JP2003033667A - Method of rapidly searching multicomponent solid catalyst - Google Patents

Method of rapidly searching multicomponent solid catalyst

Info

Publication number
JP2003033667A
JP2003033667A JP2001221134A JP2001221134A JP2003033667A JP 2003033667 A JP2003033667 A JP 2003033667A JP 2001221134 A JP2001221134 A JP 2001221134A JP 2001221134 A JP2001221134 A JP 2001221134A JP 2003033667 A JP2003033667 A JP 2003033667A
Authority
JP
Japan
Prior art keywords
catalyst
components
component
solid catalyst
untreated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001221134A
Other languages
Japanese (ja)
Other versions
JP3757267B2 (en
Inventor
Tatsuhiko Ito
建彦 伊藤
Motoi Sasaki
基 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001221134A priority Critical patent/JP3757267B2/en
Publication of JP2003033667A publication Critical patent/JP2003033667A/en
Application granted granted Critical
Publication of JP3757267B2 publication Critical patent/JP3757267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of rapidly searching a number of catalysts obtained by combining various components in the search of multicomponent solid catalysts. SOLUTION: Catalyst groups comprising many kinds of multicomponent solid catalyst particles are directly prepared by allowing predetermined catalyst components to each act to the assemblages of predetermined catalyst particles without individually preparing a multicomponent solid catalyst at every time when it is needed. Then, the effectiveness of solid catalysts contained in the catalyst groups is discriminated without separating into each solid catalyst constituting the catalyst groups.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多元系固体触媒の
有効性を迅速に探索する方法に関するものであり、更に
詳しくは、調製段階で所定の固体触媒粒子からなる触媒
群(混合物)を直接調製し、ついで該触媒群に含まれる
固体触媒を種類ごとに分離することなく、該触媒群(混
合物)のままその有効性を判別評価することにより、多
元系固体触媒の有効性を迅速に探索する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rapidly searching for the effectiveness of multi-component solid catalysts, and more specifically, it is possible to directly prepare a catalyst group (mixture) consisting of predetermined solid catalyst particles at the preparation stage. Rapidly search for the effectiveness of multi-component solid catalysts by preparing and then evaluating the effectiveness of the solid catalysts (mixtures) as they are without separating the solid catalysts contained in the catalyst group by type. It is about how to do it.

【0002】[0002]

【従来の技術】従来より、各種の化学品の合成、燃料の
合成および各種排気ガスの浄化等で非常に多くの触媒が
使用されているが、近年、環境問題やエネルギー問題か
らの要請により、触媒の特性や効率を更に上げるために
新たな高性能触媒の迅速な開発が望まれている。この触
媒探索の迅速化はエネルギー・環境問題の改善に貢献で
きる極めて重要な技術となっている。特に多元系の固体
触媒では各成分の組み合わせの数も膨大になり、例え
ば、5成分系の触媒で互いに異なる10種ずつの元素を
組み合わせたとすると、単なる組み合わせの数だけでも
10万種近くの触媒があることになり、さらには濃度等
の組み合わせを含めると更に膨大な数となるため触媒探
索の迅速化がどうしても必要となる。
2. Description of the Related Art Conventionally, a great number of catalysts have been used for synthesizing various chemicals, synthesizing fuels, purifying various exhaust gases, etc., but in recent years, due to demands from environmental and energy problems, Rapid development of new high-performance catalysts is desired in order to further improve the characteristics and efficiency of the catalysts. This rapid catalyst search is an extremely important technology that can contribute to the improvement of energy and environmental problems. Especially in the case of multi-component solid catalysts, the number of combinations of each component becomes enormous. For example, if 10 different elements are combined in a five-component catalyst, the number of combinations is close to 100,000. In addition, the number of catalysts will be enormous if the combination of concentrations and the like is included. Therefore, it is absolutely necessary to accelerate the catalyst search.

【0003】これら多元系の固体触媒の探索にはこれま
でのところ適当な迅速化方法がないため、触媒の探索は
過去に蓄積したデータや知識から推定して探索範囲を一
部に絞り込んで行われており、範囲を絞らない全面的な
探索は困難と考えられている。 一方、近年、コンビナ
トリアルケミストリーとして医薬品等を並列的に多数作
る方法が行われている。しかし、固体触媒の場合には、
固体そのもの又は固体に担持した成分が特に特定の化合
物を作るでもなく触媒特性を持つという特有な問題があ
るため、通常のコンビナトリアルケミストリーで、固相
上に固定した基に対し反応を選択的に繰り返し、固相ご
とに分離して最後に生成物を切り出すという、手数が非
常に節約でき且つスマートな方法である”いわゆる固相
合成法”の適用は困難であると言われている。更に、固
体触媒の分野においては、一般に、調製した触媒につい
ての全ての有効性すなわちその反応性能評価を行う必要
があり、求める性能の優劣を示す有効なデータを得るた
めにはこの部分にも非常に時間がかかるため大量の試料
の試験が簡単に行える状況ではない。実際、固体触媒の
調製自体を考えても、先に示したように多元系では、組
み合わせの数が極めて多く、調製すべき試料の数も膨大
になり、通常の方法により一つづつを並行して独立に作
る方法では広範な探索は殆ど不可能である。さりとて何
らかの方法で混合物として調製されたものでは各粒子に
標識をつけることも困難であり、通常は各粒子ごとに成
分分析をするしか区別方法が無いため、簡単にはその分
離ができずその結果として種類別の性能評価ができな
い。
Since there is no suitable method for expediting the search for these multi-component solid catalysts, the search for the catalyst is carried out by narrowing down the search range by estimating it from the data and knowledge accumulated in the past. Therefore, it is considered difficult to conduct a comprehensive search without limiting the scope. On the other hand, in recent years, as a combinatorial chemistry, a method of making a large number of drugs in parallel has been performed. However, in the case of solid catalysts,
There is a particular problem that the solid itself or the component supported on the solid has a catalytic property instead of producing a specific compound, so that the reaction is selectively repeated for the group fixed on the solid phase by ordinary combinatorial chemistry. It is said that it is difficult to apply the "so-called solid phase synthesis method", which is a smart method that is very labor-saving and that the product is cut out at the end after separating each solid phase. Furthermore, in the field of solid catalysts, it is generally necessary to evaluate the effectiveness of all the prepared catalysts, that is, their reaction performance evaluation, and in order to obtain effective data showing the superiority and inferiority of the required performance, this part is also very important. Since it takes time to test a large amount of samples, it is not a situation that can be easily tested. In fact, considering the preparation of the solid catalyst itself, the number of combinations is extremely large and the number of samples to be prepared is enormous in the multi-component system as shown above, and one by one is performed in parallel by the usual method. Extensive search is almost impossible with the method of making independently. It is difficult to label each particle if it is prepared as a mixture by some method, and usually there is no way to distinguish it except by conducting a component analysis for each particle, so it is not possible to easily separate it and the result As a result, performance evaluation by type cannot be performed.

【0004】また、通常の触媒調製では、各成分を同時
に混合すると、加えた成分が直接相互作用を持った単一
組成で、異なった性能を持つ触媒が一種類だけ生成して
しまい、予め設定した成分を持つ多種の触媒の混合物は
できない。そしてこの場合には活性を向上させる成分
と、低下させる成分とが同時に存在する可能性があるた
めため各成分単独での有効性の評価は困難となる。この
ように、触媒探索において最も問題となるのは探索範囲
内に有効な触媒が有るか否かが判らないと言うことであ
る。もし、有効な触媒がその範囲にない場合は膨大な数
の個別の触媒の調製と評価を含む全ての探索が無駄にな
る。広範な触媒探索では、具体的にどの組み合わせのど
んな組成の触媒が有効かを知る前に、この探索範囲には
有効な触媒が存在するか否かを大略知ることが最も効果
的である。現在の技術では、有効な触媒が特定のグルー
プの中に存在することが明らかになればそこから個々の
触媒を絞り込み最適化することは比較的容易である。従
って、何らかの工夫により簡単に多数の種類の触媒を作
り、少ない回数の反応試験を行うことで、ある範囲の成
分の組み合わせから成る有効な触媒の存在を明らかにで
きる方法を見いだせれば、特に新しい分析法や機器を、
また特殊な調製法や装置を考案しなくとも既存の方法で
有効な触媒の探索の迅速化が可能になる。しかし、この
課題における問題は、これまでに効率的に組成の明らか
な多数の触媒を創り出す簡便な方法が無いことと、そこ
で調製した触媒の中に有効な触媒が有るか否かを短時間
で知る方法がないことである。
In addition, in the usual catalyst preparation, when the respective components are mixed at the same time, only one kind of catalyst having different performance is produced with a single composition in which the added components have a direct interaction, which is preset. Mixtures of various catalysts with the above components are not possible. In this case, there is a possibility that a component that improves the activity and a component that decreases the activity may be present at the same time, and therefore it is difficult to evaluate the effectiveness of each component alone. Thus, the biggest problem in the catalyst search is that it is not known whether there is an effective catalyst in the search range. If there are no effective catalysts in that range, the entire search, including the preparation and evaluation of a huge number of individual catalysts, is wasted. In an extensive catalyst search, it is most effective to roughly know whether or not there is an effective catalyst in this search range before knowing specifically which combination and composition of the catalyst are effective. With current technology, it is relatively easy to narrow down and optimize individual catalysts once it becomes clear that the effective catalysts are present in a particular group. Therefore, if we can find a method that can clarify the existence of an effective catalyst consisting of a combination of components in a certain range by simply making a large number of kinds of catalysts by some means and conducting reaction tests a small number of times, it will be particularly new. Analytical methods and equipment
Further, it becomes possible to speed up the search for an effective catalyst by the existing method without devising a special preparation method or device. However, the problem in this problem is that there is no simple method to efficiently create a large number of catalysts with clear composition, and whether or not there is an effective catalyst prepared in a short time. There is no way to know.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記した問
題を解決するためになされたものであって、その目的
は、多種の触媒混合物の効率的な簡便調製法と、そこで
調製した触媒混合物に関して少ない回数の反応性能評価
から探索範囲内での有効な触媒の存在の有無と、有効な
触媒構成成分の大略とを明らかにすることを基本とする
多元系固体触媒の迅速探索方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its purpose is to provide an efficient and simple preparation method of various catalyst mixtures and a catalyst mixture prepared therein. A method for rapid search for multi-component solid catalysts based on clarifying the presence or absence of an effective catalyst within the search range and the outline of effective catalyst constituents from a small number of reaction performance evaluations regarding Especially.

【0006】[0006]

【問題を解決するための手段】本発明者らは、種々の触
媒調製法や評価方法を検討した結果、複数の固体触媒成
分からなる多元系固体触媒の探索において、個々の固体
触媒成分を異なる粒子間で相互に干渉させずに混合し予
め設定した成分を持つ多種の触媒群(混合物)を調製
し、ついで、該触媒群(混合物)をそれに含まれる各固
体触媒に各別に分離することなく、そのままたとえば同
時に調製される基準となる無処理の混合物と比較・評価
することにより、非常に少ない評価回数で有効な触媒の
有無を知ることができ、大幅に触媒調製及び評価の手数
が省かれることを見いだし本発明を完成するに至った。
As a result of studying various catalyst preparation methods and evaluation methods, the present inventors have found that in the search for a multi-component solid catalyst composed of a plurality of solid catalyst components, each solid catalyst component is different. A variety of catalyst groups (mixtures) having a preset component are prepared by mixing particles without interfering with each other, and then without separating the catalyst groups (mixtures) into respective solid catalysts contained therein. By comparing and evaluating as it is, for example, with an untreated mixture, which is a standard that is prepared at the same time, it is possible to know the presence or absence of an effective catalyst with a very small number of evaluations, which greatly saves the trouble of preparing and evaluating the catalyst. After finding out the above, the present invention has been completed.

【0007】すなわち、本発明によれば、複数の固体触
媒成分からなる多元系固体触媒を迅速に探索する方法で
あって、該多元系固体触媒をその都度個別的に作成する
ことなく、所定の固体触媒粒子の集まりに所定の触媒成
分を作用させることにより、多種の多元固体触媒粒子か
らなる触媒群を直接に調製し、ついで該触媒群に含まれ
る固体触媒の有効性を該触媒群を構成する個々の固体触
媒に各別に分離することなく判別することを特徴とする
多元系固体触媒の迅速探索方法が提供される。また本発
明によれば、上記方法の内、触媒混合物の調製におい
て、調製時に先に担持した成分間の混合を防ぐために、
担体上粒子に触媒成分を段階的に担持することを特徴と
する触媒の迅速探索方法が提供される。また本発明によ
れば、上記方法の内、触媒の調製において、含浸法によ
り、第1段階において、用いる担体を第1段階で担持し
たい成分数+1の部分に分割し、1つの部分を残してそ
れぞれの部分に異なる成分を担持し、ついで、これらを
無処理の部分も含め全て混合した後、これを、第2段目
で担持したい成分数+1の部分に分割し、このうち1つ
は無処理のまま残し、その他の部分は、第1段階と同様
にしてそれぞれに異なる成分を担持し、第3段階以降、
同様な操作を必要な段数まで繰り返すことを特徴とする
触媒の迅速探索法が提供される。また本発明によれば、
上記方法の内、触媒の調製において、含浸法により用い
る溶液量を細孔容積よりも少なくし、担体粒子間での成
分の移動・混合を防止することを特徴とする触媒の迅速
探索法が提供される。また本発明によれば、上記方法の
内、触媒の評価において、第1段階において、用いる担
体を第1段階で調査したい成分数+1の部分に分割し、
1つの部分を残してそれぞれの部分に異なる成分を担持
し、それらについて無処理の部分も含めて各々の部分か
ら試料を取り分け、ついで、残りの部分を無処理の部分
も含め混合した後、これを、第2段目で担持したい成分
数+1の部分に分割し、このうち1つは無処理のまま残
し、その他の部分は、第1段階と同様にしてそれぞれに
異なる成分を担持し、それらについて無処理の部分も含
めて各々の部分から試料を取り分け、第3段階以降、同
様な操作を必要な段数まで繰り返し、最後の段階で得た
試料について無処理のものも含めおのおの評価を行い、
更に必要に応じ前段階で得た試料の評価を行うことを特
徴とする触媒の迅速探索法が提供される。また本発明に
よれば、上記方法の内、触媒の調製・評価において、触
媒調製における触媒成分の担持順を適宜変えた調製を行
い、全ての成分の担持が一度づつ最終段で行われるよう
にして得た各触媒混合物を用い、何れの場合も最終段階
で得られた触媒について無処理の触媒混合物との比較・
評価を行うことを特徴とする触媒の迅速探索法が提供さ
れる。
That is, according to the present invention, there is provided a method for rapidly searching for a multi-component solid catalyst composed of a plurality of solid catalyst components, wherein a predetermined multi-component solid catalyst is not required to be prepared each time, A catalyst group consisting of various multi-component solid catalyst particles is directly prepared by causing a predetermined catalyst component to act on a group of solid catalyst particles, and then the effectiveness of the solid catalysts contained in the catalyst group is determined by configuring the catalyst group. There is provided a rapid search method for a multi-component solid catalyst, which is characterized in that the individual solid catalysts are discriminated without being separated from each other. According to the present invention, among the above methods, in the preparation of the catalyst mixture, in order to prevent mixing between the components previously supported at the time of preparation,
There is provided a method for rapidly searching for a catalyst, which comprises stepwise supporting a catalyst component on particles on a carrier. According to the present invention, among the above methods, in the preparation of the catalyst, in the first step, the carrier to be used is divided into parts of the number of components to be carried in the first step + 1 by the impregnation method, leaving one part. After loading different components in each part, and then mixing all of them including the untreated part, this was divided into parts with the number of components to be loaded + 1 in the second stage, one of which was The treatment is left as it is, and the other parts carry different components in the same manner as in the first stage,
A rapid search method for a catalyst is provided, which is characterized by repeating similar operations up to the required number of stages. According to the invention,
Among the above methods, in the preparation of the catalyst, a rapid search method for the catalyst is provided, which is characterized in that the amount of the solution used by the impregnation method is smaller than the pore volume to prevent the movement and mixing of the components between the carrier particles. To be done. According to the present invention, among the above methods, in the evaluation of the catalyst, in the first step, the carrier used is divided into parts of the number of components to be investigated in the first step + 1.
After leaving one part, each part carrying a different component, separating the samples from each part, including the untreated parts, and then mixing the remaining parts, including the untreated part, Is divided into parts of the number of components to be carried in the second stage + 1, one of them is left untreated, and the other part is loaded with different components in the same manner as in the first stage. Samples were separated from each part, including the untreated part, and the same operation was repeated from the third stage onward until the required number of steps, and the samples obtained in the final stage were evaluated, including the untreated ones.
Further, there is provided a rapid catalyst search method characterized in that the sample obtained in the previous step is evaluated if necessary. Further, according to the present invention, among the above methods, in the preparation and evaluation of the catalyst, the preparation order of the catalyst components in the catalyst preparation is appropriately changed so that all the components are loaded once at the final stage. Using each of the catalyst mixtures obtained in this way, in each case the catalyst obtained in the final stage was compared with the untreated catalyst mixture.
A rapid catalyst search method is provided, which is characterized by conducting an evaluation.

【0008】[0008]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。先に示したように、例えば、30種類の異なる成分
を10種づつのグループに分け、そこから一つずつ成分
を選ぶ3成分系の触媒を探索する場合、通常であれば1
成分および2成分のものも含め1330個の触媒を個別
に作り評価しなくてはならない。
The present invention will be described in more detail below. As described above, for example, when searching for a three-component catalyst in which 30 different components are divided into groups of 10 types and one component is selected from each group, usually 1
1330 catalysts, including both component and binary components, must be individually made and evaluated.

【0009】これに対して、本発明方法によれば、各々
133個の触媒を含む10の触媒混合物として調製で
き、各触媒混合物ごとの反応性能評価から有効な触媒の
有無と大略の有効成分を探索することができ、触媒調製
と評価の手間を大幅に低減することが可能となる。
On the other hand, according to the method of the present invention, 10 catalyst mixtures each containing 133 catalysts can be prepared. From the reaction performance evaluation of each catalyst mixture, the presence or absence of an effective catalyst and the approximate effective components are determined. It is possible to search, and it is possible to greatly reduce the trouble of catalyst preparation and evaluation.

【0010】また、多元系固体触媒の調製に際して、通
常の方法により触媒を構成する各成分を同時に担持する
と各成分の混合が起こり成分が制御された混合物として
は調製できないが、本発明方法により触媒の成分を一段
階ずつ多段階に分けて担持することにより、調製時にお
いて共存する多種触媒間の成分の混合を防止し予め設定
した成分を持つ多種触媒の混合物を簡単に調製すること
ができる。
Further, in preparing a multi-component solid catalyst, when the components constituting the catalyst are simultaneously loaded by a usual method, the components are mixed and cannot be prepared as a mixture in which the components are controlled. By supporting the components of step 1 in multiple stages one by one, it is possible to prevent mixing of components between the various catalysts that coexist during the preparation, and to easily prepare a mixture of various catalysts having preset components.

【0011】本発明における重要な知見の第一は、通
常、担持型固体触媒の混合物では触媒粒子がある程度の
大きさを持っており、粒子内はほぼ均一の組成の触媒で
あり、種類は粒子を単位として変わるが、これは粒子内
で成分が混合した触媒とは異なり、定まった組成の各粒
子においては互いに独立してその粒子特有の反応が起こ
り触媒の混合の影響が大きくでることは少ないという点
である。第二は、混合の影響がでる例は、反応生成物の
二次反応が非常に速く、その反応に有効な触媒が混合物
の中に含まれる場合にみられるが、この場合でも主反応
は進行しているため有効触媒の探索上では大きな障害と
ならないということである。第三は、まれに水素の活性
化等が関連する反応で、水素の活性化能力を持つものが
別に存在し単独では見いだせない活性を示すことがある
が、この様な混合物で新規な反応が起これば新たな発見
となりここでの触媒探索を特に妨げるものとはならない
ということである。
The first important finding in the present invention is that, in a mixture of supported solid catalysts, the catalyst particles usually have a certain size, and the inside of the particles is a catalyst having a substantially uniform composition. This is different from the catalyst in which the components are mixed within the particle, but in each particle of a fixed composition, the reaction unique to that particle occurs independently of each other, and the effect of mixing the catalyst is unlikely to be large. That is the point. Secondly, the case where the effect of mixing appears is seen when the secondary reaction of the reaction product is very fast and a catalyst effective for the reaction is contained in the mixture, but even in this case, the main reaction proceeds. Therefore, it is not a major obstacle in the search for effective catalysts. The third is rarely a reaction related to activation of hydrogen, and there is another one with hydrogen activation ability, which may show an activity that cannot be found alone. If it happens, it will be a new discovery and it will not hinder the catalyst search here.

【0012】次に、本発明方法において好ましく採用さ
れる、触媒調製の自動化等にも適し、機械的・簡便な多
元系固体触媒の探索方法を説明する。
Next, a method for searching for a mechanical and simple multi-component solid catalyst which is preferably used in the method of the present invention and which is suitable for automation of catalyst preparation and the like will be described.

【0013】この方法は、多元系固体触媒の調製に際し
て、先ず、第1段階で担持したい成分の数+1だけに最
初の担体等を分割し、1つを残して残り全部に各成分を
担持固定したのち、無処理の部分も含め全て混合するこ
とにより、第1段階で原理的に調製可能な全ての種類の
触媒群(混合物)が調製される。尚、この混合操作の前
に各部分から小量の試料を採取しておくことで、有効触
媒がこの探索範囲に含まれていることが明らかになった
場合に有効触媒の成分の特定が容易となる。
According to this method, when preparing a multi-component solid catalyst, first, the first carrier or the like is divided into only the number of components to be supported in the first step + 1, and one component is left and all components are immobilized on the rest. After that, all the catalyst groups (mixtures) that can be prepared in principle in the first step are prepared by mixing all of them including the untreated part. It should be noted that, by collecting a small amount of sample from each part before this mixing operation, it becomes easy to identify the components of the effective catalyst when it becomes clear that the effective catalyst is included in this search range. Becomes

【0014】次にこの触媒群(混合物)を第1段階と同
様に第2段階で担持する成分+1に分割し、1つを残し
て各々の部分に各成分を固定担持する。この操作により
可能な全ての異なる2成分、1成分の組み合わせを持つ
触媒群(混合物)が簡単に調製でき、それが2段階目の
処理成分ごとに無処理の部分も含め(2段階目の成分数
+1)のグループに分けられていることになる。更に混
合、分割、成分担持を繰り返すことで更に多段の触媒調
製が可能となり、予め設定された成分を持つ原理的に調
製可能な全ての触媒群(混合物)を直接に得ることがで
きる。
Next, this catalyst group (mixture) is divided into the component +1 to be supported in the second step as in the first step, and one component is left and one component is fixedly supported in each part except one. By this operation, a catalyst group (mixture) having all possible different two components and a combination of one component can be easily prepared, and it is possible to prepare a catalyst group (mixture) for each treatment component of the second stage (including the untreated portion). It is divided into groups of (number + 1). By repeating mixing, division, and component loading, further multi-stage catalyst preparation becomes possible, and in principle all catalyst groups (mixtures) that can be prepared in principle with preset components can be directly obtained.

【0015】本発明方法においては、触媒群(混合物)
中の各触媒の反応性能は反応評価から直接には求めず、
たとえば最終担持の段階で得られる触媒群(混合物)の
反応性能を担体や無処理の混合物と比較することによ
り、この探索範囲内の有効な触媒の有無が判別される。
さらに、本発明方法においては、調製での順序を変え最
終段階に調べたい成分が担持されるようにすればその成
分が有効か否かが判定でき、実際には担持の順序を変え
全ての成分を一度は最終段階に持っていくことにより有
効な成分を推定できる。
In the method of the present invention, the catalyst group (mixture)
The reaction performance of each catalyst inside is not directly obtained from the reaction evaluation,
For example, by comparing the reaction performance of the catalyst group (mixture) obtained in the final loading step with the carrier or the untreated mixture, the presence or absence of an effective catalyst within this search range is determined.
Furthermore, in the method of the present invention, it is possible to determine whether or not the component is effective by changing the order of preparation so that the component to be investigated can be loaded in the final stage. The effective component can be estimated by bringing to the final stage once.

【0016】本発明において、多元触媒の混合物を簡便
に調製する方法は、多元触媒間の成分の移動・混合なし
に直接に多種の多元触媒の混合物が作れる方法であれば
特に制限はない。通常、最初の出発物質にシリカゲルな
どの多孔性担体粒子を用いるのが最も単純であるが、そ
の他、各種の構造規則性物質やアルミナ、ジルコニア等
の各種の酸化物系担体の使用も可能である。また、はじ
めに各種塩類の加水分解等により調製した共沈物等を用
いることも可能である。
In the present invention, the method of simply preparing a mixture of multi-way catalysts is not particularly limited as long as it is a method of directly preparing a mixture of various multi-way catalysts without moving or mixing the components between the multi-way catalysts. Usually, it is the simplest to use porous carrier particles such as silica gel as the initial starting material, but it is also possible to use various structurally ordered substances and various oxide-based carriers such as alumina and zirconia. . It is also possible to use a coprecipitate prepared by first hydrolyzing various salts.

【0017】これらに、各種の触媒成分を担持する方法
は、一般的に、固定法との関連で前段で担持した成分が
触媒間で移動しない限りにおいては、各種塩溶液の含浸
による方法すなわち含浸法、スプレードライ法の他イオ
ン交換法や気相担持法も含め液相、気相など担持方法に
特に制限はないが、含浸法が最も簡便であり好ましい。
The method of supporting various catalyst components on these is generally a method of impregnation with various salt solutions, that is, impregnation, as long as the components supported in the preceding stage do not move between the catalysts in relation to the fixing method. There are no particular restrictions on the loading method such as liquid phase or gas phase including ion exchange method and gas phase loading method in addition to the spraying method and spray drying method, but the impregnation method is the most simple and preferred.

【0018】含浸法により逐次担持する方法において
は、吸着性の弱い担体の場合、担体への固定処理が乾燥
のみの場合には次の成分の担持において成分の再溶解が
起こり、粒子間で前に担持した成分の移動が起こること
があるので、固定処理として焼成や水素還元を行い成分
の移動を防止しておくことが好ましい。
In the method of sequentially supporting by the impregnation method, in the case of a carrier having a weak adsorptivity, when the fixing treatment to the carrier is only drying, the component is redissolved in the subsequent loading of the component, and the particles are preliminarily dissolved between the particles. Since the component carried on the carrier may migrate, it is preferable to prevent the migration of the component by baking or hydrogen reduction as a fixing treatment.

【0019】また、各々の触媒成分の相互作用が小さく
なる場合には乾燥のみで固定し次の担持で再溶解させる
ことが好ましい。更に、通常の含浸法の場合には、各粒
子間で以前に担持した成分の移動混合が起こり易いの
で、本発明方法においては、これを防止する方法として
溶液量を細孔容積よりやや少なくしておくことが好まし
い。このような方法を採ると、シリカゲルのような吸着
性の弱い担体でも前段で乾燥固定された可溶性の塩の溶
出移動を押さえることができ、含浸後乾燥のみでも各触
媒成分の混合が抑制され所定の触媒群(混合物)の調製
が可能となる。なお、同一成分を複数回に分けて担持乾
燥を行えば更に確実に移動を抑えることができるが手数
が増える。
Further, when the interaction between the respective catalyst components becomes small, it is preferable that the catalyst components are fixed only by drying and then redissolved by the next loading. Further, in the case of the usual impregnation method, since the moving and mixing of the components previously supported between particles is likely to occur, in the method of the present invention, the amount of the solution is made slightly smaller than the pore volume as a method for preventing this. It is preferable to keep. By adopting such a method, it is possible to suppress the elution movement of the soluble salt dried and fixed in the previous stage even with a carrier having a weak adsorptivity such as silica gel, and it is possible to suppress the mixing of the respective catalyst components even only by drying after impregnation, and thereby the predetermined amount is obtained. It becomes possible to prepare a catalyst group (mixture). If the same component is divided into a plurality of times and carried and dried, the movement can be suppressed more reliably, but the number of steps increases.

【0020】また、含浸時の溶液の担体に対する添加
は、前に加えた成分の移動を抑えるために振とうしつつ
なるべく小さい水滴で加えることが好ましい。特に成分
の移動を嫌う場合は添加成分を含む溶液を噴霧する事に
より必要量を吸収させる方法が有効である。この場合に
も粒子内に吸収させる水分量は細孔容積よりも少なくし
ておくことが望ましい。尚、溶媒量が少ないとそこで添
加したい成分が添加されない又は濃度の低い部分が生ず
る可能性があるが、本発明方法においては、その先の段
階に無処理のものとの混合もあり、触媒は常に各種の混
合物として存在するため、特に問題とはならない。
Further, it is preferable to add the solution to the carrier at the time of impregnation with water droplets as small as possible while shaking in order to suppress the movement of the components previously added. In particular, when the movement of components is disliked, a method of absorbing a required amount by spraying a solution containing an added component is effective. Also in this case, it is desirable that the amount of water absorbed in the particles be smaller than the pore volume. Incidentally, when the amount of solvent is small, there is a possibility that a component to be added there is not added or a portion having a low concentration may occur, but in the method of the present invention, there is also mixing with an untreated one, and the catalyst is Since it is always present as a mixture of various kinds, there is no particular problem.

【0021】本発明方法において、目的とする各触媒成
分を予定しないところに移動・混合することなく担持す
るには基本的には1成分ごとに多段階で担持するのが最
も容易であるが、同じ成分が含まれているのであれば、
一段階で1成分ずつでなくいくつかの成分を同時に担持
することも可能である。
In the method of the present invention, it is basically the easiest to carry each target catalyst component in multiple stages without moving or mixing it in an unscheduled place, but it is basically the easiest to carry it. If the same ingredients are included,
It is also possible to support several components at the same time, instead of one component at a time.

【0022】また、簡単な手順で考え得る限りの多種の
触媒の混合物を効率よく創り出すには、先ず最初の担体
を(1段目で担持しようとしている成分数+1)に分割
し、各成分を分割された異なる部分に各々担持固定した
のち無処理の部分も含めて混合し、ついでこれを(2段
目で担持しようとしている成分数+1)に再度分割し、
再び次の成分を分割された異なる部分に各々担持固定し
た後、無処理の部分も含めてまた混合すると言う手順を
繰り返すと最も機械的・効率的に無担持から多成分まで
考えられる組み合わせの種類を持つ触媒群(混合物)を
調製することができる。
Further, in order to efficiently create a mixture of various kinds of catalysts that can be considered by a simple procedure, first divide the first carrier into (the number of components to be supported in the first stage + 1) and divide each component. After supporting and fixing each of the divided different parts, including the untreated part, and mixing, and then again dividing this into (the number of components to be supported in the second stage + 1),
After repeating the procedure of loading and fixing the next component on each of the divided different parts and then mixing again including the untreated part, the kind of combination that is most mechanically and efficiently considered from non-loaded to multi-component It is possible to prepare a catalyst group (mixture) having

【0023】なお、探索効率がやや下がることを問題と
しない場合は、途中で全てを混合せず一部づつを混合す
る方法を組み合わせることなど各種の方法が利用でき、
その方法に特に制限はない。
If it is not a problem that the search efficiency is slightly lowered, various methods such as combining a method of mixing all instead of mixing all in the middle can be used,
The method is not particularly limited.

【0024】本発明方法で利用できる触媒粒子の大きさ
としては担持が均一にできれば特に制限はないが、当然
のことながら粒子が大きい場合は担体の粒子の数が触媒
の種類の数より十分に大きいことが必要である。実際に
は液の添加と振とうの容易さも含め、100メッシュよ
り小さい場合は取扱いや、成分の移動が起こり易いなど
の理由であまり適当ではない。また、粒子の形状として
は球状が扱いやすいが、振とう含浸に問題の無いもので
あれば破砕状等特に制限はない。
The size of the catalyst particles that can be used in the method of the present invention is not particularly limited as long as the particles can be uniformly loaded. However, when the particles are large, the number of particles of the carrier is sufficiently larger than the number of kinds of catalysts. It needs to be big. Actually, if it is smaller than 100 mesh, including the addition of liquid and the ease of shaking, it is not very suitable because it is easy to handle and transfer components. Although spherical particles are easy to handle as particles, there is no particular limitation such as crushed particles as long as there is no problem in shaking impregnation.

【0025】使用する溶媒は水が最も一般的であるが、
使用する塩類が溶解するものであればアルコールなど特
に制限は無い。担持する成分の濃度は溶液にでき担体に
担持できる範囲では特に制限はない。
Water is the most common solvent used,
There is no particular limitation such as alcohol as long as the salts used can be dissolved. The concentration of the component to be supported is not particularly limited as long as it can be made into a solution and supported on the carrier.

【0026】評価で使用する触媒の形状に関しては通常
はそのままの粒子で用いるが、手間を問題にしないので
あれば得られた触媒混合物を成形することや、ハニカム
ニに塗布するなど特に制限はない。
Regarding the shape of the catalyst used in the evaluation, it is usually used as it is, but if the trouble is not a problem, there is no particular limitation such as molding the obtained catalyst mixture or coating it on the honeycomb.

【0027】評価する反応としては固体触媒の評価装置
で評価できる範囲では特に制限は無い。触媒性能の評価
に際しては、混合物のまま性能評価を行うのであればそ
の方法に特に制限はない。しかし、その目的とするとこ
ろにより、評価用の1試料に含まれる触媒の種類を、調
製段階での成分の数や繰り返しの段数を調節することな
どにより選ぶことが望ましい。活性の確認が容易な特異
的な反応では多くの種類をその中に含ませることがで
き、分析可能な範囲で有ればその数に特に制限はない。
なお、活性があまり変わらないものの組み合わせでは、
その数をあまり多くすると活性の高いものを確認するこ
とが難しくなる。
The reaction to be evaluated is not particularly limited as long as it can be evaluated by a solid catalyst evaluation device. When evaluating the catalyst performance, the method is not particularly limited as long as the performance of the mixture is evaluated. However, depending on the purpose, it is desirable to select the type of catalyst contained in one sample for evaluation by adjusting the number of components in the preparation stage or the number of repeating stages. Many kinds can be included in a specific reaction whose activity can be easily confirmed, and the number thereof is not particularly limited as long as it can be analyzed.
In addition, in the combination of those whose activity does not change much,
If the number is too large, it becomes difficult to confirm the one with high activity.

【0028】本発明方法において、触媒群の活性評価を
どのような手順で行うかは省力化に大きな影響がある。
最も簡単な方法は、最終段階の担持の後さらに無処理の
部分も含め全てを混合しこれを評価に用いる方法であ
り、一度で考えられる全ての組み合わせの触媒の評価が
できる。この方法は活性の有無だけを見ることになり、
通常は起こり難い即ち通常は活性のあるものが殆どない
反応に特異的に有効な触媒を探索する場合には適してお
り、大略ではあるが1回の評価で広い範囲の探索ができ
る。
In the method of the present invention, the procedure for evaluating the activity of the catalyst group has a great influence on labor saving.
The simplest method is a method in which after the final stage of supporting, including the untreated portion, all are mixed and used for evaluation, and all combinations of catalysts that can be considered at one time can be evaluated. This method only looks for activity,
It is suitable when searching for a catalyst that is usually difficult to occur, that is, a catalyst that is rarely active in general, and that is specifically effective for a reaction.

【0029】通常、最も効果的な方法は、最終段で生成
した触媒混合物をそのまま最後に処理した成分グループ
ごとに評価し、どれかのグループで有効な触媒の存在が
推定された時点で予め取り分けておいたその前の段階の
試料について調べて行く方法であり、これで大まかな有
効成分の範囲が絞れる。
Generally, the most effective method is to evaluate the catalyst mixture produced in the final stage as it is for each component group that has been finally treated, and sort it beforehand when the presence of an effective catalyst is estimated in any group. This is a method of investigating the sample of the previous stage set aside, and this narrows down the range of active ingredients roughly.

【0030】一方、新たに成分の担持順序を変えて、最
後に処理する成分が全て変わるようにして調製すると、
未処理の混合物の活性と比較することにより、最後の処
理で活性の上がった成分が有効触媒の構成成分である可
能性が高くなり、多元系触媒成分の特定ができる。
On the other hand, when the loading order of the components is newly changed so that all the components to be finally treated are changed,
By comparing with the activity of the untreated mixture, the component whose activity was increased in the last treatment is more likely to be a constituent component of the effective catalyst, and the multi-component catalyst component can be identified.

【0031】[0031]

【実施例】次に本発明を、メタノールの一酸化炭素と水
素への分解触媒の探索に例を取り、実施例及び比較例に
によりさらに詳細に説明するが、本発明はこの実施例に
よって限定されない。また、実施例および比較例の実験
におけるガス組成の分析はガスクロマトグラフ法で行っ
た。
EXAMPLES The present invention will now be described in more detail with reference to Examples and Comparative Examples by taking an example of the search for a catalyst for decomposing methanol into carbon monoxide and hydrogen, but the present invention is limited to these Examples. Not done. The gas composition analysis in the experiments of Examples and Comparative Examples was performed by gas chromatography.

【0032】実施例1 シリカゲル(32ー42メッシュ)3gを取りこれを3
つの部分に等分割する、この内の一つの部分には担持し
たときの金属パラジウムの濃度が3%となるように濃度
を調節したシリカゲルの細孔容積よりやや少ない塩化パ
ラジウム水溶液を減圧下で含浸し、乾燥する。他の一つ
には担持したときの金属白金の濃度が3%となるように
濃度を調節したシリカゲルの細孔容積よりやや少ない硝
酸白金アンモニウム水溶液を減圧下で含浸し乾燥する。
最後の一つは何もせずに残す。ここまでが表2での第1
段で担体のみも含め3種の触媒が生成したことになる。
この3つの部分から評価用の試料を各々0.1gづつ抜
き取り残りを良く混合し3分割する。この内の一つの部
分に硝酸セリウムの担持後酸化した後で酸化セリウムと
して担体の5%に相当する量を、シリカゲル細孔容積よ
りやや少ない量の水に溶解し、含浸し、乾燥する。もう
一つの部分には、硝酸鉄の担持後酸化した後で酸化鉄と
して担体の5%に相当する量を、シリカゲル細孔容積よ
りやや少ない量の水に溶解し、含浸し、乾燥する。残り
の一つは何も処理せずにそのままにしておく。 ここま
でが表2での第2段で、担体も含め9種の触媒が生成し
たことになる。この3つの部分から評価用の試料を各々
0.1g抜き取り残りを良く混合し再び3つに等分割す
る。この内の一つに硝酸ジルコニルの、担持後酸化した
後で酸化ジルコニウムとして担体の5%に相当する量を
細孔容積よりやや少ない量の水に溶解し、含浸し、乾燥
する。次いでこれを350℃で焼成し、その後同じ温度
で水素還元し約1gの触媒を得た(これをCAT−Zr
とする)。もう一つの部分には、硝酸ナトリウムの酸化
ナトリウムとして担体の3%に相当する量を細孔容積よ
りやや少ない量の水に溶解し、含浸し、乾燥する。次い
でこれを350℃で焼成し、その後同じ温度で水素還元
し約1gの触媒を得た(これをCAT−Naとする)。
残りの一つは何も処理せずに350℃で焼成し、その後
同じ温度で水素還元し約1gの触媒を得た(これをCA
T−REF1とする)。ここまでが表2の第3段で担体
も含め27種の触媒が生成したことになる。ついで第1
段階および第2段階で抜き取った試料も同様な操作で焼
成・還元した。(各々Pd−SiO2,Pt−SiO
2,SiO2、MOD−Ce,MODーFe,MOD−
REF0とする。) 前記の方法で調製した触媒の内0.1gを0.1gのシ
リカゲルと混合し、触媒の活性評価用常圧流通式反応装
置に充填し、250℃で1時間水素還元し150℃まで
冷却した後、メタノール:ヘリウム:アルゴン=2:9
3:5の混合ガスを200ml/分の速度で供給した。
そして、触媒層温度を150℃に1時間保持した後17
5℃に上げるようにして触媒層温度を150、175、
200、225および250℃に1時間ずつ保持し、各
温度に1時間保持した後の生成ガスをサンプリングして
分析した。反応生成物は97%以上が一酸化炭素と水素
であった。この操作をメタノール濃度2,4,10,2
0%で繰り返した。メタノール濃度20%、温度200
℃で反応を行った場合の一酸化炭素の収量(CO収量)
(ミリモル/グラムー触媒 毎時)を表1に示す。な
お、実施例1での調製手順と生成触媒をまとめたものを
参考のため表2に示す。表2の( )は生成した触媒の
種類を示す。
Example 1 3 g of silica gel (32-42 mesh) was taken and
Equally divide into two parts, one part of which is impregnated under reduced pressure with an aqueous palladium chloride solution that is slightly smaller than the pore volume of silica gel whose concentration is adjusted so that the concentration of metallic palladium when loaded is 3%. And dry. The other is to impregnate under reduced pressure an aqueous solution of platinum ammonium nitrate, which is slightly smaller than the pore volume of silica gel whose concentration has been adjusted so that the concentration of metallic platinum when loaded is 3%.
The last one is left untouched. Up to here is the first in Table 2
This means that three kinds of catalysts including only the carrier were produced in the stage.
From each of these three parts, 0.1 g of the sample for evaluation is withdrawn by 0.1 g, and the rest is mixed well and divided into three parts. After supporting cerium nitrate on one portion of these and then oxidizing it, an amount corresponding to 5% of the carrier as cerium oxide is dissolved in water in an amount slightly smaller than the pore volume of silica gel, impregnated and dried. In the other part, iron oxide is supported and then oxidized, and then an amount corresponding to 5% of the carrier as iron oxide is dissolved in water slightly smaller than the pore volume of silica gel, impregnated and dried. The other one is left unprocessed. Up to this point, the second stage in Table 2 indicates that 9 types of catalysts including the carrier were produced. From each of these three parts, 0.1 g of a sample for evaluation is withdrawn, and the remainder is mixed well, and again divided into three equal parts. In one of these, zirconyl nitrate is oxidized after supporting and then dissolved in zirconium oxide in an amount corresponding to 5% of the carrier in slightly smaller amount of water than the pore volume, impregnated and dried. Then, it was calcined at 350 ° C., and then hydrogen-reduced at the same temperature to obtain about 1 g of a catalyst (this was CAT-Zr
And). In the other part, an amount corresponding to 3% of the carrier as sodium oxide of sodium nitrate is dissolved in water slightly smaller than the pore volume, impregnated and dried. Then, it was calcined at 350 ° C., and then reduced with hydrogen at the same temperature to obtain about 1 g of a catalyst (this was designated as CAT-Na).
The other one was calcined at 350 ° C. without any treatment, and then hydrogen-reduced at the same temperature to obtain about 1 g of catalyst.
T-REF1). Up to this point, 27 kinds of catalysts including the carrier have been produced in the third stage of Table 2. Then first
The samples extracted in the step and the second step were also calcined and reduced by the same operation. (Pd-SiO2 and Pt-SiO respectively
2, SiO2, MOD-Ce, MOD-Fe, MOD-
Set to REF0. ) 0.1 g of the catalyst prepared by the above method is mixed with 0.1 g of silica gel, charged in a normal pressure flow reactor for activity evaluation of the catalyst, hydrogen reduced at 250 ° C. for 1 hour and cooled to 150 ° C. After that, methanol: helium: argon = 2: 9
A 3: 5 mixed gas was supplied at a rate of 200 ml / min.
Then, after the catalyst layer temperature was maintained at 150 ° C. for 1 hour, 17
The temperature of the catalyst layer is increased to 5 ° C. by 150, 175,
The temperature was kept at 200, 225 and 250 ° C. for 1 hour each, and the produced gas after being kept at each temperature for 1 hour was sampled and analyzed. More than 97% of the reaction products were carbon monoxide and hydrogen. This operation is performed with a methanol concentration of 2, 4, 10, 2
Repeated at 0%. Methanol concentration 20%, temperature 200
Yield of carbon monoxide (CO yield) when the reaction was carried out at ℃
(Mmol / gram-catalyst per hour) is shown in Table 1. A summary of the preparation procedure and the produced catalyst in Example 1 is shown in Table 2 for reference. () In Table 2 shows the type of catalyst produced.

【0033】実施例2 実施例2の操作手順を表3に示す(ただし表3では混合
物に含まれる触媒の種類は示してない)。シリガゲル6
gを新たに取り、これを3分割したものに実施例1述べ
たと同様の方法により第1段としてZrまたはNaを担
持し、一部は無処理のまま3者を良く混合し、2分割
し、その一方を更に3分割する。この3分割した各々の
部分に第2段として実施例1と同様にしてCeまたはF
eを担持し一部は無処理のままとし、上記と同様に混合
したのち3分割する。第3段として各々の部分にPdま
たはPtを担持し、一部は無処理のままとする。それぞ
れを前記触媒と同様に350℃で焼成後同じ温度で水素
還元する事によりそれぞれ約1gの触媒を得た。各々を
CAT−Pd、CAT−Pt,CAT−REF2とす
る。次に、先に第1段目の担持後2分割した残りの部分
を更に3分割する。これらに先に示した順とは逆に2段
目でPdまたはPtを担持し、次に3段目でCeまたは
Feを担持し1部は無処理のまま、それぞれ前記触媒と
同様に350℃で焼成後同じ温度で水素還元しそれぞれ
約1gの触媒を得た。各々をCAT−Ce,CAT−F
e,CAT−REF3とする。このようにして得られた
触媒を実施例1と同様にして反応特性を評価した。結果
を表1に示した。尚、実施例1のCAT−Zr,CAT
−Na、CAT−REF1と実施例2のCAT−Pd,
CAT−Pt,CAT−REF2,CAT−Ce,CA
T−Fe,CAT−REF3で使用した成分が全て最後
の段階で担持された触媒とその原料触媒が調製でき評価
されたことになる。
Example 2 The operating procedure of Example 2 is shown in Table 3 (however, Table 3 does not show the type of catalyst contained in the mixture). Shiriga gel 6
g was newly taken, and this was divided into 3 parts, and Zr or Na was carried as the first stage in the same manner as described in Example 1, and the three parts were mixed well without any treatment and divided into two parts. , One of them is further divided into three. In each of the three divided parts, Ce or F is provided as a second stage in the same manner as in the first embodiment.
e is carried and a part of it is left untreated, mixed in the same manner as above, and then divided into three parts. As the third stage, Pd or Pt is loaded on each part, and part is left untreated. Each of them was calcined at 350 ° C. and reduced with hydrogen at the same temperature in the same manner as the above-mentioned catalyst to obtain about 1 g of each catalyst. Let each be CAT-Pd, CAT-Pt, and CAT-REF2. Next, the remaining portion which was previously divided into two after the loading of the first stage is further divided into three. Contrary to the order shown above, Pd or Pt was loaded in the second stage, then Ce or Fe was loaded in the third stage, and 1 part was left untreated at 350 ° C. like the above catalyst. After calcination, the catalyst was reduced with hydrogen at the same temperature to obtain about 1 g of catalyst. CAT-Ce and CAT-F
e, CAT-REF3. The reaction characteristics of the catalyst thus obtained were evaluated in the same manner as in Example 1. The results are shown in Table 1. The CAT-Zr and CAT of Example 1
-Na, CAT-REF1 and CAT-Pd of Example 2,
CAT-Pt, CAT-REF2, CAT-Ce, CA
This means that the catalyst in which all the components used in T-Fe and CAT-REF3 were supported at the final stage and the raw material catalyst thereof could be prepared and evaluated.

【0034】比較例1 実施例1に示した触媒に含まれる多成分触媒は担体Si
O2、Pd/SiO2,Pt/SiO2,Ce/Pd/
SiO2,Ce/Pt/SiO2、Fe/Pd/SiO
2,Fe/Pt/SiO2、Zr/Ce/Pd/SIO
2,Zr/Ce/Pt/SiO2,Zr/Fe/Pd/
SiO2,Zr/Fe/Pt/SiO2,Na/Ce/
Pd/SiO2,Na/Ce/Pt/SiO2,Na/
Fe/Pd/SiO2,Na/Fe/Pt/SiO2
を初めとする27種であるが、ここでは比較のためPd
/SiO2,Pt/SiO2,Pd/Ce/SiO2,
Pd/Na/SiO2,Pd/Zr/SiO2 を調製
した。Pt(3%)−SiO2は実施例1と同様な方法
で、Pd(3%)−SiO2は焼成を省いた以外は実施
例1と同様な方法で、Pd(3%)−Na(3%)−S
iO2についてはPd−SiO2に後から硝酸ナトリウ
ムを含浸し、還元する方法で、Pd(3%)−Ce(5
%)−SiO2とPd(3%)−Zr(5%)−SiO
2については予めシリカゲルに酸化セリウムまたは酸化
ジルコニウムを担持した後、塩化パラジウム溶液を含浸
し、乾燥後水素還元して触媒を得た。Pd−Na−Si
O2については実施例1と同様の方法で、その他につい
ては触媒量を0.2gとしシリカゲルを加えずに反応性
能の評価を実施例1と同様の方法で行った。メタノール
濃度4%反応温度200℃の結果を表1に示した。
Comparative Example 1 The multi-component catalyst contained in the catalyst shown in Example 1 was a carrier Si.
O2, Pd / SiO2, Pt / SiO2, Ce / Pd /
SiO2, Ce / Pt / SiO2, Fe / Pd / SiO
2, Fe / Pt / SiO2, Zr / Ce / Pd / SIO
2, Zr / Ce / Pt / SiO2, Zr / Fe / Pd /
SiO2, Zr / Fe / Pt / SiO2, Na / Ce /
Pd / SiO2, Na / Ce / Pt / SiO2, Na /
Fe / Pd / SiO2, Na / Fe / Pt / SiO2
There are 27 types, including
/ SiO2, Pt / SiO2, Pd / Ce / SiO2
Pd / Na / SiO2 and Pd / Zr / SiO2 were prepared. Pt (3%)-SiO2 is the same method as in Example 1, and Pd (3%)-SiO2 is the same method as in Example 1 except that firing is omitted. Pd (3%)-Na (3%) ) -S
For iO2, Pd-SiO2 is impregnated with sodium nitrate afterwards, and Pd (3%)-Ce (5
%)-SiO2 and Pd (3%)-Zr (5%)-SiO
For No. 2, silica gel was previously loaded with cerium oxide or zirconium oxide, impregnated with a palladium chloride solution, dried and reduced with hydrogen to obtain a catalyst. Pd-Na-Si
With respect to O2, the same method as in Example 1 was used, and in the other cases, the catalyst amount was 0.2 g, and the reaction performance was evaluated without adding silica gel. Table 1 shows the results at a reaction temperature of 200 ° C. with a methanol concentration of 4%.

【0035】比較例2 塩化パラジウム、硝酸白金アンモニウム、塩化鉄、硝酸
セリウム、硝酸ジルコニル、硝酸ナトリウムをそれぞれ
担持後に金属または酸化物として3%、3%,5%,5
%,5%,3%となるようにとり、細孔容積とほぼ同量
の水で溶解しシリカゲルに含浸担持した。乾燥後、35
0℃で焼成したのち同温度で水素還元し、触媒を得た。
これを0.1g取り、実施例1の方法と同様の方法によ
り、反応性能を評価した。メタノール濃度20%反応温
度200℃での結果を表1に示した。
COMPARATIVE EXAMPLE 2 Palladium chloride, platinum ammonium nitrate, iron chloride, cerium nitrate, zirconyl nitrate, and sodium nitrate were respectively supported, and then 3%, 3%, 5%, 5 as a metal or oxide.
%, 5%, 3%, and dissolved in approximately the same amount of water as the pore volume and impregnated and loaded on silica gel. 35 after drying
After calcination at 0 ° C, hydrogen reduction was carried out at the same temperature to obtain a catalyst.
0.1 g of this was taken, and the reaction performance was evaluated by the same method as in Example 1. The results at a methanol concentration of 20% and a reaction temperature of 200 ° C. are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[実験結果の考察]表1に示した実施例1
のMOD−REF0の活性はPd−SiO2とPt−S
iO2の活性の合計とほぼ等しくなっており、もう1つ
混合したSiO2は活性がないことを考えると、触媒の
混合により特に変わったことも起こらずここでは各触媒
の活性の加算がほぼ成立していることがわかる。表1に
示した実施例1のCAT−Zr,CAT−Na、CAT
−REF1の3件の反応性能評価結果を見ると無処理の
CAT−REF1に較べZrで処理したものの活性が大
きく上がっており、Naで処理したものは活性が下がっ
ていることが明らかになり、有効な触媒の存在と、有効
成分としてZrが示唆される。この結果は異なる方法で
調製した比較例1で見られるZrの有効性とNaの妨害
性とも一致しており、この様に活性な触媒の有無だけを
調べるのであれば通常は26件の評価を行わなければな
らないのに対して本件では僅か3件の評価で結果が得ら
れることを示している。更にZrやNaなど触媒構成成
分の効果に関しても有効な知見が得られており、本発明
方法の有効性が裏付けられている。
[Discussion of Experimental Results] Example 1 shown in Table 1
MOD-REF0 activity of Pd-SiO2 and Pt-S
It is almost equal to the total activity of iO2, and considering that the other mixed SiO2 has no activity, no particular change has occurred due to the mixing of the catalysts, and the addition of the activity of each catalyst is almost established here. You can see that CAT-Zr, CAT-Na, CAT of Example 1 shown in Table 1
Looking at the three reaction performance evaluation results of -REF1, it was revealed that the activity of the one treated with Zr was significantly higher than that of the untreated CAT-REF1, and the activity of the one treated with Na was decreased, The presence of an effective catalyst and Zr as an active ingredient are suggested. This result is consistent with the effectiveness of Zr and the interfering property of Na seen in Comparative Example 1 prepared by different methods. Thus, if only the presence or absence of an active catalyst is to be examined, 26 evaluations are usually required. In this case, it is shown that the results can be obtained by only three evaluations, whereas it must be done. Further, effective knowledge has been obtained regarding the effect of the catalyst constituents such as Zr and Na, which supports the effectiveness of the method of the present invention.

【0040】有効な触媒の存在が明らかになった後で
は、実施例1に示した1段目、2段目の処理で得た試料
(Pd−SiO2、Pt−SiO2,SiO2、MOD
−Ce、MOD−Fe,MOD−REF0)を評価し無
処理のものと比較することにより、おのおのCe,Pd
の有効性が示唆されZr・Ce・Pd/SiO2系が詳
細な調査候補触媒として上がってくることになり、この
場合でも少ない手数で触媒の絞り込みが可能である。更
に、活性を向上させる有効成分を明らかにしたい場合
は、有効性を確認した実施例1の3件(CAT−Zr,
CAT−Na,CAT−REF1)の評価後、実施例2
で示した調製法を行うことで最終段、即ち、3段目で処
理する成分が調製で用いた全ての成分を網羅することに
なり、実施例1の最終段でZrの有効性とNaの妨害を
見たと同様にして、表1のCAT−Pd、CAT−P
t,CAT−REF2の比較から活性はPd>Ptであ
りPd又はPtは触媒成分として必須であること、およ
びCeとFeの効果も分かり、全ての成分についてその
効能がおおよそ明らかになり、有効触媒の組成の推定が
できる。但し、この場合、評価すべき試料の数は(全成
分数+処理の段数)と成り、成分数が少なく処理段数も
少ない場合は特に効果的ではないが、成分数や処理段数
が増えると有効な方法となる。
After the existence of an effective catalyst was revealed, the samples (Pd-SiO2, Pt-SiO2, SiO2, MOD) obtained by the first and second treatments shown in Example 1 were used.
-Ce, MOD-Fe, MOD-REF0) were evaluated and compared with untreated ones to obtain Ce and Pd, respectively.
Suggesting the effectiveness of Zr.Ce.Pd / SiO2 system will come up as a detailed investigation candidate catalyst, and even in this case, it is possible to narrow down the catalyst with a small number of steps. Furthermore, when it is desired to clarify the active ingredient that improves the activity, the three cases (CAT-Zr,
Example 2 after evaluation of CAT-Na, CAT-REF1)
By carrying out the preparation method shown in (3), the components treated in the final stage, that is, the third stage, cover all the components used in the preparation, and the effectiveness of Zr and Na In the same manner as when the interference was seen, CAT-Pd and CAT-P in Table 1
From the comparison of t and CAT-REF2, the activity is Pd> Pt, Pd or Pt is essential as a catalyst component, and the effect of Ce and Fe is also known. The composition of can be estimated. However, in this case, the number of samples to be evaluated is (total number of components + number of processing steps), which is not particularly effective when the number of components is small and the number of processing steps is small, but is effective when the number of components and the number of processing steps increase. It will be a simple method.

【0041】なお評価に必要な反応性能評価実験点数と
探索方法との関係は、全ての成分が異なり各段階は同じ
成分数として、一段成分数m、組み合わせ段数rとし、
担体のみの評価も含めると、理論値は次のようになる。 従来法(比較例) (m+1) 本発明 最終段のみ評価(実施例1) m+1 成分特定法(実施例2) r(m+1)
The relationship between the reaction performance evaluation experiment score required for evaluation and the search method is that all components are different and each stage has the same number of components, the number of one-stage components is m, and the number of combination stages is r,
Including the evaluation of only the carrier, the theoretical value is as follows. Conventional method (comparative example) (m + 1) r Evaluation of only the final stage of the present invention (Example 1) m + 1 component identification method (Example 2) r (m + 1)

【0042】実際に計算すると、必要な反応性能評価実
験点数と探索方法との関係は次のようになり、成分数や
組み合わせ段数の多い場合の本発明の有効性が実証され
る。 m r 点数 従来法 実施例1 実施例2 2 3 27 3 9 3 3 64 4 12 5 3 216 6 18 10 3 1331 11 33
When actually calculated, the relationship between the required reaction performance evaluation experiment score and the search method is as follows, demonstrating the effectiveness of the present invention when the number of components and the number of combination stages are large. mr Score Conventional method Example 1 Example 2 2 3 27 3 3 9 3 3 64 64 12 5 3 216 616 18 10 3 1331 11 11 33

【0043】なお、触媒の成分を初めから混合した触媒
では比較例2に示したように活性はPd−SiO2とP
t−SiO2の活性の合計の3分の2となり金属単独の
活性よりも低下しており、Pd−Zr−SiO2などの
高活性な触媒の存在が推定できないためこの方法は触媒
探索には適していない。
As shown in Comparative Example 2, the activity of the catalyst obtained by mixing the catalyst components from the beginning had Pd-SiO 2 and Pd.
This is two-thirds of the total activity of t-SiO2, which is lower than the activity of the metal alone, and the existence of highly active catalysts such as Pd-Zr-SiO2 cannot be estimated, so this method is suitable for catalyst search. Absent.

【0044】[0044]

【発明の効果】本発明方法によれば、所定の固体触媒粒
子の集まりからなる触媒群を予め調製しておき、ついで
該触媒群に含まれる固体触媒の有効性を該触媒群を構成
する個々の固体触媒に各別に分離することなく判別する
だけで、有効な多元系固体触媒を迅速に探索できる。従
って、個々に多元系固体触媒を調製しておき、その都度
その触媒の有効性を判定する従来法に比べ、極めて少な
い回数の反応性能評価から探索範囲内での有効な触媒の
存在の有無と、有効な触媒構成成分の大略の組み合わせ
を飛躍的に迅速に探索することができる。
According to the method of the present invention, a catalyst group consisting of a set of predetermined solid catalyst particles is prepared in advance, and then the effectiveness of the solid catalysts contained in the catalyst group is determined by the individual catalysts constituting the catalyst group. An effective multi-component solid catalyst can be quickly searched for by simply distinguishing the solid catalysts described above without separating them. Therefore, compared with the conventional method in which a multi-component solid catalyst is individually prepared and the effectiveness of the catalyst is determined each time, the presence or absence of an effective catalyst within the search range is evaluated from the reaction performance evaluation of an extremely small number of times. Thus, it is possible to rapidly and rapidly search for a substantial combination of effective catalyst components.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA03 AA08 AA20 BA02A BA02B BA05A BA05B BB02A BB02B BB04A BB04B BC02A BC02B BC43A BC43B BC66A BC66B BC72A BC72B BC75A BC75B CC25 FA02 FB01 FB07 FB19 FB20 FB24 FB26   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G069 AA03 AA08 AA20 BA02A                       BA02B BA05A BA05B BB02A                       BB02B BB04A BB04B BC02A                       BC02B BC43A BC43B BC66A                       BC66B BC72A BC72B BC75A                       BC75B CC25 FA02 FB01                       FB07 FB19 FB20 FB24 FB26

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の固体触媒成分からなる多元系固体
触媒を迅速に探索する方法であって、該多元系固体触媒
をその都度個別的に作成することなく、所定の固体触媒
粒子の集まりに所定の触媒成分を作用させることによ
り、多種の多元固体触媒粒子からなる触媒群を直接に調
製し、ついで該触媒群に含まれる固体触媒の有効性を該
触媒群を構成する個々の固体触媒に各別に分離すること
なく判別することを特徴とする多元系固体触媒の迅速探
索方法。
1. A method for rapidly searching for a multi-component solid catalyst composed of a plurality of solid catalyst components, wherein a multi-component solid catalyst is prepared in a predetermined group of solid catalyst particles without individually preparing each multi-component solid catalyst. A catalyst group composed of various multi-component solid catalyst particles is directly prepared by causing a predetermined catalyst component to act, and then the effectiveness of the solid catalyst contained in the catalyst group is changed to the individual solid catalysts constituting the catalyst group. A rapid search method for multi-component solid catalysts, which is characterized by making a distinction without separating them.
【請求項2】 担体上に固体触媒を段階的に担持するこ
とを特徴とする請求項1記載の多元系固体触媒の迅速探
索方法
2. A rapid search method for a multi-component solid catalyst according to claim 1, wherein the solid catalyst is loaded on the carrier stepwise.
【請求項3】 触媒の調製において、成分の担持を含浸
法により行い、かつ、段階的な成分の担持に際し、第1
段階において、用いる担体を第1段階で担持したい成分
数+1の部分に分割し、1つの部分を残してそれぞれの
部分に異なる成分を担持し、ついで、これらを無処理の
部分も含め全て混合した後、これを、第2段目で担持し
たい成分数+1の部分に分割し、このうち1つは無処理
のまま残し、その他の部分は、第1段階と同様にしてそ
れぞれに異なる成分を担持し、第3段階以降、同様な操
作を必要な段数まで繰り返すことを特徴とする請求項1
又は請求項2記載の多元系固体触媒の迅速探索方法。
3. In the preparation of the catalyst, the loading of the components is carried out by an impregnation method, and in the stepwise loading of the components, the first
In the step, the carrier to be used is divided into parts of the number of components to be carried in the first step + 1, different parts are carried in each part leaving one part, and then these are mixed together including the untreated part. After that, this is divided into parts of the number of components to be loaded + 1 in the second stage, one of them is left untreated, and the other parts carry different components in the same manner as in the first stage. Then, after the third step, the same operation is repeated up to the required number of steps.
Alternatively, the rapid search method for a multi-component solid catalyst according to claim 2.
【請求項4】 含浸法により触媒を調製する際に用いる
溶液の量を、用いる担体の細孔容積よりも少なくするこ
とを特徴とする請求項3記載の多元系固体触媒の迅速探
索方法。
4. The rapid search method for a multi-component solid catalyst according to claim 3, wherein the amount of the solution used when the catalyst is prepared by the impregnation method is smaller than the pore volume of the carrier used.
【請求項5】 触媒の評価において、第1段階におい
て、用いる担体を第1段階で調査したい成分数+1の部
分に分割し、1つの部分を残してそれぞれの部分に異な
る成分を担持し、それらについて無処理の部分も含めて
各々の部分から試料を取り分け、ついで、残りの部分を
無処理の部分も含め混合した後、これを、第2段目で担
持したい成分数+1の部分に分割し、このうち1つは無
処理のまま残し、その他の部分は、第1段階と同様にし
てそれぞれに異なる成分を担持し、それらについて無処
理の部分も含めて各々の部分から試料を取り分け、第3
段階以降、同様な操作を必要な段数まで繰り返し、最後
の段階で得た試料について無処理の試料と比較・評価を
行い、さらに必要に応じ前段階で得た試料の評価も行う
ことを特徴とする請求項1乃至4何れか記載の多元系固
体触媒の迅速探索方法。
5. In the evaluation of a catalyst, in the first step, the carrier used is divided into parts with the number of components to be investigated in the first step + 1, and one part is left to carry different components in each part. Samples were separated from each part, including the untreated part, and then the remaining part, including the untreated part, was mixed, and this was divided into the number of components to be loaded + 1 part in the second stage. , One of them is left untreated, the other part carries different components in the same manner as in the first step, and a sample is separated from each part including the untreated part. Three
After the steps, the same operation is repeated up to the required number of steps, and the sample obtained in the final step is compared and evaluated with the untreated sample, and if necessary, the sample obtained in the previous step is also evaluated. 5. A rapid search method for a multi-component solid catalyst according to claim 1.
【請求項6】 触媒調製における触媒成分の担持順を適
宜変えた調製法を行い、用いる全ての触媒成分の担持が
一度づつ最終段で行われるようにして得た各混合触媒を
用い、何れの場合も最終段階で得られた触媒についての
み無処理の試料と比較・評価を行うことを特徴とする請
求項1乃至5何れか記載の多元系固体触媒の迅速探索方
法。
6. A mixed catalyst obtained by carrying out a preparation method in which the order of supporting the catalyst components in the catalyst preparation is appropriately changed so that all the catalyst components to be used are carried once at the final stage. In a case as well, only the catalyst obtained in the final stage is compared and evaluated with an untreated sample, and the method for rapid search for multi-component solid catalyst according to any one of claims 1 to 5.
JP2001221134A 2001-07-23 2001-07-23 Rapid search method for multi-component solid catalysts Expired - Lifetime JP3757267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221134A JP3757267B2 (en) 2001-07-23 2001-07-23 Rapid search method for multi-component solid catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221134A JP3757267B2 (en) 2001-07-23 2001-07-23 Rapid search method for multi-component solid catalysts

Publications (2)

Publication Number Publication Date
JP2003033667A true JP2003033667A (en) 2003-02-04
JP3757267B2 JP3757267B2 (en) 2006-03-22

Family

ID=19054851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221134A Expired - Lifetime JP3757267B2 (en) 2001-07-23 2001-07-23 Rapid search method for multi-component solid catalysts

Country Status (1)

Country Link
JP (1) JP3757267B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230839A (en) * 2002-02-08 2003-08-19 National Institute Of Advanced Industrial & Technology Rapid preparation method for many kinds of solid catalysts and device used therefor
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321334B1 (en) 2011-12-29 2013-10-22 한국화학연구원 Palladium based Catalysts for Carbon dioxide reforming and Process for preparing them

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535092A (en) * 1976-07-05 1978-01-18 Matsushita Electric Ind Co Ltd Production of exhaust gas purification catalyst
JPH081003A (en) * 1994-06-24 1996-01-09 Exxon Res & Eng Co Precious metal /zn-al2 o3 reforming catalyst with high reforming performance
JPH09296907A (en) * 1996-05-07 1997-11-18 Mitsubishi Heavy Ind Ltd Combustion method for flammable gas
JPH10109031A (en) * 1996-09-26 1998-04-28 Degussa Ag Catalyst, method for synthesizing alkylmercaptan and production of the catalyst
JP2000262907A (en) * 1999-03-18 2000-09-26 Agency Of Ind Science & Technol Integrated catalyst and its production
JP2001004615A (en) * 1999-06-24 2001-01-12 Showa Denko Kk Screening method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535092A (en) * 1976-07-05 1978-01-18 Matsushita Electric Ind Co Ltd Production of exhaust gas purification catalyst
JPH081003A (en) * 1994-06-24 1996-01-09 Exxon Res & Eng Co Precious metal /zn-al2 o3 reforming catalyst with high reforming performance
JPH09296907A (en) * 1996-05-07 1997-11-18 Mitsubishi Heavy Ind Ltd Combustion method for flammable gas
JPH10109031A (en) * 1996-09-26 1998-04-28 Degussa Ag Catalyst, method for synthesizing alkylmercaptan and production of the catalyst
JP2000262907A (en) * 1999-03-18 2000-09-26 Agency Of Ind Science & Technol Integrated catalyst and its production
JP2001004615A (en) * 1999-06-24 2001-01-12 Showa Denko Kk Screening method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230839A (en) * 2002-02-08 2003-08-19 National Institute Of Advanced Industrial & Technology Rapid preparation method for many kinds of solid catalysts and device used therefor
JP2011045796A (en) * 2009-08-25 2011-03-10 Univ Of Tsukuba Method for manufacturing platinum catalyst supporting added oxide and platinum catalyst supporting added oxide

Also Published As

Publication number Publication date
JP3757267B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
EP0258942B1 (en) Catalyst preparation
Krämer et al. Structural and catalytic aspects of sol–gel derived copper manganese oxides as low-temperature CO oxidation catalyst
EP1029238B1 (en) Sampling and analysis of reactions by trapping reaction components on a sorbent
US9731279B2 (en) Thermal stability of copper-manganese spinel as Zero PGM catalyst for TWC application
Corma et al. Discovery of new paraffin isomerization catalysts based on SO42−/ZrO2 and WOx/ZrO2 applying combinatorial techniques
Krantz et al. Application of combinatorial catalysis to the selective reduction of NO by C3H6
CN107970988A (en) A kind of catalyst and its preparation method for being used to synthesize aromatic hydrocarbons
US5849652A (en) Metal containing catalysts and methods for making same
Qiao et al. Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H 2
JP5901038B2 (en) Platinum / Palladium-Zeolite Catalyst
JP2003033667A (en) Method of rapidly searching multicomponent solid catalyst
Ozturk et al. Discovery of new fuel-lean NO reduction catalyst leads using combinatorial methodologies
Thomson et al. The development of a high throughput reactor for the catalytic screening of three phase reactions
Sadokhina et al. H 2-Induced NO x Adsorption/Desorption over Ag/Al 2 O 3: Transient Experiments and TPD Study
Miyazaki et al. Selective oxidation of propylene to propylene oxide using combinatorial methodologies
US5124293A (en) Catalyst for aromatization of light hydrocarbons
JP2001286736A (en) Method for treating gas containing nitrous oxide gas and treatment catalyst therefor
JP2004504144A (en) Method for optimizing Fischer-Tropsch synthesis
CN105582981A (en) Naphtha isomerization catalyst and preparation method thereof
CN107876083B (en) Preparation method of spherical catalyst for preparing aromatic hydrocarbon from methanol with non-uniformly distributed active components
NZ532218A (en) Selective oxidation of a fluid stream using platinum group metals as catalysts
CN111905729A (en) Organic hydrocarbon deoxidation catalyst and preparation method thereof
Maier et al. Combinatorial chemistry of materials, polymers, and catalysts
JP4139883B2 (en) Rapid preparation method for various solid catalysts and apparatus therefor
RU2135279C1 (en) Catalyst for cleaning gases to remove hydrocarbons, nitrogen oxides, carbon monoxide and method of preparation thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

R150 Certificate of patent or registration of utility model

Ref document number: 3757267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term