JP2003017040A - Electrode for lithium secondary battery, and manufacturing method thereof - Google Patents

Electrode for lithium secondary battery, and manufacturing method thereof

Info

Publication number
JP2003017040A
JP2003017040A JP2001196638A JP2001196638A JP2003017040A JP 2003017040 A JP2003017040 A JP 2003017040A JP 2001196638 A JP2001196638 A JP 2001196638A JP 2001196638 A JP2001196638 A JP 2001196638A JP 2003017040 A JP2003017040 A JP 2003017040A
Authority
JP
Japan
Prior art keywords
thin film
active material
material thin
current collector
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001196638A
Other languages
Japanese (ja)
Other versions
JP4183401B2 (en
Inventor
Koji Endo
浩二 遠藤
Hisaki Tarui
久樹 樽井
Katsunobu Sayama
勝信 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001196638A priority Critical patent/JP4183401B2/en
Publication of JP2003017040A publication Critical patent/JP2003017040A/en
Application granted granted Critical
Publication of JP4183401B2 publication Critical patent/JP4183401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrict generation of deformation and wrinkle in a collector due to the swelled active material thin film in charging and discharging in an electrode for a lithium secondary battery having a high charging/discharging capacity and an excellent charging/discharging cycle characteristic. SOLUTION: After forming an active material thin film 11 for storing and emitting lithium on the collector 10 by accumulation, etching is performed to a low-density range 11b of the active material thin film 11 to form clearances 12 in the thickness direction, and the active material thin film 11 is divided into small ranges by forming these clearances 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用電極の製造方法及びリチウム二次電池用電極に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing an electrode for a lithium secondary battery and an electrode for a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、研究開発が盛んに行われているリ
チウム二次電池は、用いられる電極により充放電電圧、
充放電サイクル寿命特性、保存特性などの電池特性が大
きく左右される。このことから、電極に用いる活物質を
改善することにより、電池特性の向上が図られている。
2. Description of the Related Art In recent years, lithium secondary batteries, which have been actively researched and developed, have a charging / discharging voltage depending on an electrode used.
Battery characteristics such as charge / discharge cycle life characteristics and storage characteristics are greatly affected. Therefore, the battery characteristics are improved by improving the active material used for the electrode.

【0003】負極活物質としてリチウム金属を用いる
と、重量当たり及び体積当たりともに高いエネルギー密
度の電池を構成することができるが、充電時にリチウム
がデンドライト状に析出し、内部短絡を引き起こすとい
う問題があった。
When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and volume can be constructed, but there is a problem that lithium is deposited in dendrite form during charging and causes an internal short circuit. It was

【0004】これに対し、充電の際に電気化学的にリチ
ウムと合金化するアルミニウム、シリコン、錫などを電
極として用いるリチウム二次電池が報告されている(So
lidState Ionics,113-115,p57(1998)) 。これらのう
ち、特にシリコンは理論容量が大きく、高い容量を示す
電池用負極として有望であり、これを負極とする種々の
二次電池が提案されている(特開平10−255768
号公報)。しかしながら、この種の合金負極は、電極活
物質である合金自体が充放電により微粉化し集電特性が
悪化することから、十分なサイクル特性は得られていな
い。
On the other hand, a lithium secondary battery using aluminum, silicon, tin, or the like, which is electrochemically alloyed with lithium during charging, as an electrode has been reported (So.
lidState Ionics, 113-115, p57 (1998)). Of these, silicon is particularly promising as a negative electrode for a battery having a large theoretical capacity and a high capacity, and various secondary batteries using this as a negative electrode have been proposed (JP-A-10-255768).
Issue). However, in this type of alloy negative electrode, sufficient cycle characteristics have not been obtained because the alloy itself, which is an electrode active material, becomes fine powder due to charge and discharge and deteriorates current collecting characteristics.

【0005】[0005]

【発明が解決しようとする課題】本出願人は、シリコン
等を電極活物質とし、良好な充放電サイクル特性を示す
リチウム二次電池用電極として、CVD法またはスパッ
タリング法などの薄膜形成方法により、集電体上に微結
晶薄膜または非晶質薄膜を形成したリチウム二次電池用
電極を提案している(特願平11−301646号な
ど)。
The applicant of the present invention uses a thin film forming method such as a CVD method or a sputtering method as an electrode for a lithium secondary battery which uses silicon or the like as an electrode active material and exhibits good charge / discharge cycle characteristics. An electrode for a lithium secondary battery in which a microcrystalline thin film or an amorphous thin film is formed on a current collector has been proposed (Japanese Patent Application No. 11-301646, etc.).

【0006】このようなリチウム二次電池用電極におい
ては、集電体の成分が活物質薄膜に拡散することによ
り、集電体と活物質薄膜との密着性が保たれ、充放電サ
イクル特性が向上することがわかっている。
In such an electrode for a lithium secondary battery, the components of the current collector are diffused into the active material thin film, so that the adhesion between the current collector and the active material thin film is maintained and the charge / discharge cycle characteristics are improved. I know it will improve.

【0007】しかしながら、このようなリチウム二次電
池用電極においては、活物質薄膜と集電体との密着性が
良好であるため、充放電によって活物質が膨張・収縮
し、これに伴い集電体が延びることによってしわなどの
変形が電極に発生する場合があった。特に銅箔などの延
性に富んだ金属箔を集電体として用いた場合、電極の変
形の度合いが大きくなる。電極が変形すると、これを収
納する電池内において体積が増加するため、電池の体積
当りのエネルギー密度が低下し、問題となる。
However, in such an electrode for a lithium secondary battery, since the adhesion between the active material thin film and the current collector is good, the active material expands and contracts due to charge and discharge, and accordingly the current collection occurs. When the body extends, deformation such as wrinkles may occur in the electrodes. In particular, when a metal foil having a high ductility such as a copper foil is used as the current collector, the degree of deformation of the electrode increases. When the electrode is deformed, the volume in the battery accommodating the electrode is increased, and the energy density per volume of the battery is reduced, which is a problem.

【0008】本発明の目的は、充放電容量が高く、充放
電サイクル特性に優れたリチウム二次電池用電極であっ
て、充放電に伴う活物質薄膜の膨張により集電体に変形
やしわが発生するのを抑制することができるリチウム二
次電池用電極の製造方法及びリチウム二次電池用電極並
びにこれを用いたリチウム二次電池を提供することにあ
る。
An object of the present invention is to provide an electrode for a lithium secondary battery having a high charge / discharge capacity and excellent charge / discharge cycle characteristics, wherein the active material thin film expands due to charge / discharge and the current collector is deformed or wrinkles. An object of the present invention is to provide a method for manufacturing an electrode for a lithium secondary battery that can suppress the generation, an electrode for a lithium secondary battery, and a lithium secondary battery using the same.

【0009】[0009]

【課題を解決するための手段】本発明の第1の局面に従
うリチウム二次電池用電極の製造方法は、リチウムを吸
蔵・放出する活物質薄膜を集電体上に堆積して形成する
工程と、エッチングにより活物質薄膜の厚み方向に空隙
を形成し、活物質薄膜を微小領域に分割する工程とを備
えることを特徴としている。
A method for manufacturing an electrode for a lithium secondary battery according to a first aspect of the present invention comprises a step of depositing and forming an active material thin film that absorbs and releases lithium on a current collector. A step of forming voids in the thickness direction of the active material thin film by etching and dividing the active material thin film into minute regions.

【0010】第1の局面では、エッチングにより活物質
薄膜の厚み方向に空隙を形成し、活物質薄膜を微小領域
に分割している。このため、活物質薄膜の微小領域の周
囲には、充放電反応前において、すでに空隙が形成され
ている。従って、初回の充放電反応の際の活物質薄膜の
膨張を、その周囲の空隙により吸収することができ、初
回の充放電反応に伴う活物質薄膜の膨張による応力の発
生を緩和することができる。このため、充放電反応の際
に集電体に変形やしわが発生するのを抑制することがで
きる。
In the first aspect, voids are formed in the thickness direction of the active material thin film by etching to divide the active material thin film into minute regions. Therefore, voids have already been formed around the minute region of the active material thin film before the charge / discharge reaction. Therefore, the expansion of the active material thin film during the initial charge / discharge reaction can be absorbed by the voids around the active material thin film, and the generation of stress due to the expansion of the active material thin film accompanying the initial charge / discharge reaction can be relieved. . Therefore, it is possible to prevent the current collector from being deformed or wrinkled during the charge / discharge reaction.

【0011】本発明に従う第1の局面においては、厚み
方向に延びる低密度領域が活物質薄膜に形成されてお
り、該低密度領域におけるエッチング速度が他の領域に
おけるエッチング速度よりも速いことを利用して、上記
エッチングがなされることが好ましい。このような低密
度領域は、表面に凹凸が形成された集電体の上に活物質
薄膜をCVD法やスパッタリング法などにより堆積して
形成する場合に形成されることがわかっている。集電体
表面の凹凸の谷部においては、その両側の凸部の斜面上
に薄膜が堆積して成長し、その成長部分が集電体表面の
凹凸の谷部の上方で出会うため、このような低密度領域
が形成されるものと思われる。従って、このような低密
度領域は、集電体表面の凹凸の谷部の上方に延びるよう
に形成され、この結果、集電体表面の凹凸の谷部と活物
質薄膜表面の凹凸の谷部を結ぶ領域に形成される。
In the first aspect of the present invention, it is utilized that the low density region extending in the thickness direction is formed in the active material thin film, and that the etching rate in the low density region is higher than the etching rate in other regions. Then, the above etching is preferably performed. It is known that such a low-density region is formed when an active material thin film is deposited by a CVD method, a sputtering method, or the like on a current collector having an uneven surface. In the valleys of the irregularities on the surface of the current collector, a thin film is deposited and grown on the slopes of the convexes on both sides of the valleys, and the grown portions meet above the valleys of the irregularities on the surface of the current collector. It seems that a very low density region is formed. Therefore, such a low-density region is formed so as to extend above the valleys of the unevenness on the surface of the current collector, and as a result, the valleys of the unevenness on the surface of the current collector and the valleys of the unevenness on the surface of the active material thin film are formed. It is formed in the area connecting the.

【0012】このような低密度領域においては、薄膜の
密度が低いため、エッチング速度が、他の領域に比べ速
くなる。このため、低密度領域において選択的にエッチ
ングを進行させることができる。低密度領域は、厚み方
向に延びるように形成されているので、このような低密
度領域をエッチングすることにより、厚み方向に空隙を
形成し、活物質薄膜を微小領域に分割することができ
る。
In such a low density region, since the thin film has a low density, the etching rate becomes faster than in other regions. Therefore, the etching can be selectively advanced in the low density region. Since the low density region is formed so as to extend in the thickness direction, by etching such a low density region, a void can be formed in the thickness direction and the active material thin film can be divided into minute regions.

【0013】活物質薄膜に対するエッチングとしては、
化学的反応によるエッチングが好ましいが、物理的エッ
チングであってもよい。また、エッチャントを用いた湿
式エッチング(ウェットエッチング)であることが好ま
しいが、CF4によるエッチングや、プラズマエッチン
グ、反応性イオンエッチングなどのような乾式エッチン
グ(ドライエッチング)であってもよい。
As the etching for the active material thin film,
Etching by a chemical reaction is preferable, but physical etching may be used. In addition, wet etching using an etchant is preferable, but dry etching such as etching with CF 4 , plasma etching, or reactive ion etching may be used.

【0014】本発明において活物質薄膜に用いられる材
料は、リチウムを吸蔵・放出することができるものであ
れば、特に限定されるものではないが、リチウムと合金
化することによりリチウムを吸蔵する材料が好ましく用
いられる。このような材料としては、シリコン、ゲルマ
ニウム、錫、鉛、亜鉛、マグネシウム、ナトリウム、ア
ルミニウム、カリウム、インジウム及びこれらの合金な
どが挙げられる。これらの中でも、シリコン、ゲルマニ
ウム、シリコンゲルマニウムが特に好ましく用いられ
る。また、シリコン、ゲルマニウム、またはシリコンゲ
ルマニウムの非晶質もしくは微結晶薄膜が好ましく用い
られる。
The material used for the active material thin film in the present invention is not particularly limited as long as it can absorb and release lithium, but a material that absorbs lithium by alloying with lithium. Is preferably used. Examples of such a material include silicon, germanium, tin, lead, zinc, magnesium, sodium, aluminum, potassium, indium and alloys thereof. Among these, silicon, germanium, and silicon germanium are particularly preferably used. Further, silicon, germanium, or an amorphous or microcrystalline thin film of silicon germanium is preferably used.

【0015】本発明において活物質薄膜を堆積して形成
する方法としては、気相または液相から集電体の上に原
子またはイオンを移動し堆積するような方法が好ましく
用いられる。具体的には、CVD法、スパッタリング
法、蒸着法、溶射法、またはめっき法などが挙げられ
る。
As a method for depositing and forming an active material thin film in the present invention, a method of moving and depositing atoms or ions from a gas phase or a liquid phase onto a current collector is preferably used. Specifically, a CVD method, a sputtering method, a vapor deposition method, a thermal spraying method, a plating method, or the like can be given.

【0016】本発明において用いられる集電体は、リチ
ウムと合金化しない金属から形成されていることが好ま
しく、このような材料としては、銅、銅を含む合金、ニ
ッケル、ステンレスなどが挙げられる。集電体の少なく
とも表面部分は、銅または銅を主体とする合金から形成
されていることが好ましい。集電体の表面部分を銅また
は銅を主体とする合金から形成することにより、活物質
薄膜が、シリコンまたはゲルマニウムを含む薄膜である
場合、活物質薄膜中に集電体成分である銅を拡散させる
ことができ、集電体と活物質薄膜との密着性を高めるこ
とができる。
The current collector used in the present invention is preferably made of a metal that does not alloy with lithium. Examples of such a material include copper, alloys containing copper, nickel, stainless steel and the like. At least the surface portion of the current collector is preferably formed of copper or an alloy mainly containing copper. When the active material thin film is a thin film containing silicon or germanium, the current collector component copper is diffused in the active material thin film by forming the surface part of the current collector from copper or an alloy mainly composed of copper. It is possible to enhance the adhesion between the current collector and the active material thin film.

【0017】活物質薄膜のエッチングは、上記のように
して集電体上に活物質薄膜を形成した後、行うことがで
きる。湿式エッチング(ウェットエッチング)によりエ
ッチングする場合、エッチャントを含むエッチング液中
に、集電体上に形成した活物質薄膜を浸漬することによ
り行うことができる。活物質薄膜が、例えば、シリコ
ン、ゲルマニウム、及びシリコンゲルマニウムなどであ
る場合、水酸化ナトリウム水溶液、水酸化カリウム水溶
液、及びアンモニア水溶液などをエッチング液として用
いることができる。必要に応じて、加熱したエッチング
液中に浸漬して、エッチングを行うことができる。エッ
チングの量は、エッチング液の種類や濃度、エッチング
液の温度、エッチングの時間などにより適宜制御するこ
とができる。
The etching of the active material thin film can be performed after forming the active material thin film on the current collector as described above. When etching is performed by wet etching, it can be performed by immersing the active material thin film formed on the current collector in an etchant containing an etchant. When the active material thin film is, for example, silicon, germanium, silicon germanium, or the like, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, an aqueous solution of ammonia, or the like can be used as the etching solution. If necessary, etching can be performed by immersing in a heated etching solution. The amount of etching can be appropriately controlled by the type and concentration of the etching solution, the temperature of the etching solution, the etching time, and the like.

【0018】本発明の第2の局面に従うリチウム二次電
池用電極の製造方法は、リチウムを吸蔵・放出する活物
質薄膜であって、厚み方向に形成された空隙によって微
小領域に分割された活物質薄膜を集電体上に設ける工程
と、空隙が形成された上記活物質薄膜をマスクとして集
電体表面をエッチングすることにより、活物質薄膜の空
隙に対応した溝を集電体に形成する工程とを備えること
を特徴としている。
A method for manufacturing an electrode for a lithium secondary battery according to a second aspect of the present invention is an active material thin film that absorbs and releases lithium, and is divided into minute regions by voids formed in the thickness direction. Forming a groove corresponding to the void of the active material thin film on the current collector by providing a thin film of the substance on the current collector and etching the surface of the current collector with the active material thin film in which the void is formed as a mask And a process.

【0019】第2の局面においては、厚み方向に形成さ
れた空隙によって微小領域に分割された活物質薄膜をマ
スクとして、集電体の表面をエッチングすることによ
り、活物質薄膜の空隙に対応した溝を集電体表面に形成
する。活物質薄膜の微小領域の周りには、空隙が形成さ
れており、該空隙の下方の集電体表面には溝が形成れて
いる。このため、充放電に伴う活物質薄膜の膨張・収縮
を微小領域の周りに形成されている空隙により吸収する
ことができ、活物質薄膜の膨張・収縮による応力を低減
することができる。さらには、活物質薄膜の微小領域の
周囲の集電体の表面に溝が形成されているため、活物質
薄膜の膨張により集電体にかかる応力を、この集電体の
溝の部分で緩和することができる。従って、充放電に伴
う活物質薄膜の膨張により集電体に変形やしわが発生す
るのを抑制することができる。
In the second aspect, the surface of the current collector is etched by using the thin film of the active material divided into minute regions by the voids formed in the thickness direction as a mask so as to correspond to the voids of the active material thin film. Grooves are formed on the surface of the current collector. A void is formed around a minute region of the active material thin film, and a groove is formed on the surface of the current collector below the void. Therefore, the expansion / contraction of the active material thin film due to charge / discharge can be absorbed by the voids formed around the minute region, and the stress due to the expansion / contraction of the active material thin film can be reduced. Furthermore, since the groove is formed on the surface of the current collector around the minute region of the active material thin film, the stress applied to the current collector due to the expansion of the active material thin film is relieved at the groove of the current collector. can do. Therefore, it is possible to prevent the current collector from being deformed or wrinkled due to the expansion of the active material thin film due to charge and discharge.

【0020】第2の局面においては、活物質薄膜の微小
領域の周りに空隙が形成されており、さらに、活物質薄
膜の微小領域の周りの集電体の表面にも溝が形成されて
いる。このため、第1の局面よりもさらに集電体の変形
やしわの発生をより有効に抑制することができる。
In the second aspect, voids are formed around the minute regions of the active material thin film, and further, grooves are formed on the surface of the current collector around the minute regions of the active material thin film. . Therefore, the deformation and wrinkling of the current collector can be suppressed more effectively than in the first aspect.

【0021】第2の局面において、集電体に対するエッ
チングは、化学的反応によるエッチングであることが好
ましいが、物理的エッチングであってもよい。また、湿
式エッチング(ウェットエッチング)であることが好ま
しいが、乾式エッチング(ドライエッチング)であって
もよい。
In the second aspect, the etching of the current collector is preferably etching by a chemical reaction, but may be physical etching. Further, although wet etching is preferable, dry etching may be used.

【0022】ウェットエッチングに用いるエッチャント
としては、活物質薄膜よりも速い速度で集電体をエッチ
ングするものが好ましく用いられる。活物質薄膜とし
て、シリコン、ゲルマニウム、またはシリコンゲルマニ
ウムを用い、集電体として銅等を用いる場合には、エッ
チャントとしては、塩化第2鉄、塩化第2銅、過硫酸ア
ンモニウムなどが好ましく用いられる。
As the etchant used in the wet etching, one that etches the current collector at a faster rate than the active material thin film is preferably used. When silicon, germanium, or silicon germanium is used as the active material thin film and copper or the like is used as the current collector, ferric chloride, cupric chloride, ammonium persulfate, or the like is preferably used as the etchant.

【0023】第2の局面において、空隙を形成された活
物質薄膜を集電体上に設ける工程は、活物質薄膜を集電
体上に堆積して形成する工程と、エッチングにより活物
質薄膜に空隙を形成する工程とからなるものでもよい。
すなわち、厚み方向に空隙を形成することにより活物質
薄膜を微小領域に分割する第1の局面の工程であっても
よい。この場合、第1の局面と同様に、活物質薄膜の厚
み方向に形成された低密度領域に沿ってエッチングがな
され、厚み方向に空隙が形成されてもよい。
In the second aspect, the step of providing the active material thin film on which the voids are formed on the current collector includes the step of depositing the active material thin film on the current collector and forming the active material thin film by etching. And a step of forming voids.
That is, it may be the step of the first aspect in which the active material thin film is divided into minute regions by forming voids in the thickness direction. In this case, similar to the first aspect, etching may be performed along the low-density region formed in the thickness direction of the active material thin film to form voids in the thickness direction.

【0024】また、この場合、第1の局面と同様の方法
により活物質薄膜をエッチングすることができる。活物
質薄膜及び集電体は、第1の局面と同様の材質のものを
用いることができる。
In this case, the active material thin film can be etched by the same method as in the first aspect. The active material thin film and the current collector can be made of the same material as in the first aspect.

【0025】本発明の第3の局面に従うリチウム二次電
池用電極は、リチウムを吸蔵・放出する活物質薄膜を集
電体上に堆積して形成したリチウム二次電池用電極であ
り、活物質薄膜が厚み方向に形成された空隙によって微
小領域に分割されており、かつ集電体表面に活物質薄膜
の空隙に対応した溝が形成されていることを特徴として
いる。
An electrode for a lithium secondary battery according to the third aspect of the present invention is an electrode for a lithium secondary battery, which is formed by depositing an active material thin film that absorbs and releases lithium on a current collector. The thin film is divided into minute regions by voids formed in the thickness direction, and a groove corresponding to the voids of the active material thin film is formed on the surface of the current collector.

【0026】第3の局面に従うリチウム二次電池用電極
は、上記第2の局面に従う製造方法により製造すること
ができる電極であるが、上記第2の局面の方法により製
造された電極に限定されるものではない。
The lithium secondary battery electrode according to the third aspect is an electrode that can be produced by the production method according to the second aspect, but is not limited to the electrode produced by the method according to the second aspect. Not something.

【0027】第3の局面のリチウム二次電池用電極にお
いては、第2の局面の方法により製造されたリチウム二
次電池用電極と同様に、活物質薄膜が厚み方向に形成さ
れた空隙によって微小領域に分割されている。従って、
活物質薄膜の微小領域の周囲には空隙が存在しており、
充放電に伴う活物質薄膜の膨張を吸収することができる
ので、応力の発生を抑制することができる。また、活物
質薄膜の微小領域の周囲の集電体の表面には溝が形成さ
れているので、充放電に伴う活物質薄膜の膨張により集
電体に応力がかかっても、この応力を活物質薄膜の微小
領域の周囲の集電体の溝部分で吸収することができる。
従って、集電体に変形やしわが発生するのを抑制するこ
とができる。
In the lithium secondary battery electrode of the third aspect, as in the lithium secondary battery electrode manufactured by the method of the second aspect, the active material thin film is minute by the voids formed in the thickness direction. It is divided into areas. Therefore,
There are voids around the minute area of the active material thin film,
Since the expansion of the active material thin film due to charge / discharge can be absorbed, it is possible to suppress the generation of stress. Further, since a groove is formed on the surface of the current collector around the minute region of the active material thin film, even if stress is applied to the current collector due to expansion of the active material thin film due to charge / discharge, this stress is not activated. It can be absorbed in the groove portion of the current collector around the minute region of the material thin film.
Therefore, it is possible to prevent the current collector from being deformed or wrinkled.

【0028】第3の局面において用いられる活物質薄膜
及び集電体の材質としては、上記第1の局面及び第2の
局面と同様の材質のものを用いることができる。集電体
の表面粗さRaは、0.01μm以上であることが好ま
しく、さらに好ましくは0.1μm以上である。好まし
くは0.01〜2μmの範囲内であり、さらに好ましく
は0.1〜2μmの範囲内である。
As the material of the active material thin film and the current collector used in the third aspect, the same materials as those in the first aspect and the second aspect can be used. The surface roughness Ra of the current collector is preferably 0.01 μm or more, more preferably 0.1 μm or more. It is preferably in the range of 0.01 to 2 μm, and more preferably in the range of 0.1 to 2 μm.

【0029】本発明における薄膜には、予めリチウムが
吸蔵または添加されていてもよい。リチウムは、薄膜を
形成する際に添加してもよい。すなわち、リチウムを含
有する薄膜を形成することにより、薄膜にリチウムを添
加してもよい。また、薄膜を形成した後に、薄膜にリチ
ウムを吸蔵または添加させてもよい。薄膜にリチウムを
吸蔵または添加させる方法としては、電気化学的にリチ
ウムを吸蔵または添加させる方法が挙げられる。
Lithium may be occluded or added to the thin film of the present invention in advance. Lithium may be added when forming a thin film. That is, lithium may be added to the thin film by forming a thin film containing lithium. Further, after forming the thin film, lithium may be occluded or added to the thin film. Examples of a method of occluding or adding lithium to the thin film include a method of electrochemically occluding or adding lithium.

【0030】本発明のリチウム二次電池は、上記本発明
の第1の局面または第2の局面の方法により製造された
電極または上記本発明の第3の局面に従う電極からなる
負極と、正極と、非水電解質とを備えることを特徴とし
ている。
The lithium secondary battery of the present invention comprises a negative electrode composed of the electrode manufactured by the method of the first aspect or the second aspect of the present invention or the electrode according to the third aspect of the present invention, and a positive electrode. , A non-aqueous electrolyte.

【0031】本発明のリチウム二次電池に用いる電解質
の溶媒は、特に限定されるものではないが、エチレンカ
ーボネート、プロピレンカーボネート、ブチレンカーボ
ネート、ビニレンカーボネートなどの環状カーボネート
と、ジメチルカーボネート、メチルエチルカーボネー
ト、ジエチルカーボネートなどの鎖状カーボネートとの
混合溶媒が例示される。また、前記環状カーボネートと
1,2−ジメトキシエタン、1,2−ジエトキシエタン
などのエーテル系溶媒や、γ−ブチロラクトン、スルホ
ラン、酢酸メチル等の鎖状エステル等との混合溶媒も例
示される。また、電解質の溶質としては、LiPF6
LiBF4、LiCF3SO3、LiN(CF 3SO22
LiN(C25SO22、LiN(CF3SO2)(C4
9SO2)、LiC(CF3SO23、LiC(C25
SO23、LiAsF6、LiClO4、Li210Cl
10、Li212Cl12など及びそれらの混合物が例示さ
れる。さらに電解質として、ポリエチレンオキシド、ポ
リアクリロニトリル、ポリフッ化ビニリデンなどのポリ
マー電解質に電解液を含浸したゲル状ポリマー電解質
や、LiI、Li3Nなどの無機固体電解質が例示され
る。本発明のリチウム二次電池の電解質は、イオン導電
性を発現させる溶質としてのLi化合物とこれを溶解・
保持する溶媒が電池の充電時や放電時あるいは保存時の
電圧で分解しない限り、制約なく用いることができる。
Electrolyte used in the lithium secondary battery of the present invention
The solvent is not particularly limited, but is not limited to ethylene
Carbonate, propylene carbonate, butylene carbo
Cyclic carbonates such as nate and vinylene carbonate
And dimethyl carbonate, methyl ethyl carbonate
And chain carbonates such as diethyl carbonate
A mixed solvent is exemplified. Further, with the cyclic carbonate
1,2-dimethoxyethane, 1,2-diethoxyethane
Ether solvents such as γ-butyrolactone, sulfo
Examples of mixed solvents with chain esters such as orchid and methyl acetate
Shown. The solute of the electrolyte is LiPF6,
LiBFFour, LiCF3SO3, LiN (CF 3SO2)2,
LiN (C2FFiveSO2)2, LiN (CF3SO2) (CFour
F9SO2), LiC (CF3SO2)3, LiC (C2FFive
SO2)3, LiAsF6, LiClOFour, Li2BTenCl
Ten, Li2B12Cl12And mixtures thereof are exemplified.
Be done. Furthermore, as an electrolyte, polyethylene oxide,
Polyacrylonitrile, poly (vinylidene fluoride), etc.
Gel-like polymer electrolytes obtained by impregnating a mer electrolyte with an electrolytic solution
, LiI, Li3An inorganic solid electrolyte such as N is exemplified.
It The electrolyte of the lithium secondary battery of the present invention has an ionic conductivity.
Li compound as a solute that develops properties and dissolves it
The solvent that holds the battery is used when the battery is charged, discharged, or stored.
As long as it is not decomposed by voltage, it can be used without restriction.

【0032】本発明のリチウム二次電池の正極活物質と
しては、LiCoO2、LiNiO2、LiMn24、L
iMnO2、LiCo0.5Ni0.52、LiNi0.7Co
0.2Mn0.12などのリチウム含有遷移金属酸化物や、
MnO2などのリチウムを含有していない金属酸化物が
例示される。また、この他にも、リチウムを電気化学的
に挿入・脱離する物質であれば、制限なく用いることが
できる。
Examples of the positive electrode active material of the lithium secondary battery of the present invention include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and L.
iMnO 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co
Lithium-containing transition metal oxides such as 0.2 Mn 0.1 O 2 ,
Examples include metal oxides that do not contain lithium, such as MnO 2 . In addition to this, any substance that electrochemically inserts / desorbs lithium can be used without limitation.

【0033】[0033]

【発明の実施の形態】図1は、本発明の第1の局面に従
う製造工程の一例を説明するための断面図である。
1 is a sectional view for explaining an example of a manufacturing process according to the first aspect of the present invention.

【0034】図1(a)に示すように、集電体10の上
に、活物質薄膜11が堆積して形成されている。集電体
10の表面10aには凹凸が形成されており、この凹凸
に対応して、活物質薄膜11の表面11aにも凹凸が形
成されている。
As shown in FIG. 1 (a), an active material thin film 11 is deposited and formed on the current collector 10. Irregularities are formed on the surface 10a of the current collector 10, and irregularities are also formed on the surface 11a of the active material thin film 11 corresponding to the irregularities.

【0035】集電体表面10aの凹凸の谷部10cと、
活物質薄膜表面11aの凹凸の谷部11cとを結ぶ領域
に、低密度領域11bが形成されている。低密度領域1
1bは、集電体表面10aの上に薄膜が堆積される際、
両側の斜面からの成長表面がぶつかり合うことにより形
成される領域である。従って、低密度領域11bは、集
電体表面10aの凹凸の谷部10cから上方に厚み方向
に延びるように形成されている。
Uneven valleys 10c on the surface 10a of the current collector,
A low-density region 11b is formed in a region connecting to the concave and convex valleys 11c on the active material thin film surface 11a. Low density area 1
1b is, when a thin film is deposited on the current collector surface 10a,
It is a region formed by the growth surfaces from the slopes on both sides colliding with each other. Therefore, the low-density region 11b is formed so as to extend upward in the thickness direction from the concave and convex valleys 10c of the current collector surface 10a.

【0036】低密度領域11bでは、密度が低いため、
他の領域に比べ、エッチング速度が速くなる。このた
め、低密度領域11bにおいて、選択的にエッチングが
速く進行する。従って、低密度領域11bを選択的にエ
ッチングすることができる。例えば、活物質薄膜11を
集電体10とともに、エッチング液中に浸漬させること
により、活物質薄膜11の低密度領域11bをエッチン
グすることができる。
Since the density is low in the low density region 11b,
The etching rate is higher than in other regions. Therefore, in the low density region 11b, the etching selectively and rapidly progresses. Therefore, the low density region 11b can be selectively etched. For example, the low-density region 11b of the active material thin film 11 can be etched by immersing the active material thin film 11 together with the current collector 10 in an etching solution.

【0037】図1(b)は、このようにして低密度領域
11bをエッチングした後の状態を示す断面図である。
図1(b)に示すように、低密度領域11bを選択的に
エッチングすることにより、厚み方向に空隙12が形成
され、この空隙12によって、活物質薄膜11を微小領
域に分割することができる。活物質薄膜11の微小領域
の周囲には、空隙12が存在しているため、充放電によ
り活物質薄膜の微小領域11が膨張しても、これをその
周囲の空隙12で吸収することができ、活物質薄膜の膨
張による応力の発生を抑制することができる。従って、
集電体の変形やしわの発生を抑制することができる。
FIG. 1B is a sectional view showing a state after the low density region 11b is etched in this way.
As shown in FIG. 1B, by selectively etching the low density region 11b, a void 12 is formed in the thickness direction, and the void 12 can divide the active material thin film 11 into minute regions. . Since the voids 12 exist around the minute regions of the active material thin film 11, even if the minute regions 11 of the active material thin film expand due to charge and discharge, they can be absorbed by the voids 12 around them. The generation of stress due to expansion of the active material thin film can be suppressed. Therefore,
It is possible to suppress deformation of the current collector and generation of wrinkles.

【0038】特に、本発明によれば、空隙12を、初回
の充放電の前に、予め形成させておくことができるの
で、初回の充放電の際の活物質薄膜の膨張による集電体
の変形やしわの発生を防止することができる。従来の活
物質薄膜においても、初回の充放電反応以降において、
活物質薄膜の膨張収縮により厚み方向に切れ目が形成さ
れ、微小領域に分割される。しかしながら、集電体の変
形やしわの発生が初回の充放電反応で発生するため、集
電体に変形やしわの発生が認められるものと思われる。
本発明では、初回の充放電前に、すでに空隙が形成され
ているので、初回の充放電の際にも、活物質薄膜の膨張
による応力を緩和することができ、集電体に変形やしわ
が発生するのを抑制することができるものと思われる。
In particular, according to the present invention, the void 12 can be formed in advance before the first charge / discharge, so that the current collector is expanded by the expansion of the active material thin film at the first charge / discharge. It is possible to prevent deformation and wrinkles. Even in the conventional active material thin film, after the first charge / discharge reaction,
Due to the expansion and contraction of the active material thin film, a cut is formed in the thickness direction, and the active material thin film is divided into minute regions. However, since the current collector is deformed and wrinkles are generated in the first charge / discharge reaction, it is considered that the current collector is deformed and wrinkled.
In the present invention, since the voids are already formed before the first charge / discharge, the stress due to the expansion of the active material thin film can be relaxed even during the first charge / discharge, and the current collector is deformed. It seems that it is possible to suppress the occurrence of wadding.

【0039】図2は、本発明の第2の局面に従う製造工
程の一例を説明するための断面図である。図2(a)及
び(b)は、図1(a)及び(b)と同様であり、活物
質薄膜11の厚み方向に延びる低密度領域11bをエッ
チングすることにより、空隙12が形成され、この空隙
12によって、活物質薄膜11が微小領域に分割されて
いる。
FIG. 2 is a sectional view for explaining an example of a manufacturing process according to the second aspect of the present invention. 2A and 2B are the same as FIGS. 1A and 1B, and the void 12 is formed by etching the low density region 11b extending in the thickness direction of the active material thin film 11, The voids 12 divide the active material thin film 11 into minute regions.

【0040】第2の局面では、このように空隙12が形
成された活物質薄膜11をマスクとして、集電体10の
表面10aをエッチングすることにより、図2(c)に
示すように、集電体10の表面10aに、溝13を形成
する。溝13は、空隙12に対応して形成されている。
すなわち、空隙12の下方に連通するように形成されて
いる。
In the second aspect, the surface 10a of the current collector 10 is etched by using the active material thin film 11 in which the voids 12 are formed as a mask, as shown in FIG. 2 (c). The groove 13 is formed on the surface 10 a of the electric body 10. The groove 13 is formed corresponding to the void 12.
That is, it is formed so as to communicate below the void 12.

【0041】第2の局面によれば、活物質薄膜11の微
小領域の周囲に空隙12が存在しているので、充放電に
伴う活物質薄膜の膨張を吸収することができ、活物質薄
膜の膨張による応力を低減することができる。さらに、
空隙12の下方の集電体10の表面10aには、溝13
が形成されている。活物質薄膜11は、集電体10の表
面10aと密着しているので、活物質薄膜11が膨張す
ると、集電体10の表面付近においても、図2(c)に
おいて矢印で示すような応力が働く、本発明の第2の局
面及び第3の局面においては、このような応力を、溝1
3によって吸収することができるので、集電体10に働
く応力を低減することができ、集電体に変形やしわが発
生するのをさらに抑制することができる。
According to the second aspect, since the voids 12 are present around the minute region of the active material thin film 11, the expansion of the active material thin film due to charge / discharge can be absorbed, and the active material thin film The stress due to expansion can be reduced. further,
A groove 13 is formed on the surface 10a of the current collector 10 below the void 12.
Are formed. Since the active material thin film 11 is in close contact with the surface 10a of the current collector 10, when the active material thin film 11 expands, the stress near the surface of the current collector 10 as shown by the arrow in FIG. In the second and third aspects of the present invention in which
Since it can be absorbed by 3, the stress acting on the current collector 10 can be reduced, and it is possible to further prevent the current collector from being deformed or wrinkled.

【0042】本発明の第1の局面〜第3の局面における
活物質薄膜の微小領域の幅は、0.5〜200μmであ
ることが好ましく、さらに好ましくは1〜100μmで
ある。この微小領域の幅は、微小領域の水平方向(膜面
方向)の幅である。
The width of the minute region of the active material thin film according to the first to third aspects of the present invention is preferably 0.5 to 200 μm, more preferably 1 to 100 μm. The width of this minute region is the width of the minute region in the horizontal direction (film surface direction).

【0043】また、本発明の第2の局面及び第3の局面
における集電体表面の溝の深さは、2〜5μm程度であ
ることが好ましい。また、集電体表面の溝の幅は、0.
1〜5μmであることが好ましい。
The depth of the groove on the surface of the current collector in the second aspect and the third aspect of the present invention is preferably about 2 to 5 μm. The width of the groove on the surface of the current collector was 0.
It is preferably 1 to 5 μm.

【0044】[0044]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが本発明は以下の実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0045】まず、本発明の第1の局面に従う実施例に
ついて説明する。 (実施例1及び比較例1) 〔負極の作製〕単結晶シリコン(P型、導電率1Ωcm
以下)をターゲットとして、DCマグネトロンスパッタ
装置により、集電体の上に非晶質シリコン薄膜を堆積し
て形成した。集電体としては、厚み18μmの電解銅箔
(表面粗さRa=0.188μm)を用いた。集電体を
冷却可能な支持基体上に貼り付け、スパッタ装置内部を
1×10-3Pa以下になるまで真空引きした後、アルゴ
ンガスを導入口から圧力が0.5Paになるまで導入
し、パワー密度:3W/cm2、ターゲット−基板間距
離:15cmのスパッタリング条件で、厚み11μmの
非晶質シリコン薄膜を形成した。
First, an embodiment according to the first aspect of the present invention will be described. (Example 1 and Comparative Example 1) [Production of Negative Electrode] Single crystal silicon (P type, conductivity 1 Ωcm)
The following) was used as a target and an amorphous silicon thin film was deposited on the current collector by a DC magnetron sputtering device. As the current collector, an electrolytic copper foil having a thickness of 18 μm (surface roughness Ra = 0.188 μm) was used. The current collector was attached on a coolable support substrate, the interior of the sputtering apparatus was evacuated to 1 × 10 −3 Pa or less, and then argon gas was introduced from the inlet until the pressure reached 0.5 Pa. An amorphous silicon thin film having a thickness of 11 μm was formed under the sputtering conditions of power density: 3 W / cm 2 and target-substrate distance: 15 cm.

【0046】次に、上記のようにして作製したシリコン
薄膜を水酸化リチウム水溶液によりエッチングした。水
酸化リチウム水溶液は、純水1リットルに対して水酸化
リチウム・1水和物を20gの割合で添加し撹拌するこ
とにより調製した。水酸化リチウム水溶液の温度を70
℃とし、この中に集電体上に形成したシリコン薄膜を1
分間浸漬することにより、シリコン薄膜をエッチングし
た。エッチング後、流水で洗浄し乾燥した。
Next, the silicon thin film produced as described above was etched with an aqueous lithium hydroxide solution. The aqueous lithium hydroxide solution was prepared by adding 20 g of lithium hydroxide monohydrate to 1 liter of pure water and stirring the mixture. The temperature of the aqueous lithium hydroxide solution is 70
℃ and the silicon thin film formed on the current collector in 1
The silicon thin film was etched by dipping for a minute. After etching, it was washed with running water and dried.

【0047】エッチング後のシリコン薄膜の表面を走査
型電子顕微鏡で観察した。図3は、エッチング後のシリ
コン薄膜の表面を斜め方向から見たときの走査型電子顕
微鏡写真(倍率7000倍)である。図3から明らかな
ように、シリコン薄膜表面の凹凸の谷部に沿って厚み方
向に空隙が形成されており、この空隙によりシリコン薄
膜が柱状の微小領域に分割されている。柱状の微小領域
の水平方向(膜面方向)における幅は1〜4μm程度で
ある。
The surface of the silicon thin film after etching was observed with a scanning electron microscope. FIG. 3 is a scanning electron microscope photograph (magnification: 7,000 times) when the surface of the silicon thin film after etching is viewed from an oblique direction. As is clear from FIG. 3, voids are formed in the thickness direction along the valleys of the irregularities on the surface of the silicon thin film, and the voids divide the silicon thin film into columnar minute regions. The width of the columnar minute region in the horizontal direction (the film surface direction) is about 1 to 4 μm.

【0048】なお、エッチング溶液として、本実施例で
は水酸化リチウム水溶液を用いているが、例えば、水酸
化ナトリウム水溶液、水酸化カリウム水溶液、アンモニ
ア水溶液などを用いても同様にエッチングすることがで
きる。
Although the lithium hydroxide aqueous solution is used as the etching solution in this embodiment, the same etching can be performed by using, for example, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, an ammonia aqueous solution or the like.

【0049】エッチングされたシリコン薄膜について、
蛍光X線分析により単位面積当りのシリコン重量を測定
したところ、1117μg/cm2であることが確認さ
れた。
Regarding the etched silicon thin film,
When the silicon weight per unit area was measured by fluorescent X-ray analysis, it was confirmed to be 1117 μg / cm 2 .

【0050】エッチングしたシリコン薄膜を集電体とと
もに2.5cm×2.5cmの大きさに切り出し、これ
を150℃で2時間真空加熱処理して、実施例1の負極
とした。
The etched silicon thin film was cut into a size of 2.5 cm × 2.5 cm together with a current collector, and this was vacuum-heated at 150 ° C. for 2 hours to obtain a negative electrode of Example 1.

【0051】なお、比較の電極として、シリコン薄膜の
厚みを6μmとする以外は、上記と同様にして電解銅箔
の集電体上に非晶質シリコン薄膜を形成した。得られた
シリコン薄膜について、走査型電子顕微鏡で観察した。
図4は、得られたシリコン薄膜の表面を斜め方向から見
たときの走査型電子顕微鏡写真(倍率7000倍)であ
る。図4から明らかなように、集電体表面の凹凸に対応
した凹凸がシリコン薄膜の表面に形成されており、図3
における実施例1のシリコン薄膜では、このようなシリ
コン薄膜表面の凹凸の谷部に沿って厚み方向にエッチン
グがなされ空隙が形成されていることがわかる。
As a comparative electrode, an amorphous silicon thin film was formed on the current collector of the electrolytic copper foil in the same manner as above except that the thickness of the silicon thin film was 6 μm. The obtained silicon thin film was observed with a scanning electron microscope.
FIG. 4 is a scanning electron microscope photograph (magnification: 7,000 times) when the surface of the obtained silicon thin film is viewed from an oblique direction. As is apparent from FIG. 4, irregularities corresponding to the irregularities on the surface of the current collector are formed on the surface of the silicon thin film.
It can be seen that in the silicon thin film of Example 1 in Example 1, a void is formed by etching in the thickness direction along the valleys of the irregularities on the surface of the silicon thin film.

【0052】単位面積当りのシリコン重量を、蛍光X線
分析で測定したところ、1132μg/cm2であっ
た。この電極を、上記実施例1の電極と同様に、2.5
cm×2.5cmの大きさに切り出し、これを150℃
で2時間真空加熱処理して、比較例1の負極とした。
The silicon weight per unit area was measured by fluorescent X-ray analysis and found to be 1132 μg / cm 2 . This electrode was used in the same manner as the electrode of Example 1 above, but the
Cut out into a size of cm x 2.5 cm and cut it at 150 ° C
Was vacuum-heated for 2 hours to obtain the negative electrode of Comparative Example 1.

【0053】〔正極の作製〕平均粒径10μmのLiC
oO2粉末90重量%と、導電剤としての炭素粉末5重
量%と、結着剤としてポリフッ化ビニリデン粉末5重量
%とを混合し、得られた混合物にN−メチルピロリドン
を加えて混練してスラリーを作製し、このスラリーを厚
さ20μmのアルミニウム製集電体の片面にドクターブ
レード法により塗布した。これを2.0cm×2.0c
mの大きさに切り出し、150℃で2時間真空加熱処理
して、正極を得た。
[Preparation of Positive Electrode] LiC having an average particle size of 10 μm
90% by weight of oO 2 powder, 5% by weight of carbon powder as a conductive agent, and 5% by weight of polyvinylidene fluoride powder as a binder were mixed, and N-methylpyrrolidone was added to the obtained mixture and kneaded. A slurry was prepared, and this slurry was applied to one surface of an aluminum current collector having a thickness of 20 μm by the doctor blade method. 2.0 cm x 2.0 c
It was cut into a size of m and subjected to vacuum heat treatment at 150 ° C. for 2 hours to obtain a positive electrode.

【0054】〔電解液の作製〕アルゴンの不活性ガス雰
囲気中で、エチレンカーボネート(EC)とジエチルカ
ーボネート(DEC)を体積比3:7となるように混合
した溶媒に、LiPF 6を1モル/リットルとなるよう
に溶解して電解液を作製した。
[Preparation of Electrolyte Solution] Argon inert gas atmosphere
In an ambient atmosphere, ethylene carbonate (EC) and diethyl carbonate
Carbonate (DEC) is mixed in a volume ratio of 3: 7.
LiPF 6To be 1 mol / liter
To prepare an electrolytic solution.

【0055】〔電池の作製〕上記実施例1及び比較例1
の負極と、上記正極とを用いて、以下のようにしてリチ
ウム二次電池を作製した。
[Fabrication of Battery] Example 1 and Comparative Example 1
A lithium secondary battery was produced in the following manner using the negative electrode of and the positive electrode.

【0056】アルゴンガス雰囲気下のグローブボックス
中にて、正極と負極とをポリエチレン製微多孔膜を介し
て貼り合わせ、アルミニウム製ラミネート材からなる外
装体に挿入した。これに、上記電解液を500μl注入
し、リチウム二次電池を作製した。電池の設計容量は1
4mAhである。
The positive electrode and the negative electrode were attached to each other through a polyethylene microporous film in a glove box under an argon gas atmosphere and inserted into an exterior body made of an aluminum laminate material. 500 μl of the above-mentioned electrolytic solution was injected into this to manufacture a lithium secondary battery. Battery design capacity is 1
It is 4 mAh.

【0057】図5は、作製したリチウム二次電池を示す
平面図である。図5に示すように、ポリエチレン製微多
孔膜からなるセパレータ2を介して、正極1と負極3と
が組合わされて外装体4内に挿入されている。外装体4
に挿入した後に、電解液を注入し、外装体4の封止部4
aを封止することにより、リチウム二次電池が作製され
ている。
FIG. 5 is a plan view showing the manufactured lithium secondary battery. As shown in FIG. 5, the positive electrode 1 and the negative electrode 3 are combined and inserted into the exterior body 4 via a separator 2 made of a polyethylene microporous film. Exterior body 4
After being inserted into the casing, the electrolytic solution is injected to seal the sealing portion 4 of the exterior body 4.
A lithium secondary battery is produced by sealing a.

【0058】図6は、電池内部における電池の組合せ状
態を示すための断面図である。図6に示すように、セパ
レータ2を介して正極1と負極3が対向するように組み
合わされている。正極1においてはアルミニウムからな
る正極集電体1bの上に、正極活物質層1aが設けられ
ており、この正極活物質層1aがセパレータ2と接して
いる。また、負極3においては、銅からなる負極集電体
3bの上に、負極活物質層3aが設けられおり、この負
極活物質層3aがセパレータ2に接している。
FIG. 6 is a sectional view showing a combined state of the batteries inside the battery. As shown in FIG. 6, the positive electrode 1 and the negative electrode 3 are combined so as to face each other via the separator 2. In the positive electrode 1, the positive electrode active material layer 1 a is provided on the positive electrode current collector 1 b made of aluminum, and the positive electrode active material layer 1 a is in contact with the separator 2. Further, in the negative electrode 3, the negative electrode active material layer 3 a is provided on the negative electrode current collector 3 b made of copper, and the negative electrode active material layer 3 a is in contact with the separator 2.

【0059】図6に示すように、正極集電体1bには、
外部取り出しのためのアルミニウムからなる正極タブ1
cが取り付けられている。また、負極集電体3bにも、
外部取り出しのためのニッケルからなる負極タブ3cが
取り付けられている。
As shown in FIG. 6, the positive electrode current collector 1b includes:
Aluminum positive electrode tab 1 for external extraction
c is attached. Also, for the negative electrode current collector 3b,
A negative electrode tab 3c made of nickel for external extraction is attached.

【0060】〔充放電サイクル特性の測定〕上記実施例
1及び比較例1の負極を用いた各電池について、充放電
サイクル特性を評価した。充電は14mAの定電流で
4.20Vまで行い、サイクル4.20Vの定電圧充電
を0.7mAまで行った。放電は14mAの定電流で
2.75Vまでとし、これを1サイクルとした。30サ
イクル後の容量維持率を以下の計算式より求めた。結果
を表1に示す。なお、測定は25℃で行った。
[Measurement of Charge / Discharge Cycle Characteristics] The charge / discharge cycle characteristics of each battery using the negative electrode of Example 1 and Comparative Example 1 were evaluated. Charging was performed up to 4.20 V at a constant current of 14 mA, and constant voltage charging at a cycle of 4.20 V was performed up to 0.7 mA. The discharge was performed at a constant current of 14 mA up to 2.75 V, and this was one cycle. The capacity retention rate after 30 cycles was calculated by the following formula. The results are shown in Table 1. The measurement was performed at 25 ° C.

【0061】容量維持率(%)=(30サイクル目の放
電容量/1サイクル目の放電容量)×100 また、充放電サイクル試験前及び試験後の負極の厚みを
測定し、(試験後の負極の厚み)−(試験前の負極の厚
み)を負極の厚み変化として、表1に示した。なお、実
施例1の負極の試験前の厚みは36μmであり、比較例
1の負極の試験前の厚みは32μmであった。
Capacity retention rate (%) = (Discharge capacity at 30th cycle / Discharge capacity at 1st cycle) × 100 Further, the thickness of the negative electrode before and after the charge / discharge cycle test was measured, and (the negative electrode after the test was measured. Thickness)-(thickness of negative electrode before test) is shown in Table 1 as a change in negative electrode thickness. The thickness of the negative electrode of Example 1 before the test was 36 μm, and the thickness of the negative electrode of Comparative Example 1 before the test was 32 μm.

【0062】[0062]

【表1】 [Table 1]

【0063】表1に示す結果から明らかなように、本発
明の第1の局面に従う実施例1の負極は、比較例1の負
極と同様に、高い充放電容量を示し、かつ優れた充放電
サイクル特性を示している。一方、負極の厚み変化は、
比較例1の負極よりもかなり小さくなっており、集電体
の変形及びしわの発生が抑制されていることがわかる。
As is clear from the results shown in Table 1, the negative electrode of Example 1 according to the first aspect of the present invention exhibits a high charge / discharge capacity and excellent charge / discharge as in the negative electrode of Comparative Example 1. Shows cycle characteristics. On the other hand, the thickness change of the negative electrode is
It is much smaller than the negative electrode of Comparative Example 1, and it can be seen that the deformation and wrinkle of the current collector are suppressed.

【0064】次に、本発明の第2の局面及び第3の局面
に従う実施例について説明する。 (実施例2)実施例1と同様にして集電体上に非晶質シ
リコン薄膜を形成し、形成したシリコン薄膜を水酸化リ
チウム水溶液を用いてエッチングした後、集電体表面を
エッチングして集電体表面に溝を形成した。集電体をエ
ッチングするのに用いたエッチング液としては、塩化第
2鉄水溶液を用いた。具体的には塩化第2鉄を純水で5
重量%に希釈したものをエッチング液として用いた。エ
ッチング液の温度は室温とし、エッチング時間は30秒
とした。エッチング後流水で10分間洗浄した後、15
0℃で2時間真空加熱処理した。
Next, examples according to the second and third aspects of the present invention will be described. (Example 2) An amorphous silicon thin film was formed on a current collector in the same manner as in Example 1, the formed silicon thin film was etched using an aqueous solution of lithium hydroxide, and then the current collector surface was etched. Grooves were formed on the surface of the current collector. An aqueous ferric chloride solution was used as an etching solution used for etching the current collector. Specifically, ferric chloride is diluted with pure water to 5
What was diluted to weight% was used as an etching liquid. The temperature of the etching solution was room temperature, and the etching time was 30 seconds. After etching, rinse with running water for 10 minutes, and then
A vacuum heat treatment was performed at 0 ° C. for 2 hours.

【0065】集電体をエッチングした後の負極における
単位面積当りのシリコン重量を、蛍光X線分析により測
定したところ、1095μg/cm2であった。走査型
電子顕微鏡により、集電体に形成した溝を観察したとこ
ろ、集電体の溝の深さは2〜5μmの範囲であり、溝の
幅は0.1〜0.3μmの範囲であった。また、エッチ
ングしたシリコン薄膜の柱状の微小領域の幅は、実施例
1と同様に1〜4μmであった。
The weight of silicon per unit area of the negative electrode after etching the current collector was measured by fluorescent X-ray analysis and found to be 1095 μg / cm 2 . Observation of the grooves formed on the current collector with a scanning electron microscope revealed that the depth of the grooves of the current collector was in the range of 2 to 5 μm and the width of the grooves was in the range of 0.1 to 0.3 μm. It was The width of the pillar-shaped minute region of the etched silicon thin film was 1 to 4 μm as in Example 1.

【0066】〔電池の作製〕実施例1と同様にして、正
極及び電解液を作製し、実施例1と同様にしてリチウム
二次電池を作製した。
[Production of Battery] A positive electrode and an electrolytic solution were produced in the same manner as in Example 1, and a lithium secondary battery was produced in the same manner as in Example 1.

【0067】〔充放電サイクル特性の測定〕上記実施例
2の負極を用いた電池について、上記実施例1と同様に
して充放電サイクル特性を評価し、初期放電容量及び容
量維持率を測定した。この結果を表2に示す。また、負
極の厚み変化についても測定し、結果を表2に示した。
実施例2の負極の試験前の厚みは36μmであった。
[Measurement of Charge / Discharge Cycle Characteristics] With respect to the battery using the negative electrode of Example 2 above, charge / discharge cycle characteristics were evaluated in the same manner as in Example 1 above, and the initial discharge capacity and capacity retention rate were measured. The results are shown in Table 2. The change in the thickness of the negative electrode was also measured, and the results are shown in Table 2.
The thickness of the negative electrode of Example 2 before the test was 36 μm.

【0068】なお、表2には、表1に示した比較例1の
結果も併せて示す。
Table 2 also shows the results of Comparative Example 1 shown in Table 1.

【0069】[0069]

【表2】 [Table 2]

【0070】表2に示す結果から明らかなように、本発
明の第2の局面及び第3の局面に従う実施例2の負極を
用いた電池は、充放電容量が高く、かつ充放電サイクル
特性に優れており、しかも、充放電試験における負極の
厚み変化が著しく低減している。従って、集電体の変形
やしわの発生がより効果的に抑制されていることがわか
る。
As is clear from the results shown in Table 2, the battery using the negative electrode of Example 2 according to the second and third aspects of the present invention has a high charge / discharge capacity and charge / discharge cycle characteristics. It is excellent, and the thickness change of the negative electrode in the charge / discharge test is significantly reduced. Therefore, it is understood that the deformation of the current collector and the generation of wrinkles are more effectively suppressed.

【0071】[0071]

【発明の効果】本発明によれば、充放電容量が高く、充
放電サイクル特性に優れたリチウム二次電池用電極であ
って、充放電に伴う活物質薄膜の膨張により集電体に変
形やしわが発生するのを抑制することができる。従っ
て、本発明のリチウム二次電池用電極を用いることによ
り、電池の体積当りのエネルギー密度を高めることがで
きる。
According to the present invention, an electrode for a lithium secondary battery having a high charge / discharge capacity and excellent charge / discharge cycle characteristics, which is transformed into a current collector due to expansion of the active material thin film due to charge / discharge. It is possible to suppress the generation of wrinkles. Therefore, by using the lithium secondary battery electrode of the present invention, the energy density per volume of the battery can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の局面に従う製造工程の一例を説
明するための断面図。
FIG. 1 is a cross-sectional view for explaining an example of a manufacturing process according to a first aspect of the present invention.

【図2】本発明の第2の局面に従う製造工程の一例を説
明するための断面図。
FIG. 2 is a cross-sectional view for explaining an example of a manufacturing process according to the second aspect of the present invention.

【図3】活物質薄膜であるシリコン薄膜をエッチングし
た後の状態を示す走査型電子顕微鏡写真(倍率7000
倍)。
FIG. 3 is a scanning electron microscope photograph (magnification: 7000) showing a state after etching a silicon thin film which is an active material thin film.
Times).

【図4】活物質薄膜であるシリコン薄膜をエッチングす
る前の状態を示す走査型電子顕微鏡写真(倍率7000
倍)。
FIG. 4 is a scanning electron microscope photograph (magnification: 7000) showing a state before etching a silicon thin film which is an active material thin film.
Times).

【図5】本発明の実施例において作製したリチウム二次
電池を示す平面図。
FIG. 5 is a plan view showing a lithium secondary battery manufactured in an example of the present invention.

【図6】図5に示すリチウム二次電池における電極の組
み合わせ構造を示す断面図。
6 is a sectional view showing a combined structure of electrodes in the lithium secondary battery shown in FIG.

【符号の説明】[Explanation of symbols]

10…集電体 10a…集電体表面 10c…集電体表面の凹凸の谷部 11…活物質薄膜 11a…活物質薄膜の表面 11b…活物質薄膜の低密度領域 11c…活物質薄膜表面の凹凸の谷部 12…活物質薄膜に形成された空隙 13…集電体表面に形成された溝 10 ... Current collector 10a ... Current collector surface 10c ... Valley of irregularities on current collector surface 11 ... Active material thin film 11a ... Surface of active material thin film 11b ... Low density region of active material thin film 11c ... Valley of irregularities on thin film of active material 12 ... Void formed in active material thin film 13 ... Grooves formed on the surface of the current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐山 勝信 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA03 AS00 BB16 CC01 DD01 EE01 5H029 AJ03 AJ05 AJ14 AK11 AL11 AM03 AM04 AM05 AM07 BJ04 CJ11 CJ24 DJ07 DJ12 DJ14 DJ17 DJ18 EJ01 HJ12 5H050 AA07 AA08 AA19 BA17 CA17 CB11 DA07 FA01 FA08 FA10 FA19 FA20 GA25 HA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsunobu Sayama             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 5H017 AA03 AS00 BB16 CC01 DD01                       EE01                 5H029 AJ03 AJ05 AJ14 AK11 AL11                       AM03 AM04 AM05 AM07 BJ04                       CJ11 CJ24 DJ07 DJ12 DJ14                       DJ17 DJ18 EJ01 HJ12                 5H050 AA07 AA08 AA19 BA17 CA17                       CB11 DA07 FA01 FA08 FA10                       FA19 FA20 GA25 HA12

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出する活物質薄膜を
集電体上に堆積して形成する工程と、 エッチングにより前記活物質薄膜の厚み方向に空隙を形
成し、前記活物質薄膜を微小領域に分割する工程とを備
えることを特徴とするリチウム二次電池用電極の製造方
法。
1. A step of depositing and forming an active material thin film that absorbs and releases lithium on a current collector, and forming a void in the thickness direction of the active material thin film by etching to form the active material thin film in a minute region. The method for producing an electrode for a lithium secondary battery, comprising:
【請求項2】 前記活物質薄膜に厚み方向に延びる低密
度領域が形成されており、該低密度領域におけるエッチ
ング速度が他の領域におけるエッチング速度よりも速い
ことを利用して、前記エッチングがなされることを特徴
とする請求項1に記載のリチウム二次電池用電極の製造
方法。
2. The etching is performed by utilizing the fact that a low density region extending in the thickness direction is formed in the active material thin film, and the etching rate in the low density region is higher than the etching rates in other regions. The method for producing an electrode for a lithium secondary battery according to claim 1, wherein:
【請求項3】 前記活物質薄膜の表面に前記集電体表面
の凹凸に対応した凹凸が形成されており、前記集電体表
面の凹凸の谷部と前記活物質薄膜表面の凹凸の谷部とを
結ぶ領域に前記低密度領域が形成されていることを特徴
とする請求項2に記載のリチウム二次電池用電極の製造
方法。
3. The surface of the active material thin film is formed with irregularities corresponding to the irregularities of the surface of the current collector, and the valleys of the irregularities on the surface of the current collector and the valleys of the irregularities on the surface of the active material thin film. The method for manufacturing an electrode for a lithium secondary battery according to claim 2, wherein the low-density region is formed in a region connecting with.
【請求項4】 前記活物質薄膜に対するエッチングが、
化学的反応によるエッチングであることを特徴とする請
求項1〜3のいずれか1項に記載のリチウム二次電池用
電極の製造方法。
4. The etching of the active material thin film comprises:
It is etching by a chemical reaction, The manufacturing method of the electrode for lithium secondary batteries of any one of Claims 1-3 characterized by the above-mentioned.
【請求項5】 リチウムを吸蔵・放出する活物質薄膜で
あって、厚み方向に形成された空隙によって微小領域に
分割された活物質薄膜を集電体上に設ける工程と、 前記空隙が形成された前記活物質薄膜をマスクとして前
記集電体表面をエッチングすることにより、前記活物質
薄膜の前記空隙に対応した溝を前記集電体に形成する工
程とを備えることを特徴とするリチウム二次電池用電極
の製造方法。
5. A step of providing, on a current collector, an active material thin film that absorbs and desorbs lithium and is divided into minute regions by voids formed in the thickness direction, and the voids are formed. And a step of forming a groove in the current collector corresponding to the void of the active material thin film by etching the surface of the current collector using the active material thin film as a mask. Manufacturing method of battery electrode.
【請求項6】 前記集電体に対するエッチングが、化学
的な反応によるエッチングであることを特徴とする請求
項5に記載のリチウム二次電池用電極の製造方法。
6. The method for manufacturing an electrode for a lithium secondary battery according to claim 5, wherein the etching of the current collector is etching by a chemical reaction.
【請求項7】 前記空隙が形成された前記活物質薄膜を
集電体上に設ける工程が、前記活物質薄膜を集電体上に
堆積して形成する工程と、エッチングにより前記活物質
薄膜に前記空隙を形成する工程とを含むことを特徴とす
る請求項5または6に記載のリチウム二次電池用電極の
製造方法。
7. The step of providing the active material thin film in which the voids are formed on a current collector, the step of depositing the active material thin film on the current collector and forming the active material thin film on the current collector by etching. 7. The method for manufacturing an electrode for a lithium secondary battery according to claim 5, further comprising the step of forming the void.
【請求項8】 前記活物質薄膜に厚み方向に延びる低密
度領域が形成されており、該低密度領域におけるエッチ
ング速度が他の領域におけるエッチング速度よりも速い
ことを利用して、前記エッチングがなされることを特徴
とする請求項7に記載のリチウム二次電池用電極の製造
方法。
8. The etching is performed by utilizing the fact that a low density region extending in the thickness direction is formed in the active material thin film and the etching rate in the low density region is higher than the etching rates in other regions. The method for manufacturing an electrode for a lithium secondary battery according to claim 7, wherein:
【請求項9】 前記活物質薄膜の表面に前記集電体表面
の凹凸に対応した凹凸が形成されており、前記集電体表
面の凹凸の谷部と前記活物質薄膜表面の凹凸の谷部とを
結ぶ領域に前記低密度領域が形成されていることを特徴
とする請求項8に記載のリチウム二次電池用電極の製造
方法。
9. The surface of the active material thin film is formed with irregularities corresponding to the irregularities of the surface of the current collector, and the valleys of the irregularities on the surface of the current collector and the valleys of the irregularities on the surface of the active material thin film. The method for manufacturing an electrode for a lithium secondary battery according to claim 8, wherein the low-density region is formed in a region connecting with.
【請求項10】 前記活物質薄膜に対するエッチング
が、化学的反応によるエッチングであることを特徴とす
る請求項7〜9のいずれか1項に記載のリチウム二次電
池用電極の製造方法。
10. The method for manufacturing an electrode for a lithium secondary battery according to claim 7, wherein the etching of the active material thin film is etching by a chemical reaction.
【請求項11】 前記活物質薄膜が、シリコン、ゲルマ
ニウム、またはシリコンゲルマニウムの非晶質もしくは
微結晶薄膜であることを特徴とする請求項1〜10のい
ずれか1項に記載のリチウム二次電池用電極の製造方
法。
11. The lithium secondary battery according to claim 1, wherein the active material thin film is an amorphous or microcrystalline thin film of silicon, germanium, or silicon germanium. For manufacturing electrodes for use.
【請求項12】 前記集電体の少なくとも表面部分が、
銅または銅を主体とする合金から形成されることを特徴
とする請求項1〜11のいずれか1項に記載のリチウム
二次電池用電極の製造方法。
12. At least a surface portion of the current collector,
The method for manufacturing an electrode for a lithium secondary battery according to any one of claims 1 to 11, which is formed of copper or an alloy mainly containing copper.
【請求項13】 リチウムを吸蔵・放出する活物質薄膜
を集電体上に堆積して形成したリチウム二次電池用電極
であって、 前記活物質薄膜が厚み方向に形成された空隙によって微
小領域に分割されており、かつ前記集電体の表面に前記
活物質薄膜の空隙に対応した溝が形成されていることを
特徴とするリチウム二次電池用電極。
13. A lithium secondary battery electrode formed by depositing an active material thin film that absorbs and desorbs lithium on a current collector, wherein the active material thin film is a minute region formed by a void formed in the thickness direction. And a groove corresponding to the void of the active material thin film is formed on the surface of the current collector, the electrode for a lithium secondary battery.
【請求項14】 前記活物質薄膜が、シリコン、ゲルマ
ニウム、またはシリコンゲルマニウムの非晶質もしくは
微結晶薄膜であることを特徴とする請求項13に記載の
リチウム二次電池用電極。
14. The electrode for a lithium secondary battery according to claim 13, wherein the active material thin film is an amorphous or microcrystalline thin film of silicon, germanium, or silicon germanium.
【請求項15】 前記集電体の少なくとも表面部分が、
銅または銅を主体とする合金から形成されていることを
特徴とする請求項13または14に記載のリチウム二次
電池用電極。
15. At least a surface portion of the current collector is
The electrode for a lithium secondary battery according to claim 13 or 14, wherein the electrode is made of copper or an alloy mainly containing copper.
【請求項16】 請求項1〜12のいずれか1項に記載
の方法により製造された電極または請求項13〜15の
いずれか1項に記載の電極からなる負極と、正極と、非
水電解質とを備えることを特徴とするリチウム二次電
池。
16. An electrode manufactured by the method according to any one of claims 1 to 12 or a negative electrode comprising the electrode according to any one of claims 13 to 15, a positive electrode, and a non-aqueous electrolyte. And a lithium secondary battery.
JP2001196638A 2001-06-28 2001-06-28 Method for manufacturing electrode for lithium secondary battery and lithium secondary battery Expired - Fee Related JP4183401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001196638A JP4183401B2 (en) 2001-06-28 2001-06-28 Method for manufacturing electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001196638A JP4183401B2 (en) 2001-06-28 2001-06-28 Method for manufacturing electrode for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2003017040A true JP2003017040A (en) 2003-01-17
JP4183401B2 JP4183401B2 (en) 2008-11-19

Family

ID=19034408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001196638A Expired - Fee Related JP4183401B2 (en) 2001-06-28 2001-06-28 Method for manufacturing electrode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4183401B2 (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
WO2004109839A1 (en) * 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
JP2005116519A (en) * 2003-09-17 2005-04-28 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
WO2005064714A1 (en) * 2003-12-26 2005-07-14 Nec Corporation Negative electrode material for secondary battery, negative electrode for secondary battery and secondary battery using same
JP2005267955A (en) * 2004-03-17 2005-09-29 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2006028316A1 (en) * 2004-09-11 2006-03-16 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
WO2006043382A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
JP2006134891A (en) * 2004-09-09 2006-05-25 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
JP2006228512A (en) * 2005-02-16 2006-08-31 Mitsui Mining & Smelting Co Ltd Anode for nonaqueous electrolyte secondary battery
JP2007165226A (en) * 2005-12-16 2007-06-28 Sumitomo Electric Ind Ltd Manufacturing method of electrode for lithium secondary battery
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
CN100347904C (en) * 2003-06-09 2007-11-07 三洋电机株式会社 Lithium secondary battery and method for producing same
WO2008029890A1 (en) * 2006-09-07 2008-03-13 Toyota Jidosha Kabushiki Kaisha Method for producing nonaqueous secondary battery
WO2008044683A1 (en) * 2006-10-10 2008-04-17 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery
WO2008044449A1 (en) 2006-10-13 2008-04-17 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery, process for producing the same and nonaqueous electrolyte secondary battery utilizing the electrode
WO2008047668A1 (en) * 2006-10-19 2008-04-24 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for producing negative electrode for nonaqueous electrolyte secondary battery
WO2008050586A1 (en) * 2006-10-19 2008-05-02 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery containing the same
JP2008124003A (en) * 2006-10-19 2008-05-29 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery including it
WO2008072430A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
WO2008072460A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for rechargeable battery with nonaqueous electrolyte, process for producing the negative electrode, and rechargeable battery with nonaqueous electrolyte using the negative electrode
JP2008146840A (en) * 2006-12-06 2008-06-26 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery
WO2008124227A1 (en) * 2007-04-05 2008-10-16 3M Innovative Properties Company Electrodes with raised patterns
WO2008136166A1 (en) 2007-04-26 2008-11-13 Panasonic Corporation Electrode for electrochemical elment, process for producing the electrode, and electrochemical element using the electrode
CN101310400A (en) * 2005-11-17 2008-11-19 无穷动力解决方案股份有限公司 Hybrid thin-film battery
WO2008139157A1 (en) * 2007-05-11 2008-11-20 Nexeon Ltd A silicon anode for a rechargeable battery
WO2009010757A1 (en) * 2007-07-17 2009-01-22 Nexeon Limited Production
WO2009010759A1 (en) * 2007-07-17 2009-01-22 Nexeon Limited Method
WO2009010758A3 (en) * 2007-07-17 2009-03-12 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2009135084A (en) * 2007-11-02 2009-06-18 Panasonic Corp Lithium ion secondary battery
JP2010008266A (en) * 2008-06-27 2010-01-14 Panasonic Corp Metal sheet inspecting method and battery manufacturing method
US7683359B2 (en) 2002-11-05 2010-03-23 Nexeon Ltd. Structured silicon anode
US7794878B2 (en) 2006-01-19 2010-09-14 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
GB2470056A (en) * 2009-05-07 2010-11-10 Nexeon Ltd A method of forming a silicon anode material for rechargeable cells
JP2011023710A (en) * 2009-06-19 2011-02-03 Semiconductor Energy Lab Co Ltd Method for manufacturing electric storage device
JP2011096646A (en) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd Manufacturing method for electrode for power storage device, and manufacturing method for power storage device
JP2011129344A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Lithium ion secondary battery
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
US8101298B2 (en) 2006-01-23 2012-01-24 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8148012B2 (en) 2007-02-01 2012-04-03 Panasonic Corporation Method for forming active material on a current collector of negative electrode using feedback process with measuring collector
US8192864B2 (en) 2007-02-01 2012-06-05 Panasonic Corporation Battery, examination method and manufacturing method for negative electrode thereof, and examination apparatus and manufacturing apparatus for negative electrode thereof
US8257869B2 (en) 2007-06-01 2012-09-04 Panasonic Corporation Electrode for electrochemical element and electrochemical element using the electrode
US8273136B2 (en) 2007-03-16 2012-09-25 Panasonic Corporation Electrochemical element, and method and apparatus for manufacturing electrode thereof
US8303672B2 (en) 2005-11-07 2012-11-06 Panasonic Corporation Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
US8334073B2 (en) 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8389156B2 (en) 2006-08-25 2013-03-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2013510405A (en) * 2009-11-03 2013-03-21 エンビア・システムズ・インコーポレイテッド High capacity anode materials for lithium ion batteries
JP2013131506A (en) * 2013-04-03 2013-07-04 Toyota Motor Corp Positive electrode current collector foil for battery, method of manufacturing the same, and battery
US20130177804A1 (en) * 2012-01-05 2013-07-11 GM Global Technology Operations LLC Methods for making battery electrode systems
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8658313B2 (en) 2009-09-30 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode, and method for manufacturing power storage device and power generation and storage device having the electrode
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
KR101410803B1 (en) 2014-03-10 2014-06-24 경상대학교산학협력단 A discontinuous electrode, battery using the same, a method for producing thereof
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
WO2014192637A1 (en) * 2013-05-31 2014-12-04 株式会社安永 Electrode for non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8940441B2 (en) 2006-04-04 2015-01-27 Sony Corporatin Anode and battery
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
KR20160048668A (en) * 2014-10-24 2016-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and manufacturing method of the same
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9614214B2 (en) 2004-12-16 2017-04-04 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9735419B2 (en) 2010-03-26 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for forming electrode of secondary battery
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US20180019466A1 (en) * 2012-10-05 2018-01-18 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
WO2018038479A1 (en) * 2016-08-25 2018-03-01 주식회사 엘지화학 Electrode for secondary battery comprising fine holes
KR20180042712A (en) * 2016-10-18 2018-04-26 서울대학교산학협력단 Lithium battery and method for manufacturing electrode of the lithium battery
CN108292737A (en) * 2016-08-25 2018-07-17 株式会社Lg化学 Has punctulate electrode for secondary battery
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
JP2022126945A (en) * 2021-02-19 2022-08-31 プライムアースEvエナジー株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Cited By (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
US8017430B2 (en) 2002-11-05 2011-09-13 Nexeon Ltd. Structured silicon anode
US7842535B2 (en) 2002-11-05 2010-11-30 Nexeon Ltd. Structured silicon anode
JP2010135332A (en) * 2002-11-05 2010-06-17 Nexeon Ltd Structured silicon anode
US7683359B2 (en) 2002-11-05 2010-03-23 Nexeon Ltd. Structured silicon anode
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
WO2004109839A1 (en) * 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
CN100347904C (en) * 2003-06-09 2007-11-07 三洋电机株式会社 Lithium secondary battery and method for producing same
US8609279B2 (en) 2003-06-09 2013-12-17 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
JP2005116519A (en) * 2003-09-17 2005-04-28 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
JPWO2005064714A1 (en) * 2003-12-26 2007-12-20 日本電気株式会社 Secondary battery negative electrode material, secondary battery negative electrode and secondary battery using the same
JP4752508B2 (en) * 2003-12-26 2011-08-17 日本電気株式会社 Secondary battery negative electrode material, secondary battery negative electrode and secondary battery using the same
WO2005064714A1 (en) * 2003-12-26 2005-07-14 Nec Corporation Negative electrode material for secondary battery, negative electrode for secondary battery and secondary battery using same
US8377591B2 (en) 2003-12-26 2013-02-19 Nec Corporation Anode material for secondary battery, anode for secondary battery and secondary battery therewith
JP4599070B2 (en) * 2004-03-17 2010-12-15 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2005267955A (en) * 2004-03-17 2005-09-29 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2006134891A (en) * 2004-09-09 2006-05-25 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery
WO2006028316A1 (en) * 2004-09-11 2006-03-16 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
US7807294B2 (en) 2004-10-21 2010-10-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
WO2006043382A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
JP2006120445A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Anode for nonaqueous electrolyte secondary battery and its manufacturing method
US9614214B2 (en) 2004-12-16 2017-04-04 Lg Chem, Ltd. Method for improvement of performance of si thin film anode for lithium rechargeable battery
JP2006228512A (en) * 2005-02-16 2006-08-31 Mitsui Mining & Smelting Co Ltd Anode for nonaqueous electrolyte secondary battery
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
US8888870B2 (en) 2005-08-02 2014-11-18 Panasonic Corporation Lithium secondary battery
US8303672B2 (en) 2005-11-07 2012-11-06 Panasonic Corporation Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
US8318359B2 (en) 2005-11-07 2012-11-27 Panasonic Corporation Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
CN101310400A (en) * 2005-11-17 2008-11-19 无穷动力解决方案股份有限公司 Hybrid thin-film battery
JP2007165226A (en) * 2005-12-16 2007-06-28 Sumitomo Electric Ind Ltd Manufacturing method of electrode for lithium secondary battery
JPWO2007074654A1 (en) * 2005-12-28 2009-06-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100901048B1 (en) 2005-12-28 2009-06-04 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
JP4613953B2 (en) * 2005-12-28 2011-01-19 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US7794878B2 (en) 2006-01-19 2010-09-14 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8101298B2 (en) 2006-01-23 2012-01-24 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8940441B2 (en) 2006-04-04 2015-01-27 Sony Corporatin Anode and battery
US8389156B2 (en) 2006-08-25 2013-03-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2008029890A1 (en) * 2006-09-07 2008-03-13 Toyota Jidosha Kabushiki Kaisha Method for producing nonaqueous secondary battery
WO2008044683A1 (en) * 2006-10-10 2008-04-17 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery
US8734997B2 (en) 2006-10-10 2014-05-27 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery
US8334073B2 (en) 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
WO2008044449A1 (en) 2006-10-13 2008-04-17 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery, process for producing the same and nonaqueous electrolyte secondary battery utilizing the electrode
US8029933B2 (en) 2006-10-13 2011-10-04 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same
US8399129B2 (en) 2006-10-19 2013-03-19 Panasonic Corporation Negative electrode for lithium secondary battery, and lithium secondary battery including the same
EP2077596A1 (en) * 2006-10-19 2009-07-08 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery containing the same
CN101449408B (en) * 2006-10-19 2011-04-13 松下电器产业株式会社 Negative electrode for lithium secondary battery and lithium secondary battery containing the same
WO2008047668A1 (en) * 2006-10-19 2008-04-24 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP2008124003A (en) * 2006-10-19 2008-05-29 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery including it
WO2008050586A1 (en) * 2006-10-19 2008-05-02 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery containing the same
KR101109285B1 (en) * 2006-10-19 2012-01-31 파나소닉 주식회사 Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
EP2077596A4 (en) * 2006-10-19 2012-02-01 Panasonic Corp Negative electrode for lithium secondary battery and lithium secondary battery containing the same
US8142931B2 (en) 2006-10-19 2012-03-27 Panasonic Corporation Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
JP2008146840A (en) * 2006-12-06 2008-06-26 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery
US7947396B2 (en) 2006-12-13 2011-05-24 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the same
WO2008072430A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
WO2008072460A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for rechargeable battery with nonaqueous electrolyte, process for producing the negative electrode, and rechargeable battery with nonaqueous electrolyte using the negative electrode
US8148012B2 (en) 2007-02-01 2012-04-03 Panasonic Corporation Method for forming active material on a current collector of negative electrode using feedback process with measuring collector
US8192864B2 (en) 2007-02-01 2012-06-05 Panasonic Corporation Battery, examination method and manufacturing method for negative electrode thereof, and examination apparatus and manufacturing apparatus for negative electrode thereof
US8273136B2 (en) 2007-03-16 2012-09-25 Panasonic Corporation Electrochemical element, and method and apparatus for manufacturing electrode thereof
WO2008124227A1 (en) * 2007-04-05 2008-10-16 3M Innovative Properties Company Electrodes with raised patterns
WO2008136166A1 (en) 2007-04-26 2008-11-13 Panasonic Corporation Electrode for electrochemical elment, process for producing the electrode, and electrochemical element using the electrode
US8187755B2 (en) 2007-04-26 2012-05-29 Panasonic Corporation Electrode for electrochemical element, its manufacturing method, and electrochemical element using the same
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
WO2008139157A1 (en) * 2007-05-11 2008-11-20 Nexeon Ltd A silicon anode for a rechargeable battery
US8257869B2 (en) 2007-06-01 2012-09-04 Panasonic Corporation Electrode for electrochemical element and electrochemical element using the electrode
KR101217452B1 (en) * 2007-07-17 2013-01-02 넥세온 엘티디 Composite electrode
WO2009010757A1 (en) * 2007-07-17 2009-01-22 Nexeon Limited Production
KR101243604B1 (en) 2007-07-17 2013-03-14 넥세온 엘티디 Bonded silicon fibres
WO2009010758A3 (en) * 2007-07-17 2009-03-12 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
EP2194596A3 (en) * 2007-07-17 2010-11-17 Nexeon Limited A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
RU2451368C2 (en) * 2007-07-17 2012-05-20 Нексеон Лимитед Method to manufacture structured particles containing silicon or silicon-based material and their application in rechargeable lithium batteries
CN101790804B (en) * 2007-07-17 2014-09-17 奈克松有限公司 Method for manufacturing electrode and method for manufacturing lithium rechargeable battery and lithium ion battery electrode
WO2009010759A1 (en) * 2007-07-17 2009-01-22 Nexeon Limited Method
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2010533945A (en) * 2007-07-17 2010-10-28 ネグゼオン・リミテッド Product
JP2010533946A (en) * 2007-07-17 2010-10-28 ネグゼオン・リミテッド Method
JP4563478B2 (en) * 2007-11-02 2010-10-13 パナソニック株式会社 Lithium ion secondary battery
JP2009135084A (en) * 2007-11-02 2009-06-18 Panasonic Corp Lithium ion secondary battery
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
JP2010008266A (en) * 2008-06-27 2010-01-14 Panasonic Corp Metal sheet inspecting method and battery manufacturing method
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
GB2470056B (en) * 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
EP2321441A1 (en) * 2009-05-07 2011-05-18 Nexeon Limited A method of making silicon anode material for rechargeable cells
GB2470056A (en) * 2009-05-07 2010-11-10 Nexeon Ltd A method of forming a silicon anode material for rechargeable cells
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
EP2321441B1 (en) * 2009-05-07 2016-10-12 Nexeon Limited A method of making silicon anode material for rechargeable cells
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
JP2011023710A (en) * 2009-06-19 2011-02-03 Semiconductor Energy Lab Co Ltd Method for manufacturing electric storage device
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery
JP2011096646A (en) * 2009-09-30 2011-05-12 Semiconductor Energy Lab Co Ltd Manufacturing method for electrode for power storage device, and manufacturing method for power storage device
US8658313B2 (en) 2009-09-30 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode, and method for manufacturing power storage device and power generation and storage device having the electrode
US9011702B2 (en) 2009-09-30 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for power storage device and method for manufacturing power storage device
KR101740692B1 (en) * 2009-09-30 2017-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing electrode for power storage device and method for manufacturing power storage device
US10003068B2 (en) 2009-11-03 2018-06-19 Zenlabs Energy, Inc. High capacity anode materials for lithium ion batteries
US9190694B2 (en) 2009-11-03 2015-11-17 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
JP2013510405A (en) * 2009-11-03 2013-03-21 エンビア・システムズ・インコーポレイテッド High capacity anode materials for lithium ion batteries
US11309534B2 (en) 2009-11-03 2022-04-19 Zenlabs Energy, Inc. Electrodes and lithium ion cells with high capacity anode materials
JP2011129344A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Lithium ion secondary battery
US9735419B2 (en) 2010-03-26 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for forming electrode of secondary battery
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material
US9583767B2 (en) * 2012-01-05 2017-02-28 GM Global Technology Operations LLC Methods for making battery electrode systems
US20130177804A1 (en) * 2012-01-05 2013-07-11 GM Global Technology Operations LLC Methods for making battery electrode systems
US20180019466A1 (en) * 2012-10-05 2018-01-18 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
JP2013131506A (en) * 2013-04-03 2013-07-04 Toyota Motor Corp Positive electrode current collector foil for battery, method of manufacturing the same, and battery
CN105190955B (en) * 2013-05-31 2017-09-26 株式会社安永 The manufacture method of electrode for nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
KR20160014621A (en) * 2013-05-31 2016-02-11 가부시기가이샤야스나가 Electrode for non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
WO2014192637A1 (en) * 2013-05-31 2014-12-04 株式会社安永 Electrode for non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
KR102212144B1 (en) * 2013-05-31 2021-02-04 가부시기가이샤야스나가 Electrode for non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
JPWO2014192637A1 (en) * 2013-05-31 2017-02-23 株式会社安永 Non-aqueous electrolyte secondary battery electrode and method for producing non-aqueous electrolyte secondary battery electrode
TWI622209B (en) * 2013-05-31 2018-04-21 Yasunaga Kk Electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
CN105190955A (en) * 2013-05-31 2015-12-23 株式会社安永 Electrode for non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
KR101410803B1 (en) 2014-03-10 2014-06-24 경상대학교산학협력단 A discontinuous electrode, battery using the same, a method for producing thereof
JP2016085978A (en) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 Secondary battery and manufacturing method of the same
JP2020145203A (en) * 2014-10-24 2020-09-10 株式会社半導体エネルギー研究所 Secondary battery
US10978696B2 (en) 2014-10-24 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and manufacturing method of the same
KR20160048668A (en) * 2014-10-24 2016-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and manufacturing method of the same
JP2022095800A (en) * 2014-10-24 2022-06-28 株式会社半導体エネルギー研究所 Secondary battery
KR102471728B1 (en) * 2014-10-24 2022-11-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and manufacturing method of the same
CN108292737A (en) * 2016-08-25 2018-07-17 株式会社Lg化学 Has punctulate electrode for secondary battery
US10818929B2 (en) 2016-08-25 2020-10-27 Lg Chem, Ltd. Electrode for secondary battery having fine holes
WO2018038479A1 (en) * 2016-08-25 2018-03-01 주식회사 엘지화학 Electrode for secondary battery comprising fine holes
KR101882396B1 (en) * 2016-10-18 2018-07-26 서울대학교산학협력단 Lithium battery and method for manufacturing electrode of the lithium battery
KR20180042712A (en) * 2016-10-18 2018-04-26 서울대학교산학협력단 Lithium battery and method for manufacturing electrode of the lithium battery
JP2022126945A (en) * 2021-02-19 2022-08-31 プライムアースEvエナジー株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP7342050B2 (en) 2021-02-19 2023-09-11 プライムアースEvエナジー株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4183401B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4183401B2 (en) Method for manufacturing electrode for lithium secondary battery and lithium secondary battery
JP3733071B2 (en) Lithium battery electrode and lithium secondary battery
JP4248240B2 (en) Lithium secondary battery
JP4027255B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP4610213B2 (en) Lithium secondary battery and manufacturing method thereof
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
KR101195672B1 (en) Lithium Secondary Battery
JP2003007305A (en) Electrode for secondary lithium battery and secondary lithium battery
JP2002319408A (en) Lithium secondary battery electrode and lithium secondary battery
WO2010110205A1 (en) Lithium ion secondary battery, electrode for the battery, and electrodeposited copper foil for the electrode for the battery
JP4212458B2 (en) Lithium secondary battery
JP2004296103A (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
WO2004109839A1 (en) Lithium secondary battery and method for producing same
JP4497899B2 (en) Lithium secondary battery
JP2004296104A (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4148665B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP2002042783A (en) Lithium secondary battery
JP2002231224A (en) Lithium secondary battery electrode, its manufacturing method, and lithium secondary battery
JP5084140B2 (en) Method for producing negative electrode for lithium secondary battery
JP4318405B2 (en) Lithium secondary battery
WO2006103829A1 (en) Nonaqueous electrolyte secondary battery
JP2003017069A (en) Electrode for lithium secondary battery and lithium secondary battery
JP4436624B2 (en) Lithium secondary battery
JP5127888B2 (en) Lithium secondary battery and manufacturing method thereof
JP4471603B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees