JP3835185B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP3835185B2
JP3835185B2 JP2001079181A JP2001079181A JP3835185B2 JP 3835185 B2 JP3835185 B2 JP 3835185B2 JP 2001079181 A JP2001079181 A JP 2001079181A JP 2001079181 A JP2001079181 A JP 2001079181A JP 3835185 B2 JP3835185 B2 JP 3835185B2
Authority
JP
Japan
Prior art keywords
slab
short side
segregation
unsolidified
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001079181A
Other languages
Japanese (ja)
Other versions
JP2002273554A (en
Inventor
義起 伊藤
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001079181A priority Critical patent/JP3835185B2/en
Publication of JP2002273554A publication Critical patent/JP2002273554A/en
Application granted granted Critical
Publication of JP3835185B2 publication Critical patent/JP3835185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、未凝固部を含む鋳片の短辺面を打撃して、鋳片に振動を付与しつつ鋳造する連続鋳造方法に関する。
【0002】
【従来の技術】
連続鋳造による鋳片の厚さ中心部およびその近傍には、中心偏析、V偏析および逆V偏析と呼ばれるマクロ偏析である内部欠陥が発生しやすい。中心偏析は、鋳片の最終凝固部にC、S、P、Mnなどの偏析成分が濃化して現れる内部欠陥で、V偏析または逆V偏析は、鋳片の最終凝固部の近傍に、これらの偏析成分がV字状または逆V字状に濃化して現れる内部欠陥である。
【0003】
これらのマクロ偏析(以下、単に、偏析と記す場合がある)が発生した鋳片を素材として熱間で加工した製品では、靱性の低下、水素誘起割れなどが起こりやすく、また、これら製品を冷間で最終製品に加工する際、割れが発生しやすくなる。
【0004】
鋳片の偏析の生成機構は、次のように考えられている。すなわち、凝固が進むにつれて、凝固組織である柱状晶樹間に偏析成分が濃化する。その偏析成分の濃化した溶鋼(以下、濃化溶鋼と記す場合がある)が、凝固時の鋳片の収縮またはバルジングと呼ばれる鋳片のふくれなどにより、柱状晶樹間より流出する。流出した濃化溶鋼は、最終凝固部の凝固完了点に向かって流動し、そのまま凝固して偏析成分の濃化帯が形成される。このようにして形成した偏析成分の濃化帯が偏析である。
鋳片の偏析の防止対策として、柱状晶樹間に残った偏析成分の濃化した溶鋼の移動を防止すること、これら濃化溶鋼が局所的に集積することを防ぐことなどが効果的であり、従来から種々の方法が提案されている。
【0005】
Transactions ISIJ,Vol.24,1984,p931には、低炭素鋼または高炭素鋼のブルーム鋳片において、鋳型内および二次冷却帯の凝固末期の鋳片の位置にそれぞれ電磁攪拌装置を配置し、鋳造直後の溶鋼および鋳片内部の未凝固溶鋼を攪拌することにより、凝固組織を微細な等軸晶として、偏析の生成を防止する方法が提案されている。しかし、この方法では、鋳造速度、鋳片の二次冷却などの条件が変化することによって凝固完了位置が変化することから、凝固末期における未凝固溶鋼の攪拌が適正に行われない場合があり、偏析が発生する場合がある。さらに、電磁攪拌装置を組み合わせて配置するため、設備費および製造コストが高くなる。
【0006】
また、複数のガイドロール対により、鋳片の凝固収縮量を補償する程度に未凝固部を含む鋳片を軽圧下し、偏析を抑制する方法が一般的に採られている。しかし、この方法では、圧下量が小さいので、鋳片内部の濃化溶鋼を鋳造方向の上流側に流動させ、濃化溶鋼が集積するのを防止することは困難であり、偏析が発生しやすい。
【0007】
特開昭61−42460号公報には、最終凝固部の上流側に設けた電磁攪拌装置または超音波印可装置を作動させて鋳片内部の未凝固溶鋼を流動させることにより、凝固した柱状晶を切断して最終凝固部の付近に沈殿させて凝固組織を等軸晶化させ、かつ、凝固が完了する直前に、圧下ロール対により凝固収縮の相当量以上の3mm以上の圧下を鋳片に加えて強制的に凝固完了点を形成させ、偏析などを防止する方法が提示されている。しかし、この方法では、鋳片の幅方向において部分的に偏析が発生する場合がある。これは、凝固した柱状晶を切断する効果および圧下する効果が鋳片の幅方向で不均一であるためである。これら部分的な偏析の発生を防止するためには、大きな圧下力で圧下量を大きくする必要がある。しかし、大きな圧下力で鋳片を圧下すると、圧下ロール対を支える支持枠に撓みが発生し、充分な圧下効果が得られない。また、ロールが曲がったり、折損したり等の設備上の事故により、操業が困難になる場合がある。
【0008】
特開平9−57410号公報および特開平9−206903号公報には、未凝固部を含む鋳片をバルジングさせ、最終凝固部の上流側で、バルジング量相当分を圧下する方法が提案されている。これらの方法により、圧下ロール対を支える支持枠やロールが撓んだりすることもなく、鋳片の幅方向で均一な圧下効果が期待できる。しかし、圧下する際の中心固相率、圧下量などの圧下条件によっては、鋳片の幅方向で局部的に偏析が発生する場合があり、さらなる改善が望まれている。
【0009】
【発明が解決しようとする課題】
本発明は、中心偏析、V偏析、逆V偏析などの偏析の発生のない内部品質の良好な鋳片を得ることができる鋼の連続鋳造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の要旨は、下記(1)〜(3)に示す鋼の連続鋳造方法にある。
(1)横断面形状が矩形の鋳片を鋳造する際に、未凝固部を含む鋳片の、中心固相率が0.1〜0.9に相当する範囲内の位置における短辺面側の少なくとも1カ所に配置した打撃振動装置により、未凝固部を含む鋳片の短辺面を連続して打撃することにより、鋳片に振動を付与しつつ鋳造する鋼の連続鋳造方法
2)鋳片の短辺面を最初に打撃した位置より鋳造方向に下流側で、中心固相率が0.2〜0.95である未凝固部を含む位置の鋳片を、複数のガイドロール対を用いて、鋳造方向の長さ1m当たり0.5mm〜2.5mm相当の割合で圧下する上記(1)に記載の鋼の連続鋳造方法。
(3)未凝固部を含む鋳片の短辺面を連続して打撃する位置の上流側または下流側において、未凝固部を含む鋳片をバルジングさせ始め、そのバルジングさせた鋳片を、鋳片の短辺面を最初に打撃した位置より鋳造方向に下流側の厚さ中心部が凝固完了するまでの間で、下記(イ)式で表される圧下率Rが0.8〜1.1となる条件で、少なくとも1つの圧下ロール対により鋳片を圧下する上記(1)に記載の鋼の連続鋳造方法。
【0011】
R=D1/D2 ・・・(イ)
ここで、D1:未凝固部を含む鋳片の幅中央部における圧下量(mm)
D2:圧下開始時の固相率が0.8以下の未凝固部の厚さ(mm)
本発明では、上記(2)に記載するように、鋳片の1つのロール対当たりの圧下量が小さい、いわゆる軽圧下に用いるロール対を「ガイドロール対」と記し、上記(3)に記載するように、圧下量の大きい圧下に用いるロール対を「圧下ロール対」と記す。
【0012】
本発明で規定する「横断面形状が矩形の鋳片」とは、横断面形状が長方形のスラブもしくはブルーム、または横断面形状が正方形のブルームもしくはビレットを意味する。
【0013】
また、本発明で規定する「鋳片の短辺面」とは、スラブでは、両端部の短辺面を意味し、ブルームまたはビレットでは、二次冷却帯などにおいてガイドロール対などのロールと接していない鋳片の側面を意味する。
【0014】
本発明で規定する「中心固相率」および「厚さ中心部が凝固完了する」時期は、鋳片サイズ、溶鋼過熱度、鋳造速度、二次冷却比水量などが決まれば、通常用いられている凝固伝熱解析方法を用いてそれぞれ計算することができる。
【0015】
また、本発明で規定する「圧下開始時の固相率が0.8以下の未凝固部の厚さ」は、固相率が0.8の片側の凝固界面を、上述の凝固伝熱解析方法を用いて計算できるので、鋳片内部の厚さ方向の両側の固相率が0.8の凝固界面の間の厚さを計算により求めることができる。固相率を0.8以下とするのは、固相率が0.8以下の厚さの領域では、圧下力が伝達しないからであり、この領域を未凝固部とする。
【0016】
従来から提案されている方法を用いても、偏析の発生を安定して防止できず、部分的にこれら偏析が発生し、さらなる改善が望まれている。
【0017】
すなわち、最終凝固部の近傍の柱状晶がブリッジングしたり、また、剪断された柱状晶が上流側から最終凝固部の近傍に沈殿することにより生成した等軸晶が、ブリッジングすることによって部分的に空間部が形成されるとともに、鋳片の圧下によっても、柱状晶樹間などから流出した偏析成分の濃化した溶鋼を全て効果的に上流側に排出することができず、これら空間部に集積し、そのまま凝固するためである。
【0018】
本発明では、未凝固部を含む鋳片の短辺面側の少なくとも1カ所に配置した打撃振動装置により、未凝固部を含む鋳片の短辺面を連続して打撃することにより、鋳片に振動を付与するので、鋳片内部の未凝固溶鋼を振動させることができる。未凝固溶鋼が振動することにより、最終凝固部の近傍およびその上流側の柱状晶を効果的に剪断することができる。剪断された柱状晶が最終凝固部の近傍に沈殿することにより、多くの等軸晶が生成する。
【0019】
さらに、これら最終凝固部の近傍に生成して堆積した等軸晶にも鋳片の振動が伝達するので、等軸晶がブリッジングすることを防止できる。たとえ、等軸晶同士がブリッジングして空間部が形成される場合でも、鋳片の振動が空間部にも伝達され、空間部は破壊されて等軸晶で埋め尽くされる。
【0020】
また、未凝固溶鋼と柱状晶との界面にも鋳片の振動が伝達され、濃化溶鋼が柱状晶樹間などから流出することを抑制でき、濃化溶鋼が局所的に集積することを防止できる。柱状晶樹間に濃化溶鋼が残存したままで凝固するので、いわゆるミクロ偏析が形成されるだけである。これらミクロ偏析は、鋳片の品質上、また、その鋳片を熱間圧延した製品の品質上、とくに問題ない。
【0021】
また、本発明では、鋳片の短辺面を最初に打撃した位置より鋳造方向に下流側で、中心固相率が0.2〜0.95である未凝固部を含む位置の鋳片を、複数のガイドロール対を用いて、鋳造方向の長さ1m当たり0.5mm〜2.5mm相当の割合で圧下するのが望ましい。
【0022】
連続して鋳片を打撃することによる前述の効果に加えて、たとえ、最終凝固部の近傍よりも上流側の柱状晶樹間などから濃化溶鋼が流出しても、複数のガイドロール対を用いて、鋳片を上記条件で軽圧下することによって、それら濃化溶鋼が下流側の最終凝固部の近傍に集積するのを防止できる。したがって、より効果的に鋳片の偏析を防止できる。
【0023】
さらに、本発明では、未凝固部を含む鋳片の短辺面を連続して打撃する位置の上流側または下流側において、未凝固部を含む鋳片をバルジングさせ始め、そのバルジングさせた鋳片を、鋳片の短辺面を最初に打撃した位置より鋳造方向に下流側の厚さ中心部が凝固完了するまでの間で、前述の(イ)式で表される圧下率Rが0.8〜1.1となる条件で、少なくとも1つの圧下ロール対により鋳片を圧下するのが望ましい。
【0024】
連続して鋳片を打撃することによる前述の効果に加えて、たとえ、等軸晶などのブリッジングが発生したり、また、最終凝固部の近傍よりも上流側の柱状晶樹間などから濃化溶鋼が流出しても、鋳片をバルジングさせた後の厚さ中心部が凝固完了するまでの間で鋳片を圧下するので、圧下する効果が鋳片の厚さ中心部にまで効果的に及ぶ。したがって、等軸晶などのブリッジングの発生を防止でき、また、濃化溶鋼を上流側に排出することができ、より効果的に鋳片の偏析を防止できる。
【0025】
【発明の実施の形態】
図1は、鋳片を連続して打撃する装置を連続鋳造機内に設けて本発明の方法を実施する連続鋳造機の例を示す模式図である。図1(a)は、連続鋳造機の全体概略を模式的に示す側面図であり、図1(b)は、図1(a)のA1−A2線の断面を模式的に示す平面図である。
【0026】
浸漬ノズル1を経て鋳型2内に溶鋼3を注入し、鋳型内で凝固殻5を形成させる。凝固殻5は、複数のガイドロール対4で案内されながら徐々にその厚さを増し、未凝固部6を含む鋳片7となる。未凝固部を含む鋳片および凝固完了した鋳片7は、ピンチロール8により鋳造方向の下流側に引き抜かれる。
【0027】
図1で例示する連続鋳造機では、符号4aで示す4つのガイドロール対は、後述する鋳片を軽圧下するためのガイドロール対を示す。また、符号12で示す1つの圧下ロール対は、後述する鋳片を大圧下するための圧下ロール対を示す。本発明の方法では、鋳片を圧下するためのガイドロール対および圧下ロール対を同時に配置することはないが、図1の例では、便宜的に1つの図中に、鋳片を圧下するためのガイドロール対および圧下ロール対を同時に配置して示している。なお、図1中に符号4で示すガイドロール対は、鋳片を圧下しない通常のガイドロール対を意味する。
【0028】
本発明の方法では、横断面形状が矩形の鋳片を鋳造する際に、未凝固部を含む鋳片の短辺面側の少なくとも1カ所に配置した打撃振動装置により、未凝固部を含む鋳片の短辺面を連続して打撃することにより、鋳片に振動を付与しつつ鋳造する。
【0029】
鋳片を打撃する際、未凝固部を含む鋳片の短辺面側の少なくとも1カ所に配置した打撃振動装置により、連続して打撃する。未凝固部を含む鋳片の短辺面側の2カ所、たとえば、鋳造方向の鋳片の位置がほぼ同じで、鋳片の両側の短辺面側の2カ所に配置した打撃振動装置により、連続して打撃してもよいし、鋳造方向に2カ所以上の未凝固部を含む鋳片の短辺面側に配置した打撃振動装置により、連続して打撃してもよい。
【0030】
鋳片を連続して打撃する装置として、図1(b)に示すように、先端部に打撃用の金型11を有する打撃振動装置10を用いることができる。このような装置を用いて、未凝固部を含む鋳片の短辺面9を連続して打撃することにより、鋳片に振動を付与することができる。
【0031】
打撃振動装置の先端部に配置する打撃用の金型は、耐久性、耐熱性などの観点から、鋳物製の金型とするのが望ましい。鋳片と接する金型の鋳片厚さ方向の厚さは、後述する鋳片の圧下の妨げにならないように、鋳片の厚さよりも薄くするのがよい。金型の鋳造方向の長さは、鋳片サイズによるが、100〜500mm程度がよい。金型の鋳造方向の断面形状は、長方形、楕円形状などでよい。金型は交換できる形式とするのがよい。たとえば、ボルトなどにより金型を打撃振動装置の先端部に取り付ける方式を採るのがよい。また、金型を振動させる機構として、たとえば、エアーシリンダーや電動ハンマーなどを用いることができる。
【0032】
鋳片の短辺面を連続して打撃し、鋳片に振動を付与する際に、短辺面を基準面として、短辺面の振動の振幅が±1〜±3mmであることが望ましい。±1mm未満の振幅の振動では、鋳片内部の未凝固溶鋼などを振動させる効果が小さい。±3mmを超える振幅の振動では、鋳片の短辺面の形状が変形しやすい。また、鋳片に振動を付与する際の振動数は、60〜1200回/分が望ましい。
【0033】
打撃振動装置を未凝固部を含む鋳片の位置に配置する際、中心固相率が0.1〜0.9に相当する位置に配置する。等軸晶などのブリッジングは中心固相率が0.1以上の位置で発生するので、中心固相率が0.1未満の鋳片の位置では、等軸晶などの生成が十分でなく、鋳片を打撃する効果は小さい。また、中心固相率が0.9を超えると、未凝固溶鋼が振動および流動しにくくなるので、等軸晶などのブリッジングまたはブリッジングにより形成された空間部を、鋳片の打撃により破壊することが困難となる。
【0034】
また、本発明の方法では、鋳片の短辺面を最初に打撃した位置より鋳造方向に下流側で、中心固相率が0.2〜0.95である未凝固部を含む位置の鋳片を、複数のガイドロール対を用いて、鋳造方向の長さ1m当たり0.5mm〜2.5mm相当の割合で圧下するのが望ましい。
【0035】
連続して鋳片を打撃することによる前述の効果に加えて、上記条件で鋳片を軽圧下することにより、たとえ、最終凝固部の近傍よりも上流側の柱状晶樹間などから偏析成分の濃化した溶鋼が流出しても、それら濃化溶鋼が下流側の最終凝固部の近傍に集積するのを効果的に防止できる。
【0036】
鋳片を圧下する際、中心固相率が0.2未満では、柱状晶樹間などからの濃化溶鋼の排出が少なく、圧下の効果が小さい。また、中心固相率が0.95を超えると、未凝固溶鋼が流動しにくくなるので、濃化溶鋼を上流側に排出しにくくなる。
【0037】
また、鋳造方向の長さ1m当たり0.5mm未満の圧下では、濃化溶鋼が最終凝固部の近傍に集積するのを防止する効果が小さく、2.5mmを超えると、ガイドロール対を支える支持枠に撓みが発生し、充分な圧下効果が得られない。このように鋳片を軽圧下するガイドロール対の数は、鋳片厚さ、鋳片の二次冷却条件などで決めれば良く、4〜6対程度の数でよい。
【0038】
さらに、本発明では、バルジングさせた鋳片を、鋳片の短辺面を最初に打撃した位置より鋳造方向に下流側の厚さ中心部が凝固完了するまでの間で、前述の(イ)式で表される圧下率Rが0.8〜1.1となる条件で、少なくとも1つの圧下ロール対により鋳片を圧下するのが望ましい。
【0039】
鋳片をバルジングさせるのは、鋳片の短辺面を最初に打撃する位置より鋳造方向に上流側でもよいし、下流側でもよい。
【0040】
連続して鋳片を打撃することによる前述の効果に加えて、未凝固部を含む鋳片をバルジングさせた後に鋳片を圧下するので、鋳片の厚さ中心部近傍を圧下でき、等軸晶などのブリッジングの発生を防止でき、また、濃化溶鋼を上流側に排出することができ、より効果的に鋳片の偏析を防止できる。
【0041】
前述の(イ)式における圧下率Rが0.8未満では、圧下量が小さいので、濃化溶鋼が鋳造方向の上流側に排出される量が少なくなり、濃化溶鋼が鋳片の厚さ中心部近傍に取り残されやすい。また、圧下率Rが1.1を超えると、圧下量が過大になり、実際にはこのような大きな圧下量を確保することは困難である。
【0042】
複数の圧下ロール対で圧下する場合は、それぞれの圧下ロール対ごとに、前述の(イ)式で表される圧下率Rが0.8〜1.1となる条件で圧下する。さらに、圧下量はバルジング量の50%以上とするのが望ましい。50%以上の場合に、鋳片の厚さ中心部近傍をより効果的に圧下できる。
【0043】
【実施例】
鋳片を圧下するガイドロール対を5つとした、図1に示す構成の連続鋳造装置を用いて、C含有量が0.45〜0.47質量%の炭素鋼を、断面形状が厚さ300mm、幅450mmのブルームに鋳造した。鋳造速度は0.6m/分とし、鋳型直下の位置からメニスカスからの距離が10mの位置までの間の鋳片を比水量0.5リットル/kg−鋼の条件で二次冷却した。
【0044】
未凝固部を含む位置のブルームの片方の短辺面の1カ所を、打撃振動装置を用いて連続して打撃し、鋳片に振動を付与した。打撃振動装置を配置する際のメニスカスからの距離を種々変更して試験した。一部の試験では、鋳片を打撃しなかった。鋳片に振動を付与する際、短辺面を基準面として、短辺面の振動の振幅が±1.5mmとなるように、鋳片を連続して振動させた。また、振動数は120回/分とした。
【0045】
打撃振動装置の先端部に配置する金型のブルームと接する面を形状は、鋳片厚さ方向の幅を270mm、鋳造方向の長さを300mmの長方形とし、肉厚を100mmとするブロック状の金型を用いた。エアーシリンダー方式により金型を振動させた。
【0046】
また、一部の試験では、複数のガイドロール対を用いて鋳片を軽圧下、または1つの圧下ロール対を用いて鋳片を大圧下する試験を行った。
【0047】
「中心固相率」、「厚さ中心部が凝固完了する時期」および「圧下開始時の固相率が0.8以下の未凝固部の厚さ」は、通常の凝固伝熱解析方法を用いて計算した。その際、鋳造中に鋳型内の溶鋼にFeSを添加し、その鋳片サンプルの横断面をサルファプリントして求まる未凝固部の厚さを調査し、計算および実測値が良く一致することを確認した。
【0048】
各鋳造試験において、鋳片のサンプルを採取し、そのサンプルの横断面の厚さおよび幅方向の中心部相当の位置から、厚さ中心部を挟んで厚さ方向に10mm、幅方向に200mm、鋳造方向に15mm程度の試験片を採取した。これら試験片を用いて、鋳片の厚さ中心部に相当する位置の26カ所から、7mmピッチで直径2mmのドリル刃により切り粉を採取し、C含有率を分析し、その分析値C(質量%)をレードルのC分析値C (質量%)で除した比C/C を求め、それらの比の平均値(平均の中心偏析率)および最大値(最大の中心偏析率)を求めた。表1に試験条件および試験結果を示す。
【0049】
【表1】

Figure 0003835185
本発明例の試験No.1では、打撃振動装置をメニスカスから10mの位置に配置して作動させた。この打撃振動装置の配置位置は、鋳造速度を0.6m/分、二次冷却の比水量0.5リットル/kg−鋼の条件において、中心固相率が0.3に相当する位置である。打撃後の鋳片の圧下は行わなかった。得られた鋳片の成分Cの平均の中心偏析率は1.02、最大の中心偏析率は1.04で、中心偏析の発生の少ない、良好な内部品質の鋳片が得られた。
【0050】
本発明例の試験No.2では、試験No.1と同じ条件で鋳片を連続して打撃した後に、メニスカスから13〜15mに配置した5つのガイドロール対を用いて、合計3.0mm相当の厚さを圧下した。圧下領域の鋳片の中心固相率は0.62〜0.84である。得られた鋳片の成分Cの平均の中心偏析率は1.02、最大の中心偏析率は1.02で、試験No.1よりも内部品質の良好な鋳片が得られた。
【0051】
本発明例の試験No.3では、試験No.1と同じ条件で鋳片を連続して打撃した後に、メニスカスから14mに配置した1つの圧下ロール対を用いて、20mm相当の厚さを圧下した。前述の(イ)式で定義する圧下率Rは0.8である。得られた鋳片の成分Cの平均の中心偏析率は0.98、最大の中心偏析率は1.01で、試験No.1よりも内部品質の良好な鋳片が得られた。
【0052】
比較例の試験No.4および試験No.5では、打撃振動装置をメニスカスから2mまたは16.5mの位置に配置して作動させた。鋳造速度を0.6m/分、二次冷却の比水量0.5リットル/kg−鋼の条件において、メニスカスから2mの打撃振動装置の配置位置は、中心固相率0で中心部が凝固開始していない位置に相当する。また、同じ鋳造速度および二次冷却の比水量の条件において、メニスカスから16.5mの打撃振動装置の配置位置は、中心固相率0.97に相当する位置である。
【0053】
これら試験No.4および試験No.5では、得られた鋳片の成分Cの平均の中心偏析率は、ともに1.03で、最大の中心偏析率は1.06または1.07であった。打撃位置の中心固相率が、それぞれ鋳片を打撃する効果の小さい範囲であったため、試験No.1に比べて中心偏析が少し発生した
【0054】
比較例の試験No.6では、打撃振動装置による鋳片の打撃を行わず、メニスカスから13〜15mに配置した5つのガイドロール対を用いて、合計3.0mm相当の厚さを圧下した。圧下領域の鋳片の中心固相率は0.62〜0.84である。得られた鋳片の成分Cの平均の中心偏析率は1.09、最大の中心偏析率は1.38で、中心偏析が発生した。
【0055】
比較例の試験No.7では、打撃振動装置による鋳片の打撃を行わず、メニスカスから14mに配置した1つの圧下ロール対を用いて、20mm相当の厚さを圧下した。前述の(イ)式で定義する圧下率Rは0.8である。得られた鋳片の成分Cの平均の中心偏析率は1.03、最大の中心偏析率は1.27であった。平均の中心偏析は良好であったが、最大の中心偏析が悪く、局部的な中心偏析が発生した。
【0056】
比較例の試験No.8では、打撃振動装置による鋳片の打撃を行わず、また、鋳片の圧下も行わなかった。得られた鋳片の成分Cの平均の中心偏析率は1.20、最大の中心偏析率は1.54で、著しい中心偏析が発生した。
【0057】
【発明の効果】
本発明の方法を、炭素鋼、ステンレス鋼、高合金鋼等の鋼に適用することにより、中心偏析、V偏析、逆V偏析などのマクロ偏析の発生のない内部品質の良好な鋳片を得ることができる。また、これらの鋳片を素材として熱間圧延した線材、棒鋼、鋼管、厚板等において、内部品質に優れた鋼材を得ることができる。
【図面の簡単な説明】
【図1】鋳片を連続して打撃する装置を設けた連続鋳造機の例を示す模式図である。
【符号の説明】
1:浸漬ノズル 2:鋳型
3:溶鋼
4:ガイドロール対 4a:鋳片を圧下するガイドロール対
5:凝固殻 6:未凝固部
7:鋳片 8:ピンチロール
9:鋳片の短辺面 10:打撃振動装置
11:金型 12:圧下ロール対[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting method in which a short side surface of a slab including an unsolidified portion is hit and cast while applying vibration to the slab.
[0002]
[Prior art]
Internal defects, which are macro segregation called center segregation, V segregation, and reverse V segregation, are likely to occur in the central portion of the slab by continuous casting and in the vicinity thereof. Center segregation is an internal defect in which segregation components such as C, S, P, and Mn are concentrated in the final solidified part of the slab, and V segregation or reverse V segregation occurs in the vicinity of the final solidified part of the slab. The segregation component is an internal defect that appears concentrated in a V shape or an inverted V shape.
[0003]
Products that have been hot-processed using slabs with macro-segregation (hereinafter sometimes simply referred to as segregation) as raw materials are prone to toughness degradation and hydrogen-induced cracking. When processing into a final product, the cracks are likely to occur.
[0004]
The generation mechanism of the segregation of the slab is considered as follows. That is, as solidification progresses, segregation components are concentrated between columnar crystal trees that are solidified structures. Molten steel with concentrated segregation components (hereinafter sometimes referred to as concentrated molten steel) flows out between the columnar crystal trees due to shrinkage of the slab during solidification or blistering of the slab called bulging. The concentrated molten steel that has flowed out flows toward the solidification completion point of the final solidified portion, and solidifies as it is to form a concentrated band of segregation components. The concentration band of the segregation component thus formed is segregation.
As measures to prevent segregation of slabs, it is effective to prevent the movement of molten steel enriched with segregation components remaining between columnar crystal trees, to prevent these concentrated molten steel from accumulating locally, etc. Conventionally, various methods have been proposed.
[0005]
In Transactions ISIJ, Vol. 24, 1984, p931, a low-carbon steel or high-carbon steel bloom slab is provided with an electromagnetic stirrer in the mold and at the final solidification stage of the secondary cooling zone. There has been proposed a method for preventing the generation of segregation by stirring the molten steel immediately after casting and the unsolidified molten steel inside the slab so that the solidified structure becomes fine equiaxed crystals. However, in this method, since the solidification completion position changes due to changes in conditions such as casting speed and secondary cooling of the slab, stirring of unsolidified molten steel at the end of solidification may not be performed properly. Segregation may occur. Furthermore, since the electromagnetic stirrer is disposed in combination, the equipment cost and the manufacturing cost are increased.
[0006]
Further, a method is generally adopted in which a plurality of guide roll pairs are used to lightly reduce the slab including the non-solidified portion so as to compensate for the solidification shrinkage of the slab, thereby suppressing segregation. However, in this method, since the reduction amount is small, it is difficult to flow the concentrated molten steel inside the slab to the upstream side in the casting direction and prevent the concentrated molten steel from accumulating, and segregation is likely to occur. .
[0007]
In Japanese Patent Laid-Open No. 61-42460, solidified columnar crystals are obtained by operating an electromagnetic stirrer or an ultrasonic applicator provided on the upstream side of the final solidification part to flow the unsolidified molten steel inside the slab. Cutting and precipitating in the vicinity of the final solidified part to equiax the solidified structure, and immediately before solidification is completed, a reduction of 3 mm or more, which is equal to or more than a considerable amount of solidification shrinkage, is applied to the slab by a pair of reduction rolls. A method for forcibly forming a solidification completion point and preventing segregation has been proposed. However, this method may cause partial segregation in the width direction of the slab. This is because the effect of cutting the solidified columnar crystals and the effect of reducing are not uniform in the width direction of the slab. In order to prevent the occurrence of partial segregation, it is necessary to increase the reduction amount with a large reduction force. However, when the slab is reduced with a large reduction force, the support frame that supports the reduction roll pair is bent, and a sufficient reduction effect cannot be obtained. Moreover, the operation may be difficult due to an accident on the facility such as a roll being bent or broken.
[0008]
Japanese Patent Laid-Open Nos. 9-57410 and 9-206903 propose a method of bulging a slab containing an unsolidified portion and reducing the amount corresponding to the bulging amount upstream of the final solidified portion. . By these methods, a uniform reduction effect in the width direction of the slab can be expected without bending the support frame and the roll supporting the reduction roll pair. However, depending on the rolling conditions such as the central solid fraction and the rolling amount during rolling, segregation may occur locally in the width direction of the slab, and further improvement is desired.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a continuous casting method of steel capable of obtaining a slab having good internal quality without occurrence of segregation such as center segregation, V segregation, and reverse V segregation.
[0010]
[Means for Solving the Problems]
The gist of the present invention resides in the steel continuous casting method shown in the following (1) to (3).
(1) When casting a slab having a rectangular cross-sectional shape, the short side surface side of the slab including an unsolidified portion at a position within a range corresponding to a central solid phase ratio of 0.1 to 0.9 The continuous casting method of steel which casts, giving a vibration to a slab by striking the short side surface of the slab including an unsolidified part continuously by the hammering vibration device arranged in at least one place .
( 2) A slab at a position including an unsolidified portion having a central solid phase ratio of 0.2 to 0.95 on the downstream side in the casting direction from the position where the short side surface of the slab was first struck The steel continuous casting method according to the above (1), wherein the guide roll pair is used for reduction at a rate corresponding to 0.5 mm to 2.5 mm per 1 m in the length in the casting direction.
(3) On the upstream side or downstream side of the position where the short side surface of the slab including the unsolidified portion is continuously hit, the slab including the unsolidified portion begins to be bulged, and the bulged slab is cast The rolling reduction ratio R expressed by the following formula (A) is 0.8 to 1.. The continuous casting method for steel according to (1) above, wherein the slab is squeezed by at least one squeezing roll pair under the condition of 1.
[0011]
R = D1 / D2 (B)
Here, D1: Amount of rolling reduction (mm) at the width center portion of the slab including the unsolidified portion
D2: Thickness (mm) of an unsolidified portion having a solid phase ratio of 0.8 or less at the start of rolling
In the present invention, as described in (2) above, a roll pair used for so-called light reduction with a small amount of reduction per roll pair of the slab is referred to as “guide roll pair” and described in (3) above. Thus, a roll pair used for a reduction with a large reduction amount is referred to as a “reduction roll pair”.
[0012]
The “slab having a rectangular cross section” defined in the present invention means a slab or bloom having a rectangular cross section, or a bloom or billet having a square cross section.
[0013]
In addition, the “short side surface of the slab” defined in the present invention means a short side surface at both ends in a slab, and in bloom or billet, it contacts a roll such as a guide roll pair in a secondary cooling zone. Means the side of the slab not.
[0014]
The "center solid phase ratio" and "thickness central part is completely solidified" defined in the present invention are usually used if the slab size, molten steel superheat, casting speed, secondary cooling specific water amount, etc. are determined. It can be calculated using the solidification heat transfer analysis method.
[0015]
In addition, the “thickness of the unsolidified portion having a solid fraction of 0.8 or less at the start of rolling” defined in the present invention refers to the solidification interface on one side having a solid fraction of 0.8 as described above. Since it can be calculated using the method, the thickness between the solidification interfaces having a solid phase ratio of 0.8 on both sides in the thickness direction inside the slab can be obtained by calculation. The reason why the solid phase ratio is set to 0.8 or less is that the rolling force is not transmitted in a region having a thickness of 0.8 or less, and this region is set as an unsolidified portion.
[0016]
Even if a conventionally proposed method is used, the occurrence of segregation cannot be stably prevented, and the segregation partially occurs, and further improvement is desired.
[0017]
That is, the columnar crystals in the vicinity of the final solidified part bridge, or the equiaxed crystals generated by the sheared columnar crystals precipitating from the upstream side in the vicinity of the final solidified part partially bridge In addition to the formation of spaces, it is impossible to effectively discharge all the molten steel enriched with segregation components flowing out from between the columnar crystal trees to the upstream side even when the slab is reduced. This is because it accumulates and solidifies as it is.
[0018]
In the present invention, by continuously striking the short side surface of the slab including the unsolidified portion by the impact vibration device disposed at least one side on the short side surface side of the slab including the unsolidified portion, the slab Since vibration is applied to the slab, the unsolidified molten steel inside the slab can be vibrated. By virtue of the vibration of the unsolidified molten steel, the columnar crystals in the vicinity of the final solidified portion and the upstream side thereof can be effectively sheared. Many equiaxed crystals are generated by the sheared columnar crystals being precipitated in the vicinity of the final solidified portion.
[0019]
Furthermore, since the vibration of the slab is transmitted to the equiaxed crystal generated and deposited in the vicinity of the final solidified portion, it is possible to prevent the equiaxed crystal from bridging. Even if the equiaxed crystal is bridged to form a space portion, the vibration of the slab is transmitted to the space portion, and the space portion is destroyed and filled with the equiaxed crystal.
[0020]
Moreover, the vibration of the slab is also transmitted to the interface between the unsolidified molten steel and the columnar crystals, and it is possible to prevent the concentrated molten steel from flowing out between the columnar crystal trees and to prevent the concentrated molten steel from locally accumulating. . Since the concentrated molten steel remains solid between the columnar crystal trees, so-called microsegregation is only formed. These microsegregations are not particularly problematic in terms of the quality of the slab and the quality of the product obtained by hot rolling the slab.
[0021]
Further, in the present invention, the slab at a position including an unsolidified portion having a central solid phase ratio of 0.2 to 0.95 on the downstream side in the casting direction from the position where the short side surface of the slab was first hit. It is desirable to use a plurality of pairs of guide rolls and to reduce at a rate corresponding to 0.5 mm to 2.5 mm per 1 m in the length in the casting direction.
[0022]
In addition to the above-mentioned effect by continuously hitting the slab, even if concentrated molten steel flows out from between the columnar crystal trees upstream of the vicinity of the final solidified part, multiple guide roll pairs are used. Thus, by lightly reducing the slab under the above conditions, it is possible to prevent the concentrated molten steel from accumulating in the vicinity of the final solidified portion on the downstream side. Therefore, segregation of the slab can be more effectively prevented.
[0023]
Furthermore, in the present invention, on the upstream side or the downstream side of the position where the short side surface of the slab including the unsolidified portion is continuously hit, the slab including the unsolidified portion starts to be bulged and the bulging slab is formed. Between the position where the short side surface of the slab was first struck until the central portion of the downstream thickness in the casting direction is completely solidified, the rolling reduction ratio R expressed by the above-mentioned formula (A) is 0. It is desirable to reduce the slab by at least one reduction roll pair under the condition of 8 to 1.1.
[0024]
In addition to the effects described above by continuously hitting the slab, bridging such as equiaxed crystals may occur, or concentration may occur from between the columnar crystal trees upstream of the vicinity of the final solidified part. Even if the molten steel flows out, the slab is rolled down until the center of the thickness after bulging the slab is completely solidified, so the effect of rolling down is effectively applied to the center of the slab. It reaches. Therefore, the occurrence of bridging such as equiaxed crystals can be prevented, the concentrated molten steel can be discharged upstream, and segregation of the slab can be more effectively prevented.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing an example of a continuous casting machine in which an apparatus for continuously hitting a slab is provided in a continuous casting machine to carry out the method of the present invention. Fig.1 (a) is a side view which shows typically the whole outline of a continuous casting machine typically, and FIG.1 (b) is a top view which shows typically the cross section of the A1-A2 line | wire of Fig.1 (a). is there.
[0026]
Molten steel 3 is injected into the mold 2 through the immersion nozzle 1 to form a solidified shell 5 in the mold. The solidified shell 5 gradually increases in thickness while being guided by a plurality of guide roll pairs 4, and becomes a slab 7 including an unsolidified portion 6. The slab including the unsolidified portion and the slab 7 having been solidified are pulled out to the downstream side in the casting direction by the pinch roll 8.
[0027]
In the continuous casting machine illustrated in FIG. 1, the four guide roll pairs indicated by reference numeral 4 a are guide roll pairs for lightly lowering a cast piece to be described later. Moreover, the one rolling roll pair shown by the code | symbol 12 shows the rolling roll pair for greatly rolling down the slab mentioned later. In the method of the present invention, the guide roll pair and the reduction roll pair for reducing the slab are not arranged at the same time. However, in the example of FIG. 1, the slab is reduced in one figure for convenience. The guide roll pair and the reduction roll pair of FIG. In addition, the guide roll pair shown with the code | symbol 4 in FIG. 1 means the normal guide roll pair which does not reduce a slab.
[0028]
In the method of the present invention, when casting a slab having a rectangular cross-sectional shape, the casting vibrator including the unsolidified portion is formed by a striking vibration device disposed at least at one position on the short side surface side of the slab including the unsolidified portion. By casting the short side surface of the piece continuously, casting is performed while applying vibration to the slab.
[0029]
When the slab is struck, the slab is continuously struck by a striking vibration device disposed in at least one position on the short side surface side of the slab including the unsolidified portion. Two locations on the short side surface side of the slab including the unsolidified part, for example, the position of the slab in the casting direction is substantially the same, and the impact vibration device disposed at two locations on the short side surface on both sides of the slab, It may be struck continuously, or may be struck continuously by a striking vibration device arranged on the short side surface side of the slab including two or more unsolidified portions in the casting direction.
[0030]
As a device for continuously striking a slab, as shown in FIG. 1B, a striking vibration device 10 having a striking die 11 at the tip can be used. Using such an apparatus, vibration can be applied to the slab by continuously striking the short side surface 9 of the slab including the unsolidified portion.
[0031]
From the viewpoint of durability, heat resistance, and the like, it is desirable that the hitting die placed at the tip of the hitting vibration device be a casting die. The thickness of the mold in contact with the slab in the thickness direction of the slab is preferably smaller than the thickness of the slab so as not to hinder the reduction of the slab described later. The length of the mold in the casting direction depends on the slab size, but is preferably about 100 to 500 mm. The cross-sectional shape of the mold in the casting direction may be a rectangle or an ellipse. The mold should be exchangeable. For example, it is preferable to adopt a method in which a die is attached to the tip of the impact vibration device with a bolt or the like. As a mechanism for vibrating the mold, for example, an air cylinder or an electric hammer can be used.
[0032]
When the short side surface of the slab is continuously hit and vibration is applied to the slab, it is desirable that the amplitude of vibration of the short side surface is ± 1 to ± 3 mm with the short side surface as a reference surface. When the vibration has an amplitude of less than ± 1 mm, the effect of vibrating unsolidified molten steel or the like inside the slab is small. When the vibration has an amplitude exceeding ± 3 mm, the shape of the short side surface of the slab is likely to be deformed. Moreover, as for the frequency at the time of giving a vibration to a slab, 60-1200 times / min are desirable.
[0033]
When placing the percussion vibration device at a position of the slab including a liquid core portion, the center solid fraction you disposed at a position corresponding to 0.1 to 0.9. Since bridging such as equiaxed crystals occurs at a position where the central solid fraction is 0.1 or more, the formation of equiaxed crystals is not sufficient at the position of the slab where the central solid fraction is less than 0.1. The effect of hitting the slab is small. In addition, if the solid phase ratio exceeds 0.9, the unsolidified molten steel becomes difficult to vibrate and flow, so the space formed by bridging or bridging such as equiaxed crystals is destroyed by striking the slab. Difficult to do.
[0034]
Further, in the method of the present invention, the casting at a position including an unsolidified portion having a central solid phase ratio of 0.2 to 0.95 is located downstream in the casting direction from the position where the short side surface of the slab was first struck. It is desirable to reduce the piece by using a plurality of pairs of guide rolls at a rate corresponding to 0.5 mm to 2.5 mm per 1 m in the length in the casting direction.
[0035]
In addition to the above-mentioned effects by continuously hitting the slab, by reducing the slab lightly under the above conditions, the segregation component concentration can be increased even from the columnar crystal trees upstream of the vicinity of the final solidified part. Even if the molten molten steel flows out, it is possible to effectively prevent the concentrated molten steel from accumulating in the vicinity of the final solidified portion on the downstream side.
[0036]
When rolling down the slab, if the central solid phase ratio is less than 0.2, there is little discharge of the concentrated molten steel from between the columnar crystal trees, and the reduction effect is small. On the other hand, when the central solid phase ratio exceeds 0.95, the unsolidified molten steel becomes difficult to flow, so that it becomes difficult to discharge the concentrated molten steel upstream.
[0037]
In addition, when the pressure is less than 0.5 mm per 1 m in the casting direction, the effect of preventing the concentrated molten steel from accumulating in the vicinity of the final solidified portion is small. The frame is bent, and a sufficient reduction effect cannot be obtained. Thus, the number of guide roll pairs for lightly reducing the slab may be determined by the thickness of the slab, the secondary cooling condition of the slab, etc., and may be about 4-6 pairs.
[0038]
Furthermore, in the present invention, the bulging slab is until the thickness center portion on the downstream side in the casting direction from the position where the short side surface of the slab was first struck until solidification is completed. It is desirable to reduce the slab by at least one reduction roll pair under the condition that the reduction ratio R expressed by the equation is 0.8 to 1.1.
[0039]
The slab may be bulged on the upstream side in the casting direction from the position where the short side surface of the slab is first hit, or on the downstream side.
[0040]
In addition to the above-mentioned effect by continuously hitting the slab, the slab is squeezed after bulging the slab containing the unsolidified part, so that the vicinity of the center part of the slab thickness can be squeezed. Bridging such as crystals can be prevented, and the concentrated molten steel can be discharged upstream, and segregation of the slab can be more effectively prevented.
[0041]
When the reduction ratio R in the above-mentioned formula (a) is less than 0.8, the amount of reduction is small, so the amount of concentrated molten steel discharged to the upstream side in the casting direction is reduced, and the concentrated molten steel is the thickness of the slab. Easily left behind near the center. Further, when the rolling reduction rate R exceeds 1.1, the rolling amount becomes excessive, and it is actually difficult to ensure such a large rolling amount.
[0042]
When reducing by a plurality of reduction roll pairs, the reduction is performed under the condition that the reduction ratio R expressed by the above-described formula (a) is 0.8 to 1.1 for each reduction roll pair. Furthermore, it is desirable that the amount of reduction is 50% or more of the bulging amount. In the case of 50% or more, the vicinity of the thickness center portion of the slab can be reduced more effectively.
[0043]
【Example】
A carbon steel having a C content of 0.45 to 0.47% by mass and a cross-sectional shape of 300 mm in thickness using a continuous casting apparatus having the configuration shown in FIG. Cast into a bloom of 450 mm width. The casting speed was 0.6 m / min, and the slab from the position immediately below the mold to the position where the distance from the meniscus was 10 m was subjected to secondary cooling under the condition of a specific water amount of 0.5 liter / kg-steel.
[0044]
One location on one short side of the bloom at a position including the unsolidified portion was continuously hit using a hitting vibration device to give vibration to the slab. The distance from the meniscus when placing the striking vibration device was variously tested. In some tests, the slab was not struck. When vibration was applied to the slab, the slab was continuously vibrated so that the short side surface was a reference plane and the amplitude of vibration of the short side surface was ± 1.5 mm. The frequency was 120 times / minute.
[0045]
The shape of the surface in contact with the mold bloom arranged at the tip of the impact vibration device is a block shape in which the width in the slab thickness direction is 270 mm, the length in the casting direction is 300 mm, and the wall thickness is 100 mm. A mold was used. The mold was vibrated by an air cylinder method.
[0046]
Further, in some tests, a test was performed in which the slab was lightly reduced using a plurality of guide roll pairs or the slab was greatly reduced using one reduction roll pair.
[0047]
“Central solid fraction”, “Timing center completes solidification” and “Thickness of unsolidified fraction with a solid fraction of 0.8 or less at the start of reduction” Used to calculate. At that time, FeS was added to the molten steel in the mold during casting, and the thickness of the unsolidified part obtained by sulfur printing the cross section of the slab sample was confirmed to confirm that the calculated and measured values agreed well. did.
[0048]
In each casting test, a sample of a slab was taken, and from the position corresponding to the thickness of the cross section of the sample and the center part in the width direction, 10 mm in the thickness direction and 200 mm in the width direction across the thickness center part, A test piece of about 15 mm was collected in the casting direction. Using these test pieces, chips were collected from 26 locations corresponding to the center of the slab thickness with a drill blade having a diameter of 2 mm at a pitch of 7 mm, the C content was analyzed, and the analysis value C ( The ratio C / C 0 obtained by dividing the mass%) by the C analysis value C 0 (mass%) of the ladle is obtained, and the average value (average center segregation rate) and the maximum value (maximum center segregation rate) of those ratios are obtained. Asked. Table 1 shows test conditions and test results.
[0049]
[Table 1]
Figure 0003835185
Test no. In No. 1, the striking vibration device was placed and operated at a position 10 m from the meniscus. The arrangement position of this striking vibration device is a position corresponding to a central solid phase ratio of 0.3 under conditions of a casting speed of 0.6 m / min and a secondary cooling specific water amount of 0.5 liter / kg-steel. . No slab reduction was performed after the impact. The average center segregation rate of component C of the obtained slab was 1.02, the maximum center segregation rate was 1.04, and a slab of good internal quality with little occurrence of center segregation was obtained.
[0050]
Test no. 2, test no. After continuously casting the slab under the same conditions as 1, the thickness corresponding to a total of 3.0 mm was reduced using five guide roll pairs disposed 13 to 15 m from the meniscus. The central solid fraction of the slab in the reduction region is 0.62 to 0.84. The average center segregation rate of component C of the obtained slab was 1.02, and the maximum center segregation rate was 1.02. A slab with better internal quality than 1 was obtained.
[0051]
Test no. 3, test no. After the slab was continuously struck under the same conditions as 1, the thickness corresponding to 20 mm was reduced using one reduction roll pair disposed 14 m from the meniscus. The rolling reduction R defined by the above-mentioned formula (A) is 0.8. The average center segregation rate of component C of the obtained slab was 0.98, the maximum center segregation rate was 1.01, and test no. A slab with better internal quality than 1 was obtained.
[0052]
Test No. of the comparative example. 4 and test no. In No. 5, the striking vibration device was operated at a position 2 m or 16.5 m from the meniscus. Under the conditions of a casting speed of 0.6 m / min and a secondary cooling specific water volume of 0.5 liter / kg-steel, the placement position of the impact vibration device 2 m from the meniscus has a solid phase ratio of 0 and the central portion starts to solidify. It corresponds to the position that is not. Further, on the condition of the same casting speed and specific water amount for secondary cooling, the arrangement position of the impact vibration device 16.5 m from the meniscus is a position corresponding to a central solid phase ratio of 0.97.
[0053]
These test Nos. 4 and test no. 5, the average center segregation rate of component C of the obtained slab was 1.03, and the maximum center segregation rate was 1.06 or 1.07. Since the central solid phase ratio at the striking position was in a range where the effect of striking the slab was small, test no. Compared to 1, a little center segregation occurred .
[0054]
Test No. of the comparative example. In No. 6, the slab was not struck by the striking vibration device, and a total thickness corresponding to 3.0 mm was reduced using five guide roll pairs disposed 13 to 15 m from the meniscus. The central solid fraction of the slab in the reduction region is 0.62 to 0.84. The average center segregation rate of component C of the obtained slab was 1.09, the maximum center segregation rate was 1.38, and center segregation occurred.
[0055]
Test No. of the comparative example. In No. 7, the slab was not struck by the striking vibration device, and a thickness corresponding to 20 mm was squeezed using one squeeze roll pair disposed 14 m from the meniscus. The rolling reduction R defined by the above-mentioned formula (A) is 0.8. The average center segregation rate of component C of the obtained slab was 1.03, and the maximum center segregation rate was 1.27. The average center segregation was good, but the maximum center segregation was poor and local center segregation occurred.
[0056]
Test No. of the comparative example. In No. 8, the slab was not struck by the impact vibration device, and the slab was not reduced. The average center segregation rate of component C of the obtained slab was 1.20, the maximum center segregation rate was 1.54, and significant center segregation occurred.
[0057]
【The invention's effect】
By applying the method of the present invention to carbon steel, stainless steel, high alloy steel, etc., a slab having good internal quality free from macro-segregation such as center segregation, V segregation, and reverse V segregation is obtained. be able to. In addition, a steel material excellent in internal quality can be obtained in a wire rod, a steel bar, a steel pipe, a thick plate and the like that are hot-rolled using these slabs as a raw material.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a continuous casting machine provided with a device for continuously hitting a slab.
[Explanation of symbols]
1: Immersion nozzle 2: Mold 3: Molten steel 4: Guide roll pair 4a: Guide roll pair for reducing the slab 5: Solidified shell 6: Unsolidified part 7: Slab 8: Pinch roll 9: Short side of the slab 10: Impact vibration device 11: Mold 12: Rolling roll pair

Claims (3)

横断面形状が矩形の鋳片を鋳造する際に、未凝固部を含む鋳片の、中心固相率が0.1〜0.9に相当する範囲内の位置における短辺面側の少なくとも1カ所に配置した打撃振動装置により、未凝固部を含む鋳片の短辺面を連続して打撃することにより、鋳片に振動を付与しつつ鋳造することを特徴とする鋼の連続鋳造方法。When casting a slab having a rectangular cross-sectional shape, at least 1 on the short side surface side of the slab including an unsolidified portion at a position within a range corresponding to a central solid phase ratio of 0.1 to 0.9. A continuous casting method for steel, characterized in that casting is performed while applying vibration to a slab by continuously striking a short side surface of the slab including an unsolidified portion with a hammering vibration device disposed at a place. 鋳片の短辺面を最初に打撃した位置より鋳造方向に下流側で、中心固相率が0.2〜0.95である未凝固部を含む位置の鋳片を、複数のガイドロール対を用いて、鋳造方向の長さ1m当たり0.5mm〜2.5mm相当の割合で圧下することを特徴とする請求項1に記載の鋼の連続鋳造方法。A slab at a position including an unsolidified portion having a central solid phase ratio of 0.2 to 0.95 downstream of the position where the short side surface of the slab was first struck in the casting direction is divided into a plurality of guide roll pairs. The continuous casting method of steel according to claim 1, wherein the steel is reduced at a rate corresponding to 0.5 mm to 2.5 mm per 1 m in length in the casting direction. 未凝固部を含む鋳片の短辺面を連続して打撃する位置の上流側または下流側において、未凝固部を含む鋳片をバルジングさせ始め、そのバルジングさせた鋳片を、鋳片の短辺面を最初に打撃した位置より鋳造方向に下流側の厚さ中心部が凝固完了するまでの間で、下記(イ)式で表される圧下率Rが0.8〜1.1となる条件で、少なくとも1つの圧下ロール対により鋳片を圧下することを特徴とする請求項1に記載の鋼の連続鋳造方法。
R=D1/D2 ・・・(イ)
ここで、D1:未凝固部を含む鋳片の幅中央部における圧下量(mm)
D2:圧下開始時の固相率が0.8以下の未凝固部の厚さ(mm)
On the upstream side or downstream side of the position where the short side surface of the slab including the unsolidified portion is continuously hit, the slab including the unsolidified portion starts to be bulged, and the bulged slab is moved to the short side of the slab. The rolling reduction ratio R expressed by the following formula (A) is 0.8 to 1.1 from the position where the side surface is first struck until the thickness center portion on the downstream side in the casting direction is completely solidified. 2. The steel continuous casting method according to claim 1, wherein the slab is squeezed by at least one squeezing roll pair.
R = D1 / D2 (B)
Here, D1: Amount of rolling reduction (mm) at the width center portion of the slab including the unsolidified portion
D2: Thickness (mm) of an unsolidified portion having a solid phase ratio of 0.8 or less at the start of rolling
JP2001079181A 2001-03-19 2001-03-19 Steel continuous casting method Expired - Fee Related JP3835185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079181A JP3835185B2 (en) 2001-03-19 2001-03-19 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079181A JP3835185B2 (en) 2001-03-19 2001-03-19 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2002273554A JP2002273554A (en) 2002-09-25
JP3835185B2 true JP3835185B2 (en) 2006-10-18

Family

ID=18935676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079181A Expired - Fee Related JP3835185B2 (en) 2001-03-19 2001-03-19 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3835185B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073813A1 (en) 2008-12-25 2010-07-01 住友金属工業株式会社 Method of continuous steel casting

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704979B2 (en) * 2006-03-15 2011-06-22 株式会社神戸製鋼所 Light reduction method of slab in continuous casting
JP4725437B2 (en) * 2006-06-30 2011-07-13 住友金属工業株式会社 Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate
JP4515419B2 (en) * 2006-07-11 2010-07-28 株式会社神戸製鋼所 Continuous casting method of slab steel with little center segregation
EP2174734B1 (en) * 2007-08-08 2018-08-22 Nippon Steel & Sumitomo Metal Corporation Hammering vibrator in continuous casting
TWI446979B (en) * 2008-12-18 2014-08-01 Nippon Steel & Sumitomo Metal Corp Continuous vibration when the vibration device
JP5636913B2 (en) * 2010-11-26 2014-12-10 新日鐵住金株式会社 Continuous casting method for slabs
ITMI20121185A1 (en) * 2012-07-05 2014-01-06 Danieli Off Mecc METHOD OF DETERMINING THE CLOSING POSITION OF THE LIQUID CONE IN THE CONTINUOUS CASTING OF METAL PRODUCTS
JP5862599B2 (en) * 2013-04-12 2016-02-16 Jfeスチール株式会社 Steel continuous casting method
KR101617745B1 (en) * 2014-09-19 2016-05-18 주식회사 포스코 Semi-continuous casting equipment of vertical type and casting method therewith
CN108500226A (en) * 2018-03-29 2018-09-07 马鞍山钢铁股份有限公司 A kind of continuous casting and solidifying course control method for use inhibiting column crystals growth
CN108526423A (en) * 2018-03-29 2018-09-14 马鞍山钢铁股份有限公司 A kind of method, control method and device of slab quality improving casting process solidification middle and later periods solid-liquid two-phase region mobility
BR112021001244A2 (en) * 2018-07-25 2021-04-27 Southwire Company, Llc ultrasonic enhancement of cast materials by direct cooling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073813A1 (en) 2008-12-25 2010-07-01 住友金属工業株式会社 Method of continuous steel casting
CN102264490A (en) * 2008-12-25 2011-11-30 住友金属工业株式会社 Method of continuous steel casting
CN102264490B (en) * 2008-12-25 2013-01-09 住友金属工业株式会社 Method of continuous steel casting

Also Published As

Publication number Publication date
JP2002273554A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP3835185B2 (en) Steel continuous casting method
KR101183420B1 (en) Hammering vibrator in continuous casting
JP4055689B2 (en) Continuous casting method
JP4577235B2 (en) Steel continuous casting method and impact vibration device
JP4699001B2 (en) Continuous casting method
JP2003334641A (en) Continuous steel casting method
JP3671872B2 (en) Continuous casting method of steel
JP5327006B2 (en) Steel continuous casting method and extra-thick steel plate
JPH0957410A (en) Continuous casting method
JP3360618B2 (en) Continuous casting method
JP3402251B2 (en) Continuous casting method
JP3149834B2 (en) Steel slab continuous casting method
JP2001334353A (en) Method for continuously casting steel
JP3351375B2 (en) Continuous casting method
JP2001321901A (en) Method for continuously casting steel
JP3362703B2 (en) Continuous casting method
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3395717B2 (en) Continuous casting method
JP3297802B2 (en) Continuous casting method
JP3356100B2 (en) Continuous casting method
JP3365338B2 (en) Continuous cast slab and continuous casting method
JP3876768B2 (en) Continuous casting method
JP3297703B2 (en) Continuous casting method
JP7073927B2 (en) Continuous non-solidification forging method for slabs
JP3114679B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3835185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees