28 Holding device

Publications (2)

Publication Number Publication Date
JP2002348175A JP2002348175A (en) 2002-12-04
JP3740383B2 true JP3740383B2 (en) 2006-02-01

Family

ID=19003172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159632A Expired - Fee Related JP3740383B2 (en) 2001-05-28 2001-05-28 Holding device

Country Status (1)

Country Link
JP (1) JP3740383B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1518843A3 (en) * 2003-09-25 2007-05-23 Tokuyama Corporation Aluminum nitride sintered body and method of producing the same
JP4773744B2 (en) * 2005-03-30 2011-09-14 株式会社トクヤマ Method for producing aluminum nitride sintered body
JP4923250B2 (en) * 2006-08-28 2012-04-25 アルファ・エレクトロニクス株式会社 Metal foil resistors
JP5890666B2 (en) * 2011-11-28 2016-03-22 株式会社日本セラテック Aluminum nitride sintered body and method for producing the same
JP6202315B2 (en) * 2013-10-15 2017-09-27 国立研究開発法人産業技術総合研究所 Low friction and low wear sliding member for water lubrication, and manufacturing method thereof
JP6424563B2 (en) * 2014-10-27 2018-11-21 住友大阪セメント株式会社 Electrostatic chuck device and method of manufacturing the same
WO2016121286A1 (en) * 2015-01-29 2016-08-04 京セラ株式会社 Sample holding tool
JP7317611B2 (en) 2019-07-18 2023-07-31 日本特殊陶業株式会社 Heating member manufacturing method and heating member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457495B2 (en) * 1996-03-29 2003-10-20 日本碍子株式会社 Aluminum nitride sintered body, metal buried product, electronic functional material and electrostatic chuck

Also Published As

Publication number Publication date
JP2002348175A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP4008230B2 (en) Manufacturing method of electrostatic chuck
US8236722B2 (en) Aluminum oxide sintered product and method for producing the same
JP2009173537A (en) High-purity low-resistivity electrostatic chuck
JP2000058631A5 (en)
EP3061739B1 (en) Silicon nitride substrate and silicon nitride circuit board using same
JP3740383B2 (en) Holding device
JP4003907B2 (en) Semiconductor manufacturing equipment-related products made of aluminum nitride sintered body, manufacturing method thereof, electrostatic chuck, susceptor, dummy wafer, clamp ring, and particle catcher
EP0905106A2 (en) Aluminum nitride sintered body, electronic functional material, and electrostatic chuck
US8231964B2 (en) Aluminum oxide sintered body, method for producing the same and member for semiconductor producing apparatus
EP2189431B1 (en) Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same
CN111868913B (en) Electrostatic chuck device and method for manufacturing electrostatic chuck device
JPH10338574A (en) Aluminum nitride-base composite, electric functional material, electrostatic chuck and production of aluminum nitride-base composite
EP1357097B1 (en) Aluminium nitride materials and members used for the production of semiconductors
JP4429742B2 (en) Sintered body and manufacturing method thereof
KR20230042679A (en) Composite sintered body and method of manufacturing composite sintered body
JP2002110772A (en) Electrode built-in ceramic and its manufacturing method
JP2001342070A (en) Ceramic resistive element and holding material
JP3605347B2 (en) Method for producing ceramics with built-in electrodes, adsorption device and semiconductor production device
JP4641758B2 (en) Aluminum nitride sintered body and electrostatic chuck using the same
JP2003040674A (en) Resistor and its manufacturing method and its holding device
JP2003012376A (en) Resistor and its manufacturing method and holding device for the same
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
JPH11335173A (en) Aluminum nitride-base sintered compact and its production
JP2002047067A (en) Electrode built-in ceramics and its manufacturing method
JP2001278665A (en) Ceramic resistor and ceramic board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20011212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees