JP2003001388A - Continuous casting method for steel - Google Patents

Continuous casting method for steel

Info

Publication number
JP2003001388A
JP2003001388A JP2001186333A JP2001186333A JP2003001388A JP 2003001388 A JP2003001388 A JP 2003001388A JP 2001186333 A JP2001186333 A JP 2001186333A JP 2001186333 A JP2001186333 A JP 2001186333A JP 2003001388 A JP2003001388 A JP 2003001388A
Authority
JP
Japan
Prior art keywords
reduction
slab
rolling
thickness
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001186333A
Other languages
Japanese (ja)
Other versions
JP3671872B2 (en
Inventor
Yoshinori Tanizawa
好徳 谷澤
Seiji Kumakura
誠治 熊倉
Akihiro Yamanaka
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001186333A priority Critical patent/JP3671872B2/en
Publication of JP2003001388A publication Critical patent/JP2003001388A/en
Application granted granted Critical
Publication of JP3671872B2 publication Critical patent/JP3671872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method for steel which enables manufacturing of a cast slab having little center segregation through both the entire length and the entire width of the cast slab. SOLUTION: In a method to apply reduction after bulging on a rectangular cast slab of 150-370 mm thick, the reduction is applied with 2 pairs or more of reduction rolls at a reduction gradient of 1.5-5 mm/m in a first reduction stage where a reduction area covers from the highest upstream of a reduction area in a second reduction stage to a maximum of 6 m to the upstream side. In the second reduction stage, whose reduction area corresponds to a solid phase rate fs in the center of thickness of 0.20-0.95, the reduction is applied with a pair or two pairs or more of reduction rolls, with each rolling reduction amount of more than 15 mm and the reduction gradient of 40 mm/m or more. The total amount of rolling reduction in the first and second reduction stages is less than a thickness equivalent to the bulging.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、未凝固部を含む鋳
片をバルジングさせた後、内部が凝固完了するまでの間
でバルジングさせた鋳片を圧下する鋼の連続鋳造方法に
関する。 【0002】 【従来の技術】鋼の連続鋳造法によって得られる鋳片の
厚さ中心部には、中心偏析と呼ばれる内部欠陥が発生し
やすい。この中心偏析は、鋳片の最終凝固部近傍にC、
S、P、Mnなどの偏析成分が濃化して現れるものであ
り、製品である厚板の靱性の低下や、厚板から曲げ加工
後溶接して製造される大径鋼管の水素誘起割れを引き起
こす原因となる。 【0003】凝固が進み、凝固組織の一つであるデンド
ライト樹間に偏析成分が濃化し、この偏析成分の濃化し
た溶鋼(以下、単に濃化溶鋼と記す場合がある)が、凝
固時の鋳片の収縮またはバルジングと呼ばれる鋳片のふ
くれなどにより、デンドライト樹間より流出し、最終凝
固部の凝固完了点に向かって流動し、そのまま凝固して
成分濃化帯を形成する。この成分濃化帯が中心偏析であ
る。 【0004】そこで、中心偏析の防止対策として、デン
ドライト樹間に残った濃化溶鋼の移動を防止すること
と、これら濃化溶鋼の局所的な集積を防ぐことが効果的
であり、特開平9−57410号公報および特開平9−
206903号公報には、未凝固部を含む鋳片をバルジ
ングさせ、最終凝固部の鋳造方向の上流側で、バルジン
グ量相当分を圧下ロール対を用いて圧下する方法が提案
されている。これらの方法によれば、凝固が完了した鋳
片の両端短辺部を圧下することがなく、ロールによる圧
下力が、鋳片の圧下にのみ働くので、中心偏析の改善が
期待できる。 【0005】しかし、上記の特開平9−57410号公
報および特開平9−206903号公報で提案された方
法でも、鋳片の圧下条件等によっては中心偏析が発生す
る場合がある。そのため、鋳片の鋳造方向の全長、全幅
にわたって、さらに安定して中心偏析の改善効果が得ら
れる技術が必要とされている。 【0006】 【発明が解決しようとする課題】本発明は、鋳片の鋳造
方向の全長、全幅にわたって中心偏析の少ない鋳片を、
安定して確実に得ることができる鋼の連続鋳造方法を提
供することを目的とする。 【0007】 【課題を解決するための手段】本発明の要旨は、横断面
形状が長方形で、鋳型出口における厚さが150〜37
0mmの鋳片を鋳造するに際し、未凝固部を含む鋳片を
バルジングさせた後、内部が凝固完了するまでの間でバ
ルジングさせた鋳片を複数対の圧下ロール対により圧下
する連続鋳造方法であって、鋳片を圧下する工程を、鋳
造方向の上流側から第1の圧下工程と第2の圧下工程と
に分け、第1の圧下工程においては、その圧下領域は第
2の圧下工程の圧下領域の最上流の位置から上流側に最
長で6mまでの範囲内の領域とし、その圧下領域内に配
置した2対以上の圧下ロール対を用いて鋳片を圧下する
に際し、圧下勾配は鋳造方向の1m長さ当たり1.5〜
5mmとし、第2の圧下工程においては、その圧下領域
は鋳片の厚さ中心部の固相率fsが0.20〜0.95
の範囲内の領域とし、その圧下領域内に配置した1対ま
たは2対以上の圧下ロール対を用いて鋳片を圧下するに
際し、各圧下ロール対の各圧下量は15mm以上とし、
かつ、圧下勾配は鋳造方向の1m長さ当たり40mm以
上とし、これら第1および第2の圧下工程における鋳片
の合計の圧下量を、バルジングさせた厚さ相当量以下と
する鋼の連続鋳造方法にある。 【0008】第1の圧下工程における圧下領域に関し、
本発明で規定する「その圧下領域は第2の圧下工程の圧
下領域の最上流の位置から上流側に最長で6mまでの範
囲内の領域」とは、第2の圧下工程の圧下領域の最上流
の位置から、たとえば、その上流側の2mまでの間の領
域、またはその上流側の4mまでの間の領域などであっ
て、その上流側の最長6mまでの間の領域を意味する。 【0009】第1の圧下工程における圧下勾配に関し、
本発明で規定する「その圧下領域内に配置した2対以上
の圧下ロール対を用いて鋳片を圧下するに際し、圧下勾
配は鋳造方向の1m長さ当たり1.5〜5mmとする」
とは、第1の圧下工程における最上流の圧下ロール対の
ロール軸心と、最下流の圧下ロール対のロール軸心との
間の距離における鋳片の平均の圧下勾配が、鋳造方向の
1m長さ当たり1.5〜5mmの範囲内であることを意
味する。第1の圧下工程における圧下量は、第1の圧下
工程の鋳造方向の長さに依存する。 【0010】第2の圧下工程における圧下勾配に関し、
本発明で規定する「圧下領域内に配置した1対または2
対以上の圧下ロール対を用いて鋳片を圧下するに際し、
圧下勾配は鋳造方向の1m長さ当たり40mm以上とす
る」とは、第1の圧下工程における最下流の圧下ロール
対のロール軸心と、この第2の圧下工程における最下流
の圧下ロール対のロール軸心との間の距離における鋳片
の平均の圧下勾配が、鋳造方向の1m長さ当たり40m
m以上であることを意味する。第2の圧下工程における
圧下ロール対が1対の場合には、第1の圧下工程におけ
る最下流の圧下ロール対のロール軸心と、この第2の圧
下工程における圧下ロール対のロール軸心との間の距離
における鋳片の圧下勾配が、鋳造方向の1m長さ当たり
40mm以上であることを意味する。 【0011】本発明で規定する「鋳片の合計の圧下量
を、バルジングさせた厚さ相当量以下とする」とは、未
凝固部を含む鋳片をバルジングさせると、鋳片の幅中央
部が最も厚さが厚くなるが、この幅中央部がバルジング
したときの厚さから鋳片の両側短辺部の厚さを引いた厚
さ以下の圧下量で圧下することを意味する。 【0012】未凝固部を含む鋳片をバルジングさせ、最
終凝固部の鋳造方向の上流側で、バルジング量相当分を
単に圧下する方法では、鋳片の鋳造方向の全長、全幅に
わたって、安定して中心偏析の少ない鋳片を得ることが
困難であるのは、鋳片の圧下によって、鋳片の全幅で均
一に、かつ、圧下位置よりも十分に上流側に、偏析成分
の濃化した溶鋼が排出されないからである。つまり、圧
下により排出された濃化溶鋼が、鋳片の幅方向の位置に
よっては、圧下位置の前方近傍に止まり、そのまま凝固
するので、鋳片の幅方向において部分的に中心偏析が発
生する。圧下により排出された濃化溶鋼が、鋳片の幅方
向の位置によっては、圧下位置の前方近傍に止まる理由
を、以下に説明する。 【0013】図2は、湾曲型または垂直曲げ型の連続鋳
造機を用いて、従来技術により、鋳片をバルジングさせ
た後に圧下した場合の鋳片内部の状況を示す模式図であ
る。図2(a)は、圧下直前の最終凝固部近傍における
鋳片内部の状況を示し、また図2(b)は、圧下直後の
鋳片内部の状況を模式的に示す。最終凝固部近傍におけ
る濃化溶鋼は、鋳片の圧下により鋳造方向の上流側に排
出される。排出された濃化溶鋼の比重は、母溶鋼の比重
より小さいので、これら濃化溶鋼10は鋳片の天側に集
積しやすい。その際、鋳片の地側に分岐柱状晶11が堆
積していると、排出された濃化溶鋼の流路が塞がれるの
で、さらに、濃化溶鋼が鋳片の天側に集積しやすくな
る。また、図2(a)に模式的に示すように、最終凝固
部近傍における未凝固部の厚さは、もともと鋳片の幅方
向で不均一であることが多い。鋳片の冷却が幅方向で不
均一になりやすいからである。したがって、濃化溶鋼が
集積した厚さが、鋳片の幅方向で不均一になる。ここ
で、図中の符号3は、未凝固部と凝固殻とからなる鋳片
を、符号4は、凝固完了した鋳片を、また符号12は、
部分的に発生した中心偏析を、破線は鋳片厚さの1/2
の中心線を示す。 【0014】このように、圧下直前の最終凝固部近傍
は、図2(a)で示すように、その下流側で鋳片が圧下
されることにより排出された濃化溶鋼が鋳片の天側に集
積し、かつ、その集積した厚さが鋳片の幅方向で不均一
になりやすい。図2(a)に示す状態の鋳片を圧下する
と、固相率の低い鋳片の厚さ中心部近傍の濃化溶鋼は、
上流側に比較的容易に排出されるが、固相率の高い鋳片
の天側近傍に部分的に厚く集積した濃化溶鋼は、流動し
にくく、したがって、上流側に排出されずに、そのまま
凝固し、図2(b)に示すように、鋳片の幅方向で厚さ
中心部近傍に、部分的に中心偏析が発生する。 【0015】そこで、本発明者らは、適正な鋳片の圧下
条件を検討し、実験を行った結果、つぎの知見を得て、
本発明に到った。すなわち、未凝固部を含む鋳片をバル
ジングさせた後、内部が凝固完了するまでの間で鋳片を
圧下する際に、圧下工程を前段の第1の圧下工程と後段
の第2の圧下工程とに分割し、第1の圧下工程では、鋳
片を圧下する鋳造方向の圧下領域を適正な範囲で長く
し、かつ、圧下勾配を比較的緩い勾配とすること、さら
に、第2の圧下工程では、最終凝固部近傍の位置を、未
凝固部の溶鋼が凝固したときに発生する収縮および既に
凝固完了した鋳片の部分が温度の低下とともに発生する
収縮の合計に相当する鋳片の厚さよりも大きな圧下量お
よび適正に大きな圧下勾配で圧下することが効果的であ
ることがわかった。 【0016】すなわち、このように圧下工程を分割する
ことにより、第1の圧下工程では、第1の圧下工程にお
いて形成される濃化溶鋼と、第2の圧下工程で排出され
てきた濃化溶鋼とを併せて、鋳片の幅方向で均一に、第
1の圧下領域よりも上流側に排出できるのである。 【0017】 【発明の実施の形態】本発明の方法は、湾曲型連続鋳造
機または垂直曲げ型連続鋳造機を用いる場合に適用する
のに好適な方法であるが、垂直型連続鋳造機を用いる場
合にも適用することができる。 【0018】図1は、本発明の方法を実施する場合の連
続鋳造装置の例を示す模式図である。図を簡略にするた
めに、垂直型連続鋳造機を用いる場合の例を示す。浸潰
ノズル9を経て鋳型1内に供給された溶鋼13は、鋳型
内で凝固し、凝固殻2aを形成する。その凝固殻は、鋳
型から引き抜かれた後、冷却水によって冷却され、その
厚さが増す。未凝固部2bと凝固殻とからなる鋳片3お
よび内部まで凝固完了した鋳片4は、ガイドロール対5
および圧下ロール対6、7を経て、ピンチロール8によ
り引き抜かれる。 【0019】鋳型出側以降から、後述する第1の圧下工
程用として配置された圧下ロール対6のうちの最上流の
圧下ロール対直前までの間において、ガイドロール対5
の鋳片の厚さ方向の間隔を引き抜き方向に段階的に厚く
することにより、未凝固部を含む鋳片をバルジングさせ
る。図1中に、この領域をバルジングゾーンと記す。ま
た、このバルジングゾーンの直後から、内部が凝固完了
するまでの間でバルジングさせた鋳片を複数対の圧下ロ
ール対により圧下する。その際、圧下する領域は、図1
中に示すように、鋳造方向の上流側から第1の圧下工程
の領域と第2の圧下工程の領域とからなる。 【0020】本発明が対象とする鋳片は、横断面形状が
長方形で、鋳型出口における厚さが150〜370mm
の鋳片とする。このような鋳片が中心偏析が問題となる
厚板などの製品鋼材の熱間圧延用素材として、一般的に
用いられるからである。 【0021】本発明の方法では、未凝固部を含む鋳片を
バルジングさせた後、内部が凝固完了するまでの間でバ
ルジングさせた鋳片を複数対の圧下ロール対により圧下
する。バルジングさせる際、前述のとおり、鋳片の幅中
央部が最も厚さが厚くなる。バルジングした後の幅中央
部の厚さから鋳片の両側短辺部の厚さを引いた厚さをバ
ルジング厚さとすると、バルジング厚さは、鋳片の厚さ
および後述する圧下ロール対の数、中心偏析の発生の抑
制効果の事前試験結果などにより決めればよく、およそ
20〜80mmが望ましい。 【0022】鋳片を圧下する際、後述する第1および第
2の圧下工程における鋳片の合計の圧下量を、バルジン
グさせた厚さ相当量以下とする。鋳片の両端短辺部を圧
下することがないので、鋳片の幅方向で厚さ中心部を、
ほぼ均一に、かつ効果的に圧下できるためである。鋳片
の両側短辺部を圧下できる圧下ロール対を、連続鋳造機
内に配置するのは、通常、困難である。また、バルジン
グ量以下の圧下量で圧下する場合に、バルジングさせた
厚さ相当の50%以上の厚さを圧下するのが望ましい。
50%未満では、圧下量が少なく、鋳片の幅方向で部分
的に中心偏析が発生する場合がある。 【0023】本発明の方法では、鋳片を圧下する工程
を、鋳造方向の上流側から第1の圧下工程と第2の圧下
工程とに分け、第1の圧下工程においては、その圧下領
域は第2の圧下工程の圧下領域の最上流の位置から上流
側に最長で6mまでの範囲内の領域とし、その圧下領域
内に配置した2対以上の圧下ロール対を用いて鋳片を圧
下するに際し、圧下勾配は鋳造方向の1m長さ当たり
1.5〜5mmとする。第1の圧下ロール対を、第2の
圧下工程の圧下領域の最上流の位置から上流側に6mを
超える位置にまで配置しても、濃化溶鋼を上流側に排出
させる効果は少ない。また、第1の圧下工程として配置
する圧下ロール対のうちの最上流の圧下ロール対の位置
と、第2の圧下工程の圧下領域の最上流の位置との間の
距離は1m以上とするのが望ましい。この距離が1m未
満では、第1の圧下工程の圧下領域が短く、濃化溶鋼を
上流側に排出する効果が少ない。また、圧下勾配が鋳造
方向の1m長さ当たり1.5mm未満でも、濃化溶鋼を
上流側に排出する効果が少なく、圧下勾配が鋳造方向の
1m長さ当たり5mmを超えると、鋳片内部に割れが発
生する。さらに、第1の圧下工程では、上記圧下領域に
おいて、1.3〜10.0mm/分の圧下速度で圧下す
るのが望ましい。より圧下効果が大きい。 【0024】第2の圧下工程の圧下領域は鋳片の厚さ中
心部の固相率fsが0.20〜0.95の範囲内の領域
とし、その圧下領域内に配置した1対または2対以上の
圧下ロール対を用いて鋳片を圧下するに際し、各圧下ロ
ール対の各圧下量は15mm以上とし、かつ、圧下勾配
は鋳造方向の1m長さ当たり40mm以上とする。 【0025】第2の圧下工程の圧下領域において、鋳片
の厚さ中心部の固相率fsが0.20未満では、鋳片を
圧下する効果が小さく、圧下後に濃化溶鋼が集積しやす
く、また、固相率fsが0.95を超えると、濃化溶鋼
の流動性が悪く、上流側への排出が困難である。また、
1対または2対以上の圧下ロール対を用いて鋳片を圧下
するに際し、各圧下ロール対の各圧下量が15mm未満
では、濃化溶鋼を上流側に排出する効果が少ない。さら
に、圧下勾配が鋳造方向の1m長さ当たり40mm未満
では、濃化溶鋼を上流側に排出する効果が少ない。圧下
勾配の上限は100mmが望ましい。100mmを超え
ると、鋳片内部に割れが発生する。また、第2の圧下工
程では、上記圧下領域において、20.0mm/分以上
の圧下速度で圧下するのが望ましい。より圧下効果が大
きいからである。 【0026】図1中には示していないが、鋳型内の溶鋼
の吐出流の流速を減じるための電磁ブレーキを、また、
未凝固部の溶鋼を攪拌するための電磁撹拌装置をそれぞ
れ配置することができる。その際、電磁ブレーキおよび
電磁撹拌装置は、通常用いられている装置でよい。 【0027】電磁ブレーキを用いると、最終凝固部の幅
方向での形状が均一、すなわち、未凝固部先端の形状が
平坦になりやすいので、圧下ロール対による鋳片の厚さ
中心部の圧下効果がより大きくなる。また、電磁撹拌装
置を用いると、未凝固部の溶鋼が撹拌され、凝固組織が
等軸晶となりやすい。等軸晶化することにより、鋳片の
圧下の際に、濃化溶鋼の排出が起こりやすくなる。電磁
撹拌を加える場合、鋳片の大きさにもよるが、周波数は
1.0〜3.0Hz 程度、電流値は400〜900A程
度とするのがよい。 【0028】その他、凝固組織を等軸晶化する方法とし
て、ガイドロール対または圧下ロール対を介して、鋳片
の未凝固部に超音波を印加する方法でもよいし、操業面
からの簡便性を配慮して、低温鋳造、鋳型内の溶鋼中へ
の鋼線添加などの方法でもよい。 【0029】 【実施例】図1に示す装置構成で、垂直曲げ型の連続鋳
造装置を用いて、通常の厚板用に用いられるC含有率が
0.15〜0.20質量%の中炭素鋼の鋳造試験を行っ
た。鋳片サイズは、厚さ240mm、幅2300mmと
し、鋳造速度1.2m/分で鋳造した。タンデイッシュ
内の溶鋼の過熱度は通常の20〜40℃とし、鋳片の二
次冷却の比水量は1.3〜1.9リットル/kg−鋼の
範囲とし、1ヒート約250tの溶鋼を連続して3ヒー
ト鋳造した。 【0030】圧下前のバルジング量は30mmで一定と
し、第1の圧下工程の領域に配置する圧下ロール対は、
ロール直径が250mmで、6対の圧下ロール対を鋳造
方向の長さ1.5mにわたって連続して配置した。最上
流に配置された第1の圧下工程における圧下ロール対の
軸心と、後述する第2の圧下工程における圧下ロール対
の軸心との距離は、2.3mとした。第2の圧下工程の
領域に配置する圧下ロール対は、ロール直径が450m
mの1対の圧下ロール対を、鋳型内のメニスカスから2
0mの位置に配置した。上記第2の圧下工程における圧
下ロール対の配置位置は、上記の鋳造条件では鋳片の厚
さ中心部の固相率が0.3〜0.4である位置に相当す
る。 【0031】未凝固部の溶鋼を攪拌するための電磁撹拌
装置を、メニスカスから9.3mの位置に設置した。未
凝固部の溶鋼を電磁撹拌する際、周波数は1.0〜2.
0Hz、電流値は900A程度とした。なお、吐出流の
速度制御のための電磁ブレーキは配置しなかった。 【0032】各試験において、鋳造方向に長さ300m
mの鋳片の横断面サンプルを、鋳込み長さの10m毎に
9個採取した。このサンプルを硝酸でマクロエッチする
ことにより、鋳片の幅方向で中心偏析の最も悪い位置を
特定し、その部分から、直径3mmのドリル刃により切
り削を採取して、成分Cを分析した。そのC値をレード
ル値のC含有率C で除した比、C/C の値で中
心偏析を評価した。 【0033】また、得られた鋳片を、熱間圧延により厚
さ32mmの厚鋼板とし、その厚鋼板からJIS Z
2201で規定される1A号試験片を採取して引張試験
を行い、得られた絞り値により、鋳片の中心偏析が厚鋼
板に及ぼす影響を評価した。表1に、試験条件と試験結
果を示す。 【0034】 【表1】本発明例の試験No.1およびNo.2では、鋳片の二
次冷却の比水量を1.9リットル/kg−鋼または1.
8リットル/kg−鋼とし、第1の圧下工程における圧
下量は5mmまたは7mmで、圧下勾配は3.3mm/
mまたは4.7mm/mとした。また、第2の圧下工程
における圧下量は19mmまたは23mm、圧下勾配は
50.7mm/mまたは61.3mm/mとした。合計
の圧下量は24mmまたは30mmである。これらの第
1の圧下工程の圧下勾配、および第2の圧下工程の圧下
領域の鋳片の厚さ中心部の固相率、圧下量および圧下勾
配は、それぞれ本発明で規定する条件の範囲内である。
これら試験No.1およびNo.2では、圧下後の鋳片
の中心偏析は、比、C/C の値が1.10または
1.05であり、中心偏析は極わずかな発生程度であ
り、品質の良好な鋳片が得られた。また、厚鋼板の引張
試験における絞り値は75.2%または78.6%であ
り、良好な値で、鋳片における良好な中心偏析の状況を
反映している結果であった。 【0035】比較例の試験No.3では、二次冷却の比
水量を1.9リットル/kg−鋼とし、第1の圧下工程
における圧下量は5mmで、圧下勾配は3.3mm/m
とした。また、第2の圧下工程における圧下量は10m
m、圧下勾配は26.7mm/mとした。合計の圧下量
は15mmである。第2の圧下工程の圧下量が、本発明
で規定する条件を外れている。この試験No.3では、
圧下後の鋳片の中心偏析は、比、C/C の値が1.
20であり、中心偏析が発生した。また、厚鋼板の引張
試験における絞り値は、65.1%であり、低い絞り値
であった。 【0036】比較例の試験No.4では、二次冷却の比
水量を1.9リットル/kg−鋼とし、第1の圧下工程
における鋳片の圧下は行わなかった。第2の圧下工程に
おける圧下量は20mm、圧下勾配は53.3mm/m
とした。第1の圧下工程における圧下を行っていないこ
とが、本発明で規定する条件を外れている。この試験N
o.4では、圧下後の鋳片の中心偏析は、比、C/C
の値が1.35で、著しい中心偏析が発生した。ま
た、厚鋼板の引張試験における絞り値は55.1%と悪
かった。鋳片における中心偏析が厚鋼板の絞り値に影響
を与えた。 【0037】比較例の試験No.5では、二次冷却の比
水量を1.9リットル/kg−鋼とし、第1の圧下工程
における圧下量は1.5mmで、圧下勾配は1.0mm
/mとした。また、第2の圧下工程における圧下量は2
0mm、圧下勾配は53.3mm/mとした。合計の圧
下量は21.5mmである。第1の圧下工程の圧下勾配
が、本発明で規定する条件を外れて小さい値である。こ
の試験No.5では、圧下後の鋳片の中心偏析は、比、
C/C の値が1.25で、中心偏析が発生した。ま
た、厚鋼板の引張試験における絞り値は59.7%と悪
かった。 【0038】 【発明の効果】本発明の方法の適用により、鋳片の鋳造
方向の全長、全幅にわたって、さらに安定して中心偏析
の少ない鋳片を確実に得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rolling a slab including an unsolidified portion, and then reducing the bulged slab until the inside of the slab is completely solidified. The present invention relates to a method for continuously casting steel. 2. Description of the Related Art Internal defects called center segregation are apt to occur at the center of the thickness of a slab obtained by continuous casting of steel. This center segregation is caused by C, near the final solidification part of the slab.
Segregation components such as S, P, and Mn are concentrated and appear, causing a decrease in toughness of a thick plate as a product and hydrogen-induced cracking of a large-diameter steel pipe manufactured by bending and welding from a thick plate. Cause. As the solidification progresses, segregated components are concentrated between dendrite trees, which are one of the solidified structures, and molten steel in which the segregated components are concentrated (hereinafter sometimes simply referred to as concentrated molten steel) is formed during solidification. Due to shrinkage of the slab or swelling of the slab called bulging, it flows out from between the dendrite trees, flows toward the solidification completion point of the final solidification part, and solidifies as it is to form a component-enriched zone. This component concentrated zone is the center segregation. In order to prevent the segregation of the center, it is effective to prevent the movement of the concentrated molten steel remaining between the dendrite trees and to prevent the local accumulation of the concentrated molten steel. -57410 and JP-A-9-
No. 206903 proposes a method in which a slab including an unsolidified portion is bulged, and an amount corresponding to the bulging amount is reduced by a pair of reduction rolls on the upstream side of the final solidified portion in the casting direction. According to these methods, since the rolling force by the roll acts only on the reduction of the slab without reducing the short sides at both ends of the solidified slab, improvement in center segregation can be expected. However, even with the methods proposed in the above-mentioned Japanese Patent Application Laid-Open Nos. 9-57410 and 9-206903, center segregation may occur depending on the rolling conditions of the slab. Therefore, there is a need for a technique capable of more stably improving the effect of center segregation over the entire length and width of the slab in the casting direction. SUMMARY OF THE INVENTION The present invention provides a slab having a small center segregation over the entire length and width in the casting direction of the slab.
An object of the present invention is to provide a continuous casting method of steel that can be obtained stably and surely. [0007] The gist of the present invention is that a cross-sectional shape is rectangular and a thickness at a mold outlet is 150 to 37.
When casting a 0 mm slab, after bulging the slab including the unsolidified portion, a continuous casting method in which the bulged slab is lowered by a plurality of pairs of reduction roll pairs until the inside is completely solidified. The step of reducing the slab is divided into a first reduction step and a second reduction step from the upstream side in the casting direction. In the first reduction step, the reduction region is the second reduction step. When the slab is reduced by using two or more pairs of reduction rolls arranged in the reduction region at a length of up to 6 m upstream from the most upstream position of the reduction region, the reduction gradient is 1.5 ~ per 1m length in the direction
5 mm, and in the second reduction step, the reduction region has a solid phase ratio fs of 0.20 to 0.95 at the center of the thickness of the slab.
When rolling down the slab using one or two or more reduction roll pairs arranged in the reduction region, each reduction amount of each reduction roll pair is 15 mm or more,
A method of continuously casting steel in which the rolling gradient is 40 mm or more per 1 m length in the casting direction, and the total rolling amount of the slabs in the first and second rolling processes is equal to or less than the bulged thickness equivalent. It is in. [0008] Regarding the reduction region in the first reduction step,
The “reduction region defined by the present invention is a region within a range of up to 6 m at most from the most upstream position of the reduction region of the second reduction process” to the upstream of the reduction region of the second reduction process. It means a region from the upstream position to, for example, a region up to 2 m on the upstream side, or a region up to 4 m on the upstream side, and a region up to 6 m on the upstream side. Regarding the reduction gradient in the first reduction step,
As defined in the present invention, "when the slab is reduced by using two or more pairs of reduction rolls arranged in the reduction region, the reduction gradient is 1.5 to 5 mm per 1 m length in the casting direction."
Means that the average reduction gradient of the slab at the distance between the roll axis of the most upstream reduction roll pair and the roll axis of the most downstream reduction roll pair in the first reduction step is 1 m in the casting direction. It means within the range of 1.5 to 5 mm per length. The amount of reduction in the first reduction step depends on the length in the casting direction of the first reduction step. Regarding the reduction gradient in the second reduction step,
As defined in the present invention, "a pair or two arranged in a reduction region"
When rolling down the slab using more than one pair of rolling rolls,
The rolling gradient should be 40 mm or more per 1 m length in the casting direction. "Means that the roll axis of the most downstream rolling roll pair in the first rolling process and the most downstream rolling roll pair in the second rolling process are used. The average reduction gradient of the slab at a distance from the roll axis is 40 m per 1 m length in the casting direction.
m or more. In the case where the number of the reduction roll pair in the second reduction process is one, the roll axis of the most downstream reduction roll pair in the first reduction process and the roll axis of the reduction roll pair in the second reduction process are different from each other. Means that the rolling gradient of the slab at a distance between is not less than 40 mm per 1 m length in the casting direction. The phrase "to reduce the total amount of reduction of the slab to be equal to or less than the bulged thickness" as defined in the present invention means that the slab including the unsolidified portion is bulged, The thickness is the thickest, but means that the reduction is performed with a reduction amount equal to or less than the thickness obtained by subtracting the thickness of the short sides on both sides of the slab from the thickness at the time of bulging at the center of the width. According to a method of bulging a slab including an unsolidified portion and simply reducing the bulging amount upstream of the final solidified portion in the casting direction, the slab is stably formed over the entire length and the entire width of the slab in the casting direction. It is difficult to obtain a slab with a small center segregation because the slab reduction causes the molten steel with concentrated segregation components to be uniform over the entire width of the slab and sufficiently upstream from the reduction position. It is not discharged. That is, depending on the position in the width direction of the slab, the concentrated molten steel discharged by the reduction stops near the front of the reduction position and solidifies as it is, so that central segregation occurs partially in the width direction of the slab. The reason why the concentrated molten steel discharged by the reduction stops near the front of the reduction position depending on the position of the slab in the width direction will be described below. FIG. 2 is a schematic view showing the inside of a slab when a slab is bulged and then reduced by a conventional technique using a curved or vertical bending type continuous casting machine. FIG. 2A shows the situation inside the slab near the final solidified portion immediately before the reduction, and FIG. 2B schematically shows the situation inside the slab immediately after the reduction. The concentrated molten steel in the vicinity of the final solidified portion is discharged to the upstream side in the casting direction by the reduction of the slab. Since the specific gravity of the discharged concentrated molten steel is smaller than the specific gravity of the mother molten steel, these concentrated molten steels 10 tend to accumulate on the top side of the slab. At this time, if the branched columnar crystals 11 are deposited on the ground side of the slab, the flow path of the discharged concentrated molten steel is blocked, so that the concentrated molten steel is more likely to accumulate on the top side of the slab. Become. Further, as schematically shown in FIG. 2A, the thickness of the unsolidified portion in the vicinity of the final solidified portion is often non-uniform in the width direction of the slab. This is because the cooling of the slab tends to be uneven in the width direction. Therefore, the thickness in which the concentrated molten steel is accumulated becomes non-uniform in the width direction of the slab. Here, reference numeral 3 in the drawing denotes a slab composed of an unsolidified portion and a solidified shell, reference numeral 4 denotes a slab that has been solidified, and reference numeral 12 denotes a slab.
The dashed line indicates the center segregation that occurred partially,
Shows the center line of. In this way, as shown in FIG. 2A, the concentrated molten steel discharged by the reduction of the slab downstream of the slab near the final solidified portion immediately before the reduction is reduced to the top side of the slab. And the accumulated thickness tends to be non-uniform in the width direction of the slab. When the slab in the state shown in FIG. 2A is reduced, the concentrated molten steel in the vicinity of the center of the thickness of the slab having a low solid phase ratio becomes:
Although it is relatively easily discharged to the upstream side, the concentrated molten steel partially thickly accumulated near the top side of the slab having a high solid fraction is hard to flow, and therefore, is not discharged to the upstream side as it is. As shown in FIG. 2 (b), the solidification solidifies, and central segregation occurs partially near the center of the thickness in the width direction of the slab. The inventors of the present invention have studied the appropriate rolling conditions of the slab and conducted experiments, and have obtained the following findings.
The present invention has been reached. That is, when the slab including the unsolidified portion is bulged and then the slab is reduced until the inside of the slab is completely solidified, the reduction process includes a first reduction process in a first stage and a second reduction process in a second stage. In the first rolling step, the rolling region in the casting direction for rolling the slab is elongated in an appropriate range, and the rolling gradient is set to a relatively gentle gradient. In the position near the final solidified part, the thickness of the slab corresponding to the sum of the shrinkage that occurs when the molten steel in the unsolidified part solidifies and the shrinkage that occurs when the part of the slab that has already been solidified occurs with a decrease in temperature. It was also found that it was effective to reduce the pressure with a large reduction amount and an appropriately large reduction gradient. That is, by dividing the rolling process in this way, in the first rolling process, the concentrated molten steel formed in the first rolling process and the concentrated molten steel discharged in the second rolling process are formed. In addition, the slab can be uniformly discharged in the width direction of the slab to the upstream side of the first reduction region. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention is a method suitable for using a curved continuous casting machine or a vertical bending continuous casting machine, but uses a vertical continuous casting machine. The case can also be applied. FIG. 1 is a schematic view showing an example of a continuous casting apparatus when the method of the present invention is carried out. In order to simplify the drawing, an example in which a vertical continuous casting machine is used will be described. The molten steel 13 supplied into the mold 1 via the immersion nozzle 9 solidifies in the mold to form a solidified shell 2a. After the solidified shell is pulled out of the mold, it is cooled by cooling water and its thickness increases. The slab 3 composed of the unsolidified portion 2b and the solidified shell and the slab 4 that has been completely solidified to the inside thereof are
Then, it is pulled out by the pinch roll 8 through the pair of reduction rolls 6 and 7. The guide roll pair 5 is provided from the mold discharge side to immediately before the most upstream roll pair of the roll pairs 6 arranged for a first rolling step described later.
The slab including the unsolidified portion is bulged by gradually increasing the interval in the thickness direction of the slab in the drawing direction. In FIG. 1, this area is referred to as a bulging zone. Immediately after the bulging zone and until the inside is completely solidified, the bulged slab is reduced by a plurality of pairs of reduction rolls. At this time, the area to be reduced is shown in FIG.
As shown in the figure, from the upstream side in the casting direction, there is a region for a first rolling process and a region for a second rolling process. The cast slab to which the present invention is applied has a rectangular cross section and a thickness at the mold outlet of 150 to 370 mm.
Slab. This is because such a slab is generally used as a raw material for hot rolling of a product steel material such as a thick plate in which center segregation becomes a problem. In the method of the present invention, after bulging a slab including an unsolidified portion, the bulged slab is reduced by a plurality of pairs of reduction rolls until the inside is completely solidified. During bulging, as described above, the thickness of the slab becomes the thickest at the center of the width. When the bulging thickness is defined as the thickness obtained by subtracting the thickness of the short sides on both sides of the slab from the thickness of the width center portion after bulging, the bulging thickness is determined by the thickness of the slab and the number of pressing roll pairs described below. It may be determined based on the results of a preliminary test of the effect of suppressing the occurrence of center segregation, and is preferably about 20 to 80 mm. When the slab is reduced, the total reduction amount of the slab in the first and second reduction steps described below is set to be equal to or less than the bulging thickness. Since the short sides of both ends of the slab are not reduced, the center of the thickness in the width direction of the slab is
This is because the pressure can be reduced substantially uniformly and effectively. It is usually difficult to arrange a reduction roll pair capable of reducing the short sides on both sides of a slab in a continuous casting machine. Further, when the reduction is performed with a reduction amount equal to or less than the bulging amount, it is desirable to reduce the thickness by 50% or more corresponding to the bulged thickness.
If it is less than 50%, the amount of reduction is small and the center segregation may partially occur in the width direction of the slab. In the method of the present invention, the step of reducing the slab is divided into a first reduction step and a second reduction step from the upstream side in the casting direction, and in the first reduction step, the reduction region is A region within a range of up to 6 m from the most upstream position of the rolling region in the second rolling process to the upstream side is reduced, and the slab is reduced by using two or more pairs of rolling rolls arranged in the rolling region. At this time, the rolling gradient is 1.5 to 5 mm per 1 m length in the casting direction. Even if the first reduction roll pair is arranged from the most upstream position of the reduction region in the second reduction process to a position exceeding 6 m upstream, the effect of discharging the concentrated molten steel to the upstream side is small. Further, the distance between the position of the most upstream draft roll pair of the draft roll pairs arranged as the first drafting step and the most upstream position of the draft region in the second drafting step is 1 m or more. Is desirable. If this distance is less than 1 m, the reduction region in the first reduction step is short, and the effect of discharging the concentrated molten steel to the upstream side is small. Further, even if the rolling gradient is less than 1.5 mm per 1 m length in the casting direction, the effect of discharging the concentrated molten steel to the upstream side is small, and if the rolling gradient is more than 5 mm per 1 m length in the casting direction, the inside of the slab is Cracks occur. Furthermore, in the first rolling step, it is desirable to reduce at a rolling speed of 1.3 to 10.0 mm / min in the above-mentioned rolling region. Greater reduction effect. The reduction region in the second reduction step is a region in which the solid phase ratio fs at the center of the thickness of the slab is in the range of 0.20 to 0.95, and one or two of the pairs disposed in the reduction region are arranged. In rolling down the slab using more than one pair of reduction rolls, the reduction amount of each reduction roll pair is 15 mm or more, and the reduction gradient is 40 mm or more per 1 m length in the casting direction. In the rolling region of the second rolling process, if the solid fraction fs at the center of the slab thickness is less than 0.20, the effect of rolling the slab is small, and the concentrated molten steel tends to accumulate after the rolling. If the solid fraction fs exceeds 0.95, the fluidity of the concentrated molten steel is poor, and it is difficult to discharge the molten steel to the upstream side. Also,
When reducing the cast slab using one or two or more reduction roll pairs, if the reduction amount of each reduction roll pair is less than 15 mm, the effect of discharging the concentrated molten steel to the upstream side is small. Further, if the rolling gradient is less than 40 mm per 1 m length in the casting direction, the effect of discharging the concentrated molten steel to the upstream side is small. The upper limit of the rolling gradient is desirably 100 mm. If it exceeds 100 mm, cracks occur inside the slab. Further, in the second rolling step, it is desirable to reduce at a rolling speed of 20.0 mm / min or more in the above-mentioned rolling region. This is because the rolling effect is greater. Although not shown in FIG. 1, an electromagnetic brake for reducing the flow rate of the molten steel discharge flow in the mold is provided.
An electromagnetic stirrer for stirring the molten steel in the unsolidified portion can be provided. At that time, the electromagnetic brake and the electromagnetic stirring device may be devices that are generally used. When an electromagnetic brake is used, the shape of the final solidified portion in the width direction is uniform, that is, the shape of the tip of the unsolidified portion is easily flattened. Is larger. When an electromagnetic stirrer is used, the molten steel in the unsolidified portion is stirred, and the solidified structure is likely to be equiaxed. The equiaxed crystallization facilitates the discharge of the concentrated molten steel when the slab is reduced. When electromagnetic stirring is applied, the frequency is preferably about 1.0 to 3.0 Hz and the current value is preferably about 400 to 900 A, depending on the size of the slab. In addition, as a method of making the solidified structure equiaxed, a method of applying ultrasonic waves to an unsolidified portion of a slab through a guide roll pair or a reduction roll pair may be used, In consideration of the above, a method such as low-temperature casting or addition of a steel wire into molten steel in a mold may be used. EXAMPLE With the apparatus configuration shown in FIG. 1, using a vertical bending type continuous casting apparatus, the carbon content of 0.15 to 0.20% by mass of carbon used for a normal thick plate is used. A steel casting test was performed. The slab size was 240 mm in thickness and 2300 mm in width, and casting was performed at a casting speed of 1.2 m / min. The degree of superheat of the molten steel in the tundish is usually 20 to 40 ° C., the specific water volume of the secondary cooling of the slab is in the range of 1.3 to 1.9 l / kg-steel, and the molten steel of about 250 t per heat is used. Three heat castings were performed continuously. The bulging amount before the reduction is fixed at 30 mm, and the pair of reduction rolls arranged in the region of the first reduction step is as follows.
The roll diameter was 250 mm, and six reduction roll pairs were continuously arranged over a length of 1.5 m in the casting direction. The distance between the axis of the reduction roll pair in the first reduction step arranged at the most upstream and the axis of the reduction roll pair in the second reduction step described later was 2.3 m. The reduction roll pair arranged in the area of the second reduction step has a roll diameter of 450 m.
m from the meniscus in the mold.
It was arranged at a position of 0 m. The arrangement position of the pair of reduction rolls in the second reduction step corresponds to a position where the solid phase ratio at the center of the slab thickness is 0.3 to 0.4 under the above-described casting conditions. An electromagnetic stirrer for stirring the molten steel in the unsolidified portion was installed at a position 9.3 m from the meniscus. When the molten steel in the unsolidified portion is electromagnetically stirred, the frequency is 1.0 to 2.
0 Hz and the current value were about 900A. An electromagnetic brake for controlling the speed of the discharge flow was not provided. In each test, the length was 300 m in the casting direction.
9 cross-sectional samples of m cast slabs were taken for every 10 m of casting length. The sample was macro-etched with nitric acid to determine the position of the worst center segregation in the width direction of the slab, and a cut was taken from the portion with a 3 mm diameter drill blade to analyze the component C. The center segregation was evaluated by the ratio of the C value divided by the C content C 0 of the ladle value, and the value of C / C 0 . The obtained slab is formed into a thick steel plate having a thickness of 32 mm by hot rolling.
A No. 1A test piece specified in 2201 was sampled and subjected to a tensile test, and the influence of the center segregation of the cast piece on the steel plate was evaluated based on the obtained drawing value. Table 1 shows test conditions and test results. [Table 1] Test No. of the present invention example. 1 and No. 1 In No. 2, the specific water volume of the secondary cooling of the slab was 1.9 liter / kg-steel or 1.
8 liters / kg-steel, the amount of reduction in the first reduction step is 5 mm or 7 mm, and the reduction gradient is 3.3 mm / kg.
m or 4.7 mm / m. The amount of reduction in the second reduction step was 19 mm or 23 mm, and the reduction gradient was 50.7 mm / m or 61.3 mm / m. The total amount of reduction is 24 mm or 30 mm. The rolling gradient in the first rolling step and the solid fraction, the amount of rolling and the rolling gradient at the center of the thickness of the slab in the rolling area in the second rolling step are respectively within the ranges specified in the present invention. It is.
These test Nos. 1 and No. 1 In No. 2, the center segregation of the cast slab after rolling was such that the value of the ratio, C / C 0 , was 1.10 or 1.05, and the center segregation was a very slight occurrence, and a good quality slab was obtained. Obtained. In addition, the drawing value in the tensile test of the thick steel plate was 75.2% or 78.6%, which was a good value, and reflected the state of good center segregation in the slab. Test No. of Comparative Example In No. 3, the specific water amount of the secondary cooling was 1.9 liter / kg-steel, the amount of reduction in the first reduction step was 5 mm, and the reduction gradient was 3.3 mm / m.
And The amount of reduction in the second reduction step is 10 m.
m, and the rolling gradient was 26.7 mm / m. The total amount of reduction is 15 mm. The amount of reduction in the second reduction step is outside the conditions specified in the present invention. This test no. In 3,
The center segregation of the cast slab after the reduction was such that the ratio, C / C 0 , was 1.
20 and center segregation occurred. The drawing value of the thick steel plate in the tensile test was 65.1%, which was a low drawing value. Test No. of Comparative Example In No. 4, the specific water volume of the secondary cooling was 1.9 liter / kg-steel, and the slab was not reduced in the first reduction process. The amount of reduction in the second reduction step is 20 mm, and the reduction gradient is 53.3 mm / m.
And The fact that the rolling in the first rolling step is not performed is out of the condition specified in the present invention. This test N
o. In No. 4, the center segregation of the cast slab after reduction was the ratio, C / C 0
Was 1.35, and significant center segregation occurred. Also, the drawing value in the tensile test of the thick steel plate was as bad as 55.1%. The center segregation in the slab affected the drawing value of the thick steel plate. Test No. of Comparative Example In No. 5, the specific water amount of the secondary cooling was 1.9 liter / kg-steel, the reduction amount in the first reduction step was 1.5 mm, and the reduction gradient was 1.0 mm.
/ M. The amount of reduction in the second reduction step is 2
0 mm and the rolling gradient was 53.3 mm / m. The total reduction is 21.5 mm. The rolling gradient in the first rolling step is a small value outside the conditions defined in the present invention. This test no. In 5, the center segregation of the cast slab after reduction is the ratio,
When the value of C / C 0 was 1.25, center segregation occurred. Also, the drawing value in the tensile test of the thick steel plate was as poor as 59.7%. By applying the method of the present invention, it is possible to more reliably obtain a slab with less center segregation over the entire length and width of the slab in the casting direction.

【図面の簡単な説明】 【図1】本発明の方法を実施する場合の連続鋳造装置の
例を示す模式図である。 【図2】湾曲型または垂直曲げ型の連続鋳造機を用い
て、従来技術により、鋳片をバルジングさせた後に圧下
した場合の鋳片内部の状況を示す模式図である。 【符号の説明】 1:鋳型 2a:凝固殻 2b:未凝固
部 3:未凝固部と凝固殻とからなる鋳片 4:凝固完
了した鋳片 5:ガイドロール対 6:第1の圧下工程における圧下ロール対 7:第2の圧下工程における圧下ロール対 8:ピンチロール 9:浸潰ノ
ズル 10:濃化溶鋼 11:分岐
柱状晶 12:部分的に発生した中心偏析 13:溶鋼
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of a continuous casting apparatus when performing a method of the present invention. FIG. 2 is a schematic view showing a state inside a slab when a slab is bulged and then reduced by a conventional technique using a curved or vertical bending type continuous casting machine. [Explanation of Signs] 1: Mold 2a: solidified shell 2b: unsolidified portion 3: slab composed of unsolidified portion and solidified shell 4: solidified slab 5: guide roll pair 6: in first reduction step Roll-down roll pair 7: Roll-down roll pair in the second rolling-down process 8: Pinch roll 9: Dipping nozzle 10: Concentrated molten steel 11: Branched columnar crystal 12: Partially generated center segregation 13: Molten steel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 章裕 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 Fターム(参考) 4E004 MC07 MD04    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Akihiro Yamanaka             4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka             Sumitomo Metal Industries, Ltd. F-term (reference) 4E004 MC07 MD04

Claims (1)

【特許請求の範囲】 【請求項1】横断面形状が長方形で、鋳型出口における
厚さが150mm〜370mmの鋳片を鋳造するに際
し、未凝固部を含む鋳片をバルジングさせた後、内部が
凝固完了するまでの間でバルジングさせた鋳片を複数対
の圧下ロール対により圧下する連続鋳造方法であって、
鋳片を圧下する工程を、鋳造方向の上流側から第1の圧
下工程と第2の圧下工程とに分け、第1の圧下工程にお
いては、その圧下領域は第2の圧下工程の圧下領域の最
上流の位置から上流側に最長で6mまでの範囲内の領域
とし、その圧下領域内に配置した2対以上の圧下ロール
対を用いて鋳片を圧下するに際し、圧下勾配は鋳造方向
の1m長さ当たり1.5mm〜5mmとし、第2の圧下
工程においては、その圧下領域は鋳片の厚さ中心部の固
相率fsが0.20〜0.95の範囲内の領域とし、そ
の圧下領域内に配置した1対または2対以上の圧下ロー
ル対を用いて鋳片を圧下するに際し、各圧下ロール対の
各圧下量は15mm以上とし、かつ、圧下勾配は鋳造方
向の1m長さ当たり40mm以上とし、これら第1およ
び第2の圧下工程における鋳片の合計の圧下量を、バル
ジングさせた厚さ相当量以下とすることを特徴とする鋼
の連続鋳造方法。
Claims: 1. When casting a slab having a rectangular cross-sectional shape and a thickness of 150 mm to 370 mm at a mold outlet, after bulging a slab including an unsolidified portion, the inside is formed. A continuous casting method in which the bulged slab is solidified by a plurality of pairs of reduction rolls until solidification is completed,
The step of reducing the slab is divided into a first reduction step and a second reduction step from the upstream side in the casting direction. In the first reduction step, the reduction area is the reduction area of the second reduction step. When the slab is reduced by using two or more pairs of reduction rolls arranged in the reduction region from the most upstream position to the upstream side with a maximum length of 6 m, the reduction gradient is 1 m in the casting direction. 1.5 mm to 5 mm per length, and in the second reduction step, the reduction region is a region where the solid fraction fs at the center of the thickness of the slab is in the range of 0.20 to 0.95. In rolling down the slab using one or two or more pairs of reduction rolls arranged in the reduction region, each reduction amount of each reduction roll pair is 15 mm or more, and the reduction gradient is 1 m length in the casting direction. And the first and second reduction steps The reduction ratio of the sum of the definitive slab continuous casting method of steel, characterized by a thickness less than equivalent amount obtained by bulging.
JP2001186333A 2001-06-20 2001-06-20 Continuous casting method of steel Expired - Fee Related JP3671872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186333A JP3671872B2 (en) 2001-06-20 2001-06-20 Continuous casting method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186333A JP3671872B2 (en) 2001-06-20 2001-06-20 Continuous casting method of steel

Publications (2)

Publication Number Publication Date
JP2003001388A true JP2003001388A (en) 2003-01-07
JP3671872B2 JP3671872B2 (en) 2005-07-13

Family

ID=19025790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186333A Expired - Fee Related JP3671872B2 (en) 2001-06-20 2001-06-20 Continuous casting method of steel

Country Status (1)

Country Link
JP (1) JP3671872B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850408B (en) * 2009-03-31 2012-02-22 攀钢集团研究院有限公司 Vehicle axle steel continuous casting method
JP2015202510A (en) * 2014-04-15 2015-11-16 Jfeスチール株式会社 continuous casting method of steel
JP2015226918A (en) * 2014-05-30 2015-12-17 新日鐵住金株式会社 Steel continuous casting method
JP2016022531A (en) * 2014-07-24 2016-02-08 新日鐵住金株式会社 Continuous casting method of cast slab and cast slab
JP2020171954A (en) * 2019-04-12 2020-10-22 日本製鉄株式会社 Continuous casting method for steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106001476B (en) * 2016-07-14 2017-10-31 东北大学 A kind of method under the continuous dynamic weight of continuous casting billet two benches

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193063A (en) * 1997-01-08 1998-07-28 Sumitomo Metal Ind Ltd Continuous casting method
JP2000141002A (en) * 1998-11-10 2000-05-23 Sumitomo Metal Ind Ltd Continuous casting equipment capable of roll device replacement
JP2000301304A (en) * 1999-04-22 2000-10-31 Sumitomo Metal Ind Ltd Continuously cast slab and continuous casting method
JP2001113349A (en) * 1999-10-15 2001-04-24 Sumitomo Metal Ind Ltd Rolling reduction device in continuous casting equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193063A (en) * 1997-01-08 1998-07-28 Sumitomo Metal Ind Ltd Continuous casting method
JP2000141002A (en) * 1998-11-10 2000-05-23 Sumitomo Metal Ind Ltd Continuous casting equipment capable of roll device replacement
JP2000301304A (en) * 1999-04-22 2000-10-31 Sumitomo Metal Ind Ltd Continuously cast slab and continuous casting method
JP2001113349A (en) * 1999-10-15 2001-04-24 Sumitomo Metal Ind Ltd Rolling reduction device in continuous casting equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850408B (en) * 2009-03-31 2012-02-22 攀钢集团研究院有限公司 Vehicle axle steel continuous casting method
JP2015202510A (en) * 2014-04-15 2015-11-16 Jfeスチール株式会社 continuous casting method of steel
JP2015226918A (en) * 2014-05-30 2015-12-17 新日鐵住金株式会社 Steel continuous casting method
JP2016022531A (en) * 2014-07-24 2016-02-08 新日鐵住金株式会社 Continuous casting method of cast slab and cast slab
JP2020171954A (en) * 2019-04-12 2020-10-22 日本製鉄株式会社 Continuous casting method for steel
JP7284394B2 (en) 2019-04-12 2023-05-31 日本製鉄株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP3671872B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP3835185B2 (en) Steel continuous casting method
JP2003001388A (en) Continuous casting method for steel
JP2005103604A (en) Continuous casting method, continuous casting cast slab, and steel plate
JP2980006B2 (en) Continuous casting method
JP3055453B2 (en) Continuous casting method
JP3402251B2 (en) Continuous casting method
JP3149834B2 (en) Steel slab continuous casting method
JP3275835B2 (en) Continuous casting method and continuous casting machine
JP2001334353A (en) Method for continuously casting steel
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3994848B2 (en) Continuous casting method of steel
JP3114671B2 (en) Steel continuous casting method
JP3362703B2 (en) Continuous casting method
JP3351375B2 (en) Continuous casting method
JP3104627B2 (en) Unsolidified rolling production method of round billet
JPH0957411A (en) Continuous casting method
JP3055462B2 (en) Continuous casting method
JP3360618B2 (en) Continuous casting method
JP3395717B2 (en) Continuous casting method
JP3240978B2 (en) Manufacturing method of continuous cast slab
JP3365338B2 (en) Continuous cast slab and continuous casting method
JP3114679B2 (en) Continuous casting method
JP3297802B2 (en) Continuous casting method
JP2003285146A (en) Continuous casting method
JP2002045955A (en) Continuous casting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees