JP2006265042A - Aluminum nitride powder, its manufacturing method and ceramic sintered body - Google Patents

Aluminum nitride powder, its manufacturing method and ceramic sintered body Download PDF

Info

Publication number
JP2006265042A
JP2006265042A JP2005085556A JP2005085556A JP2006265042A JP 2006265042 A JP2006265042 A JP 2006265042A JP 2005085556 A JP2005085556 A JP 2005085556A JP 2005085556 A JP2005085556 A JP 2005085556A JP 2006265042 A JP2006265042 A JP 2006265042A
Authority
JP
Japan
Prior art keywords
powder
aluminum nitride
nitride powder
aluminum
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005085556A
Other languages
Japanese (ja)
Other versions
JP4205685B2 (en
Inventor
Koki Ichikawa
恒希 市川
Tetsuo Kaga
鉄夫 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005085556A priority Critical patent/JP4205685B2/en
Publication of JP2006265042A publication Critical patent/JP2006265042A/en
Application granted granted Critical
Publication of JP4205685B2 publication Critical patent/JP4205685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum nitride powder capable of improving bending strength of a ceramic sintered body, its easy manufacturing method and a ceramic sintered body manufactured by using the aluminum nitride powder. <P>SOLUTION: In the aluminum nitride powder, a B content measured with a chemical analysis is ≥10 ppm, especially 10-1,000 ppm. In the manufacturing method of the aluminum nitride powder, the nitriding gas containing the aluminum nitride powder is supplied while allowed to collide with the inside surface of a reaction tube whose inside surface is composed of boron nitride to nitride a metal aluminum powder. The ceramic sintered body is obtained by sintering the aluminum nitride powder or the powder containing the aluminum nitride powder and the ceramic powder other than the aluminum nitride powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、窒化アルミニウム粉末、その製造方法およびセラミックス焼結体に関する。   The present invention relates to an aluminum nitride powder, a method for producing the same, and a ceramic sintered body.

例えば窒化ケイ素(Si)、窒化アルミニウム(AlN)、炭化ケイ素等のセラミックス焼結体の耐腐食性、耐熱性を高めるために、また更に耐熱衝撃性を付与するために、窒化ホウ素(BN)を複合化することが行われている。なかでも、優れた熱伝導性と電気特性を兼ね備え加工性に優れる窒化アルミニウム(AlN)−窒化ホウ素(BN)複合材の検討が行われている。 For example, in order to increase the corrosion resistance and heat resistance of ceramic sintered bodies such as silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), and silicon carbide, and further to impart thermal shock resistance, boron nitride ( BN) is being compounded. In particular, an aluminum nitride (AlN) -boron nitride (BN) composite material that combines excellent thermal conductivity and electrical characteristics and excellent workability has been studied.

AlN−BN複合材は、窒化ホウ素粉末と窒化アルミニウム粉末の混合粉末を焼結して製造される(特許文献1)。しかし、窒化ホウ素粒子は鱗片状であるので、窒化アルミニウム粉末との混合性が良くないなどの理由によって得られた複合材の機械的強度が十分に高くはなかった。より微細な窒化ホウ素粒子を用いても機械的強度の大幅な改善はなかった。   The AlN-BN composite material is manufactured by sintering a mixed powder of boron nitride powder and aluminum nitride powder (Patent Document 1). However, since the boron nitride particles are scaly, the mechanical strength of the obtained composite material was not sufficiently high due to poor mixing with the aluminum nitride powder. There was no significant improvement in mechanical strength using finer boron nitride particles.

特開平11−157936号公報JP-A-11-157936

本発明の目的は、セラミックス焼結体の曲げ強度を改善できる窒化アルミニウム粉末、その容易な製造方法およびその窒化アルミニウム粉末を用いて製造されたセラミックス焼結体を提供することである。   An object of the present invention is to provide an aluminum nitride powder capable of improving the bending strength of a ceramic sintered body, an easy production method thereof, and a ceramic sintered body produced using the aluminum nitride powder.

本発明は、化学分析により測定されたB含有量が10ppm以上であることを特徴とする窒化アルミニウム粉末である。好ましいB含有量は10〜1000ppmである。   The present invention is an aluminum nitride powder characterized in that the B content measured by chemical analysis is 10 ppm or more. A preferable B content is 10 to 1000 ppm.

また、本発明は、金属アルミニウム粉末を含む窒化性ガスを、内面が窒化ホウ素で構成され反応管の内面に衝突させながら供給し、金属アルミニウム粉末を窒化させることを特徴とする窒化アルミニウム粉末の製造方法である。   According to another aspect of the present invention, there is provided a method for producing an aluminum nitride powder, characterized by supplying a nitriding gas containing metallic aluminum powder while the inner surface is made of boron nitride and colliding with the inner surface of the reaction tube to nitride the metallic aluminum powder. Is the method.

また、本発明は、本発明の窒化アルミニウム粉末、又は本発明の窒化アルミニウム粉末とこの窒化アルミニウム粉末以外のセラミックス粉末を含む混合粉末を焼結してなることを特徴とするセラミックス焼結体である。なかでも、窒化アルミニウム粉末と窒化ホウ素粉末を含む混合粉末を焼結して得られたAlN−BN複合材であることが好ましい。   The present invention is also a ceramic sintered body obtained by sintering the aluminum nitride powder of the present invention or a mixed powder containing the aluminum nitride powder of the present invention and ceramic powder other than the aluminum nitride powder. . Especially, it is preferable that it is an AlN-BN composite material obtained by sintering the mixed powder containing an aluminum nitride powder and a boron nitride powder.

窒化アルミニウム粉末に例えば窒化ホウ素粉末等のB成分を後添加してB含有量を10ppm以上とした混合物は知られている。本発明の窒化アルミニウム粉末は、これらとは異なり、製造された直後の窒化アルミニウム粉末のB含有量が10ppm以上である点において相違している。B含有量は、加圧酸分解−ICP法により測定される。本発明の窒化アルミニウム粉末を用いて焼結されたセラミックス焼結体、特にAlN−BN複合材の曲げ強度が著しく向上する。   A mixture in which a B content is made to be 10 ppm or more by post-adding B component such as boron nitride powder to aluminum nitride powder is known. Unlike the above, the aluminum nitride powder of the present invention is different in that the B content of the aluminum nitride powder immediately after being produced is 10 ppm or more. The B content is measured by a pressure acid decomposition-ICP method. The bending strength of the ceramic sintered body, particularly the AlN-BN composite material, sintered using the aluminum nitride powder of the present invention is remarkably improved.

本発明の製造方法に用いる金属アルミニウム粉末には、特に制約はないが、窒化反応の起こりやすさ、爆発性の低さから、平均粒径が10〜40μmのアトマイズ粉が好ましい。金属アルミニウム粉末は窒化性ガスに同伴されて高温場の反応管に供給され、窒化されて窒化アルミニウム粉末となる。ここで、窒化性ガスとは、金属アルミニウムを窒化アルミニウムとするための窒素を含んだガスのことであり、窒素ガス単独、窒素と例えば水素、CO、アンモニア等との混合ガスなどを例示することができる。   Although there is no restriction | limiting in particular in the metal aluminum powder used for the manufacturing method of this invention, Atomized powder with an average particle diameter of 10-40 micrometers is preferable from the ease of nitriding reaction taking place and low explosiveness. The metal aluminum powder is entrained with a nitriding gas and supplied to a reaction tube in a high temperature field, and is nitrided to become aluminum nitride powder. Here, the nitriding gas is a gas containing nitrogen for converting metal aluminum into aluminum nitride, and examples include nitrogen gas alone, a mixed gas of nitrogen and, for example, hydrogen, CO, ammonia, and the like. Can do.

本発明は、内面が窒化ホウ素製である反応管を用い、窒化性ガスに同伴させた金属アルミニウム粉末を反応管の内面に積極的に衝突させながら供給し、高温場で窒化反応を起こさせるものである。窒化アルミニウム粉末のB含有量は、金属アルミニウム粉末の供給量や、金属アルミニウム粉末の反応管の内面への供給速度(衝突速度)などによってを制御することができる。また、金属アルミニウム粉末の反応管の内面への供給速度(衝突速度)は、反応管に絞り部等を設けることによって容易に行うことができる。金属アルミニウム粉末の供給量は、窒化性ガス1Nmあたり1〜3kgが好ましく、その供給速度は窒化性ガスの流速として50〜100m/sであることが好ましい。また、反応管の温度は1900〜2200℃が好ましい。 The present invention uses a reaction tube whose inner surface is made of boron nitride, supplies metal aluminum powder entrained in a nitriding gas while actively colliding with the inner surface of the reaction tube, and causes a nitriding reaction in a high temperature field. It is. The B content of the aluminum nitride powder can be controlled by the supply amount of the metal aluminum powder, the supply speed (collision speed) of the metal aluminum powder to the inner surface of the reaction tube, and the like. In addition, the supply speed (collision speed) of the metal aluminum powder to the inner surface of the reaction tube can be easily performed by providing a throttle portion or the like in the reaction tube. The supply amount of the metal aluminum powder is preferably 1 to 3 kg per 1 Nm 3 of the nitriding gas, and the supply speed is preferably 50 to 100 m / s as the flow rate of the nitriding gas. The temperature of the reaction tube is preferably 1900 to 2200 ° C.

本発明で用いられる窒化アルミニウム粉末の製造装置の一例を図1に示した。反応炉は、高周波誘導加熱方式であり、窒化ホウ素製の反応管3は、その周囲に配設された発熱体8と、それを断熱体9で覆った石英外壁10とで構成されている。反応管3は絞り部11を有することが好ましい。7は高周波誘導加熱源、4は測温体である。反応炉の頂部には、金属アルミニウム粉末の供給機1と混合器2とからなる金属アルミニウム粉末の噴射手段が設置されている。混合器では金属アルミニウム粉末と窒化性ガスとが混合される。反応炉の底部は捕集系に接続されており、生成した窒化アルミニウム粉末は、ブロワー6で吸引されて捕集系に導かれ、例えばバッグフィルター、電気集塵機等の捕集装置5で捕集される。   An example of an apparatus for producing aluminum nitride powder used in the present invention is shown in FIG. The reaction furnace is a high frequency induction heating system, and the reaction tube 3 made of boron nitride is composed of a heating element 8 disposed around the reaction tube 3 and a quartz outer wall 10 covered with a heat insulator 9. The reaction tube 3 preferably has a throttle portion 11. 7 is a high frequency induction heating source, and 4 is a temperature measuring body. At the top of the reaction furnace, metallic aluminum powder injection means comprising a metallic aluminum powder feeder 1 and a mixer 2 is installed. In the mixer, the metal aluminum powder and the nitriding gas are mixed. The bottom of the reactor is connected to a collection system, and the produced aluminum nitride powder is sucked by the blower 6 and guided to the collection system, and collected by a collection device 5 such as a bag filter or an electric dust collector. The

本発明のセラミックス焼結体は、本発明の窒化アルミニウム粉末又は本発明の窒化アルミニウム粉末とそれ以外のセラミックス粉末との混合粉末の焼結体からなるものである。本発明のセラミックス焼結体は、本発明の窒化アルミニウム粉末又は本発明の窒化アルミニウム粉末とそれ以外のセラミックス粉末との混合粉末に、必要に応じて焼結助剤を配合し、成形後、焼結する工程を経て製造される。焼結助剤としては、例えばアルミナ、イットリア、カルシア等の粉末が用いられ、混合粉末中、20質量%まで含有させることができる。   The ceramic sintered body of the present invention is composed of a sintered body of the aluminum nitride powder of the present invention or a mixed powder of the aluminum nitride powder of the present invention and other ceramic powder. The ceramic sintered body of the present invention is mixed with the aluminum nitride powder of the present invention or the mixed powder of the aluminum nitride powder of the present invention and the other ceramic powder, if necessary, and after molding, Manufactured through the process of tying. As the sintering aid, for example, a powder of alumina, yttria, calcia or the like is used, and it can be contained up to 20% by mass in the mixed powder.

焼結は、ホットプレス焼結、常圧焼結の何れであってもよい。ホットプレス焼結は、例えば窒素、アルゴン、一酸化炭素等の非酸化性雰囲気下、又は真空雰囲気下、温度1700〜2300℃、圧力5〜40MPaで行うことが好ましい。一方、常圧焼結は、原料粉末を例えば金型プレス法、静水圧プレス法、泥漿鋳込み成形法、押出し成形法、射出成形法等で成形した後、非酸化性雰囲気下、又は真空雰囲気下、温度1700℃以上で行うことが好ましい。成形体の焼成は、窒化硼素製又は窒化硼素で内張りされた容器に入れて行うことが好ましい。   Sintering may be either hot press sintering or normal pressure sintering. Hot press sintering is preferably performed, for example, in a non-oxidizing atmosphere such as nitrogen, argon, carbon monoxide, or in a vacuum atmosphere at a temperature of 1700 to 2300 ° C. and a pressure of 5 to 40 MPa. On the other hand, normal pressure sintering is performed by molding the raw material powder by, for example, a die pressing method, an isostatic pressing method, a slurry casting molding method, an extrusion molding method, an injection molding method, etc., and then in a non-oxidizing atmosphere or a vacuum atmosphere. The temperature is preferably 1700 ° C. or higher. The molded body is preferably fired in a container made of boron nitride or lined with boron nitride.

混合粉末が、本発明の窒化アルミニウム粉末とそれ以外のセラミックス粉末との混合粉末である場合、そのセラミックス粉末としては、例えば本発明の窒化アルミニウム粉末以外の窒化アルミニウム粉末、窒化ケイ素粉末、窒化ホウ素粉末、アルミナ粉末、ムライト粉末、シリカ粉末、マグネシア粉末、炭化ケイ素粉末等が用いられ、その種類には特に制約はない。本発明の窒化アルミニウム粉末以外のセラミックス粉末の割合は、混合粉末中、80質量%以下、特に60質量%以下を例示することができる。なかでも、本発明の窒化アルミニウム粉末以外のセラミックス粉末として、窒化ホウ素粉末を選択したときに本発明の効果が顕著となる。混合粉末の平均粒径は0.5〜10μmであることが好ましい。   When the mixed powder is a mixed powder of the aluminum nitride powder of the present invention and other ceramic powder, examples of the ceramic powder include aluminum nitride powder other than the aluminum nitride powder of the present invention, silicon nitride powder, and boron nitride powder. Alumina powder, mullite powder, silica powder, magnesia powder, silicon carbide powder and the like are used, and there are no particular restrictions on the type thereof. The proportion of the ceramic powder other than the aluminum nitride powder of the present invention can be exemplified by 80% by mass or less, particularly 60% by mass or less in the mixed powder. Among them, the effect of the present invention becomes remarkable when boron nitride powder is selected as the ceramic powder other than the aluminum nitride powder of the present invention. The average particle diameter of the mixed powder is preferably 0.5 to 10 μm.

図1に示される装置を用いて窒化アルミニウム粉末を製造した。反応炉の容量は170kVA、出力は100kWである。炉の中央内部には反応管3(窒化ホウ素製、内径400mm、全長3000mm、炉頂より1000mmの位置に絞り部がある。)が設置され、その周囲に発熱体8(黒鉛製)が配置され、高周波誘導加熱源7により加熱されて反応官が所定温度に保たれている。反応温度は発熱体中央部に設置した測温体4(グラッシーカーボン管)の温度を光温度計によって測定される。発熱体8は断熱材9(多孔質カーボンビーズ)によって保温され、石英外壁10(内径600mm、全長3000mm)で保持されている。生成した窒化アルミニウム粉末は炉底からブロワー6で吸引し捕集装置5(バッグフィルター)で捕集した。   Aluminum nitride powder was produced using the apparatus shown in FIG. The capacity of the reactor is 170 kVA and the output is 100 kW. A reaction tube 3 (made of boron nitride, inner diameter of 400 mm, total length of 3000 mm, with a constricted portion at a position of 1000 mm from the top of the furnace) is installed in the center of the furnace, and a heating element 8 (made of graphite) is arranged around it. The reactor is heated to a predetermined temperature by being heated by the high frequency induction heating source 7. The reaction temperature is determined by measuring the temperature of the temperature measuring element 4 (glassy carbon tube) installed at the center of the heating element with an optical thermometer. The heating element 8 is kept warm by a heat insulating material 9 (porous carbon beads) and is held by a quartz outer wall 10 (inner diameter 600 mm, total length 3000 mm). The produced aluminum nitride powder was sucked from the furnace bottom with a blower 6 and collected with a collecting device 5 (bag filter).

実施例1〜3 比較例1
金属アルミニウム粉末(純度99.97質量%)を金属アルミニウムの供給機(スクリューフィーダー)1より混合機2に搬送し、そこで窒化性ガス(窒素ガス)と混合しながら反応管3内に噴射した。反応管の絞り部の内径と、金属アルミニウム粉末の供給量を表1に示すように変更してB含有量の異なる窒化アルミニウム(AlN)粉末を製造した。得られた窒化アルミニウム粉末はいずれも純度が99質量%以上で、平均粒径がほぼ1.5μmであった。
Examples 1-3 Comparative Example 1
Metal aluminum powder (purity 99.97 mass%) was conveyed from a metal aluminum feeder (screw feeder) 1 to the mixer 2 where it was injected into the reaction tube 3 while mixing with a nitriding gas (nitrogen gas). Aluminum nitride (AlN) powders having different B contents were produced by changing the inner diameter of the throttle part of the reaction tube and the supply amount of the metal aluminum powder as shown in Table 1. Each of the obtained aluminum nitride powders had a purity of 99% by mass or more and an average particle size of about 1.5 μm.

比較例2
電気炉を用いて、上記と同様の原料をカーボン容器中で窒化させB成分の含有しない窒化アルミニウム粉末を合成し、実施例1と同様にして複合材を製造した。
Comparative Example 2
Using an electric furnace, the same raw material as above was nitrided in a carbon container to synthesize aluminum nitride powder containing no B component, and a composite material was produced in the same manner as in Example 1.

得られたAlN粉末50質量部、市販のBN粉末(酸素量:1.2質量%、平均粒径:0.8μm)50質量部、イットリア粉末1質量部をボールミルにて6時間混合し、それを20MPaの圧力で金型成形後、200MPaの圧力でCIP成形し、1気圧の窒素ガス雰囲気中、1900℃で焼結してAlN−BN複合材を製造した。これらの複合材について、レーザーフラッシュ法による熱伝導率は、ビッカース硬度、JIS法による3点曲げ強度を測定した。それらの結果を表1に示す。   50 parts by mass of the obtained AlN powder, 50 parts by mass of commercially available BN powder (oxygen amount: 1.2% by mass, average particle size: 0.8 μm), and 1 part by mass of yttria powder were mixed for 6 hours in a ball mill, Was molded at a pressure of 20 MPa, CIP molded at a pressure of 200 MPa, and sintered at 1900 ° C. in a nitrogen gas atmosphere of 1 atm to produce an AlN—BN composite material. About these composite materials, the heat conductivity by the laser flash method measured the Vickers hardness and the 3-point bending strength by JIS method. The results are shown in Table 1.

表1から、本発明の実施例によれば、B含有量が10ppm以上のAlN粉末を製造することができた。また、それを用いて製造されたBN−AlN複合材は、熱伝導率、硬度、曲げ強度に優れていた。   From Table 1, according to the Example of this invention, AlN powder whose B content is 10 ppm or more was able to be manufactured. Moreover, the BN-AlN composite material manufactured using the same was excellent in thermal conductivity, hardness, and bending strength.

本発明の窒化アルミニウム粉末は、セラミックス焼結体の製造原料の他に、樹脂等のフィラーとして使用することができる。また、本発明のセラミックス焼結体は、基板や鋼鉄工業用部材として使用することができる。   The aluminum nitride powder of the present invention can be used as a filler such as a resin in addition to a raw material for producing a ceramic sintered body. The ceramic sintered body of the present invention can be used as a substrate or a steel industrial member.

窒化アルミニウム粉末の製造装置の一例を示す説明図Explanatory drawing which shows an example of the manufacturing apparatus of aluminum nitride powder

符号の説明Explanation of symbols

1 金属アルミニウム粉末の供給機
2 混合器
3 反応管
4 測温体
5 捕集装置
6 ブロワー
7 高周波誘導加熱源
8 発熱体
9 断熱体
10 石英外壁
11 反応管の絞り部
DESCRIPTION OF SYMBOLS 1 Metal aluminum powder supply machine 2 Mixer 3 Reaction tube 4 Temperature measuring body 5 Collection apparatus 6 Blower 7 High frequency induction heating source 8 Heating body 9 Heat insulator 10 Quartz outer wall 11 Restriction part of reaction tube

Claims (5)

化学分析により測定されたB含有量が10ppm以上であることを特徴とする窒化アルミニウム粉末。 An aluminum nitride powder characterized in that the B content measured by chemical analysis is 10 ppm or more. B含有量が10〜1000ppmであることを特徴とする請求項1に記載の窒化アルミニウム粉末。 B content is 10-1000 ppm, The aluminum nitride powder of Claim 1 characterized by the above-mentioned. 金属アルミニウム粉末を含む窒化性ガスを、内面が窒化ホウ素で構成され反応管の内面に衝突させながら供給し、金属アルミニウム粉末を窒化させることを特徴とする窒化アルミニウム粉末の製造方法。 A method for producing an aluminum nitride powder, characterized in that a nitriding gas containing metallic aluminum powder is supplied while colliding with an inner surface of a reaction tube having an inner surface made of boron nitride, thereby nitriding the metallic aluminum powder. 請求項1又は2に記載の窒化アルミニウム粉末、又はこの窒化アルミニウム粉末とこの窒化アルミニウム粉末以外のセラミックス粉末を含む混合粉末を焼結してなることを特徴とするセラミックス焼結体。 A ceramic sintered body obtained by sintering the aluminum nitride powder according to claim 1 or 2 or a mixed powder containing the aluminum nitride powder and ceramic powder other than the aluminum nitride powder. 窒化アルミニウム粉末以外のセラミックス粉末が、窒化ホウ素粉末であることを特徴とする請求項4に記載のセラミックス焼結体。 The ceramic sintered body according to claim 4, wherein the ceramic powder other than the aluminum nitride powder is a boron nitride powder.
JP2005085556A 2005-03-24 2005-03-24 Aluminum nitride powder, method for producing the same, and ceramic sintered body Active JP4205685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085556A JP4205685B2 (en) 2005-03-24 2005-03-24 Aluminum nitride powder, method for producing the same, and ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085556A JP4205685B2 (en) 2005-03-24 2005-03-24 Aluminum nitride powder, method for producing the same, and ceramic sintered body

Publications (2)

Publication Number Publication Date
JP2006265042A true JP2006265042A (en) 2006-10-05
JP4205685B2 JP4205685B2 (en) 2009-01-07

Family

ID=37201388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085556A Active JP4205685B2 (en) 2005-03-24 2005-03-24 Aluminum nitride powder, method for producing the same, and ceramic sintered body

Country Status (1)

Country Link
JP (1) JP4205685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034511A (en) * 2001-07-23 2003-02-07 Denki Kagaku Kogyo Kk Method of manufacturing aluminum nitride powder
CN105984859A (en) * 2015-03-20 2016-10-05 Oci有限公司 Apparatus and method for producing aluminum nitride powder and aluminum nitride powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034511A (en) * 2001-07-23 2003-02-07 Denki Kagaku Kogyo Kk Method of manufacturing aluminum nitride powder
JP4545357B2 (en) * 2001-07-23 2010-09-15 電気化学工業株式会社 Method for producing aluminum nitride powder
CN105984859A (en) * 2015-03-20 2016-10-05 Oci有限公司 Apparatus and method for producing aluminum nitride powder and aluminum nitride powder

Also Published As

Publication number Publication date
JP4205685B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
CN104203813B (en) Silicon nitride powder production method, silicon nitride powder, silicon nitride sintered body and circuit substrate using same
JP5528802B2 (en) Dense boron carbide ceramics and method for producing the same
Ali et al. The effect of commercial rice husk ash additives on the porosity, mechanical properties, and microstructure of alumina ceramics
US20070232479A1 (en) Sinterable Nanopowder Ceramic Material and Method for Synthesis Thereof
Hu et al. Rapid fabrication of porous Si3N4/SiC ceramics via nitridation of silicon powder with ZrO2 as catalyst
US5773733A (en) Alumina-aluminum nitride-nickel composites
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
JP4205685B2 (en) Aluminum nitride powder, method for producing the same, and ceramic sintered body
Li et al. Oxidation behavior of β-SiAlON powders fabricated by combustion synthesis
JP2967094B2 (en) Aluminum nitride sintered body and method for producing aluminum nitride powder
Khanra et al. Sintering of ultrafine zirconium diboride powder prepared by modified SHS technique
CN107417271A (en) A kind of preparation method of the bar-shaped brilliant enhancing dimension stone of magnesia alumina spinel of rare earth aluminium (silicon) hydrochlorate
CN110526713B (en) Porous silicon carbide ceramic and preparation method and application thereof
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
Mukasyan Boron nitride
JP2614875B2 (en) Manufacturing method of high temperature corrosion resistant sintered material
JP2011068538A (en) Method for producing titanium silicon carbide ceramic
WO2020241700A1 (en) Silicon nitride powder and method for producing same, and method for producing silicon nitride sintered body
CN101811190B (en) In-situ TiB2 and Ti5Si3 composite material and preparation method thereof
Kennedy et al. Effect of additive composition on porosity and flexural strength of porous self-bonded SiC ceramics
JP3570676B2 (en) Porous ceramic body and method for producing the same
JPH07315937A (en) Normal pressure sintered compact of boron nitride and its production
JP4014561B2 (en) Aluminum nitride powder, production method and use thereof
JPH06219857A (en) Aln whisker composite material
JP4958353B2 (en) Aluminum nitride powder and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4205685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250