JP2003017790A - Nitride-based semiconductor device and manufacturing method - Google Patents

Nitride-based semiconductor device and manufacturing method

Info

Publication number
JP2003017790A
JP2003017790A JP2001201628A JP2001201628A JP2003017790A JP 2003017790 A JP2003017790 A JP 2003017790A JP 2001201628 A JP2001201628 A JP 2001201628A JP 2001201628 A JP2001201628 A JP 2001201628A JP 2003017790 A JP2003017790 A JP 2003017790A
Authority
JP
Japan
Prior art keywords
substrate
algainn
manufacturing
based semiconductor
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001201628A
Other languages
Japanese (ja)
Other versions
JP2003017790A5 (en
Inventor
Akihiko Ishibashi
明彦 石橋
Yasutoshi Kawaguchi
靖利 川口
Nobuyuki Otsuka
信之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001201628A priority Critical patent/JP2003017790A/en
Publication of JP2003017790A publication Critical patent/JP2003017790A/en
Publication of JP2003017790A5 publication Critical patent/JP2003017790A5/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Led Devices (AREA)
  • Laser Beam Processing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a laser beam resonator having high reproducibility and yields by forming a separation groove where flatness on a section is excellent on an AlGaInN-based crystal substrate. SOLUTION: In an AlGaInN-based laser wafer manufactured on a sapphire substrate, the substrate is irradiated with a pulse laser beam from the back side, and then is applied to an AlGaInN-based crystal section other than the laser resonator section of a surface for forming a separation groove. After that, force is applied along the separation groove for separating the substrate to a laser bar. In this manner, the surface of the resonator where flatness is extremely high and a reflection loss rarely exists is achieved, thus achieving manufacture with high reproducibility and yields.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光情報処理、ディス
プレー、照明分野などへの応用が期待されている紫外か
ら青色、緑色、赤色等の波長域における半導体レーザや
発光ダイオードなどのAlGaInN系半導体発光素子
および製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to AlGaInN semiconductor light emission such as a semiconductor laser or a light emitting diode in a wavelength range from ultraviolet to blue, green, red, etc., which is expected to be applied to the fields of optical information processing, display, illumination and the like. The present invention relates to an element and a manufacturing method.

【0002】[0002]

【従来の技術】V族元素に窒素(N)を有するIII−
V窒化物半導体は、そのバンドギャップの大きさから、
短波長発光素子の材料として有望視されている。中でも
窒化ガリウム系化合物半導体(GaN系半導体:Alx
GayInzN(0≦x,y,z≦1、x+y+z=
1))は研究が盛んに行われ、青色発光ダイオード(L
ED)、緑色LEDが実用化されている。また、光ディ
スク装置の大容量化のために、400nm帯に発振波長
を有する半導体レーザが熱望されており、GaN系半導
体を材料とする半導体レーザが注目され現在では実用レ
ベルに達しつつある。
2. Description of the Related Art III-containing nitrogen (N) as a group V element
The V-nitride semiconductor has a large band gap,
It is regarded as a promising material for short-wavelength light emitting devices. Above all, gallium nitride-based compound semiconductors (GaN-based semiconductors: Al x
Ga y In z N (0 ≦ x, y, z ≦ 1, x + y + z =
1)) has been actively researched, and blue light emitting diodes (L
ED) and green LEDs have been put to practical use. Further, a semiconductor laser having an oscillation wavelength in the 400 nm band is eagerly awaited in order to increase the capacity of an optical disc device, and a semiconductor laser made of a GaN-based semiconductor is drawing attention and is reaching a practical level at present.

【0003】図10はレーザ発振が達成されているGa
N系半導体レーザの構造断面図である。サファイア基板
1001の主にC面上に有機金属気相成長法(MOVP
E法)によりGaNバッファー層1002、n−GaN
層1003、n−AlGaNクラッド層1004、n−
GaN光ガイド層1005、Ga1-xInxN/Ga1- y
InyN (0<y<x<1)から成る多重量子井戸
(MQW)活性層1006、p−GaN光ガイド層10
07、p−AlGaNクラッド層1008、p−GaN
コンタクト層1009が成長される。そしてp−GaN
コンタクト層1009上に幅3から10ミクロン程度の
幅のリッジストライプが形成され、その両側はSiO2
1011によって埋め込まれる。その後リッジストライ
プおよびSiO21011上に例えばNi/Auから成
るp電極1010、また一部をn−GaN層1003が
露出するまでエッチングした表面に例えばTi/Alか
ら成るn電極1012が形成される。本素子においてn
電極1012を接地し、p電極1010に電圧を印加す
ると、MQW活性層1006に向かってp電極1010
側からホールが、またn電極1012側から電子が注入
され、前記MQW活性層1006内で光学利得を生じ、
発振波長400nm帯のレーザ発振を起こす。MQW活
性層1006の材料であるGa1-xInxN/Ga1-y
yN薄膜の組成や膜厚によって発振波長は変化する。
現在室温以上での連続発振が実現されている。
FIG. 10 shows Ga for which laser oscillation has been achieved.
It is a structure sectional view of an N-type semiconductor laser. Organometallic vapor phase epitaxy (MOVP) mainly on the C surface of the sapphire substrate 1001.
GaN buffer layer 1002, n-GaN by E method)
Layer 1003, n-AlGaN cladding layer 1004, n-
GaN optical guide layer 1005, Ga 1-x In x N / Ga 1- y
Multiple quantum well (MQW) active layer 1006 made of In y N (0 <y <x <1), p-GaN light guide layer 10
07, p-AlGaN cladding layer 1008, p-GaN
The contact layer 1009 is grown. And p-GaN
A ridge stripe having a width of about 3 to 10 μm is formed on the contact layer 1009, and SiO 2 is formed on both sides of the ridge stripe.
It is embedded by 1011. Thereafter, a p-electrode 1010 made of, for example, Ni / Au is formed on the ridge stripe and the SiO 2 1011 and an n-electrode 1012 made of, for example, Ti / Al is formed on the surface that is partially etched until the n-GaN layer 1003 is exposed. N in this element
When the electrode 1012 is grounded and a voltage is applied to the p-electrode 1010, the p-electrode 1010 faces the MQW active layer 1006.
Holes from the side and electrons from the side of the n-electrode 1012 to inject an optical gain in the MQW active layer 1006,
Laser oscillation in the oscillation wavelength band of 400 nm occurs. Ga 1-x In x N / Ga 1-y I which is the material of the MQW active layer 1006
The oscillation wavelength changes depending on the composition and film thickness of the n y N thin film.
At present, continuous oscillation above room temperature has been realized.

【0004】このレーザはリッジストライプの幅と高さ
を制御することによって、水平方向の横モードにおいて
基本モードでレーザ発振するような工夫が成される。す
なわち、基本横モードと高次モード(1次以上のモー
ド)の光閉じ込め係数に差を設けることで、基本横モー
ドでの発振を可能としている。
By controlling the width and height of the ridge stripe, this laser is devised so as to oscillate in the fundamental mode in the horizontal transverse mode. That is, by providing a difference in the optical confinement coefficient between the fundamental transverse mode and the higher-order modes (first-order and higher modes), oscillation in the fundamental transverse mode is possible.

【0005】レーザの共振器面はサファイア基板100
1の裏面を研磨する等した後、例えばダイヤモンドカッ
ター等を用いて分離のガイドとなるスクライブ傷を入れ
た後サファイアA面((11−20)面)またはM面
((1−100)面)でへき開したり、またドライエッ
チングにより結晶成長したAlGaInN系結晶のA面
またはM面を露出させる等の手法が用いられている。
The resonator surface of the laser is a sapphire substrate 100.
After polishing the back surface of No. 1 and then making a scribe scratch that serves as a guide for separation using, for example, a diamond cutter, the sapphire A surface ((11-20) surface) or M surface ((1-100) surface) For example, a method of exposing the A-plane or M-plane of the AlGaInN-based crystal grown by dry etching or crystal growth by dry etching is used.

【0006】またレーザに限らず、AlGaInN系発
光ダイオード(LED)を作製する際にも素子分離方法
として前記方法のようにダイヤモンドカッター等を用い
て素子の結晶または基板側に分離溝を入れたり、前記カ
ッターで直接機械的に切断する等の工程が行われてい
る。
Further, not only lasers but also AlGaInN light emitting diodes (LEDs) are manufactured by using a diamond cutter or the like as an element isolation method to form an isolation groove on the crystal or substrate side of the element. Processes such as direct mechanical cutting with the cutter are performed.

【0007】他方、AlGaInN系結晶の基板には、
サファイア、SiC、NGOなどが用いられるが、いず
れの基板もGaNと格子整合せず、コヒーレント成長を
得ることが難しい。その結果、転位(刃状転位、らせん
転位、混合転位)が多く、例えばサファイア基板を用い
た場合、約1x109cm-2の転位が存在する。その結
果、半導体レーザの信頼性の低下を引き起こす。
On the other hand, the AlGaInN type crystal substrate is
Although sapphire, SiC, NGO, and the like are used, none of them has lattice matching with GaN, and it is difficult to obtain coherent growth. As a result, there are many dislocations (edge dislocations, screw dislocations, mixed dislocations), and for example, when a sapphire substrate is used, dislocations of about 1 × 10 9 cm −2 exist. As a result, the reliability of the semiconductor laser is reduced.

【0008】転位密度低減の方法として誘電体マスクや
加工基板を用いた選択横方向成長(ELO)が提案され
ている。これは格子不整合が大きい系において、貫通転
位を低減させる方法として有効である。
Selective lateral overgrowth (ELO) using a dielectric mask or a processed substrate has been proposed as a method for reducing dislocation density. This is effective as a method for reducing threading dislocations in a system having a large lattice mismatch.

【0009】図11はELOによって形成したGaN結
晶の転位の分布を模式的に表したものである。図11
(a)のように、まず、サファイア基板1101上にM
OVPE法などによりGaN層1102を堆積する。S
iO21103をCVDなどで堆積した後、フォトリソ
グラフィーとエッチングによって周期的なストライプ状
にSiO21103を加工する。GaN1102の露出
した部分を種結晶として選択成長によってGaN層11
04を堆積する。成長方法としてMOVPE法やHVP
E法を用いる。種結晶の上部は約1x109cm-2と転
位の多い領域1106が存在するが、横方向成長した部
分は転位密度が1x107cm-2程度まで低減できてい
る。この転位の少ない領域1105の上部に活性領域、
つまり電流注入領域を形成することで信頼性を向上させ
ることが可能となる。また、図11(b)のように、サ
ファイア基板1107にドライエッチングなどにより周
期的なストライプ状に段差加工を施し、その後GaN層
1108を横方向成長させる。横方向成長で生じた空隙
1109上には転位の少ない領域1110が形成され
る。この転位の少ない領域1110の上部に活性領域、
つまり電流注入領域を形成することで信頼性を向上させ
ることが可能となる。
FIG. 11 schematically shows the distribution of dislocations in a GaN crystal formed by ELO. Figure 11
As shown in (a), first, M is formed on the sapphire substrate 1101.
The GaN layer 1102 is deposited by the OVPE method or the like. S
After depositing iO 2 1103 by CVD or the like, SiO 2 1103 is processed into a periodic stripe shape by photolithography and etching. The GaN layer 11 is selectively grown by using the exposed portion of the GaN 1102 as a seed crystal.
04 is deposited. MOVPE method and HVP as a growth method
Method E is used. The upper portion of the seed crystal has a region 1106 having a large amount of dislocations of about 1 × 10 9 cm −2 , but the dislocation density of the laterally grown portion can be reduced to about 1 × 10 7 cm −2 . An active region is formed above the region 1105 having few dislocations,
That is, the reliability can be improved by forming the current injection region. Further, as shown in FIG. 11B, the sapphire substrate 1107 is subjected to step processing in a periodic stripe shape by dry etching or the like, and then the GaN layer 1108 is laterally grown. A region 1110 with few dislocations is formed on the void 1109 generated by the lateral growth. An active region is formed on the dislocation-poor region 1110,
That is, the reliability can be improved by forming the current injection region.

【0010】選択横方向成長を用いた場合においてもレ
ーザ共振器は基板をへき開またはドライエッチングを用
いてAlGaInN系結晶のA面またはM面を露出させ
る。
Even when the selective lateral growth is used, the laser resonator exposes the A-plane or M-plane of the AlGaInN-based crystal by cleaving the substrate or by dry etching.

【0011】[0011]

【発明が解決しようとする課題】ところが、上記レーザ
共振器の形成方法では、例えばへき開方法を用いた場
合、図5(a)に示すようにサファイアC面51上にA
lGaInN系結晶を成長した場合、サファイアM面5
1とAlGaInN系結晶M面52は30°ずれ、サフ
ァイアM面とAlGaInN系結晶A面53が一致する
ためにサファイア基板をへき開すると30°ずれた面が
ランダムに混じり数100nmの凹凸が入ってしまう。
共振器面にこのような凹凸が入るとレーザ光のミラー損
失が増大し、半導体レーザの動作電流の増大、ひいては
信頼性の低下をもたらす。更に、前記共振器面での凹凸
はランダムに入るために、一定の反射率を有した共振器
面を再現性良く作製することは困難であり、歩留まりが
低くなることが問題となる。
However, in the method of forming the laser cavity described above, when the cleavage method is used, for example, as shown in FIG.
When an lGaInN-based crystal is grown, sapphire M plane 5
1 and the AlGaInN-based crystal M-plane 52 are deviated by 30 °, and the sapphire M-plane and the AlGaInN-based crystal A-face 53 are coincident with each other. When the sapphire substrate is cleaved, the surfaces deviated by 30 ° are randomly mixed and unevenness of several 100 nm occurs. .
If such a concavo-convex pattern is formed on the cavity surface, the mirror loss of the laser light increases, which increases the operating current of the semiconductor laser and eventually reduces the reliability. Further, since the unevenness on the resonator surface randomly enters, it is difficult to manufacture a resonator surface having a constant reflectance with good reproducibility, and the yield becomes low.

【0012】共振器の形成方法としてドライエッチング
を用いても同様の問題点が発生する。
Even if dry etching is used as a method of forming a resonator, the same problem occurs.

【0013】また、図5(b)に示すようにダイヤモン
ドカッターを用いて分離溝56を形成した場合、溝周辺
部にひび割れや傷57が入る。この傷がAlGaInN
系レーザ共振器部分58に入れば、レーザ発振特性を著
しく低下させる。さらにより小さなミクロな欠陥もAl
GaInN系レーザの発光領域に生成されるので、レー
ザの信頼性も著しく低下する。従ってこの方法では分離
溝56をAlGaInN系レーザ共振器部分58からで
きるだけ遠ざけ、結果的に分離溝を短くする必要があ
る。しかしながら分離溝が短いと前記図5(a)で説明
したようにサファイア基板とAlGaInN系結晶の結
晶面が一致していないために、AlGaInN系レーザ
バー57をへき開により作製する際に基板の両端から直
線的にへき開できず途中で分離溝からそれてしまい低歩
留まりなへき開しかできない。
Further, when the separating groove 56 is formed by using a diamond cutter as shown in FIG. 5B, cracks and scratches 57 are formed in the peripheral portion of the groove. This scratch is AlGaInN
If it enters the system laser resonator portion 58, the laser oscillation characteristic is significantly deteriorated. Even smaller micro defects are Al
Since it is generated in the light emitting region of the GaInN-based laser, the reliability of the laser is significantly reduced. Therefore, in this method, it is necessary to separate the separation groove 56 from the AlGaInN-based laser resonator portion 58 as much as possible, and consequently to shorten the separation groove. However, when the separation groove is short, the crystal planes of the sapphire substrate and the AlGaInN-based crystal do not coincide with each other as described with reference to FIG. 5A, and therefore, when the AlGaInN-based laser bar 57 is produced by cleavage, a straight line is formed from both ends of the substrate. Cleavage cannot be achieved, and the separation groove is deviated on the way, and only cleavage with low yield is possible.

【0014】また、図7(a)に示すようにサファイア
基板あるいは周期的な加工を施したマスク基板や段差加
工基板を用いてAlGaInN系レーザ構造72を成長
すると基板とAlGaInN系結晶との間の格子不整合
及び熱膨張不整合に起因して、AlGaInN系結晶の
成長後にエピ基板全体が反ってしまうという問題が発生
する。基板の反りはレーザ作製プロセスにおいて、例え
ば電流狭窄のためのリッジストライプを作製する際の位
置合わせに大きな障害となったり、また最終工程で共振
器面を得るためにへき開する場合に直線的に割れず低歩
留まりの原因となる。
Further, as shown in FIG. 7A, when the AlGaInN laser structure 72 is grown using a sapphire substrate, a mask substrate subjected to periodic processing, or a stepped substrate, a gap between the substrate and the AlGaInN crystal is formed. Due to the lattice mismatch and the thermal expansion mismatch, there arises a problem that the entire epitaxial substrate warps after the growth of the AlGaInN-based crystal. Substrate warpage is a major obstacle in laser fabrication process, for example, alignment when producing a ridge stripe for current constriction, and linear cracking occurs when cleavage is performed to obtain a cavity plane in the final step. It causes low yield.

【0015】本発明は上記の事情を鑑みてなされたもの
であり、信頼性の高い窒化物半導体素子を歩留まり良く
作製する方法を提供するものである。特に光ディスク用
レーザへの応用において効果的である。
The present invention has been made in view of the above circumstances, and provides a method for manufacturing a highly reliable nitride semiconductor device with a high yield. It is particularly effective in application to lasers for optical disks.

【0016】[0016]

【課題を解決するための手段】本発明のAlGaInN
系半導体の第一の製造方法は、サファイア等の基板上に
構成されたAlxGayInzN(x+y+z=1)系結
晶の結晶部及び基板部の内少なくともいずれかにパルス
レーザビーム光を照射することにより分離溝を形成する
ことを特徴とする。
The AlGaInN of the present invention
The first method of manufacturing a system semiconductor, at least one of the crystalline portion and the substrate portion of the Al x Ga y In z N ( x + y + z = 1) based crystal which is constructed on a substrate such as sapphire pulsed laser beam It is characterized in that the separation groove is formed by irradiation.

【0017】また、本発明のAlGaInN系半導体の
第二の製造方法は、基板上に構成されたAlxGayIn
zN(x+y+z=1)系結晶の結晶部及び基板部の内
少なくともいずれかにパルスレーザビーム光を照射する
ことにより素子分離を行うことを特徴とする。特に、パ
ルスレーザビーム光の照射領域と非照射領域が周期的で
あり、パルスレーザビーム光非照射領域がレーザダイオ
ードの共振器面形成領域を含むことを特徴とする。
The second method of manufacturing an AlGaInN semiconductor according to the present invention is the same as that of Al x Ga y In formed on a substrate.
The element isolation is performed by irradiating at least one of the crystal part and the substrate part of the z N (x + y + z = 1) type crystal with the pulsed laser beam. In particular, the irradiation area and the non-irradiation area of the pulsed laser beam light are periodic, and the non-irradiation area of the pulsed laser beam light includes the resonator surface forming area of the laser diode.

【0018】また、本発明のAlGaInN系半導体の
第三の製造方法は、基板上に構成されたAlxGayIn
zN(x+y+z=1)系結晶の結晶部及び裏面基板部
に分離溝を形成する工程と、前記分離溝の内少なくとも
いずれかにおいてパルスレーザビーム光を照射して前記
分離溝を追加工することを特徴とする。特に、パルスレ
ーザビーム光を照射する工程を含む工程により形成した
分離溝に添ってへき開することによりレーザダイオード
の共振器面を作製またはパルスレーザビーム光を照射す
ることによりレーザダイオードの共振器面を直接作製す
ることを特徴とする。前記AlGaInN系半導体の製
造方法はパルスレーザビーム光照射による分離溝形成方
法は多光子過程によることを特徴とする。
The third method of manufacturing an AlGaInN semiconductor according to the present invention is the same as that of Al x Ga y In formed on a substrate.
z N (x + y + z = 1) system and forming a crystalline portion and the separation grooves on the rear surface of the substrate portion of the crystal, that additional machining of the separation groove by irradiating a pulsed laser beam in at least one of said isolation trench Is characterized by. In particular, the resonator surface of the laser diode is manufactured by cleaving along the separation groove formed by the step including the step of irradiating the pulsed laser beam light, or the resonator surface of the laser diode is irradiated with the pulsed laser beam light. It is characterized by being directly manufactured. The method of manufacturing the AlGaInN-based semiconductor is characterized in that the method of forming the separation groove by irradiation with the pulsed laser beam is a multiphoton process.

【0019】また、本発明のAlGaInN系半導体の
第四の製造方法及び素子構造は基板表面または裏面のう
ち少なくとも一方に溝加工を施す工程と前記基板上にA
lGaInN系半導体素子の作製を行う工程とを有する
ことを特徴とし、特に加工溝の周期または深さの少なく
とも一方を基板内において変調させることを特徴とす
る。
The fourth method and device structure for manufacturing an AlGaInN-based semiconductor according to the present invention comprises a step of grooving at least one of the front surface and the back surface of the substrate, and A on the substrate.
and a step of manufacturing a 1GaInN-based semiconductor element, and in particular, at least one of the cycle and depth of the processed groove is modulated in the substrate.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を用いて詳細に説明する。本発明のAlGaIn
N系半導体の成長方法は、MOVPE法に限定するもの
ではなく、ハイドライド気相成長法(HVPE法)や分
子線エピタキシー法(MBE法)など、AlGaInN
系窒化物半導体層を成長させるためにこれまで提案され
ている全ての方法に適用できる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. AlGaIn of the present invention
The growth method of the N-based semiconductor is not limited to the MOVPE method, but may be the hydride vapor phase epitaxy method (HVPE method), the molecular beam epitaxy method (MBE method), or the like.
It can be applied to all the methods proposed so far for growing a nitride semiconductor layer.

【0021】(実施例1)図6に素子断面図を示すよう
に、まずMOVPE法によりサファイア基板601の主
にC面上にGaNバッファー層602、n−AlGaN
層603、n−AlGaNクラッド層604、n−Ga
N光ガイド層605、Ga1-xInxN/Ga1-yIny
(0<y<x<1)から成る多重量子井戸(MQW)
活性層606、p−GaN光ガイド層607、p−Al
GaNクラッド層608、p−GaNコンタクト層60
9を結晶成長する。そしてp−GaNコンタクト層60
9上に幅3μm程度のリッジストライプが形成され、そ
の両側はSiO2611によって埋め込まれる。その後
リッジストライプおよびSiO2611上に例えばNi
/Auから成るp電極610、また一部をn−AlGa
N層603が露出するまでエッチングした表面に例えば
Ti/Alから成るn電極612が形成される。本素子
においてn電極612を接地し、p電極610に電圧を
印加すると、MQW活性層606に向かってp電極61
0側からホールが、またn電極612側から電子が注入
され、前記MQW活性層606内で光学利得を生じ、発
振波長400nm帯のレーザ発振を起こす。
(Embodiment 1) As shown in FIG. 6 which is a sectional view of an element, first, a GaN buffer layer 602 and n-AlGaN are mainly formed on the C plane of a sapphire substrate 601 by MOVPE.
Layer 603, n-AlGaN cladding layer 604, n-Ga
N optical guide layer 605, Ga 1-x In x N / Ga 1-y In y N
Multiple quantum well (MQW) consisting of (0 <y <x <1)
Active layer 606, p-GaN light guide layer 607, p-Al
GaN cladding layer 608, p-GaN contact layer 60
9 is crystal-grown. And the p-GaN contact layer 60
A ridge stripe having a width of about 3 μm is formed on the substrate 9, and both sides thereof are filled with SiO 2 611. Then, for example, Ni on the ridge stripe and SiO 2 611.
/ Au made p-electrode 610, and partly n-AlGa
An n electrode 612 made of, for example, Ti / Al is formed on the surface etched until the N layer 603 is exposed. In this element, when the n-electrode 612 is grounded and a voltage is applied to the p-electrode 610, the p-electrode 61 faces the MQW active layer 606.
Holes are injected from the 0 side and electrons are injected from the n electrode 612 side, an optical gain is generated in the MQW active layer 606, and laser oscillation in an oscillation wavelength band of 400 nm is caused.

【0022】次に、図2(a)に素子作製の工程断面図
を示すように、サファイア基板22の裏面側にダイアモ
ンドカッター等を用いてスクライビングを行い分離溝2
3を周期的に形成する。前記分離溝23の間隔(周期)
はレーザダイオードの光共振器長の約700μmであ
り、溝は基板の端から端まで一直線に形成する。また、
前記分離溝23の深さはサファイア基板の厚み範囲内に
おいて作製する。なお、サファイア基板の厚みは前記素
子構造を形成した後、研削機を用いてトータル100μ
m程度の厚みになるように基板裏面を研磨する。次に、
図2(b)に示すように、AlGaInN系レーザ構造
結晶21側からパルスレーザビーム24を前記分離溝2
3に対応する位置に照射し、基板を完全に分離する。た
だしレーザビーム照射は直接分離溝23まで貫通させな
くても良く、AlGaInN系レーザ構造結晶21だけ
に照射した後、基板に力を加えて分離溝23に添って割
っても良い。またパルスレーザビームのスキャンは、集
光レンズを移動させてビームを移動させても、ビームを
固定し基板をステージ等に保持しこれを移動させても良
い。図1は第1の実施例を示すAlGaInN系半導体
レーザ構造を形成した基板1上においてパルスレーザビ
ームを照射し、分離加工部2を形成した状態を表す図
(AlGaInN系結晶成長を施した側から見た図)で
ある。なおパルスレーザビームは前記図1に示すように
レーザ共振器作製部分4近傍には照射せず、素子幅程度
の周期で照射/非照射の部分を形成することが望まし
い。これは前記図2の工程で説明したようにAlGaI
nN系レーザバー3を作製する際に分離加工部2に添っ
て力を加えれば、レーザを照射していない共振器作製部
分4近傍も分離加工部2に添って容易に割ることができ
かつレーザ照射の影響を受けないので原子層オーダーで
自然形成された共振器面が実現できる。なお、図1にお
いてレーザビームを照射して形成する溝の方向は基板で
あるサファイアの<11−20>方向であるが、<1−
100>方向であっても良い。更にレーザ照射を任意に
結晶軸方向に行っても問題ない。図4は前記方法を用い
てパルスレーザビーム照射により形成した素子の共振器
近傍における断面図である。レーザ照射はサファイアの
<11−20>方向に行う。サファイアM面43が精度
良く形成されるので、AlGaInN系レーザの共振器
面41(この場合A面)の平坦性が極めて良好に、かつ
再現性良く形成される。
Next, as shown in FIG. 2 (a), which is a sectional view of a process for manufacturing an element, scribing is performed on the back surface side of the sapphire substrate 22 using a diamond cutter or the like.
3 is periodically formed. Interval (cycle) of the separation groove 23
Is about 700 μm, which is the optical resonator length of the laser diode, and the groove is formed in a straight line from one end of the substrate to the other. Also,
The depth of the separation groove 23 is formed within the thickness range of the sapphire substrate. Note that the sapphire substrate has a total thickness of 100 μm using a grinder after forming the element structure.
The back surface of the substrate is polished to a thickness of about m. next,
As shown in FIG. 2B, the pulsed laser beam 24 is applied from the side of the AlGaInN laser structure crystal 21 to the separation groove 2
Irradiate the position corresponding to 3 to completely separate the substrate. However, the laser beam irradiation does not have to directly penetrate to the separation groove 23. After irradiating only the AlGaInN-based laser structure crystal 21, the substrate may be split along the separation groove 23 by applying a force. Further, the scanning of the pulsed laser beam may be performed by moving the condenser lens to move the beam, or fixing the beam and holding the substrate on a stage or the like and moving the substrate. FIG. 1 is a diagram showing a state in which a pulsed laser beam is irradiated on a substrate 1 on which an AlGaInN-based semiconductor laser structure according to the first embodiment is formed, and a separation processed portion 2 is formed (from the side on which AlGaInN-based crystal growth is performed. It is a view). As shown in FIG. 1, it is preferable that the pulsed laser beam is not irradiated in the vicinity of the laser resonator manufacturing portion 4 but the irradiation / non-irradiation portion is formed in a cycle of about the element width. This is due to AlGaI as described in the step of FIG.
If a force is applied along the separation processing portion 2 when manufacturing the nN-based laser bar 3, the vicinity of the resonator manufacturing portion 4 which is not irradiated with laser can be easily broken along the separation processing portion 2 and the laser irradiation is performed. Therefore, it is possible to realize a resonator surface that is naturally formed on the atomic layer order. In addition, in FIG. 1, the direction of the groove formed by irradiating the laser beam is the <11-20> direction of the sapphire which is the substrate.
The direction may be 100>. Further, there is no problem even if laser irradiation is arbitrarily performed in the crystal axis direction. FIG. 4 is a cross-sectional view in the vicinity of a resonator of an element formed by pulsed laser beam irradiation using the above method. Laser irradiation is performed in the <11-20> direction of sapphire. Since the sapphire M surface 43 is formed with high precision, the flatness of the resonator surface 41 (A surface in this case) of the AlGaInN-based laser is extremely excellent and reproducible.

【0023】本発明において、照射するパルスレーザは
例えばチタン・サファイア系のピーク波長が赤外付近
で、パルス幅は数100fsの超短パルスを用いる。超
短パルスレーザを用いることで照射するレーザの尖頭値
パワーを短時間で著しく増大させることができ、短時間
に得られた強いレーザパワーにより多光子吸収過程によ
り原子の結合が切れ基板や結晶が分離切断される(レー
ザアブレーション)。これによりレーザビームを照射し
た領域において熱によるダメージを著しく低減させるこ
とが可能となる。
In the present invention, the pulse laser used for irradiation is an ultrashort pulse having a peak wavelength of, for example, titanium / sapphire near infrared and a pulse width of several 100 fs. By using an ultra-short pulsed laser, the peak power of the laser to be irradiated can be significantly increased in a short time, and the strong laser power obtained in a short time breaks the atomic bonds due to the multiphoton absorption process and the substrate or crystal. Are separated and cut (laser ablation). This makes it possible to significantly reduce the damage due to heat in the region irradiated with the laser beam.

【0024】更に本発明において、パルスレーザビーム
を照射することにより、作製するレーザ素子の共振器近
傍ぎりぎり(数μm程度)まで照射しても、前記共振器
にダメージを与えることなく溝加工できる。従来、ダイ
ヤモンドカッター等を用いて溝加工した場合、溝周辺部
にひびや欠陥が入ってしまうために作製するレーザ素子
の共振器から100μm程度離れた位置までしか溝加工
できず、このためにレーザバーを作製する際に十分なガ
イドとなる溝が得られず、力を加えて割る際に途中で大
きく外れて歩留まりを極端に低下させていたが、本発明
により格段の歩留まり向上が実現できた。
Further, in the present invention, by irradiating with a pulsed laser beam, even if the laser element to be manufactured is irradiated up to the very vicinity of the resonator (about several μm), the groove can be processed without damaging the resonator. Conventionally, when a groove is processed by using a diamond cutter or the like, cracks and defects are formed in the peripheral portion of the groove, so that the groove can be processed only up to about 100 μm from the resonator of the laser element to be manufactured. Although a groove that serves as a sufficient guide was not obtained during the production of, and the yield was greatly reduced during the splitting when a force was applied, the yield was significantly improved by the present invention.

【0025】なお本実施例においては基板としてサファ
イアを示したがAlGaInN系結晶のエピタキシャル
成長に一般に用いる他のSi,SiC,Mg23,Ga
N,ガラス等についても有効であり、更にマスクを用い
た選択横方向成長を行った低欠陥のAlGaInN系基
板においても有効であることは言うまでも無い。
Although sapphire is used as the substrate in this embodiment, other Si, SiC, Mg 2 O 3 and Ga generally used for the epitaxial growth of AlGaInN type crystals are used.
It is needless to say that it is also effective for N, glass, and the like, and is also effective for a low-defect AlGaInN-based substrate that has been selectively laterally grown using a mask.

【0026】(実施例2)次にパルスレーザビームを基
板の裏面に照射する工程について説明する。素子構造、
基板厚み及びパルスレーザビーム照射に用いる光源は実
施例1と同様である。
(Embodiment 2) Next, the step of irradiating the back surface of the substrate with a pulsed laser beam will be described. Element structure,
The substrate thickness and the light source used for pulsed laser beam irradiation are the same as in the first embodiment.

【0027】図3にパルスレーザビームを基板の裏面に
照射し基盤を分離切断する工程を示す。図3(a)に示
すように、サファイア基板32の裏面側にパルスレーザ
ビーム照射33を施し分離溝34を周期的に形成する。
前記分離溝34の間隔(周期)はレーザダイオードの光
共振器長の約700μmであり、溝は基板の端から端ま
で一直線に形成する。また、前記分離溝34の深さはサ
ファイア基板の厚み範囲内において作製する。この時、
基板の厚み方向にいて一部(10〜20μm程度)はレ
ーザ光のフォーカスを調整するなどしてパルスレーザ光
によって基板が加工されないようにする。次に、図3
(b)に示すように、AlGaInN系レーザ構造結晶
31側からパルスレーザビーム35を前記分離溝34に
対応する位置に照射し、分離溝36を形成する。パルス
レーザビーム照射35のパターンは実施例1と同様図1
に示す通り、作製するレーザ素子の共振器端面部には照
射せずに周期的に行うものとする。最後に図3(c)に
示すように図3(b)の状態に力を加え基板を割る。
FIG. 3 shows a step of irradiating the back surface of the substrate with a pulsed laser beam to separate and cut the substrate. As shown in FIG. 3A, a pulsed laser beam irradiation 33 is applied to the back surface side of the sapphire substrate 32 to periodically form separation grooves 34.
The interval (cycle) between the separation grooves 34 is about 700 μm, which is the optical resonator length of the laser diode, and the grooves are formed in a straight line from one end of the substrate to the other. The depth of the separation groove 34 is set within the thickness range of the sapphire substrate. This time,
A part (about 10 to 20 μm) in the thickness direction of the substrate is adjusted so that the substrate is not processed by the pulsed laser beam by adjusting the focus of the laser beam. Next, FIG.
As shown in (b), a pulse laser beam 35 is irradiated from a side of the AlGaInN-based laser structure crystal 31 to a position corresponding to the separation groove 34 to form a separation groove 36. The pattern of the pulsed laser beam irradiation 35 is similar to that of the first embodiment shown in FIG.
As shown in (1), the end facet of the cavity of the laser device to be manufactured is not irradiated and is periodically performed. Finally, as shown in FIG. 3C, a force is applied to the state of FIG. 3B to break the substrate.

【0028】本発明の工程によれば基板裏面側からパル
スレーザビームを照射するので、基板厚み方向において
AlGaInN系レーザ構造結晶と基板との界面近傍ぎ
りぎりまで前記結晶部にダメージを与えることなく溝加
工できるので、ダイヤモンドカッター等を用いた場合の
ように、溝加工部周辺に生じるクラックやひび割れを回
避するために結晶と基板との界面から溝加工を離す必要
がなく、格段に歩留まり良くレーザバーを作製できる。
According to the process of the present invention, since the pulsed laser beam is irradiated from the back surface side of the substrate, the groove is processed in the thickness direction of the substrate to the edge of the vicinity of the interface between the AlGaInN laser structure crystal and the substrate without damaging the crystal portion. Therefore, unlike the case of using a diamond cutter, it is not necessary to separate the groove processing from the interface between the crystal and the substrate in order to avoid the cracks and cracks that occur around the groove processing part, and the laser bar can be manufactured with extremely high yield. it can.

【0029】本発明がサファイア以外の基板に用いても
有効であることは実施例1に同様である。
Similar to the first embodiment, the present invention is effective when applied to substrates other than sapphire.

【0030】(実施例3)図8(a)に示すようにサフ
ァイアC面基板81にフォトリソグラフィーやドライエ
ッチングプロセス等を用いて溝加工82を施す。用いた
基板の厚み及び全径はそれぞれ約400μm及び2イン
チである。溝加工はサファイアの<1−100>及び<
11−20>方向に沿って直線上に施し、基板周辺部ほ
ど溝と溝との間隔を密にする。典型的な溝と溝との間隔
は、基板中心部は500〜1000μm程度、基板周辺
部は50〜100μm程度で、溝幅は1〜3μm程度
で、溝深さは約5〜100μm程度である。なお溝加工
はパルスレーザビーム照射を行って作製してもよい。
(Embodiment 3) As shown in FIG. 8A, a sapphire C-plane substrate 81 is subjected to groove processing 82 using photolithography, a dry etching process or the like. The thickness and total diameter of the substrates used are about 400 μm and 2 inches, respectively. Grooving is <1-100> and <of sapphire
11-20> direction is applied on a straight line, and the distance between the grooves is made closer to the peripheral portion of the substrate. Typical intervals between the grooves are about 500 to 1000 μm at the center of the substrate, about 50 to 100 μm at the periphery of the substrate, the groove width is about 1 to 3 μm, and the groove depth is about 5 to 100 μm. . The groove processing may be performed by performing pulsed laser beam irradiation.

【0031】前記加工基板を用いて図9に断面図を示す
AlGaInN系レーザ構造を作製する。まずMOVP
E法により前記図8(a)に示した溝加工を施した空隙
902を有するサファイア基板901の主にC面上にG
aNバッファー層を介してアンドープGaN層903、
n−GaN層904、n−AlGaNクラッド層90
5、n−GaN光ガイド層906、Ga1-xInxN/G
1-yInyN (0<y<x<1)から成る多重量子井
戸(MQW)活性層907、p−AlGaN/GaN超
格子キャップ層908、p−GaN光ガイド層909、
p−AlGaN/GaN超格子クラッド層910、p−
GaN第二コンタクト層911、p−GaN第二コンタ
クト層912を順次結晶成長する。そしてp−GaN第
二コンタクト層912上に幅3μm程度のリッジストラ
イプが形成され、その両側はSiO 2914によって埋
め込まれる。その後リッジストライプおよびSiO2
14上に例えばNi/Auから成るp電極913、また
一部をn−GaN層904が露出するまでエッチングし
た表面に例えばTi/Alから成るn電極915が形成
される。本素子においてn電極915を接地し、p電極
913に電圧を印加すると、MQW活性層907に向か
ってp電極913側からホールが、またn電極915側
から電子が注入され、前記MQW活性層907内で光学
利得を生じ、発振波長400nm帯のレーザ発振を起こ
す。
FIG. 9 is a sectional view of the processed substrate.
An AlGaInN-based laser structure is produced. First MOVP
The groove processed by the method E as shown in FIG.
The sapphire substrate 901 having 902 has G mainly on the C plane.
an undoped GaN layer 903 via the aN buffer layer,
n-GaN layer 904, n-AlGaN cladding layer 90
5, n-GaN optical guide layer 906, Ga1-xInxN / G
a1-yInyMultiple quantum wells consisting of N (0 <y <x <1)
Door (MQW) active layer 907, over p-AlGaN / GaN
A lattice cap layer 908, a p-GaN light guide layer 909,
p-AlGaN / GaN superlattice cladding layer 910, p-
GaN second contact layer 911, p-GaN second contour
Layer 912 is sequentially crystallized. And p-GaN
A ridge strut having a width of about 3 μm is formed on the second contact layer 912.
Is formed on both sides with SiO 2Buried by 914
Inset. Then ridge stripe and SiO29
P electrode 913 made of, for example, Ni / Au,
Etching a part until the n-GaN layer 904 is exposed
An n electrode 915 made of, for example, Ti / Al is formed on the surface
To be done. In this device, the n-electrode 915 is grounded and the p-electrode is
When a voltage is applied to 913, the MQW active layer 907 heads toward
Holes from the p-electrode 913 side, and the n-electrode 915 side
Electrons are injected into the MQW active layer 907 from the
Produces gain and causes laser oscillation in the 400 nm wavelength band
You

【0032】図8(a)に示すような変調周期を有した
溝加工を施したサファイア基板を用いて前記素子構造を
結晶成長すると以下に示すように基板の反りやクラック
を低減するのに極めて大きな効果がある。すなわち、図
7(b)に示すようにサファイア基板74に施した空隙
76上ではAlGaInN系レーザ構造75が横方向成
長し、結合部74でスムースに結合するので素子表面の
結晶平坦性は確保される。更に、基板周辺部においては
溝加工の加工周期が基板中心部よりも短く、より密に空
隙が存在するので、この領域においてはサファイア基板
74とAlGaInN系レーザ構造75との間に生じる
応力が緩和され、反りや変形更にはこれらによってもた
らされる結晶部のクラックが著しく低減される。この結
果、2インチ系の基板を用いて前記素子構造を結晶成長
し、これにフォトリソグラフィー等を用いてレーザのリ
ッジストライプを形成する際に、フォトマスクとの位置
ずれ等が無くなるので、量産を行う際に極めて歩留まり
良く生産できることがわかった。更に、実施例1や実施
例2に示すようにレーザバーを作製する際にいても、本
発明を用いて基板の反りや変形を無くすと著しく高歩留
まりでレーザバーが作製できることが判明した。
Crystal growth of the device structure using a grooved sapphire substrate having a modulation period as shown in FIG. 8A is extremely effective in reducing warpage and cracks of the substrate as shown below. It has a great effect. That is, as shown in FIG. 7B, the AlGaInN-based laser structure 75 grows laterally on the void 76 formed in the sapphire substrate 74 and smoothly bonds at the bonding portion 74, so that the crystal flatness of the device surface is secured. It Further, in the peripheral portion of the substrate, the processing cycle of the groove processing is shorter than that in the central portion of the substrate, and there are more dense voids, so that the stress generated between the sapphire substrate 74 and the AlGaInN-based laser structure 75 is relaxed in this region. As a result, warpage, deformation, and cracks in the crystal part caused by these are significantly reduced. As a result, when the device structure is crystal-grown using a 2-inch substrate and a ridge stripe of a laser is formed on the device structure by using photolithography or the like, there is no misalignment with the photomask, so mass production is possible. It was found that the production can be performed with extremely high yield when performing. Further, it has been found that even when the laser bar is manufactured as shown in Examples 1 and 2, the laser bar can be manufactured with a remarkably high yield by eliminating the warp and the deformation of the substrate by using the present invention.

【0033】サファイア基板の溝加工は、図8(b)に
示すように基板周囲程より密につまった同心円状でも良
い。この場合基板全体にわたりより歪による変形を抑制
できる。更に図8(c)に示すように例えば<1−10
0>や<11−20>のように特定の方向のみに沿って
溝加工を施せば、溝加工に垂直な方向の歪みが平行方向
の歪みよりも緩和されるのでc面内において異方的な歪
み応力を意図的に加えることが実現でき、歪みによって
AlGaInN系結晶のバンド構造を変えレーザの発光
特性改善が可能となる。
The groove processing of the sapphire substrate may be a concentric circular shape which is more densely packed around the substrate as shown in FIG. 8 (b). In this case, deformation due to strain can be suppressed over the entire substrate. Further, as shown in FIG. 8C, for example, <1-10
0> and <11-20>, if the groove is processed only in a specific direction, the strain in the direction perpendicular to the groove is alleviated more than the strain in the parallel direction, so that it is anisotropic in the c-plane. It is possible to intentionally apply various strain stresses, and it is possible to improve the emission characteristics of the laser by changing the band structure of the AlGaInN-based crystal due to the strain.

【0034】また溝加工の深さを基板周辺部ほど深くす
ることにより基板周辺部がより緩和されるので、前記深
さ変調は周期変調の場合と同様に基板の反りや変形に対
して有効である。
Further, since the peripheral portion of the substrate is more relaxed by making the depth of the groove processing deeper toward the peripheral portion of the substrate, the depth modulation is effective for the warp and deformation of the substrate as in the case of the periodic modulation. is there.

【0035】[0035]

【発明の効果】以上説明したように、本発明のAlGa
InN系半導体の第一の製造方法によれば、基板上に構
成されたAlxGayInzN(x+y+z=1)系結晶
の結晶部及び基板部の内少なくともいずれかにパルスレ
ーザビーム光を照射して分離溝を形成することにより、
前記基板及びAlGaInN系結晶の結晶面に沿って忠
実に溝加工が実現でき、極めて平坦性に優れた分離溝断
面を作製することが可能である。
As described above, the AlGa of the present invention is
According to the first method of manufacturing an InN-based semiconductor, pulsed laser beam light is applied to at least one of a crystal part and a substrate part of an Al x Ga y In z N (x + y + z = 1) -based crystal formed on a substrate. By irradiating and forming the separation groove,
Grooves can be faithfully processed along the crystal planes of the substrate and the AlGaInN-based crystal, and a separation groove cross section having extremely excellent flatness can be manufactured.

【0036】また、本発明のAlGaInN系半導体の
第二の製造方法によれば、基板上に構成されたAlx
yInzN(x+y+z=1)系結晶の結晶部及び基板
部の内少なくともいずれかにパルスレーザビーム光を照
射することにより素子分離を行うことにより、前記基板
及びAlGaInN系結晶の結晶面に忠実沿って素子分
離が可能となり、この工程を半導体レーザに適用した場
合極めて高歩留まりなレーザダイオード光共振器端面の
作製が可能となる。
According to the second method of manufacturing an AlGaInN-based semiconductor of the present invention, Al x G formed on the substrate.
a y In z N (x + y + z = 1) -based crystal is irradiated with a pulsed laser beam to at least one of the crystal part and the substrate part of the a- InZ N-based crystal to perform element isolation, and thus the substrate and the AlGaInN-based crystal surface are crystallized. When the process is applied to a semiconductor laser, it becomes possible to fabricate an end facet of a laser diode optical resonator with an extremely high yield when elements are separated in a faithful manner.

【0037】また、本発明のAlGaInN系半導体の
第三の製造方法によれば、基板上に構成されたAlx
yInzN(x+y+z=1)系結晶の結晶部及び裏面
基板部に分離溝を形成する工程と、前記分離溝の内少な
くともいずれかにおいてパルスレーザビーム光を照射し
て前記分離溝を追加工し、パルスレーザビーム光を照射
して形成した分離溝に添ってへき開することにより、極
めて平坦なレーザダイオード共振器面の作製が高歩留ま
りで可能となる。特に、前記パルスレーザビーム光照射
による分離溝形成方法は多光子過程によるもので熱的な
過程が支配的ではなく、レーザダイオードを構成する基
板及び結晶を損傷することなく短時間に結晶を構成する
原子の結合を切断できるので、信頼性に優れた発光素子
が実現できる。
According to the third method of manufacturing an AlGaInN-based semiconductor of the present invention, Al x G formed on the substrate.
a step of forming a separation groove in the crystal part and the back substrate part of the a y In z N (x + y + z = 1) -based crystal; and at least one of the separation grooves is irradiated with a pulsed laser beam to add the separation groove. By processing and cleaving along the separation groove formed by irradiating a pulsed laser beam, an extremely flat laser diode resonator surface can be manufactured with a high yield. In particular, the method for forming the separation groove by irradiation with the pulsed laser beam light is based on a multiphoton process and the thermal process is not dominant, and the crystal is formed in a short time without damaging the substrate and the crystal forming the laser diode. Since the bonds of atoms can be broken, a highly reliable light emitting element can be realized.

【0038】また、本発明のAlGaInN系半導体の
第四の製造方法及び素子構造によれば、基板表面または
裏面のうち少なくとも一方に周期または深さを基板内に
おいて変調させた溝加工を施した後、前記基板上にAl
GaInN系半導体素子の作製を行うことにより、素子
を構成する基板と前記AlGaInN系結晶との間に発
生する熱歪みを低減でき、反り、変形及びクラック等の
無い高品質な素子が実現できる。
According to the fourth method of manufacturing an AlGaInN-based semiconductor and the device structure of the present invention, after performing groove processing in which at least one of the front surface and the back surface of the substrate has a period or depth modulated within the substrate, , Al on the substrate
By manufacturing a GaInN-based semiconductor device, it is possible to reduce the thermal strain generated between the substrate forming the device and the AlGaInN-based crystal, and it is possible to realize a high-quality device free from warpage, deformation, cracks and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】AlGaInN系素子構造を形成した基板上に
おけるパルスレーザビーム照射による分離溝形成パター
ンを表す図
FIG. 1 is a diagram showing a separation groove formation pattern by pulsed laser beam irradiation on a substrate on which an AlGaInN-based device structure is formed.

【図2】(a)パルスレーザビーム照射による分離溝形
成の工程図 (b)パルスレーザビーム照射による分離溝形成の工程
2A is a process diagram of forming a separation groove by pulse laser beam irradiation; FIG. 2B is a process diagram of forming a separation groove by pulse laser beam irradiation.

【図3】(a)パルスレーザビーム照射による分離溝形
成の工程図 (b)パルスレーザビーム照射による分離溝形成の工程
図 (c)パルスレーザビーム照射による分離溝形成の工程
3A is a process diagram of forming a separation groove by pulse laser beam irradiation; FIG. 3B is a process diagram of forming a separation groove by pulse laser beam irradiation; and FIG. 3C is a process diagram of forming a separation groove by pulse laser beam irradiation.

【図4】パルスレーザビーム照射により形成した素子断
面図
FIG. 4 is a sectional view of an element formed by pulsed laser beam irradiation.

【図5】(a)従来のスクライビング法により形成した
素子断面図 (b)従来のスクライビング法により形成した分離溝形
成パターンを表す図
FIG. 5A is a sectional view of an element formed by a conventional scribing method. FIG. 5B is a view showing a separation groove formation pattern formed by a conventional scribing method.

【図6】本発明のプロセスを施したAlGaInN系素
子構造を示す図
FIG. 6 is a diagram showing an AlGaInN-based device structure subjected to the process of the present invention.

【図7】(a)従来法によるサファイア基板上AlGa
InN系素子断面図 (b)本発明によるサファイア基板上AlGaInN系
素子断面図
FIG. 7 (a) AlGa on a sapphire substrate by a conventional method.
Sectional view of InN-based element (b) Sectional view of AlGaInN-based element on sapphire substrate according to the present invention

【図8】(a)本発明による基板上への加工パターンを
表す図 (b)本発明による基板上への加工パターンを表す図 (c)本発明による基板上への加工パターンを表す図
8A is a diagram showing a processing pattern on a substrate according to the present invention, FIG. 8B is a diagram showing a processing pattern on a substrate according to the present invention, and FIG. 8C is a diagram showing a processing pattern on a substrate according to the present invention.

【図9】本発明による加工基板を用いたAlGaInN
系素子断面図
FIG. 9: AlGaInN using a processed substrate according to the present invention
System element cross section

【図10】従来法による加工基板を用いたAlGaIn
N系素子断面図
FIG. 10: AlGaIn using a processed substrate by a conventional method
Cross section of N-based element

【図11】(a)従来法によるマスク基板を用いたGa
N結晶の構造断面図 (b)従来法による加工基板を用いたGaN結晶の構造
断面図
FIG. 11 (a) Ga using a mask substrate according to a conventional method
Structural sectional view of N crystal (b) Structural sectional view of GaN crystal using processed substrate by conventional method

【符号の説明】[Explanation of symbols]

1 AlGaInN系レーザ構造作製済ウエハ 2 レーザビームを用いた分離加工部 3 AlGaInN系レーザバー 4 AlGaInN系レーザ共振器作製部分 21 AlGaInN系レーザ構造 22 サファイア基板 23 分離溝 24 パルスレーザビーム照射 25 分離溝 31 AlGaInN系レーザ構造 32 サファイア基板 33 パルスレーザビーム照射 34 分離溝 35 パルスレーザビーム照射 36 分離溝 41 AlGaInN系レーザ共振器面 42 サファイアC面 43 サファイアM面 51 サファイアM面 52 AlGaInN系レーザ結晶M面 53 AlGaInN系レーザ結晶A面 54 サファイアC面 55 AlGaInN系レーザ構造作製済ウエハ 56 ダイアモンドカッターを用いた分離溝 57 分離溝周辺部のひび割れ及び傷 58 レーザ共振器作製部分 71 サファイア基板 72 AlGaInN系レーザ構造 73 変形及び応力が大きい領域 74 結合部 75 AlGaInN系レーザ構造 76 空隙 81 サファイア基板 82 溝加工 83 サファイア基板 84 溝加工 85 サファイア基板 86 溝加工 601 サファイア基板 602 バッファ層 603 n−AlGaN層 604 n−AlGaNクラッド層 605 n−GaN光ガイド層 606 GaInN/GaN−MQW活性層 607 p−GaN光ガイド層 608 p−AlGaNクラッド層 609 p−GaNコンタクト層 610 p電極 611 SiO2 612 n電極 901 サファイア基板 902 空隙 903 u−GaN層 904 n−GaN層 905 n−AlGaNクラッド層 906 n−GaN光ガイド層 907 活性層 908 p−AlGaN/GaN超格子キャップ層 909 p−GaN光ガイド層 910 p−AlGaN/GaN超格子クラッド層 911 p−GaN第二コンタクト層 912 p−GaN第一コンタクト層 913 p電極 914 SiO2 915 n電極 1001 サファイア基板 1002 バッファ層 1003 n−AlGaN層 1004 n−AlGaNクラッド層 1005 n−GaN光ガイド層 1006 GaInN/GaN−MQW活性層 1007 p−GaN光ガイド層 1008 p−AlGaNクラッド層 1009 p−GaNコンタクト層 1010 p電極 1011 SiO2 1012 n電極 1101 サファイア基板 1102 GaN 1103 SiO2 1104 GaN層 1105 転位の少ない領域 1106 転位の多い領域 1107 サファイア基板 1108 GaN 1109 空隙 1110 転位の少ない領域 1111 転位の多い領域1 Wafer Having AlGaInN Laser Structure Fabricated 2 Separation Processing Part 3 Using Laser Beam 3 AlGaInN Laser Bar 4 AlGaInN Laser Resonator Fabrication Part 21 AlGaInN Laser Structure 22 Sapphire Substrate 23 Separation Groove 24 Pulse Laser Beam Irradiation 25 Separation Groove 31 AlGaInN System laser structure 32 Sapphire substrate 33 Pulsed laser beam irradiation 34 Separation groove 35 Pulsed laser beam irradiation 36 Separation groove 41 AlGaInN system laser resonator surface 42 Sapphire C surface 43 Sapphire M surface 51 Sapphire M surface 52 AlGaInN laser crystal M surface 53 AlGaInN System laser crystal A plane 54 sapphire C plane 55 AlGaInN system laser structure manufactured wafer 56 separation groove 57 using a diamond cutter cracks and scratches around the separation groove 58 laser Shaker manufacturing portion 71 Sapphire substrate 72 AlGaInN-based laser structure 73 Region where deformation and stress are large 74 Coupling portion 75 AlGaInN-based laser structure 76 Void 81 Sapphire substrate 82 Groove processing 83 Sapphire substrate 84 Groove processing 85 Sapphire substrate 86 Groove processing 601 Sapphire substrate 602 Buffer layer 603 n-AlGaN layer 604 n-AlGaN clad layer 605 n-GaN light guide layer 606 GaInN / GaN-MQW active layer 607 p-GaN light guide layer 608 p-AlGaN clad layer 609 p-GaN contact layer 610 p electrode 611 SiO 2 612 n electrode 901 sapphire substrate 902 void 903 u-GaN layer 904 n-GaN layer 905 n-AlGaN cladding layer 906 n-GaN optical guide layer 907 active layer 908 p-AlGaAs N / GaN superlattice cap layer 909 p-GaN optical guide layer 910 p-AlGaN / GaN superlattice cladding layer 911 p-GaN second contact layer 912 p-GaN first contact layer 913 p electrode 914 SiO 2 915 n electrode 1001 Sapphire substrate 1002 Buffer layer 1003 n-AlGaN layer 1004 n-AlGaN clad layer 1005 n-GaN light guide layer 1006 GaInN / GaN-MQW active layer 1007 p-GaN light guide layer 1008 p-AlGaN clad layer 1009 p-GaN contact layer 1010 p-electrode 1011 SiO 2 1012 n-electrode 1101 sapphire substrate 1102 GaN 1103 SiO 2 1104 GaN layer 1105 low-dislocation region 1106 high-dislocation region 1107 sapphire substrate 1108 GaN 1109 Void 1110 Region with few dislocations 1111 Region with many dislocations

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 信之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4E068 AD00 CA03 DA10 5F041 AA41 CA40 CA76 5F073 CA17 CB05 DA31 DA34    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuyuki Otsuka             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 4E068 AD00 CA03 DA10                 5F041 AA41 CA40 CA76                 5F073 CA17 CB05 DA31 DA34

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 基板上に構成されたAlxGayInz
(x+y+z=1)系結晶の結晶部及び基板部の内少な
くともいずれかにパルスレーザビーム光を照射すること
により分離溝を形成する工程を有することを特徴とする
AlGaInN系半導体素子の製造方法。
1. An Al x Ga y In z N formed on a substrate.
A method of manufacturing an AlGaInN-based semiconductor device, comprising the step of forming a separation groove by irradiating a pulsed laser beam with at least one of a crystal part and a substrate part of an (x + y + z = 1) -based crystal.
【請求項2】 基板上に構成されたAlxGayInz
(x+y+z=1)系結晶の結晶部及び基板部の内少な
くともいずれかにパルスレーザビーム光を照射すること
により素子分離を行う工程を有することを特徴とするA
lGaInN系半導体素子の製造方法。
2. An Al x Ga y In z N formed on a substrate.
A step of performing element isolation by irradiating at least one of the crystal part and the substrate part of the (x + y + z = 1) type crystal with a pulsed laser beam is provided.
Method for manufacturing 1GaInN-based semiconductor device.
【請求項3】 パルスレーザビーム光の照射領域と非照
射領域が周期的であることを特徴とする請求項1または
2に記載のAlGaInN系半導体素子の製造方法。
3. The method of manufacturing an AlGaInN-based semiconductor device according to claim 1, wherein the irradiation region and the non-irradiation region of the pulsed laser beam light are periodic.
【請求項4】 パルスレーザビーム光非照射領域がレー
ザダイオードの共振器面形成領域を含むことを特徴とす
る請求項3に記載のAlGaInN系半導体素子の製造
方法。
4. The method of manufacturing an AlGaInN-based semiconductor device according to claim 3, wherein the non-irradiation area of the pulsed laser beam light includes a cavity surface forming area of the laser diode.
【請求項5】 基板上に構成されたAlxGayInz
(x+y+z=1)系結晶の結晶部及び裏面基板部に分
離溝を形成する工程と、前記分離溝の内少なくともいず
れかにおいてパルスレーザビーム光を照射して前記分離
溝を追加工する工程とを含むことを特徴とするAlGa
InN系半導体素子の製造方法。
5. Al x Gay y In z N formed on a substrate
A step of forming a separation groove in the crystal part and the back substrate part of the (x + y + z = 1) -based crystal; and a step of irradiating a pulsed laser beam with at least one of the separation grooves to additionally process the separation groove. AlGa characterized by containing
InN-based semiconductor device manufacturing method.
【請求項6】 パルスレーザビーム光を照射する工程を
含む工程により形成した分離溝に添ってへき開すること
によりレーザダイオードの共振器面を作製する工程を有
することを特徴とするAlGaInN系半導体発光素子
の製造方法。
6. An AlGaInN-based semiconductor light-emitting device, which has a step of forming a resonator surface of a laser diode by cleaving along a separation groove formed by a step including a step of irradiating a pulsed laser beam light. Manufacturing method.
【請求項7】 パルスレーザビーム光を照射することに
よりレーザダイオードの共振器面を作製する工程を有す
ることを特徴とするAlGaInN系半導体発光素子の
製造方法。
7. A method of manufacturing an AlGaInN-based semiconductor light emitting device, which comprises the step of producing a resonator surface of a laser diode by irradiating a pulsed laser beam.
【請求項8】 パルスレーザビーム光照射による分離溝
形成方法が多光子過程によることを特徴とする請求項1
から7のうちいずれか1項に記載のAlGaInN系半
導体素子の製造方法。
8. The method for forming a separation groove by irradiation with pulsed laser beam light is a multiphoton process.
8. A method of manufacturing an AlGaInN-based semiconductor device according to any one of items 1 to 7.
【請求項9】 基板がサファイアであることを特徴とす
る請求項1から8のいずれかに記載のAlGaInN系
半導体素子の製造方法。
9. The method of manufacturing an AlGaInN-based semiconductor device according to claim 1, wherein the substrate is sapphire.
【請求項10】 基板表面または裏面のうち少なくとも
一方に溝加工を施す工程と前記基板上にAlGaInN
系半導体素子の作製を行う工程とを有することを特徴と
するAlGaInN系半導体素子の製造方法。
10. A step of grooving at least one of a front surface and a back surface of a substrate and AlGaInN on the substrate.
A method of manufacturing an AlGaInN-based semiconductor element, the method including the step of manufacturing an Al-based semiconductor element.
【請求項11】 溝加工の周期を基板内において変調さ
せることを特徴とする請求項10に記載のAlGaIn
N系半導体素子の製造方法。
11. The AlGaIn according to claim 10, wherein the groove processing cycle is modulated in the substrate.
Manufacturing method of N-based semiconductor device.
【請求項12】 加工溝の深さを基板内において変調さ
せることを特徴とする請求項10または11に記載のA
lGaInN系半導体素子の製造方法。
12. The A according to claim 10, wherein the depth of the processed groove is modulated in the substrate.
Method for manufacturing 1GaInN-based semiconductor device.
【請求項13】 表面または裏面の少なくとも一方に溝
加工を施した基板を有することを特徴とするAlGaI
nN系半導体素子。
13. An AlGaI having a substrate having a groove formed on at least one of a front surface and a back surface.
nN-based semiconductor device.
【請求項14】 溝加工の周期が基板内において変調し
ていることを特徴とするAlGaInN系半導体素子。
14. An AlGaInN-based semiconductor device characterized in that the groove processing cycle is modulated in the substrate.
JP2001201628A 2001-07-03 2001-07-03 Nitride-based semiconductor device and manufacturing method Pending JP2003017790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201628A JP2003017790A (en) 2001-07-03 2001-07-03 Nitride-based semiconductor device and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201628A JP2003017790A (en) 2001-07-03 2001-07-03 Nitride-based semiconductor device and manufacturing method

Publications (2)

Publication Number Publication Date
JP2003017790A true JP2003017790A (en) 2003-01-17
JP2003017790A5 JP2003017790A5 (en) 2009-06-18

Family

ID=19038551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201628A Pending JP2003017790A (en) 2001-07-03 2001-07-03 Nitride-based semiconductor device and manufacturing method

Country Status (1)

Country Link
JP (1) JP2003017790A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044872A1 (en) * 2001-11-19 2003-05-30 Sanyo Electric Co., Ltd. Compound semiconductor light emitting device and its manufacturing method
JP2003338652A (en) * 2002-03-12 2003-11-28 Hamamatsu Photonics Kk Manufacturing method for semiconductor laser element and semiconductor laser element
JP2004343139A (en) * 2001-11-19 2004-12-02 Sanyo Electric Co Ltd Compound semiconductor light emitting element
JP2005005727A (en) * 2001-11-19 2005-01-06 Sanyo Electric Co Ltd Compound semiconductor light emitting device
JP2006019586A (en) * 2004-07-02 2006-01-19 Sanyo Electric Co Ltd Manufacturing method of nitride semiconductor light emitting device
WO2006019180A1 (en) * 2004-08-20 2006-02-23 Showa Denko K.K. Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
JP2006319198A (en) * 2005-05-13 2006-11-24 Disco Abrasive Syst Ltd Laser machining method for wafer and device thereof
JP2006332364A (en) * 2005-05-26 2006-12-07 Denso Corp Semiconductor device and its manufacturing method
US7183585B2 (en) 2003-10-29 2007-02-27 Nec Corporation Semiconductor device and a method for the manufacture thereof
JP2007235008A (en) * 2006-03-03 2007-09-13 Denso Corp Dividing method for wafer, and chip
JP2007318168A (en) * 2004-01-26 2007-12-06 Matsushita Electric Ind Co Ltd Semiconductor device
US7358156B2 (en) 2005-10-06 2008-04-15 Kabushiki Kaisha Toshiba Compound semiconductor device and method of manufacturing the same
JP2008098465A (en) * 2006-10-13 2008-04-24 Aisin Seiki Co Ltd Method for separating semiconductor light-emitting element
JP2009032795A (en) * 2007-07-25 2009-02-12 Rohm Co Ltd Method of manufacturing nitride semiconductor light emitting element
JP2010093233A (en) * 2008-10-07 2010-04-22 Soi Tec Silicon On Insulator Technologies Relaxation of strained material layer with application of stiffener
US7732730B2 (en) 2000-09-13 2010-06-08 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7875898B2 (en) 2005-01-24 2011-01-25 Panasonic Corporation Semiconductor device
JP2011073064A (en) * 2003-02-19 2011-04-14 Jp Sercel Associates Inc System and method for cutting using variable astigmatic focal beam spot
JP2011096885A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
WO2011062845A1 (en) * 2009-11-17 2011-05-26 Cree, Inc. Devices with crack stops
JP2011223041A (en) * 2011-08-05 2011-11-04 Toyoda Gosei Co Ltd Method for separating semiconductor light-emitting device
JP2012134420A (en) * 2010-12-24 2012-07-12 Disco Abrasive Syst Ltd Optical device wafer processing method
US8247734B2 (en) 2003-03-11 2012-08-21 Hamamatsu Photonics K.K. Laser beam machining method
US8263479B2 (en) 2002-12-03 2012-09-11 Hamamatsu Photonics K.K. Method for cutting semiconductor substrate
US8268704B2 (en) 2002-03-12 2012-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
JP2012199399A (en) * 2011-03-22 2012-10-18 Panasonic Corp Laser processing method and laser processing apparatus
US8361883B2 (en) 2002-03-12 2013-01-29 Hamamatsu Photonics K.K. Laser processing method
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
JP2014147974A (en) * 2008-03-21 2014-08-21 Imra America Inc Laser-based material processing method and system
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
US9312339B2 (en) 2010-12-23 2016-04-12 Soitec Strain relaxation using metal materials and related structures
US9368344B2 (en) 2008-10-30 2016-06-14 Soitec Semiconductor structures, devices and engineered substrates including layers of semiconductor material having reduced lattice strain
JP2016525286A (en) * 2013-07-18 2016-08-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dicing wafer of light emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262589A (en) * 1991-02-15 1992-09-17 Nec Kagoshima Ltd Manufacture of optical semiconductor device
JPH1070335A (en) * 1996-06-20 1998-03-10 Matsushita Electric Ind Co Ltd Manufacture of semiconductor laser
JPH11224866A (en) * 1997-12-03 1999-08-17 Ngk Insulators Ltd Laser dividing and cutting method
JP2001085736A (en) * 1999-09-10 2001-03-30 Sharp Corp Method for manufacturing nitride semiconductor chip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262589A (en) * 1991-02-15 1992-09-17 Nec Kagoshima Ltd Manufacture of optical semiconductor device
JPH1070335A (en) * 1996-06-20 1998-03-10 Matsushita Electric Ind Co Ltd Manufacture of semiconductor laser
JPH11224866A (en) * 1997-12-03 1999-08-17 Ngk Insulators Ltd Laser dividing and cutting method
JP2001085736A (en) * 1999-09-10 2001-03-30 Sharp Corp Method for manufacturing nitride semiconductor chip

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946591B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of manufacturing a semiconductor device formed using a substrate cutting method
US8946589B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8969761B2 (en) 2000-09-13 2015-03-03 Hamamatsu Photonics K.K. Method of cutting a wafer-like object and semiconductor chip
US8946592B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8937264B2 (en) 2000-09-13 2015-01-20 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8933369B2 (en) 2000-09-13 2015-01-13 Hamamatsu Photonics K.K. Method of cutting a substrate and method of manufacturing a semiconductor device
US8927900B2 (en) 2000-09-13 2015-01-06 Hamamatsu Photonics K.K. Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device
US8716110B2 (en) 2000-09-13 2014-05-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8283595B2 (en) 2000-09-13 2012-10-09 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8227724B2 (en) 2000-09-13 2012-07-24 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7825350B2 (en) 2000-09-13 2010-11-02 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7732730B2 (en) 2000-09-13 2010-06-08 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7276742B2 (en) 2001-11-19 2007-10-02 Sanyo Electric Co., Ltd. Compound semiconductor light emitting device and its manufacturing method
JP2004343139A (en) * 2001-11-19 2004-12-02 Sanyo Electric Co Ltd Compound semiconductor light emitting element
JP2005005727A (en) * 2001-11-19 2005-01-06 Sanyo Electric Co Ltd Compound semiconductor light emitting device
JPWO2003044872A1 (en) * 2001-11-19 2005-03-24 三洋電機株式会社 Compound semiconductor light emitting device
WO2003044872A1 (en) * 2001-11-19 2003-05-30 Sanyo Electric Co., Ltd. Compound semiconductor light emitting device and its manufacturing method
US9142458B2 (en) 2002-03-12 2015-09-22 Hamamatsu Photonics K.K. Substrate dividing method
US8551865B2 (en) 2002-03-12 2013-10-08 Hamamatsu Photonics K.K. Method of cutting an object to be processed
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US8673745B2 (en) 2002-03-12 2014-03-18 Hamamatsu Photonics K.K. Method of cutting object to be processed
JP2003338652A (en) * 2002-03-12 2003-11-28 Hamamatsu Photonics Kk Manufacturing method for semiconductor laser element and semiconductor laser element
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US8268704B2 (en) 2002-03-12 2012-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US8304325B2 (en) 2002-03-12 2012-11-06 Hamamatsu-Photonics K.K. Substrate dividing method
US8314013B2 (en) 2002-03-12 2012-11-20 Hamamatsu Photonics K.K. Semiconductor chip manufacturing method
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
US8361883B2 (en) 2002-03-12 2013-01-29 Hamamatsu Photonics K.K. Laser processing method
US8802543B2 (en) 2002-03-12 2014-08-12 Hamamatsu Photonics K.K. Laser processing method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US8598015B2 (en) 2002-03-12 2013-12-03 Hamamatsu Photonics K.K. Laser processing method
US8518800B2 (en) 2002-03-12 2013-08-27 Hamamatsu Photonics K.K. Substrate dividing method
US8519511B2 (en) 2002-03-12 2013-08-27 Hamamatsu Photonics K.K. Substrate dividing method
US8518801B2 (en) 2002-03-12 2013-08-27 Hamamatsu Photonics K.K. Substrate dividing method
US8450187B2 (en) 2002-12-03 2013-05-28 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8409968B2 (en) 2002-12-03 2013-04-02 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate via modified region formation and subsequent sheet expansion
US8263479B2 (en) 2002-12-03 2012-09-11 Hamamatsu Photonics K.K. Method for cutting semiconductor substrate
US8502112B2 (en) 2003-02-19 2013-08-06 Ipg Microsystems Llc System and method for cutting using a variable astigmatic focal beam spot
JP2011073064A (en) * 2003-02-19 2011-04-14 Jp Sercel Associates Inc System and method for cutting using variable astigmatic focal beam spot
US8247734B2 (en) 2003-03-11 2012-08-21 Hamamatsu Photonics K.K. Laser beam machining method
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
US7183585B2 (en) 2003-10-29 2007-02-27 Nec Corporation Semiconductor device and a method for the manufacture thereof
JP2007318168A (en) * 2004-01-26 2007-12-06 Matsushita Electric Ind Co Ltd Semiconductor device
JP2006019586A (en) * 2004-07-02 2006-01-19 Sanyo Electric Co Ltd Manufacturing method of nitride semiconductor light emitting device
WO2006019180A1 (en) * 2004-08-20 2006-02-23 Showa Denko K.K. Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
US7572657B2 (en) 2004-08-20 2009-08-11 Showa Denko K.K. Method for fabrication of semiconductor light-emitting device and the device fabricated by the method
US7875898B2 (en) 2005-01-24 2011-01-25 Panasonic Corporation Semiconductor device
JP2006319198A (en) * 2005-05-13 2006-11-24 Disco Abrasive Syst Ltd Laser machining method for wafer and device thereof
JP2006332364A (en) * 2005-05-26 2006-12-07 Denso Corp Semiconductor device and its manufacturing method
US7358156B2 (en) 2005-10-06 2008-04-15 Kabushiki Kaisha Toshiba Compound semiconductor device and method of manufacturing the same
JP2007235008A (en) * 2006-03-03 2007-09-13 Denso Corp Dividing method for wafer, and chip
JP2008098465A (en) * 2006-10-13 2008-04-24 Aisin Seiki Co Ltd Method for separating semiconductor light-emitting element
JP2009032795A (en) * 2007-07-25 2009-02-12 Rohm Co Ltd Method of manufacturing nitride semiconductor light emitting element
JP2014147974A (en) * 2008-03-21 2014-08-21 Imra America Inc Laser-based material processing method and system
JP2010093233A (en) * 2008-10-07 2010-04-22 Soi Tec Silicon On Insulator Technologies Relaxation of strained material layer with application of stiffener
US9368344B2 (en) 2008-10-30 2016-06-14 Soitec Semiconductor structures, devices and engineered substrates including layers of semiconductor material having reduced lattice strain
JP2011096885A (en) * 2009-10-30 2011-05-12 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
US8877611B2 (en) 2009-11-17 2014-11-04 Cree, Inc. Devices with crack stops
US8357996B2 (en) 2009-11-17 2013-01-22 Cree, Inc. Devices with crack stops
WO2011062845A1 (en) * 2009-11-17 2011-05-26 Cree, Inc. Devices with crack stops
US9312339B2 (en) 2010-12-23 2016-04-12 Soitec Strain relaxation using metal materials and related structures
JP2012134420A (en) * 2010-12-24 2012-07-12 Disco Abrasive Syst Ltd Optical device wafer processing method
JP2012199399A (en) * 2011-03-22 2012-10-18 Panasonic Corp Laser processing method and laser processing apparatus
JP2011223041A (en) * 2011-08-05 2011-11-04 Toyoda Gosei Co Ltd Method for separating semiconductor light-emitting device
JP2016525286A (en) * 2013-07-18 2016-08-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Dicing wafer of light emitting device
US10707387B2 (en) 2013-07-18 2020-07-07 Lumileds Llc Dicing a wafer of light emitting devices

Similar Documents

Publication Publication Date Title
JP2003017790A (en) Nitride-based semiconductor device and manufacturing method
US6455340B1 (en) Method of fabricating GaN semiconductor structures using laser-assisted epitaxial liftoff
US6806109B2 (en) Method of fabricating nitride based semiconductor substrate and method of fabricating nitride based semiconductor device
US6984841B2 (en) Nitride semiconductor light emitting element and production thereof
US6711192B1 (en) Nitride semiconductor laser and method of fabricating the same
JP2013211587A (en) CLEAVED FACET (Ga,Al,In)N EDGE-EMITTING LASER DIODES GROWN ON SEMIPOLAR {11-2N} BULK GALLIUM NITRIDE SUBSTRATES
EP1014520B1 (en) Nitride semiconductor laser and method of fabricating the same
JP2003017791A (en) Nitride semiconductor device and its manufacturing method
JP2001267242A (en) Group iii nitride-based compound semiconductor and method of manufacturing the same
JP2002246698A (en) Nitride semiconductor light-emitting device and method of manufacturing the same
JP4201725B2 (en) Manufacturing method of nitride semiconductor light emitting device
US20010016404A1 (en) GaN substrate including wide low - defect region for use in semiconductor element
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JPH08274411A (en) Semiconductor laser
JP2001210905A (en) Method of manufacturing nitride semiconductor light- emitting element
JP4294077B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP4097343B2 (en) Manufacturing method of nitride semiconductor laser device
EP1873880A1 (en) Process for producing gallium nitride-based compound semiconductor laser element and gallium nitride-based compound semiconductor laser element
JP3303645B2 (en) Method for manufacturing nitride semiconductor light emitting device
US20050116243A1 (en) Semiconductor laser device and its manufacturing method
JP2002009003A (en) Semiconductor substrate, its manufacturing method, and light emitting device
JP4032836B2 (en) Nitride semiconductor laser device
JP3885092B2 (en) Nitride semiconductor laser device and method for fabricating resonant surface thereof
JP4430689B2 (en) Manufacturing method of nitride semiconductor laser device
JPH08316571A (en) Semiconductor laser and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823