JP4104414B2 - Method for producing fiber-reinforced resin molded body - Google Patents

Method for producing fiber-reinforced resin molded body Download PDF

Info

Publication number
JP4104414B2
JP4104414B2 JP2002295934A JP2002295934A JP4104414B2 JP 4104414 B2 JP4104414 B2 JP 4104414B2 JP 2002295934 A JP2002295934 A JP 2002295934A JP 2002295934 A JP2002295934 A JP 2002295934A JP 4104414 B2 JP4104414 B2 JP 4104414B2
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
fiber material
laminate
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002295934A
Other languages
Japanese (ja)
Other versions
JP2004130599A (en
Inventor
俊英 関戸
一章 北岡
浩司 小谷
西山  茂
正彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toray Industries Inc
Original Assignee
Mitsubishi Heavy Industries Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002295934A priority Critical patent/JP4104414B2/en
Application filed by Mitsubishi Heavy Industries Ltd, Toray Industries Inc filed Critical Mitsubishi Heavy Industries Ltd
Priority to ES13173648.0T priority patent/ES2628600T3/en
Priority to AU2003271139A priority patent/AU2003271139B2/en
Priority to ES13173654T priority patent/ES2727872T3/en
Priority to PCT/JP2003/012947 priority patent/WO2004033176A1/en
Priority to EP13173648.0A priority patent/EP2644363B1/en
Priority to US10/530,263 priority patent/US8420002B2/en
Priority to EP13173654.8A priority patent/EP2644365B1/en
Priority to EP20130173653 priority patent/EP2644364A3/en
Priority to EP03751403.1A priority patent/EP1555104B1/en
Publication of JP2004130599A publication Critical patent/JP2004130599A/en
Application granted granted Critical
Publication of JP4104414B2 publication Critical patent/JP4104414B2/en
Priority to AU2008203840A priority patent/AU2008203840B2/en
Priority to AU2008203841A priority patent/AU2008203841B2/en
Priority to AU2008203839A priority patent/AU2008203839B2/en
Priority to US13/834,534 priority patent/US9120253B2/en
Priority to US13/833,606 priority patent/US9463587B2/en
Priority to US13/834,072 priority patent/US20130228956A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化樹脂(以下、FRPと言うこともある。)製の構造体を成形するResin Transfer Molding(以下、RTMと言う。)成形方法の改良に関し、詳しくは、強化繊維材を積層した強化繊維材積層体内に迅速かつ十分にマトリックス樹脂を含浸させることにより、強度と表面性状に優れた成形体を得ることができる製造方法に関し、とくに厚いFRP成形体の成形に好適な繊維強化樹脂成形体の製造方法に関する。
【0002】
【従来の技術】
従来より、航空機用や建築用の構造部材であるパネル、桁材や、自動車用の外板等のFRP製成形品の製造に用いられRTM成形方法としては、多くの方法が提案されている。例えば、大型のFRP構造体をRTM成形する方法や(特許文献1参照)、樹脂拡散媒体を使用したRTM成形法がある(特許文献2参照)。
【0003】
しかし、このような従来のRTM成形方法は、いずれも、成形型上に強化繊維基材を配置するとともに樹脂注入口と吸引口を配置し、その上からフイルム等のバッグ材で覆ってキャビティ内を吸引により減圧した状態でマトリックス樹脂を注入するが、その樹脂の基材内への流入経路は、主として、樹脂を注入口から成形型内に配置されている基材の表面方向に拡散させ、拡散した樹脂を基材の厚み方向に含浸させるという経路となっている。通常、所定厚みのFRP成形体を得るために、強化繊維基材は複数の強化繊維材の積層形態に構成されるが、強化繊維基材の厚み方向、つまり、強化繊維材積層体における積層面と垂直の方向については、一般に樹脂の流路抵抗が高く、基材の厚み方向に含浸されていく樹脂の到達距離には限界がある。したがって、高強度製品の成形を目指す場合等、強化繊維材の積層枚数が増やすことが要求される場合には、強化繊維材積層体の隅々まで完全に樹脂を含浸させるのが困難になることがあり、結局、ある厚み以上のFRP構造体は実質的に成形できないこととなっていた。
【0004】
また、大形の成形品を得るために樹脂拡散媒体を使用する場合は、通常、樹脂拡散媒体を強化繊維基材と平行に配置して樹脂を基材面方向に拡散させるが、このような成形方法には、得られる成型品の表面に樹脂拡散媒体の凹凸が転写されて表面品質が低下するという問題と、広い面積にわたって樹脂拡散媒体を配置することと樹脂注入後に樹脂拡散媒体の除去に多大な工数を要するという問題があった。
【0005】
【特許文献1】
特開平145042号公報(第1頁、第1図)
【特許文献2】
米国特許第5,052,906号明細書(請求項1、第1図)
【0006】
【発明が解決しようとする課題】
そこで本発明の課題は、上記のような従来技術における問題を解消し、厚物FRP構造体に対しても、優れた強度と表面品質を持たせることが可能な、しかも樹脂拡散媒体を配置する場合にもその配置と除去の手間を著しく低減可能な繊維強化樹脂成形体の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る繊維強化樹脂成形体の製造方法は、成形型内に強化繊維材を複数層積層して強化繊維材積層体を形成し、前記強化繊維材積層体の端面に対してのみ、樹脂の流動抵抗が強化繊維材積層体内を流れる場合の流動抵抗に比べ1/10以下の低い抵抗を有するメッシュ織物からなる樹脂拡散媒体を配置し、前記強化繊維材積層体を含む成形型をバッグ材で覆って内部を吸引により減圧しつつ、前記強化繊維材積層体の端面に配置された樹脂拡散媒体を介して、前記強化繊維材積層体の端面から、主として各強化繊維材の層間に、強化繊維材の積層面に沿う方向に樹脂を注入することにより、注入した樹脂を各強化繊維材内に含浸させることを特徴とする方法からなる。すなわち、強化繊維材積層体の端面から、該端面に配置された樹脂拡散媒体を介して、主として各強化繊維材の層間に樹脂を注入し、注入した樹脂を各強化繊維材内に含浸させる方法である。
【0008】
本発明においては、上記構成により、強化繊維材積層体の端面から積層面に沿う方向から樹脂を注入して、まず流動抵抗の低い、強化繊維材積層体を構成する各強化繊維材の層間内に速やかに樹脂を注入し、その後各層間から各強化繊維材の肉厚方向、つまり強化繊維材の積層方向に樹脂を含浸させるので、強化繊維材積層体の全体にわたって迅速にマトリックス樹脂を注入、含浸することができる。したがって、成形すべき成形体の肉厚が厚い場合でも、従来のような肉厚の制限は無くなり、前述の課題が一挙に解決できる。すなわち、強化繊維材と樹脂の種類によって異なるものの、実験によれば、強化繊維材の面と平行な方向における樹脂の流動抵抗は、面と垂直な方向における流動抵抗の約1/5〜1/10であることが判っており、樹脂の強化繊維材の面と平行方向への拡散速度は面と垂直方向に比較して、非常に速い。ただし、強化繊維材の流動抵抗、樹脂粘度に下限値が存在するため樹脂が各層間を進行できる距離にも限界があるので、成形条件としては、各層間における樹脂が進行が求められる距離は約600mm以内にすべきと考えられる。このように、強化繊維材積層体の端面から層間を通して積層面に沿う方向に樹脂を注入することにより、実質的に強化繊維材積層体の厚みの制限が無くなり、厚い成形体まで良好に成形できるようになる。また、この成形対象部分に対しては基本的に樹脂拡散媒体を配置する必要がないので、樹脂拡散媒体の凹凸が転写されることがなくなり、表面性状の向上を達成できるとともに、樹脂拡散媒体の準備作業と除去作業の工数削減による大幅なコストダウンを達成できる。
【0009】
また、本発明に係るFRP成形体の製造方法においては、強化繊維材積層体の延べ長さ(屈曲したり湾曲している場合には、その形状に沿った総長)が600mm以下であれば、上記端面から層間への樹脂注入により、各強化繊維材に十分に樹脂を含浸させることが可能である。すなわち、この長さが600mmを越えると、樹脂が含浸しにくくなって樹脂含浸不良部分が生じるおそれがある。該長さが300mm以下の場合には、より短時間で樹脂含浸が可能であることからより好ましい。
【0010】
また、本発明に係るFRP成形体の製造方法においては、液状樹脂の注入温度に関し、樹脂含浸開始時から1時間経過するまでの樹脂粘度が10〜1500mPa・sの範囲内に維持されていれば、短時間での樹脂含浸が可能である。すなわち、10mPa・sより低ければ、樹脂粘度が低すぎるため、積層体の層間において積層面に沿う方向には迅速に浸透できるものの、とくに強化繊維材が強化繊維ストランド等から構成されている場合、そのストランドの周囲からストランド内部に向かって樹脂含浸が実質的に同時進行することとなるため、強化繊維ストランド内部に樹脂未含浸部が生じやすい。一方、1500mPa・sを越えると、樹脂粘度が高すぎることから、積層体の層間において積層面に沿う方向への樹脂浸透距離が低下するとともに、各強化繊維材にも樹脂が含浸しにくくなるので、樹脂含浸不良部が生じやすくなる。したがって、液状樹脂の注入温度での樹脂粘度は、樹脂含浸開始時から1時間経過するまでの間、10〜1500mPa・sの範囲内に維持されていることが好ましい。
【0011】
強化繊維材積層体の断面形状は特に限定されず、平板形状のものの他、角形やC形、I形、L形、Z形またはハット形の断面形状であってもよい。また、スキン材(スキン板材)とストリンガー材(桁材)から構成される補強パネルの場合には、スキン材は単純な平板形状に形成される場合が多いが、ストリンガー材は比較的複雑な形状に形成される場合が多く、このような場合、本発明は、とくにストリンガー構成用部分に適用して好適なものである。たとえば、強化繊維材積層体が、断面形状が角形、C形、I形、L形、Z形またはハット形からなるストリンガー構成用部分と、スキン材構成用部分とからなる場合に、このストリンガー構成用部分の成形に本発明はとくに有効である。つまり、ストリンガー構成用部分の積層体端面から主として各強化繊維材の層間に樹脂を注入した後に、ストリンガー構成用部分全体に樹脂を含浸させる方法である。ただし、これらストリンガー構成用部分とスキン材構成用部分とは一体的に成形すればよい。ストリンガー構成用部分の端面から樹脂を注入していくので、ストリンガー材に対する肉厚の制限が無くなり、また樹脂拡散媒体を配設する必要がないため、表面性状の向上と樹脂拡散媒体の準備作業と除去作業の工数削減による大幅なコストダウンとを達成できる
【0012】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の一実施態様に係る製造方法に用いられる製造装置を示している。図1において、ベースとなる成形型1は、たとえば、ステンレスから作製され、平板状のものに構成される。このように平板状の成形型1に構成される場合には、凹形のキャビティは不要であるが、成形すべき成形品の形状によっては、成形型1に凹形のキャビティが形成される。この成形型1内に、図示例では成形型1上に、強化繊維材積層体2Aが配置される。強化繊維材積層体2Aは、複数の強化繊維材2の積層体からなり、各強化繊維材2は、たとえば強化繊維織物からなる。2c、2dは、厚物平板状に形成された強化繊維材積層体2Aの各端面を示している。この各端面2c、2dに対し、本実施態様では、樹脂を拡散させる樹脂拡散媒体3が、ピールプライ6を介して配置されている。ただし、ピールプライ6は、強化繊維材積層体22の全体を覆うように配置されている。この樹脂拡散媒体3は、樹脂の流動抵抗が強化繊維材積層体2A内を流れる場合の流動抵抗に比べ1/10以下の低い抵抗を有する媒体であり、具体的には、ポリエチレンやポリプロピレン樹脂製のメッシュ織物で、目開きが#400以下のものが好ましい。これら成形型1上に配置された部材全体が、気密材料からなるバッグ材4で覆われる。バッグ材4としては、気密性および耐熱性を考慮して、例えばナイロン製のフィルムを用いることが好ましい。5は粘着性の高い合成ゴム製のシーラントで、バッグ材4内を減圧状態に保つことができるよう、外部からの空気の流入を防止する。なお、ピールプライ6は、成形体から樹脂拡散媒体3等を容易に除去するために敷設されるもので、例えば、ナイロン製タフタのように離型の機能をなす織物を使用できる。
【0013】
シールされたバッグ材4内に、樹脂注入口8aと、吸引によりバッグ材4内を減圧するための吸引口7aが設けられ、各々、樹脂注入ラインと吸引ラインに接続されている。樹脂注入口8a、吸引口7aには、例えばアルミニウム製のCチャンネル材等を使用することができ、これらチャンネル材を、樹脂注入ライン、吸引ラインを形成するプラスチック製のチューブを介して外部部材と接続すればよい。9は、FRP成形体のマトリックス樹脂となる熱硬化性樹脂であり、該樹脂は例えばプラスチック製のポット内に収容される。10は真空トラップで、吸引口7aより吸引した成形体内からの余分な樹脂を蓄積させる。11は真空ポンプであり、真空トラップ10、吸引口7aを介して、バッグ材4で覆われた内部から吸引し、内部を減圧状態に保持する。A1、B1は樹脂注入ライン、吸引ラインのチューブの開閉を行うためのバルブで、例えばバルブ付き継手やピンチオフプライヤー等を用いることができる。なお、第1のバッグ材をさらに第2のバッグ材で覆い二重バッグとすることで、空気漏れを防ぐことができ、その結果、強化繊維の体積含有率(Vf)を向上させることができる。
【0014】
図2は、本発明の別の実施態様に係る製造方法に用いられる製造装置を示しており、繊維強化樹脂成形体として、複合形状のもの、とくに、断面がI形状のストリンガー材と、平板状のスキン材との一体複合形態を備えた成形体、いわゆるスキン・ストリンガー一体構造の繊維強化樹脂成形体を成形する場合の製造装置を示している。図1の装置に比べて異なる点は以下の通りである。
【0015】
2Bはスキン材構成用部分を形成する、断面形状が平板状の強化繊維織物の積層体(強化繊維材積層体)であり、2Cはストリンガー構成用部分を形成する、断面形状がI形の強化繊維織物の積層体(強化繊維材積層体)である。7bは、減圧を行うための吸引口であり、8bは樹脂注入を行うための樹脂注入口であり、ともに、アルミニウム製のCチャンネル材等を使用することが好ましい。該チャンネル材は、プラスチック製のチューブを介して外部部材と接続する。12はストリンガー構成用部分を形成する強化繊維材積層体2Cの両側部分をそれぞれ断面C形状に固定するための治具で、例えば金属や発泡コア等を用いることができる。A2、B2はチューブの開閉を行うためのバルブで、例えばバルブ付き継手やピンチオフプライヤー等を用いることができる。注入したマトリックス樹脂は、スキン材構成用部分2Bの露出上面部分と、I形断面形状のストリンガー構成用部分2Cの強化繊維材積層体の下側端面部分とにわたって配置された樹脂拡散媒体3内を流れ、スキン材構成用部分2Bに対しては主としてその厚み方向、ストリンガー構成用部分2Cに対しては強化繊維材積層体の端面から層間方向に(強化繊維材の積層面に沿う方向に)含浸される。
【0016】
図3は、本発明のさらに別の実施態様に係る製造方法に用いられる製造装置を示しており、段差のある強化繊維材積層体を成形する場合の製造装置を示している。2Dは、図1に示したのと同様の強化繊維材2の積層体の上面に部分的に配置された強化繊維材積層体である。注入したマトリックス樹脂は、強化繊維材積層体2Dの一方の端面まで延びるように配置された樹脂拡散媒体3内を流れ、薄板部(2Dが積層されていない部分)に対しては積層方向(厚み方向)に浸透していき、厚板部(2Dが積層されている部分)に対しては、強化繊維材積層体2Dの端面から積層方向と垂直な面に配設された樹脂拡散媒体3を介して、積層方向と平行方向に(つまり、層間方向に)含浸される。
【0017】
次に、本発明の製造方法は、上記の各製造装置を用いて以下のように実施される。基本的な実施態様である図1の装置について説明すると、まず、成形型1の型面の上に強化繊維材2を複数層積層して強化繊維材積層体2Aを形成し、その上から離型用ピールプライ6(例えばナイロン製タフタ)を積層体2Aの全体を覆うように配置する。この場合、ピールプライ6の外周縁は、図1に示すようにシーラント5まで到達するように配置する。次に、強化繊維材積層体2Aの両端部近傍に樹脂拡散媒体3を、積層体2Aの両端面部2c、2dまで延びるように配設し、さらにその上に樹脂注入口8aと吸引口7aをそれぞれ配設する。つぎにこれら部材全体の上からバッグ基材4(バッグフィルム)を被せ、その周縁部と成形型1との間を全周に渡りシーラント5でシールする。
【0018】
以上で成形準備が完了したので、バルブA1を閉状態にし、真空ポンプ11を運転する。次にバルブB1を開放して、真空トラップ10を介して吸引口7aからキャビティ内(バッグ基材4内)を吸引する。次に、成形型1上の部材全体を所定の成形温度まで加熱する。成形型1が所定の成形温度まで上昇したら、バルブA1を開放してバッグ材4内の減圧雰囲気圧力にて樹脂注入口8aよりマトリックス樹脂9を注入すると、樹脂9は、一方の樹脂拡散媒体3を介して拡散された後、まず流動抵抗の低い強化繊維材積層体2Aの各層間内を速やかに流れ、積層体2Aの反対側端部に到達する。各層間の流動抵抗が平衡状態になると、今度は各層間から各強化繊維材2の厚み方向、すなわち強化繊維材2の積層方向に含浸していき、流動抵抗が平衡状態に達した時点で樹脂が強化繊維材積層体2Aの全体にまんべんなく含浸される。所定の樹脂量が注入したことを確認した時点で、バルブA1を閉じて樹脂の供給を中止する。その後、所定の温度と時間で該樹脂を硬化させる。硬化終了後、バッグ材やピールプライ(離型用織布)と共に樹脂拡散媒体や樹脂注入、吸引口に用いた全ての副資材を成形品表面から取り除く、最後に成形型面上より成形体を脱型する。得られた成形体は、必要に応じて所定の温度と時間でアフターキュアを行う。
【0019】
【実施例】
以下に、本発明を実施例に基づいて説明する。
実施例1
本発明を厚い平板の成形に適用した。図1の製造装置において、まず縦500mm、横500mmに裁断した炭素繊維織物2(強化繊維材)を96plyステンレス製平板の成形型1上にレイアップして、トータル厚みが約50mmの強化繊維材積層体2Aを形成した。ここで用いた強化繊維材は、東レ(株)製”トレカ”T800Sの一方向織物(目付:285g/m2 )である。さらに強化繊維材積層体2Aの上にピールプライ6(ナイロン製タフタ)を配置し、積層体2Aの両端面2c、2dに対し樹脂拡散媒体3(ポリプロピレン製メッシュ材)を配設し、積層体2Aの両端に連通するように樹脂注入口8aと吸引口7aを配設し、全体にバッグ材4(ナイロン製フィルム)を被せて周囲を粘着性の高い合成ゴム製のシーラント5でシールした(なお、この図では省略しているが、二重バッグとした)。
【0020】
そして、バルブA1を閉状態にし、バルブB1を開放し、吸引ラインを連通した真空トラップ10を介して吸引口7aを真空開放して、キャビティ内を0.1MPa以下まで減圧した。
【0021】
その後、電気オーブン内に該成形型を設置し、オーブン内を70℃に加温した。強化繊維材積層体2A全体が70℃に達した後に、バルブA1を開放して0.08〜0.1MPaの減圧雰囲気下にて樹脂注入口8aよりマトリックス樹脂9を注入した。注入樹脂にはエポキシ樹脂(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・s)を用いた。注入された樹脂は、まず流動抵抗の低い樹脂拡散媒体3内を流れ、強化繊維材積層体2Aの端部に到達した時点で、そこからは主として積層体2A内を積層体2Aの積層面に沿う方向に流れ、しかる後に積層体2Aの厚み方向に含浸していったことが透明のバッグ材4の上から確認された。
【0022】
所定の樹脂量を注入した時点で、バルブA1を閉じて樹脂の供給を中止した。その後、電気オーブン内の温度を130℃まで昇温して、約2時間加熱硬化させた。加熱硬化後、バッグ材4等の副資材を取り除き、CFRP成形体を型面上より脱型した。その結果、CFRP成形体については厚みが25mmと比較的肉厚であるにも拘わらず、完全に樹脂含浸していた。また、成形体の表面性状は平滑であった。
【0023】
実施例2
本発明をスキン−ストリンガー一体構造体の成形に適用した。図2の製造装置において、まず成形型1の上に幅500mm、長さ500mmに裁断した炭素繊維織物2(強化繊維材)をレイアップし、強化繊維材積層体2Bを形成した。ここで用いている各強化繊維材2は、東レ(株)製”トレカ”T800Sの一方向織物(目付:190g/m2 )であり、トータルで128ply積層した(以後これをスキン材構成用強化繊維材積層体2Bと呼ぶ。)次に幅98mm、長さ500mmに裁断した炭素繊維織物2を、C形状に固定するための治具12を用いて32ply賦形した。該炭素繊維織物2の積層体をさらにもう一組用意し、2つを、両側に治具12が配置されるよう、背中合わせに対称になるように配置し、I形の強化繊維材積層体を形成して、既にレイアップされているスキン材構成用強化繊維材積層体2Bの上に置いた。そして、そのI形の強化繊維材積層体の上に幅66mm、長さ500mmに裁断した炭素繊維織物2を32plyレイアップした(以後、このスキン材構成用強化繊維材積層体2Bの上に置いた強化繊維材積層体をストリンガー構成用強化繊維材積層体2Cと呼び、本実施例では、このストリンガー構成用強化繊維材積層体2Cが、本発明における強化繊維材積層体の端面に配置された樹脂拡散媒体を介して、強化繊維材積層体の端面から、主として各強化繊維材の層間に、強化繊維材の積層面に沿う方向に樹脂を注入することにより、注入した樹脂を各強化繊維材内に含浸させる対象部分である。)
【0024】
次にこれら強化繊維材積層体の上に、ピールプライ6(ナイロン製タフタ)、樹脂拡散媒体3(ポリプロピレン製メッシュ材)、樹脂注入口8a、8bと吸引口7a、7bを図2に示すように配置した。そして全体にバッグ材4(ナイロン製フィルム)を二重に被せて周囲を粘着性の高い合成ゴム製のシーラント5でシールした。吸引については、バルブA1、A2を閉状態にして、バルブB1、B2を開放し、真空ラインを連通した真空トラップ10を介して吸引口7a、7bを開放して、キャビティ内を0.1MPa以下まで減圧した。
【0025】
バギングおよび減圧終了後、電気オーブン内に該成形型を設置し、オーブン内を70℃に昇温した。強化繊維材積層体全体が70℃に達した時点で、バルブA1、A2を開放して減圧状態にて樹脂注入口8a、8bよりマトリックス樹脂9を注入した。樹脂にはエポキシ樹脂(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・s)を用いた。注入された樹脂は流動抵抗の低い樹脂拡散媒体内を流れ、基材内に含浸していった。スキン材構成用強化繊維材積層体2Bに対しては厚み方向に含浸していったが、ストリンガー構成用強化繊維材積層体2Cに対しては、I形強化繊維材積層体の下部側端面から該積層体の層間方向に流れ、主としてI形強化繊維材積層体中に浸透した後各強化繊維材の厚み方向(つまり、I形強化繊維材積層体の厚み方向)に含浸していった。所定の樹脂量を注入した時点で、バルブA1、A2を閉じて樹脂の供給を中止した。その後、炉の温度を130℃まで昇温して、約2時間で加熱硬化させた。加熱硬化後、バッグ材4等の副資材を取り除き、CFRP成形体を型面上より脱型した。得られたCFRP成形体については、とくにストリンガー部の隅々まで完全に樹脂含浸していた。また、ストリンガー部の表面性状は平滑であった。
【0026】
実施例3
本発明を段付きパネルの成形に適用した。図3の製造装置において、縦500mm、横500mmに裁断した炭素繊維織物2(東レ(株)製”トレカ”T300の平織物CO6343(目付:190g/m2 ))を24ply、アルミニウム製平板の成形型1上にレイアップして、厚板部にはその上にさらに縦150mm、横500mmに裁断した該炭素繊維織物を56plyレイアップして強化繊維材積層体2Dを形成した。図3に示すように、強化繊維材積層体全体の上に、ピールプライ6(ナイロン製タフタ)を配置し、樹脂拡散媒体3(ポリプロピレン製メッシュ材)を強化繊維材積層体2Dの一方の端面まで延びるように配置し、樹脂吸引口8、真空吸引口7a、7bを図3のように配設して、全体にバッグ材4(ナイロン製フィルム)を二重に被せて、周囲を粘着性の高い合成ゴム製のシーラント5でシールした(本実施例では、この強化繊維材積層体2D部分が、本発明における強化繊維材積層体の端面に配置された樹脂拡散媒体を介して、強化繊維材積層体の端面から、主として各強化繊維材の層間に、強化繊維材の積層面に沿う方向に樹脂を注入することにより、注入した樹脂を各強化繊維材内に含浸させる対象部分である。)。バルブA1、A2を閉にした状態でバルブB1、B2を開放し、真空トラップ10を介した真空ラインを通して、真空ポンプ11でキャビティ内を0.1MPa以下まで減圧した。
【0027】
その後、電気オーブン内に成形型を設置し、オーブン内を70℃に加温した。強化繊維材積層体全体が70℃に達した後に、バルブA1を開放し、減圧状態にて樹脂注入口8よりマトリックス樹脂9(エポキシ樹脂(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・s))を注入した。注入された樹脂は流動抵抗の低い樹脂拡散媒体3内を流れ薄板部を積層方向に浸透して含浸されていったが、厚板部については、積層方向と垂直な面方向に配設された樹脂拡散媒体部分を介して、樹脂は積層体の層間方法に浸透していき、次いで積層体の厚み方向に含浸されていった。吸引口7bから樹脂流出が見られた時点でバルブB2を閉に、バルブA2を開放して樹脂注入を行った。次に吸引口7aから樹脂流出があった時点でバルブA1、A2を閉にして樹脂注入を停止し、電気オーブン内を130℃まで昇温して、そのままの温度で約2時間保ち硬化させた。加熱硬化後、バッグ材4等の副資材を取り除き、CFRP成形体を型面上より脱型した。得られたCFRP成形体については、薄板部、厚板部の全てについて樹脂が完全に含浸しており、その厚板部表面性状も平滑であった。
【0028】
【発明の効果】
以上説明したように、本発明に係る繊維強化樹脂成形体の製造方法によれば、強化繊維材積層体の端面から積層面に沿う方向に樹脂を注入して該強化繊維材積層体内に樹脂を含浸させるようにしたので、厚い強化繊維材積層体に対しても全体にわたって十分に樹脂を含浸させることができ、とくに厚物FRP構造体を、優れた強度と表面品質をもって成形することが可能になる。また、基本的に、樹脂を拡散させるための樹脂拡散媒体を強化繊維材積層体の端面に対してのみ配置すればよいので、とくに大型の成形体を成形する場合に樹脂拡散媒体の配置と除去の手間を著しく低減させることが可能となることに加え、樹脂拡散媒体を配置しない部位に対しては、樹脂拡散媒体の凹凸が転写されることがなくなり、表面性状の向上を達成できる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る繊維強化樹脂成形体の製造方法に用いる装置の概略縦断面図である。
【図2】本発明の別の実施態様に係る繊維強化樹脂成形体の製造方法に用いる装置の概略縦断面図である。
【図3】本発明のさらに別の実施態様に係る繊維強化樹脂成形体の製造方法に用いる装置の概略縦断面図である。
【符号の説明】
1 成形型
2 強化繊維材(強化繊維織物)
2A〜2D 強化繊維材積層体
2c、2d 積層体端面
3 樹脂拡散媒体
4 バッグ材
5 シーラント
6 ピールプライ
7a、7b 吸引口
8、8a、8b 樹脂注入口
9 樹脂
10 真空トラップ
11 真空ポンプ
12 形状固定治具
A1、A2、B1、B2 バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a Resin Transfer Molding (hereinafter referred to as RTM) molding method for molding a structure made of a fiber reinforced resin (hereinafter also referred to as FRP). The present invention relates to a production method capable of obtaining a molded article excellent in strength and surface properties by quickly and sufficiently impregnating a reinforced fiber material laminate with a matrix resin, and particularly suitable for molding a thick FRP molded article. The present invention relates to a method for producing a molded body.
[0002]
[Prior art]
Conventionally, many methods have been proposed as an RTM molding method used in the manufacture of FRP molded products such as panels, girders, and automotive outer panels, which are structural members for aircraft and architecture. For example, there are a method of RTM molding a large FRP structure (see Patent Document 1) and an RTM molding method using a resin diffusion medium (see Patent Document 2).
[0003]
However, in all of these conventional RTM molding methods, a reinforcing fiber base material is arranged on a mold and a resin injection port and a suction port are arranged, and then covered with a bag material such as a film and the like in the cavity. The matrix resin is injected in a state where the pressure is reduced by suction, but the inflow path of the resin into the base material mainly diffuses the resin from the injection port to the surface direction of the base material arranged in the mold, The route is to impregnate the diffused resin in the thickness direction of the substrate. Usually, in order to obtain an FRP molded body having a predetermined thickness, the reinforcing fiber base is configured in a laminated form of a plurality of reinforcing fiber materials. In general, the flow resistance of the resin is high and the reach distance of the resin impregnated in the thickness direction of the substrate is limited. Therefore, when it is required to increase the number of laminated reinforcing fiber materials, such as when aiming to form high-strength products, it is difficult to completely impregnate the resin into every corner of the reinforcing fiber material laminate. As a result, an FRP structure having a certain thickness or more could not be substantially formed.
[0004]
When using a resin diffusion medium to obtain a large molded product, the resin diffusion medium is usually arranged in parallel with the reinforcing fiber substrate to diffuse the resin in the substrate surface direction. In the molding method, the unevenness of the resin diffusion medium is transferred to the surface of the obtained molded product and the surface quality is deteriorated, and the resin diffusion medium is disposed over a large area and the resin diffusion medium is removed after the resin is injected. There was a problem of requiring a great amount of man-hours.
[0005]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 145042 (first page, FIG. 1)
[Patent Document 2]
US Pat. No. 5,052,906 (Claim 1, FIG. 1)
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to dispose a resin diffusion medium that solves the problems in the prior art as described above and can provide excellent strength and surface quality even for a thick FRP structure. Even in such a case, it is an object of the present invention to provide a method for producing a fiber-reinforced resin molded product capable of significantly reducing the time and labor of arrangement and removal.
[0007]
[Means for Solving the Problems]
  In order to solve the above problems, a method for producing a fiber-reinforced resin molded body according to the present invention forms a reinforcing fiber material laminate by laminating a plurality of reinforcing fiber materials in a mold.A resin diffusion medium made of a mesh fabric having a resistance lower than 1/10 of the flow resistance when the flow resistance of the resin flows through the reinforcing fiber material laminate is disposed only on the end face of the reinforcing fiber material laminate. The mold including the reinforcing fiber material laminate is covered with a bag material and the insideWhile reducing the pressure by suction,Through a resin diffusion medium disposed on the end face of the reinforcing fiber material laminate,From the end face of the reinforcing fiber material laminate, Mainly between each reinforcing fiber material,By injecting resin in the direction along the lamination surface,Injected resin into each reinforcing fiber materialIt consists of the method characterized by making it impregnate. That is, from the end face of the reinforcing fiber material laminate,Through the resin diffusion medium arranged on the end face,This is a method in which a resin is mainly injected between layers of each reinforcing fiber material and the injected resin is impregnated in each reinforcing fiber material.
[0008]
In the present invention, according to the above configuration, the resin is injected from the end surface of the reinforcing fiber material laminate from the direction along the lamination surface, and first, the flow resistance is low. The resin is immediately injected into each layer, and then the resin is impregnated from each layer in the thickness direction of each reinforcing fiber material, that is, in the lamination direction of the reinforcing fiber material, so the matrix resin is quickly injected over the entire reinforcing fiber material laminate, Can be impregnated. Therefore, even when the molded body to be molded is thick, there is no limitation on the wall thickness as in the prior art, and the above-described problems can be solved all at once. That is, although depending on the type of the reinforcing fiber material and the resin, according to experiments, the flow resistance of the resin in the direction parallel to the surface of the reinforcing fiber material is about 1/5 to 1/1 of the flow resistance in the direction perpendicular to the surface. The diffusion rate of the resin in the direction parallel to the surface of the reinforcing fiber material is very fast compared to the direction perpendicular to the surface. However, since there is a lower limit on the flow resistance and resin viscosity of the reinforcing fiber material, there is a limit to the distance that the resin can travel between the layers. It should be within 600mm. In this way, by injecting the resin from the end face of the reinforcing fiber material laminate in the direction along the laminated surface through the interlayer, the thickness of the reinforcing fiber material laminate is substantially eliminated, and a thick molded product can be molded well. It becomes like this. In addition, since it is not necessary to dispose the resin diffusion medium basically on the molding target portion, the unevenness of the resin diffusion medium is not transferred, and the surface property can be improved. Significant cost reduction can be achieved by reducing man-hours for preparation and removal.
[0009]
Moreover, in the method for producing an FRP molded body according to the present invention, if the total length of the reinforcing fiber material laminate (when bent or curved, the total length along the shape) is 600 mm or less, Each reinforcing fiber material can be sufficiently impregnated with resin by injecting the resin from the end face to the interlayer. That is, when this length exceeds 600 mm, the resin is difficult to be impregnated and there is a possibility that a poorly impregnated resin portion is generated. When the length is 300 mm or less, resin impregnation is possible in a shorter time, which is more preferable.
[0010]
Moreover, in the manufacturing method of the FRP molded object which concerns on this invention, regarding the injection | pouring temperature of liquid resin, if the resin viscosity until 1 hour passes from the time of resin impregnation start is maintained in the range of 10-1500 mPa * s. The resin impregnation in a short time is possible. That is, if it is lower than 10 mPa · s, since the resin viscosity is too low, it can rapidly penetrate in the direction along the laminated surface between the layers of the laminate, but particularly when the reinforcing fiber material is composed of reinforcing fiber strands, Since resin impregnation proceeds substantially simultaneously from the periphery of the strand toward the inside of the strand, a resin non-impregnated portion tends to be generated inside the reinforcing fiber strand. On the other hand, if it exceeds 1500 mPa · s, the resin viscosity is too high, so that the resin penetration distance in the direction along the laminate surface between the layers of the laminate is reduced, and each reinforcing fiber material is not easily impregnated with resin. The resin impregnation defect part is likely to occur. Therefore, it is preferable that the resin viscosity at the injection temperature of the liquid resin is maintained within a range of 10 to 1500 mPa · s until 1 hour elapses from the start of resin impregnation.
[0011]
  The cross-sectional shape of the reinforcing fiber material laminate is not particularly limited, and may be a square shape, a C shape, an I shape, an L shape, a Z shape, or a hat shape in addition to a flat plate shape. In addition, in the case of a reinforcing panel composed of a skin material (skin plate material) and a stringer material (girder material), the skin material is often formed in a simple flat plate shape, but the stringer material is a relatively complicated shape. In such a case, the present invention is particularly suitable when applied to a stringer constituting part. For example, when the reinforcing fiber material laminate is composed of a stringer constituting portion having a cross-sectional shape of a square shape, a C shape, an I shape, an L shape, a Z shape or a hat shape, and a skin material constituting portion. The present invention is particularly effective for forming parts for use. That is, it is a method of impregnating the entire stringer constituting portion with the resin after injecting the resin mainly from the end surface of the laminate of the stringer constituting portion between the layers of the reinforcing fiber materials. However, the stringer constituting part and the skin material constituting part may be integrally formed. Since the resin is injected from the end face of the stringer constituting part, there is no limitation on the thickness of the stringer material, and there is no need to dispose the resin diffusion medium, so the surface property is improved and the resin diffusion medium is prepared. Significant cost reductions can be achieved by reducing the number of removal operations.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a manufacturing apparatus used in a manufacturing method according to an embodiment of the present invention. In FIG. 1, a mold 1 serving as a base is made of, for example, stainless steel and is configured in a flat plate shape. When the flat mold 1 is configured as described above, a concave cavity is not required, but a concave cavity is formed in the mold 1 depending on the shape of the molded product to be molded. In the mold 1, a reinforcing fiber material laminate 2 </ b> A is disposed on the mold 1 in the illustrated example. The reinforcing fiber material laminate 2A is made of a laminate of a plurality of reinforcing fiber materials 2, and each reinforcing fiber material 2 is made of, for example, a reinforcing fiber fabric. Reference numerals 2c and 2d denote end faces of the reinforcing fiber material laminate 2A formed in a thick flat plate shape. In this embodiment, a resin diffusion medium 3 for diffusing the resin is disposed via the peel ply 6 for each of the end faces 2c and 2d. However, the peel ply 6 is disposed so as to cover the entire reinforcing fiber material laminate 22. This resin diffusion medium 3 is a medium having a resistance lower than 1/10 of the flow resistance when the flow resistance of the resin flows in the reinforcing fiber laminate 2A. Specifically, the resin diffusion medium 3 is made of polyethylene or polypropylene resin. A mesh fabric having a mesh opening of # 400 or less is preferred. The entire members arranged on the mold 1 are covered with a bag material 4 made of an airtight material. As the bag material 4, for example, a nylon film is preferably used in consideration of airtightness and heat resistance. 5 is a highly adhesive synthetic rubber sealant that prevents the inflow of air from the outside so that the bag 4 can be kept in a reduced pressure state. The peel ply 6 is laid to easily remove the resin diffusion medium 3 and the like from the molded body. For example, a woven fabric having a releasing function such as a nylon taffeta can be used.
[0013]
The sealed bag material 4 is provided with a resin injection port 8a and a suction port 7a for decompressing the interior of the bag material 4 by suction, and is connected to the resin injection line and the suction line, respectively. For example, an aluminum C channel material or the like can be used for the resin injection port 8a and the suction port 7a. These channel materials are connected to an external member via a plastic tube forming the resin injection line and the suction line. Just connect. Reference numeral 9 denotes a thermosetting resin that becomes a matrix resin of the FRP molded body, and the resin is accommodated in a plastic pot, for example. Reference numeral 10 denotes a vacuum trap, which accumulates excess resin from the molded body sucked from the suction port 7a. A vacuum pump 11 sucks from the inside covered with the bag material 4 through the vacuum trap 10 and the suction port 7a, and keeps the inside in a reduced pressure state. A1 and B1 are valves for opening and closing the tubes of the resin injection line and the suction line. For example, a joint with a valve or a pinch-off pliers can be used. In addition, air leakage can be prevented by further covering the first bag material with the second bag material to form a double bag, and as a result, the volume content (Vf) of the reinforcing fibers can be improved. .
[0014]
FIG. 2 shows a manufacturing apparatus used in the manufacturing method according to another embodiment of the present invention, and the fiber reinforced resin molded body has a composite shape, in particular, a stringer material having a cross section of I shape, and a flat plate shape. The manufacturing apparatus in the case of shape | molding the molded object provided with the integral composite form with this skin material, the fiber reinforced resin molded object of what is called a skin stringer integral structure is shown. Differences from the apparatus of FIG. 1 are as follows.
[0015]
2B is a laminate of reinforcing fiber fabrics (reinforced fiber material laminate) having a flat cross-sectional shape forming a skin material constituting portion, and 2C is a reinforcing member having a I-shaped cross sectional shape forming a stringer constituting portion. It is a laminate of fiber fabrics (reinforced fiber material laminate). 7b is a suction port for performing pressure reduction, and 8b is a resin injection port for performing resin injection. It is preferable to use a C channel material made of aluminum or the like. The channel material is connected to an external member through a plastic tube. Reference numeral 12 denotes a jig for fixing both side portions of the reinforcing fiber material laminate 2C forming the stringer constituting portion to a C-shaped cross section, and for example, a metal or a foam core can be used. A2 and B2 are valves for opening and closing the tube. For example, a joint with a valve or a pinch-off pliers can be used. The injected matrix resin passes through the resin diffusion medium 3 disposed over the exposed upper surface portion of the skin material constituting portion 2B and the lower end surface portion of the reinforcing fiber material laminate of the I-shaped cross-section stringer constituting portion 2C. Flow, impregnated mainly in the thickness direction for the skin material constituting portion 2B, and in the stringer constituting portion 2C from the end surface of the reinforcing fiber laminate to the interlayer direction (in the direction along the reinforcing fiber laminate surface) Is done.
[0016]
FIG. 3 shows a manufacturing apparatus used in a manufacturing method according to still another embodiment of the present invention, and shows a manufacturing apparatus for forming a reinforcing fiber material laminate having a step. 2D is a reinforcing fiber material laminate partially disposed on the upper surface of a laminate of reinforcing fiber materials 2 similar to that shown in FIG. The injected matrix resin flows through the resin diffusion medium 3 arranged so as to extend to one end face of the reinforcing fiber material laminate 2D, and in the laminating direction (thickness) with respect to the thin plate portion (portion where 2D is not laminated). The resin diffusion medium 3 disposed on the surface perpendicular to the lamination direction from the end face of the reinforcing fiber material laminate 2D is applied to the thick plate portion (portion where the 2D is laminated). Thus, impregnation is performed in a direction parallel to the stacking direction (that is, in the direction of the interlayer).
[0017]
Next, the manufacturing method of this invention is implemented as follows using said each manufacturing apparatus. The apparatus of FIG. 1, which is a basic embodiment, will be described. First, a reinforcing fiber material laminate 2A is formed by laminating a plurality of reinforcing fiber materials 2 on the mold surface of the mold 1, and then separated from the top. The mold peel ply 6 (for example, nylon taffeta) is disposed so as to cover the entire laminate 2A. In this case, the outer peripheral edge of the peel ply 6 is disposed so as to reach the sealant 5 as shown in FIG. Next, the resin diffusion medium 3 is disposed in the vicinity of both end portions of the reinforcing fiber material laminate 2A so as to extend to both end surface portions 2c and 2d of the laminate 2A, and the resin injection port 8a and the suction port 7a are further provided thereon. Each is arranged. Next, a bag base material 4 (bag film) is put on the whole of these members, and a sealant 5 is sealed over the entire periphery between the peripheral edge portion and the mold 1.
[0018]
Since the preparation for molding is completed, the valve A1 is closed and the vacuum pump 11 is operated. Next, the valve B <b> 1 is opened, and the inside of the cavity (in the bag base material 4) is sucked from the suction port 7 a through the vacuum trap 10. Next, the entire member on the mold 1 is heated to a predetermined molding temperature. When the mold 1 rises to a predetermined molding temperature, the valve A1 is opened, and the matrix resin 9 is injected from the resin injection port 8a at a reduced-pressure atmospheric pressure in the bag material 4, so that the resin 9 becomes one of the resin diffusion media 3 First, it quickly flows through the respective layers of the reinforcing fiber material laminate 2A having a low flow resistance and reaches the opposite end of the laminate 2A. When the flow resistance between the layers reaches an equilibrium state, the resin is impregnated from the respective layers in the thickness direction of each reinforcing fiber material 2, that is, the lamination direction of the reinforcing fiber materials 2, and when the flow resistance reaches the equilibrium state, the resin is reached. Is uniformly impregnated in the entire reinforcing fiber material laminate 2A. When it is confirmed that a predetermined amount of resin has been injected, the valve A1 is closed to stop the resin supply. Thereafter, the resin is cured at a predetermined temperature and time. After curing, remove all the auxiliary materials used for the resin diffusion medium, resin injection, and suction port, together with the bag material and peel ply (release fabric), and finally remove the molded body from the mold surface. Type. The obtained molded body is after-cured at a predetermined temperature and time as required.
[0019]
【Example】
Hereinafter, the present invention will be described based on examples.
Example 1
The present invention was applied to forming a thick flat plate. In the manufacturing apparatus of FIG. 1, first, a carbon fiber fabric 2 (reinforced fiber material) cut into a length of 500 mm and a width of 500 mm is laid up on a forming die 1 of a 96 ply stainless steel flat plate, and the total thickness of the reinforcing fiber material is about 50 mm. A laminate 2A was formed. The reinforcing fiber material used here is a one-way woven fabric (weight per unit: 285 g / m) manufactured by Toray Industries, Inc.2). Further, a peel ply 6 (nylon taffeta) is arranged on the reinforcing fiber material laminate 2A, and a resin diffusion medium 3 (polypropylene mesh material) is arranged on both end faces 2c, 2d of the laminate 2A. The resin injection port 8a and the suction port 7a are arranged so as to communicate with both ends of the bag, and the bag material 4 (nylon film) is covered over the whole and the periphery is sealed with a highly adhesive synthetic rubber sealant 5 (note that (Although omitted in this figure, a double bag was used).
[0020]
And valve | bulb A1 was made into the closed state, valve | bulb B1 was open | released, the suction opening 7a was vacuum-released via the vacuum trap 10 which connected the suction line, and the inside of a cavity was pressure-reduced to 0.1 Mpa or less.
[0021]
Thereafter, the mold was placed in an electric oven and the oven was heated to 70 ° C. After the entire reinforcing fiber material laminate 2A reached 70 ° C., the valve A1 was opened and the matrix resin 9 was injected from the resin injection port 8a under a reduced pressure atmosphere of 0.08 to 0.1 MPa. Epoxy resin (resin viscosity at 70 ° C. (injection temperature) was 130 mPa · s, and resin viscosity after 1 hour at 70 ° C. was 320 mPa · s) was used as the injection resin. The injected resin first flows in the resin diffusion medium 3 having a low flow resistance, and when it reaches the end of the reinforcing fiber material laminate 2A, the inside of the laminate 2A is mainly used as the lamination surface of the laminate 2A. It was confirmed from the top of the transparent bag material 4 that it flowed in the direction along which it was then impregnated in the thickness direction of the laminate 2A.
[0022]
When a predetermined amount of resin was injected, the valve A1 was closed to stop the resin supply. Thereafter, the temperature in the electric oven was raised to 130 ° C. and cured by heating for about 2 hours. After heat curing, the auxiliary materials such as the bag material 4 were removed, and the CFRP molded body was removed from the mold surface. As a result, the CFRP molded body was completely impregnated with the resin even though the thickness was relatively thick at 25 mm. Moreover, the surface property of the molded body was smooth.
[0023]
Example 2
  The present invention was applied to the formation of a skin-stringer integrated structure. In the manufacturing apparatus of FIG. 2, first, a carbon fiber fabric 2 (reinforced fiber material) cut into a width of 500 mm and a length of 500 mm was laid up on the mold 1 to form a reinforcing fiber material laminate 2B. Each reinforcing fiber material 2 used here is a one-way woven fabric (weight per unit: 190 g / m) manufactured by Toray Industries, Inc.2In order to fix the carbon fiber fabric 2 cut to a width of 98 mm and a length of 500 mm to a C shape, which is 128 ply laminated in total (hereinafter referred to as skin material constituting reinforcing fiber material laminate 2B). 32 ply was formed using the jig 12. Prepare another set of laminates of the carbon fiber fabrics 2 and arrange the two symmetrically back to back so that the jigs 12 are arranged on both sides. It was formed and placed on the reinforced fiber laminate 2B for skin material construction that had already been laid up. A carbon fiber fabric 2 cut to a width of 66 mm and a length of 500 mm was laid up on the I-type reinforcing fiber material laminate (hereinafter, placed on the skin material constituting reinforcing fiber material laminate 2B). The reinforced fiber material laminate is called the stringer reinforced fiber material laminate 2C.In this embodiment, the stringer constituting reinforcing fiber material laminate 2C is mainly formed from the end surface of the reinforcing fiber material laminate through the resin diffusion medium disposed on the end surface of the reinforcing fiber material laminate in the present invention. This is a target portion in which the injected resin is impregnated into each reinforcing fiber material by injecting the resin between the reinforcing fiber materials in the direction along the reinforcing fiber laminated surface. )
[0024]
Next, peel ply 6 (nylon taffeta), resin diffusion medium 3 (polypropylene mesh material), resin injection ports 8a and 8b and suction ports 7a and 7b are formed on these reinforcing fiber material laminates as shown in FIG. Arranged. The bag material 4 (nylon film) was covered twice and the periphery was sealed with a highly adhesive synthetic rubber sealant 5. For suction, the valves A1 and A2 are closed, the valves B1 and B2 are opened, the suction ports 7a and 7b are opened via the vacuum trap 10 communicating with the vacuum line, and the inside of the cavity is 0.1 MPa or less. The pressure was reduced to.
[0025]
After completion of bagging and decompression, the mold was placed in an electric oven, and the temperature in the oven was raised to 70 ° C. When the entire reinforcing fiber material laminate reached 70 ° C., the valves A1 and A2 were opened, and the matrix resin 9 was injected from the resin injection ports 8a and 8b in a reduced pressure state. As the resin, an epoxy resin (resin viscosity at 70 ° C. (injection temperature) of 130 mPa · s, resin viscosity after 1 hour at 70 ° C. of 320 mPa · s) was used. The injected resin flowed through the resin diffusion medium having a low flow resistance and was impregnated into the base material. The reinforcing fiber material laminate 2B for constituting the skin material has been impregnated in the thickness direction, but the reinforcing fiber material laminate 2C for the stringer constituting material has been impregnated from the lower end surface of the I-type reinforcing fiber material laminate. After flowing in the interlayer direction of the laminate and penetrating mainly into the I-type reinforcing fiber material laminate, it was impregnated in the thickness direction of each reinforcing fiber material (that is, the thickness direction of the I-type reinforcing fiber material laminate). When a predetermined amount of resin was injected, the valves A1 and A2 were closed to stop the resin supply. Then, the temperature of the furnace was raised to 130 ° C. and cured by heating in about 2 hours. After heat curing, the auxiliary materials such as the bag material 4 were removed, and the CFRP molded body was removed from the mold surface. The obtained CFRP molded body was completely impregnated with the resin especially in every corner of the stringer part. Moreover, the surface property of the stringer part was smooth.
[0026]
Example 3
  The present invention was applied to forming a stepped panel. In the manufacturing apparatus of FIG. 3, carbon fiber woven fabric 2 cut to 500 mm length and 500 mm width ("Torayca" T300 plain fabric CO 6343 (weight: 190 g / m)2)) Is laid up on a mold 1 of 24 ply, aluminum flat plate, and the carbon fiber woven fabric cut to 150 mm in length and 500 mm in width is further laminated on the thick plate portion to lay up the reinforcing fiber material by 56 ply. Body 2D was formed. As shown in FIG. 3, the peel ply 6 (nylon taffeta) is arranged on the entire reinforcing fiber material laminate, and the resin diffusion medium 3 (polypropylene mesh material) is extended to one end face of the reinforcing fiber material laminate 2D. The resin suction port 8 and the vacuum suction ports 7a and 7b are arranged as shown in FIG. 3, and the bag material 4 (nylon film) is covered over the entire surface, and the periphery is adhesive. Sealed with high synthetic rubber sealant 5(In this embodiment, the reinforcing fiber material laminate 2D portion is mainly formed from the end surface of the reinforcing fiber material laminate through the resin diffusion medium disposed on the end surface of the reinforcing fiber material laminate in the present invention. It is a target portion in which the injected resin is impregnated into each reinforcing fiber material by injecting the resin in the direction along the laminated surface of the reinforcing fiber material between the layers of the material.The valves B1 and B2 were opened with the valves A1 and A2 closed, and the inside of the cavity was decompressed to 0.1 MPa or less by the vacuum pump 11 through the vacuum line via the vacuum trap 10.
[0027]
Then, the shaping | molding die was installed in the electric oven, and the inside of an oven was heated at 70 degreeC. After the entire reinforcing fiber material laminate reached 70 ° C., the valve A1 was opened, and the matrix resin 9 (epoxy resin (resin viscosity at 70 ° C. (injection temperature) was 130 mPa · s, The viscosity of the resin after 1 hour at 70 ° C. was 320 mPa · s)). The injected resin flowed through the resin diffusion medium 3 having a low flow resistance and permeated the thin plate portion in the laminating direction, but the thick plate portion was arranged in a plane direction perpendicular to the laminating direction. The resin penetrated into the interlayer method of the laminate through the resin diffusion medium portion, and was then impregnated in the thickness direction of the laminate. When resin outflow was seen from the suction port 7b, the valve B2 was closed and the valve A2 was opened to inject the resin. Next, when the resin flowed out from the suction port 7a, the valves A1 and A2 were closed to stop the resin injection, and the temperature in the electric oven was raised to 130 ° C. and kept at the same temperature for about 2 hours to be cured. . After heat curing, the auxiliary materials such as the bag material 4 were removed, and the CFRP molded body was removed from the mold surface. In the obtained CFRP molded body, the resin was completely impregnated in all of the thin plate portion and the thick plate portion, and the surface properties of the thick plate portion were also smooth.
[0028]
【The invention's effect】
  As described above, according to the method for manufacturing a fiber-reinforced resin molded body according to the present invention, the resin is injected into the reinforcing fiber material laminate by injecting the resin in the direction along the laminated surface from the end face of the reinforcing fiber material laminate. Since it was impregnated, the resin could be sufficiently impregnated over the entire thick reinforcing fiber material laminate, and in particular, a thick FRP structure could be molded with excellent strength and surface quality. Become. Basically, a resin diffusion medium for diffusing the resin is provided on the end face of the reinforcing fiber material laminate.forTherefore, it is possible to remarkably reduce the labor of disposing and removing the resin diffusion medium particularly when molding a large-sized molded body.In addition, the unevenness of the resin diffusion medium is not transferred to the portion where the resin diffusion medium is not disposed, and the surface property can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of an apparatus used in a method for producing a fiber-reinforced resin molded body according to an embodiment of the present invention.
FIG. 2 is a schematic longitudinal sectional view of an apparatus used in a method for producing a fiber-reinforced resin molded body according to another embodiment of the present invention.
FIG. 3 is a schematic longitudinal sectional view of an apparatus used in a method for producing a fiber-reinforced resin molded body according to still another embodiment of the present invention.
[Explanation of symbols]
1 Mold
2 Reinforced fiber material (reinforced fiber fabric)
2A-2D Reinforced fiber laminate
2c, 2d Laminate end face
3 Resin diffusion media
4 Bag material
5 Sealant
6 Peel ply
7a, 7b Suction port
8, 8a, 8b Resin inlet
9 Resin
10 Vacuum trap
11 Vacuum pump
12 Shape fixing jig
A1, A2, B1, B2 valves

Claims (6)

成形型内に強化繊維材を複数層積層して強化繊維材積層体を形成し、前記強化繊維材積層体の端面に対してのみ、樹脂の流動抵抗が強化繊維材積層体内を流れる場合の流動抵抗に比べ1/10以下の低い抵抗を有するメッシュ織物からなる樹脂拡散媒体を配置し、前記強化繊維材積層体を含む成形型をバッグ材で覆って内部を吸引により減圧しつつ、前記強化繊維材積層体の端面に配置された樹脂拡散媒体を介して、前記強化繊維材積層体の端面から、主として各強化繊維材の層間に、強化繊維材の積層面に沿う方向に樹脂を注入することにより、注入した樹脂を各強化繊維材内に含浸させることを特徴とする繊維強化樹脂成形体の製造方法。A flow in the case where a reinforcing fiber material laminate is formed by laminating a plurality of reinforcing fiber materials in a mold, and the flow resistance of the resin flows through the reinforcing fiber material laminate only on the end face of the reinforcing fiber material laminate. A resin diffusion medium made of a mesh fabric having a low resistance of 1/10 or less compared to the resistance is disposed, the mold including the reinforcing fiber material laminate is covered with a bag material, and the inside is decompressed by suction, and the reinforcing fibers Injecting resin from the end surface of the reinforcing fiber material laminate , mainly between the layers of the reinforcing fiber materials, in a direction along the laminating surface of the reinforcing fiber material through a resin diffusion medium disposed on the end surface of the material laminate A method for producing a fiber-reinforced resin molded article, wherein the injected resin is impregnated into each reinforcing fiber material . 前記強化繊維材積層体の延べ長さが600mm以下である、請求項に記載の繊維強化樹脂成形体の製造方法。The total length of the reinforcing fiber material laminate is 600mm or less, the production method of the fiber-reinforced resin molded article according to claim 1. 樹脂の注入温度での樹脂粘度が、樹脂含浸開始時から1時間経過するまでの間、10〜1500mPa・sの範囲内に維持されている、請求項1または2に記載の繊維強化樹脂成形体の製造方法。The fiber-reinforced resin molded article according to claim 1 or 2 , wherein the resin viscosity at the resin injection temperature is maintained within a range of 10 to 1500 mPa · s until 1 hour elapses from the start of resin impregnation. Manufacturing method. 前記強化繊維材積層体の断面形状が、角形、C形、I形、L形、Z形またはハット形である、請求項1〜のいずれかに記載の繊維強化樹脂成形体の製造方法。The manufacturing method of the fiber reinforced resin molding in any one of Claims 1-3 whose cross-sectional shape of the said reinforcement fiber material laminated body is a square shape, C shape, I shape, L shape, Z shape, or a hat shape. 前記強化繊維材積層体は、断面形状が角形、C形、I形、L形、Z形またはハット形からなるストリンガー構成用部分と、スキン材構成用部分とからなる、請求項1〜のいずれかに記載の繊維強化樹脂成形体の製造方法。The reinforcing fiber material laminate, the cross-sectional shape is rectangular, C-shaped, I-shaped, L-shaped, and stringer structure moiety consisting of Z-shaped or hat-shaped, and a skin material-constituting part of claim 1-4 The manufacturing method of the fiber reinforced resin molding in any one. 前記ストリンガー構成用部分の積層体端面から主として各強化繊維材の層間に樹脂を注入した後に、ストリンガー構成用部分全体に樹脂を含浸させる、請求項に記載の繊維強化樹脂成形体の製造方法。The method for producing a fiber-reinforced resin molded article according to claim 5 , wherein the resin is impregnated in the entire stringer constituting part after injecting the resin mainly between the layers of the reinforcing fiber materials from the end face of the laminate of the stringer constituting part.
JP2002295934A 2002-10-09 2002-10-09 Method for producing fiber-reinforced resin molded body Expired - Fee Related JP4104414B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2002295934A JP4104414B2 (en) 2002-10-09 2002-10-09 Method for producing fiber-reinforced resin molded body
EP03751403.1A EP1555104B1 (en) 2002-10-09 2003-10-09 Method of frp molding
ES13173654T ES2727872T3 (en) 2002-10-09 2003-10-09 RTM Molding Method
PCT/JP2003/012947 WO2004033176A1 (en) 2002-10-09 2003-10-09 Method of rtm molding
EP13173648.0A EP2644363B1 (en) 2002-10-09 2003-10-09 Method of RTM molding
US10/530,263 US8420002B2 (en) 2002-10-09 2003-10-09 Method of RTM molding
EP13173654.8A EP2644365B1 (en) 2002-10-09 2003-10-09 Method of RTM molding
EP20130173653 EP2644364A3 (en) 2002-10-09 2003-10-09 Method of RTM molding
ES13173648.0T ES2628600T3 (en) 2002-10-09 2003-10-09 RTM Molding Method
AU2003271139A AU2003271139B2 (en) 2002-10-09 2003-10-09 Method of RTM molding
AU2008203840A AU2008203840B2 (en) 2002-10-09 2008-08-12 Method of RTM molding
AU2008203841A AU2008203841B2 (en) 2002-10-09 2008-08-12 Method of RTM molding
AU2008203839A AU2008203839B2 (en) 2002-10-09 2008-08-12 Method of RTM molding
US13/834,534 US9120253B2 (en) 2002-10-09 2013-03-15 Methods of RTM molding
US13/833,606 US9463587B2 (en) 2002-10-09 2013-03-15 Methods of RTM molding
US13/834,072 US20130228956A1 (en) 2002-10-09 2013-03-15 Methods of rtm molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295934A JP4104414B2 (en) 2002-10-09 2002-10-09 Method for producing fiber-reinforced resin molded body

Publications (2)

Publication Number Publication Date
JP2004130599A JP2004130599A (en) 2004-04-30
JP4104414B2 true JP4104414B2 (en) 2008-06-18

Family

ID=32286043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295934A Expired - Fee Related JP4104414B2 (en) 2002-10-09 2002-10-09 Method for producing fiber-reinforced resin molded body

Country Status (1)

Country Link
JP (1) JP4104414B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306057A (en) * 2005-03-28 2006-11-09 Toray Ind Inc Manufacturing method of frp structure
JP4967405B2 (en) * 2006-03-27 2012-07-04 東レ株式会社 Manufacturing method of fiber reinforced plastic
JP4965296B2 (en) * 2007-03-20 2012-07-04 三菱重工業株式会社 Preform and FRP manufacturing method
JP5253365B2 (en) * 2009-12-03 2013-07-31 三菱電機株式会社 Elevator car and manufacturing method thereof
KR102539633B1 (en) * 2017-04-25 2023-06-02 도레이 카부시키가이샤 FRP material bonding structure and bonding method to the structure

Also Published As

Publication number Publication date
JP2004130599A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US9120253B2 (en) Methods of RTM molding
KR101151966B1 (en) Rtm molding method and device
US8834782B2 (en) Composite structures and methods of making same
JP5877156B2 (en) Rotor blade manufacturing method and manufacturing apparatus thereof
EP1595688B1 (en) Molded laminate and manufacturing method thereof
US8337740B2 (en) Reinforced internal composite structures
KR20050106493A (en) Method of resin transfer molding
JP4805375B2 (en) Method for manufacturing FRP structure
JP4542588B2 (en) RTM molding method
JP4104414B2 (en) Method for producing fiber-reinforced resin molded body
JP4338550B2 (en) Method for manufacturing FRP structure
JP4104413B2 (en) RTM molding method
JP2006306057A (en) Manufacturing method of frp structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Ref document number: 4104414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees