JP2002343622A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JP2002343622A
JP2002343622A JP2001144806A JP2001144806A JP2002343622A JP 2002343622 A JP2002343622 A JP 2002343622A JP 2001144806 A JP2001144806 A JP 2001144806A JP 2001144806 A JP2001144806 A JP 2001144806A JP 2002343622 A JP2002343622 A JP 2002343622A
Authority
JP
Japan
Prior art keywords
superconducting
coil
current switch
permanent current
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001144806A
Other languages
Japanese (ja)
Other versions
JP4562947B2 (en
Inventor
Shinichi Nose
眞一 能瀬
Ikuo Ito
郁夫 伊藤
Toshio Kamiide
俊夫 上出
Yuichi Ogawa
雄一 小川
Toshiyuki Mito
利行 三戸
Masataka Iwakuma
成卓 岩熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001144806A priority Critical patent/JP4562947B2/en
Publication of JP2002343622A publication Critical patent/JP2002343622A/en
Application granted granted Critical
Publication of JP4562947B2 publication Critical patent/JP4562947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting magnet which is equipped with a permanent current switch, which is spatially symmetrical, capable of levitating a large weight, keeping proper balance, and is reduced in dimensions and weight. SOLUTION: The superconducting magnet, is equipped with a superconducting coil 10 formed of a superconductor that is wound in a coil and a thermal-type permanent current switch 20, and is connected in parallel with the superconducting coil 10 to a power source for exciting the coil 10; and the permanent current switch 20 is formed of a superconductor, which is wound in a coil that is located outside the coil 10 and is concentric with it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、強磁界を利用す
るプラズマ実験装置,磁気浮上列車,MRI(磁気共鳴
撮像装置)などに使用される永久電流スイッチを備えた
超電導磁石、特に、永久電流スイッチの構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet provided with a permanent current switch used for a plasma test device using a strong magnetic field, a magnetic levitation train, an MRI (Magnetic Resonance Imaging Device), and the like. Related to the configuration.

【0002】[0002]

【従来の技術】永久電流スイッチは、永久電流モードで
運転する超電導コイルに不可欠な要素であり、永久電流
スイッチを備えた超電導磁石としては、種々の構成が知
られ、多くの特許提案がなされている(例えば、特開平
7−86025号公報,特開平11−87129号公
報,特開平11−340533号公報等参照)。
2. Description of the Related Art A permanent current switch is an indispensable element for a superconducting coil operating in a permanent current mode. Various configurations are known for a superconducting magnet having a permanent current switch, and many patent proposals have been made. (See, for example, JP-A-7-86025, JP-A-11-87129, and JP-A-11-340533).

【0003】前記永久電流モードとは、超電導マグネッ
トの端子間に短絡スイッチを設け、定格電流値まで励磁
後、短絡し、励磁電源を取外しても、一定電流の通電が
継続されることを利用する運転モードである。このため
の短絡スイッチを永久電流スイッチと呼び、短絡時の抵
抗を低くするため、通常、超電導体を用いる。また、O
N−OFF動作を行なうスイッチ機構としては、熱式、
磁気式、機械式等の方式がある。
The permanent current mode utilizes the fact that a short-circuit switch is provided between the terminals of the superconducting magnet, a short circuit is established after the magnet is excited to the rated current value, and a constant current is supplied even if the exciting power supply is removed. Operation mode. The short-circuit switch for this purpose is called a permanent current switch, and a superconductor is usually used to reduce the resistance at the time of short-circuit. Also, O
As a switch mechanism for performing N-OFF operation, a thermal type,
There are methods such as magnetic type and mechanical type.

【0004】上記熱式は、永久電流スイッチを構成する
超電導線の臨界温度を境にON−OFF動作をさせるも
のであり、従来から、磁気浮上列車,MRIなどの超電
導磁石に利用されている。通常は、超電導線と共に巻回
したヒータ用導線への通電または非通電によって超電導
線の温度を制御し、ON−OFF動作を行なう。また、
運転時の冷却を良好にするために、冷媒中に浸漬して使
用するのが一般的である。
[0004] The above-mentioned thermal type performs an ON / OFF operation at a critical temperature of a superconducting wire constituting a permanent current switch, and has conventionally been used for a superconducting magnet such as a magnetic levitation train or an MRI. Usually, the ON / OFF operation is performed by controlling the temperature of the superconducting wire by energizing or de-energizing the heating conductor wound together with the superconducting wire. Also,
In order to improve the cooling during operation, it is common to use it by immersing it in a refrigerant.

【0005】図4は、永久電流スイッチを備える超電導
磁石の概略回路構成と永久電流モード運転方法を説明す
るための図で、前記特開平11−340533号公報に
図6として記載された図を、一部修正して示す図であ
る。図4(a)は永久電流スイッチOFF(励磁時)、
図4(b)は永久電流スイッチON(永久電流モード運
転時)を示す。
FIG. 4 is a diagram for explaining a schematic circuit configuration of a superconducting magnet provided with a permanent current switch and a method of operating in a persistent current mode. FIG. 4 described in FIG. FIG. FIG. 4A shows a permanent current switch OFF (at the time of excitation),
FIG. 4B shows the permanent current switch ON (during permanent current mode operation).

【0006】図4において、1は超電導コイル、2は超
電導線2aとヒータ線2bを有する永久電流スイッチ、
3は励磁電源、4はヒータ電源、3a,4aは前記各電
源用スイッチである。永久電流スイッチ2は、超電導線
材とヒータ線とを、共にコイル状に巻き、エポキシ樹脂
などで熱絶縁を施したものが用いられる。
In FIG. 4, 1 is a superconducting coil, 2 is a permanent current switch having a superconducting wire 2a and a heater wire 2b,
Reference numeral 3 denotes an excitation power supply, 4 denotes a heater power supply, and 3a and 4a denote switches for the respective power supplies. The permanent current switch 2 is formed by winding a superconducting wire and a heater wire together in a coil shape and performing thermal insulation with an epoxy resin or the like.

【0007】上記構成において、ヒータ加熱時には、超
電導線は臨界温度Tc以上となり、抵抗が発生してスイ
ッチはOFF状態となり、非加熱時には、超電導状態と
なって、スイッチはONの状態となる。この永久電流ス
イッチ2を、図4のように、超電導コイル1の両端P,
Q点で接続しておく。P,Q点は、図示しない電流リー
ドよりもコイル側とし、永久電流スイッチ2は超電導コ
イル1と共に、図示しない同一のクライオスタット内に
納められるのが通例である。
In the above configuration, when the heater is heated, the superconducting wire has a temperature equal to or higher than the critical temperature Tc, a resistance is generated, and the switch is turned off. This permanent current switch 2 is connected to both ends P and P of the superconducting coil 1 as shown in FIG.
Connect at point Q. The points P and Q are on the coil side of the current lead (not shown), and the permanent current switch 2 is usually housed together with the superconducting coil 1 in the same cryostat (not shown).

【0008】永久電流モード運転は、次の手順で得られ
る。図4(a)に示すように、ヒータをONし、永久電
流スイッチをOFF状態にして、励磁電源3でマグネッ
トを定格電流まで励磁する。続いて、図4(b)に示す
ように、ヒータをOFF、永久電流スイッチをON状態
にし、励磁電源3の電流を0まで下げる。このとき、永
久電流スイッチ2の電流は超電導コイル1の定格電流値
まで上昇する。この状態で励磁電源3は取り外される。
また、場合によっては、電流リードも超電導コイル1か
ら切り離される。
[0008] Permanent current mode operation is obtained by the following procedure. As shown in FIG. 4A, the heater is turned on, the permanent current switch is turned off, and the excitation power supply 3 excites the magnet to the rated current. Subsequently, as shown in FIG. 4B, the heater is turned off, the permanent current switch is turned on, and the current of the excitation power supply 3 is reduced to zero. At this time, the current of the permanent current switch 2 rises to the rated current value of the superconducting coil 1. In this state, the excitation power supply 3 is removed.
In some cases, the current lead is also disconnected from superconducting coil 1.

【0009】ところで、前記永久電流スイッチのOFF
時の抵抗値は、接続する超電導コイルのエネルギーや励
磁時間等を考慮して決定するが、OFF時抵抗を大きく
するためには、使用する超電導線のいわゆる母材の抵抗
を大きくする必要があり、母材として、キュプロニッケ
ルなどが使用されることが多い。しかしながら、これは
結果として磁気的安定性の悪い永久電流スイッチをもた
らすこととなるので、永久電流スイッチは超電導コイル
の磁界がなるべく及ばない場所に設置し、かつ液体ヘリ
ウムなどの冷媒液に浸漬状態で使われ、また永久電流ス
イッチ用超電導線は無誘導巻きとして磁界が発生しない
ように巻回するなどの提案がなされている。
By the way, when the permanent current switch is turned off.
The resistance value at the time is determined in consideration of the energy of the superconducting coil to be connected, the excitation time and the like. Cupronickel or the like is often used as a base material. However, this results in a permanent current switch with poor magnetic stability, so the permanent current switch should be installed as far as possible from the magnetic field of the superconducting coil, and immersed in a refrigerant liquid such as liquid helium. It has been proposed that a superconducting wire for a permanent current switch is used as a non-inductive winding so that a magnetic field is not generated.

【0010】次に、この発明の応用対象の一つとしての
プラズマ実験装置に関して、その従来技術の概要を以下
に述べる。
Next, an outline of the prior art of a plasma test apparatus as one of the applications of the present invention will be described below.

【0011】ひとくちにプラズマ実験装置といっても、
実験目的に応じて種々の構成および実験機能を備えたも
のがある。本件発明が対象とするプラズマ実験装置は、
プラズマの物理的な研究のための装置であって、高ベー
タプラズマ(β>1)の安定保持を目的とするものであ
る。前記β値とは、プラズマの閉じ込めの効率を表し、
β値=(プラズマの圧力/磁場の圧力)である。
[0011] In short, even though it is a plasma experimental device,
Some have various configurations and experimental functions depending on the purpose of the experiment. The plasma experiment apparatus targeted by the present invention is:
An apparatus for physical study of plasma, which aims to stably maintain high beta plasma (β> 1). The β value represents the efficiency of plasma confinement,
β value = (pressure of plasma / pressure of magnetic field).

【0012】この方式のプラズマ実験装置は、1970
年代にLevitronと呼ばれて、英国や米国で開発され、現
在も米国のMITがLDX(Levitated Dipole eXper
iment)計画として開発している。この装置において、
プラズマは、直径約5mの真空容器内のドーナツ状の超
電導コイルの周りにトラップされる。
A plasma experiment apparatus of this type is described in 1970.
In the age called Levitron, it was developed in Britain and the United States, and now MIT in the United States is LDX (Levitated Dipole eXper
iment) Developed as a plan. In this device,
The plasma is trapped around a doughnut-shaped superconducting coil in a vacuum vessel having a diameter of about 5 m.

【0013】上記装置において、超電導コイル(F-coil
=Floatingと呼ばれるコイル)は、空間に浮かんでいる
必要がある。浮上させる方法としては、中央部にメカニ
カルな浮上機構部があり、一旦、浮かせたい所定の場所
に前記F−coilを保持し、装置上部にある吊上げコイル
(L-coilと呼ばれるコイル)を励磁して浮上させる。F-
Coilはあらかじめ励磁しておく。
In the above apparatus, the superconducting coil (F-coil
= Coil called Floating) needs to be floating in space. As a method of floating, there is a mechanical floating mechanism in the center, temporarily holding the F-coil at a predetermined place to be floated, and exciting the lifting coil (coil called L-coil) at the top of the device. Surface. F-
Coil is excited in advance.

【0014】前記LDXにおいては、F-coilが浮上する
前に、装置下部にあるC-coil(Chargingと呼ばれる常電
導コイル)の電流を遮断することにより誘導でF-coilに
電流を誘起させる。また、LDXにおいて、F-coilは金
属系のNb3Sn(ニオブ3スズ)の超電導線で製作さ
れている。この場合、F-coilへの電流誘起法が誘導法の
ため、F-coilの両端は短絡されているだけであり、永久
電流スイッチは使用されていない。
In the LDX, before the F-coil floats, a current is induced in the F-coil by induction by interrupting a current of a C-coil (a normal conducting coil called Charging) at a lower portion of the apparatus. In the LDX, the F-coil is made of a metallic Nb 3 Sn (niobium 3 tin) superconducting wire. In this case, since the current induction method for the F-coil is an induction method, both ends of the F-coil are only short-circuited, and the permanent current switch is not used.

【0015】さらに、LDXにおいては、Nb3Snの
臨界温度が約15Kであるため、装置の運転温度は5K
から10K程度である。冷却は極低温のヘリウムガスで
あり、冷却初期は圧力が低いが時間が経過して温度レベ
ルが上がると内圧上昇するので比較的肉厚の容器を必要
としている。
Further, in LDX, since the critical temperature of Nb 3 Sn is about 15K, the operating temperature of the apparatus is 5K.
From about 10K. Cooling is helium gas at a very low temperature. The pressure is low in the initial stage of cooling, but the internal pressure rises as the temperature level rises over time, so a relatively thick container is required.

【0016】[0016]

【発明が解決しようとする課題】ところで、近年、高温
超電導導体として、臨界温度が110Kのものが実用化
されている。このような臨界温度が高い高温超電導導体
を用い、冷媒として、例えば、定格温度20Kのヘリウ
ムガスを用いることにより、冷媒の温度と臨界温度との
間の大きな温度差により、発熱があってもクエンチに至
るまでの超電導導体の熱容量が増大するので、より安全
かつ経済的な運転ができるようになる。さらに、前記プ
ラズマ実験装置においては、高温超電導導体を用いるこ
とにより、初期冷却状態から、実験中真空容器が高温の
プラズマにさらされて熱侵入によって温度上昇し、臨界
温度に到達するまでの時間が長くなるので、その間の実
験時間の増大が図れる利点がある。
In recent years, a high-temperature superconducting conductor having a critical temperature of 110K has been put to practical use. By using such a high-temperature superconducting conductor having a high critical temperature and using, for example, a helium gas having a rated temperature of 20K as a refrigerant, a large temperature difference between the temperature of the refrigerant and the critical temperature causes a quench even if heat is generated. , The heat capacity of the superconducting conductor is increased, so that safer and more economical operation can be performed. Furthermore, in the plasma experimental apparatus, by using a high-temperature superconducting conductor, the time required for the vacuum vessel to be exposed to high-temperature plasma during the experiment to increase in temperature due to heat intrusion from the initial cooling state to reach the critical temperature is obtained. Since it is longer, there is an advantage that the experiment time during that period can be increased.

【0017】上記観点から、前記プラズマ実験装置にお
けるF−coilを、高温超電導線(例えば、臨界温度が1
10Kのビスマス2223系)で製作し、運転温度は20K
(最大40K程度まで可能とする)とした場合、永久電
流スイッチが必要となる。その理由を以下に述べる。
In view of the above, the F-coil in the above-mentioned plasma experimental apparatus is replaced with a high-temperature superconducting wire (for example, when the critical temperature is 1).
Manufactured with 10K bismuth 2223), operating temperature is 20K
In the case of (up to about 40K), a permanent current switch is required. The reason is described below.

【0018】例えば、一回の実験が終了した時点でF-co
il温度が110K以上に上昇していれば、コイル電流は
ゼロになり、誘導法で励磁しても毎回同じ電流値が誘起
される。しかしながら、実験の都度、F-coil温度を11
0K以上にするのは、経済的ではないし、実験頻度が高
い場合には、時間の無駄もあり基本的に好ましくない。
これを避けるためには、臨界温度以下であって電流がゼ
ロでない状態で励磁する必要があるが、この場合には、
毎回同じ磁場が保証されない。
For example, when one experiment is completed, F-co
If the il temperature rises to 110 K or more, the coil current becomes zero, and the same current value is induced every time even when excited by the induction method. However, in each experiment, the F-coil temperature was increased to 11
It is not economical to set the temperature to 0K or more, and when the frequency of experiments is high, there is a waste of time and it is basically not preferable.
In order to avoid this, it is necessary to excite under the condition that the temperature is lower than the critical temperature and the current is not zero.
The same magnetic field is not guaranteed every time.

【0019】従ってこの場合、前記F−coilは永久電流
スイッチを備え、永久電流スイッチ部のみの温度を20
Kと110Kとの間で往復させてスイッチのON/OF
Fを行なう。スイッチOFFの状態でF−coilの励磁及
び消磁を行い、スイッチONの状態でF−coilを永久電
流モードでプラズマ実験を行なうようにする。なお、こ
の場合、熱侵入を低減するために、電流リードやコイル
の冷却装置等は、着脱式とすることが望ましい。
Therefore, in this case, the F-coil is provided with a permanent current switch, and the temperature of only the permanent current switch section is reduced by 20%.
Switch ON / OF by reciprocating between K and 110K
Perform F. Excitation and demagnetization of the F-coil are performed with the switch OFF, and a plasma experiment is performed on the F-coil in the permanent current mode with the switch ON. In this case, in order to reduce heat intrusion, it is desirable that the cooling device for the current lead and the coil be detachable.

【0020】前記プラズマ実験装置におけるF−coilを
含む超電導磁石は、前述のように、永久電流スイッチに
より励磁と消磁を行い、実験中において一様な起磁力が
得られるようにするとともに、前記磁気的浮上の安定化
の観点から、寸法・重量の軽減は勿論のこと、空間的に
対称性があって浮揚重量のバランスがよいことが望まれ
る。上記要請は、前記プラズマ実験装置に限らず、磁気
浮上列車やMRIなどに使用される永久電流スイッチを
備えた超電導磁石においても、同様である。
As described above, the superconducting magnet including the F-coil in the plasma experiment apparatus is excited and demagnetized by the permanent current switch so that a uniform magnetomotive force is obtained during the experiment, and From the viewpoint of stabilization of the levitation, it is desirable not only to reduce the size and weight, but also to have a spatially symmetric and well-balanced levitation weight. The above requirement is not limited to the above-mentioned plasma experiment apparatus, but is similarly applied to a superconducting magnet provided with a permanent current switch used for a magnetic levitation train or MRI.

【0021】この発明は上記に鑑みてなされたもので、
本発明の課題は、空間的に対称性があって浮揚重量のバ
ランスがよく、かつ寸法・重量の軽減を図った、永久電
流スイッチを備えた超電導磁石を提供することにある。
The present invention has been made in view of the above,
An object of the present invention is to provide a superconducting magnet having a permanent current switch, which is spatially symmetric, has a well-balanced levitation weight, and is reduced in size and weight.

【0022】[0022]

【課題を解決するための手段】前述の課題を解決するた
め、この発明は、超電導導体を巻回してコイル状に形成
した超電導コイルと、この超電導コイル用の励磁電源に
対して前記超電導コイルと電気的に並列に接続した熱式
の永久電流スイッチとを備える超電導磁石において、前
記永久電流スイッチは、前記超電導コイルの外側に、超
電導コイルと同心状に超電導導体を巻回してコイル状に
形成してなるものとする(請求項1の発明)。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a superconducting coil formed by winding a superconducting conductor into a coil shape, and a superconducting coil for an exciting power supply for the superconducting coil. In a superconducting magnet including a thermal permanent current switch electrically connected in parallel, the permanent current switch is formed in a coil shape by winding a superconducting conductor concentrically with the superconducting coil outside the superconducting coil. (The invention of claim 1).

【0023】上記により、永久電流スイッチの重量分布
を円周方向に均一に分散でき、空間的に対称性となって
浮揚重量のバランスがよくなる。また、永久電流スイッ
チが磁界を発生する超電導コイルの外周部に設置される
ため、スイッチを構成する超電導導体の受ける磁界が小
さく、超電導コイルの定格磁場の約1/4〜1/5とな
る。従って、その分、超電導導体の軽量化が可能とな
る。
As described above, the weight distribution of the permanent current switch can be uniformly distributed in the circumferential direction, and the spatial distribution is symmetrical, so that the balance of the floating weight is improved. Further, since the permanent current switch is installed on the outer periphery of the superconducting coil that generates a magnetic field, the magnetic field received by the superconducting conductor forming the switch is small, and is about 1 / to 5 of the rated magnetic field of the superconducting coil. Accordingly, the weight of the superconducting conductor can be reduced accordingly.

【0024】また、上記請求項1の発明において、前記
超電導コイルおよび永久電流スイッチは、前記各コイル
状に形成した超電導導体に流れる電流の向きが、互いに
同方向となるように超電導導体を巻回してなるものとす
る(請求項2の発明)。これにより、必要な起磁力を両
者で分担するため、その分超電導コイルの超電導導体の
巻線の量を減らすことができる。従って、全体として、
寸法・重量を軽減することができる。
Further, in the above-mentioned invention, the superconducting coil and the permanent current switch are wound around the superconducting conductor such that the directions of currents flowing through the superconducting conductors formed in the respective coil shapes are the same as each other. (The invention of claim 2). As a result, the necessary magnetomotive force is shared between the two, and the amount of winding of the superconducting conductor of the superconducting coil can be reduced accordingly. Therefore, overall,
Size and weight can be reduced.

【0025】さらに、上記請求項1または2の発明にお
いて、前記永久電流スイッチは、巻枠にヒータ用導体と
超電導導体とを巻回してなり、かつ、前記巻枠は、永久
電流スイッチ用の超電導導体冷却用冷媒を通流する冷却
パイプを備えるものとする(請求項3の発明)。これに
より、永久電流スイッチ用の冷媒収納容器が不要とな
り、装置全体の軽量化が可能となる。
Further, in the invention according to claim 1 or 2, the permanent current switch is formed by winding a conductor for a heater and a superconducting conductor around a winding frame, and the winding frame is a superconducting conductor for a permanent current switch. It is provided with a cooling pipe through which the conductor cooling refrigerant flows (the invention of claim 3). This eliminates the need for a refrigerant storage container for the permanent current switch, and makes it possible to reduce the weight of the entire apparatus.

【0026】また、前記請求項1ないし3のいずれかの
発明において、前記超電導コイルおよび永久電流スイッ
チにおける超電導導体は、高温超電導導体とする(請求
項4の発明)。これにより、前述のように、従来より安
全かつ経済的な運転ができ、さらに、前記プラズマ実験
装置においては、高温超電導導体を用いることにより、
初期冷却状態からの実験時間の増大が図れる。
In any one of the first to third aspects of the present invention, the superconducting conductor in the superconducting coil and the permanent current switch is a high-temperature superconducting conductor (the invention of claim 4). Thereby, as described above, safer and more economical operation can be performed than before, and further, in the plasma experiment apparatus, by using a high-temperature superconducting conductor,
The experiment time from the initial cooling state can be increased.

【0027】[0027]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下に述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】図1は本発明による超電導磁石の実施例の
模式的断面図を示し、図2は、超電導コイルおよび永久
電流スイッチの概略部分断面図を示し、図3は、永久電
流スイッチの異なる実施例の部分断面図を示す。
FIG. 1 is a schematic sectional view of an embodiment of a superconducting magnet according to the present invention, FIG. 2 is a schematic partial sectional view of a superconducting coil and a permanent current switch, and FIG. FIG. 4 shows a partial cross-sectional view of an example.

【0029】図1に示す超電導磁石は、超電導導体を巻
回してコイル状に形成した超電導コイル10と、この超
電導コイル用の図示しない励磁電源に対して超電導コイ
ル10と電気的に並列に接続した熱式の永久電流スイッ
チ20とを備える。この永久電流スイッチ20は、超電
導コイル10の外側に、超電導コイルと同心状に超電導
導体を巻回してコイル状に形成する。なお、図1におい
て、30は真空容器からなるクライオスタットであり、
ヘリウムガス冷媒により、超電導コイル10と永久電流
スイッチ20とを冷却する図示しない冷却手段を備え
る。
In the superconducting magnet shown in FIG. 1, a superconducting coil 10 formed by winding a superconducting conductor into a coil shape and an exciting power supply (not shown) for the superconducting coil are electrically connected to the superconducting coil 10 in parallel. And a thermal permanent current switch 20. The permanent current switch 20 is formed in a coil shape by winding a superconducting conductor around the superconducting coil 10 concentrically with the superconducting coil. In FIG. 1, reference numeral 30 denotes a cryostat formed of a vacuum vessel,
A cooling means (not shown) for cooling the superconducting coil 10 and the permanent current switch 20 with a helium gas refrigerant is provided.

【0030】図2は、ソレノイド状の超電導コイルと永
久電流スイッチの部分断面を示しており、永久電流スイ
ッチの超電導巻線22は超電導コイル10の巻線方向と
同じ方向に巻かれている。図ではどちらの巻線も電流の
向きが紙面に対して表から裏側に流れていることを示し
ている。また、永久電流スイッチは、超電導巻線22の
内周側に、ヒータ21を備える。
FIG. 2 shows a partial cross section of a solenoidal superconducting coil and a permanent current switch. The superconducting winding 22 of the permanent current switch is wound in the same direction as the winding direction of the superconducting coil 10. The drawing shows that the direction of the current flows from the front side to the back side with respect to the paper surface in both windings. Further, the permanent current switch includes a heater 21 on the inner peripheral side of the superconducting winding 22.

【0031】図3は、本発明の異なる実施例を示し、永
久電流スイッチの冷却手段を含む永久電流スイッチの断
面構成を示す。図3に示すものは、巻枠23にヒータ用
導体と超電導コイル用の導体とを巻回して、永久電流ス
イッチのON−OFFに必要なヒータ21と超電導巻線
22とを構成する。また、熱良伝導体で構成された巻枠
23は、永久電流スイッチ用の超電導導体冷却用冷媒を
通流する熱良伝導体の冷却パイプ24を備え、このパイ
プ中を流通する冷媒によって超電導線22は間接的に冷
却される。
FIG. 3 shows a different embodiment of the present invention, and shows a sectional configuration of a permanent current switch including a cooling means of the permanent current switch. In FIG. 3, a heater conductor and a superconducting coil conductor are wound around a winding frame 23 to form a heater 21 and a superconducting winding 22 necessary for ON / OFF of a permanent current switch. The winding frame 23 made of a good thermal conductor is provided with a good thermal conductor cooling pipe 24 through which a superconducting conductor cooling refrigerant for a permanent current switch flows, and a superconducting wire is formed by the refrigerant flowing through the pipe. 22 is cooled indirectly.

【0032】上記実施例に関し、前記プラズマ実験装置
に適用する超電導磁石の主要諸元および構成の一例を下
記に述べる。超電導コイルの定格磁場は約2T、トロイ
ド主半径は約0.4m、小半径は約0.06mとする。
With respect to the above embodiment, an example of main specifications and a configuration of a superconducting magnet applied to the plasma experimental apparatus will be described below. The rated magnetic field of the superconducting coil is about 2T, the main radius of the toroid is about 0.4 m, and the small radius is about 0.06 m.

【0033】超電導コイルおよび永久電流スイッチに使
用する高温超電導導体について、以下に述べる。比較的
臨界温度レベルが高い超電導導体としては、下記が知ら
れている。即ち、Bi2212(Bi2Sr2Ca1Cu2O8):臨界温度
80K、Bi2223(Bi2Sr2Ca2Cu3O10):臨界温度110K、Y1
23(YBa2Cu3Ox):臨界温度90Kなどである。現在工業的に
生産されているのは、Bi2223であり、断面形状の矩形の
ものが生産されているので、特に本発明の構成に適して
いる。なお、永久電流スイッチはこの場合、OFF時抵
抗をあまり大きくする必要がないので、超電導コイルと
同じマンガン添加の銀シース線を使用することができ
る。
The high-temperature superconducting conductor used for the superconducting coil and the permanent current switch will be described below. The following are known as superconducting conductors having a relatively high critical temperature level. That is, Bi2212 (Bi 2 Sr 2 Ca 1 Cu 2 O 8 ): critical temperature
80K, Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10): critical temperature 110K, Y1
23 (YBa 2 Cu 3 O x ): Critical temperature 90K or the like. Currently, Bi2223 is industrially produced, and a rectangular one having a rectangular cross-sectional shape is produced, which is particularly suitable for the configuration of the present invention. In this case, since the permanent current switch does not need to have a large resistance at the time of OFF, the same manganese-added silver sheath wire as the superconducting coil can be used.

【0034】次に永久電流スイッチの構成について述べ
る。永久電流スイッチの構成は、図3の構成とし、巻枠
は真鍮製で冷却パイプ付きとする。巻枠の内側にヒータ
線(マンガニン線)を巻き、その上に、前記高温超電導
導体を巻いて外側をガラステープで熱絶縁する。
Next, the configuration of the permanent current switch will be described. The configuration of the permanent current switch is as shown in FIG. 3, and the winding frame is made of brass and has a cooling pipe. A heater wire (manganin wire) is wound inside the winding frame, and the high-temperature superconducting conductor is wound thereon, and the outside is thermally insulated with a glass tape.

【0035】次に、高温超電導導体の冷却方法について
述べる。冷媒は、ヘリウムガスとし、15Kの極低温の
ヘリウムガスが供給できる冷凍機を使用する。高温超電
導導体は、前記極低温ヘリウムガスにより、常温から定
格温度の20Kまで冷却し、その後、冷却は一旦停止
し、熱侵入により40Kまで温度上昇する間(例えば、
約6時間)に、プラズマ実験を行なう。40Kに到達
後、再度実験を行なう場合には、電流リードを接続して
電源と接続後、一旦、電流をゼロに戻した後、コイルを
再度20Kまで冷却した後、再励磁する。
Next, a method of cooling the high-temperature superconductor will be described. The refrigerant is helium gas, and a refrigerator capable of supplying helium gas at an extremely low temperature of 15K is used. The high-temperature superconducting conductor is cooled from normal temperature to the rated temperature of 20K by the cryogenic helium gas, and then the cooling is temporarily stopped, and the temperature rises to 40K due to heat intrusion (for example,
About 6 hours), perform a plasma experiment. When the experiment is performed again after the temperature reaches 40K, the current lead is connected to the power supply, the current is once returned to zero, the coil is cooled again to 20K, and then re-excited.

【0036】上記のように超電導磁石を構成することに
より、浮揚重量のバランスをよくし、かつ寸法・重量の
軽減を図ることができ、前記プラズマ実験装置に好適な
永久電流スイッチを備えた超電導磁石とすることができ
る。
By configuring the superconducting magnet as described above, it is possible to improve the balance of the levitation weight and reduce the size and weight, and to provide a superconducting magnet having a permanent current switch suitable for the plasma experimental apparatus. It can be.

【0037】[0037]

【発明の効果】この発明によれば前述のように、超電導
導体を巻回してコイル状に形成した超電導コイルと、こ
の超電導コイル用の励磁電源に対して前記超電導コイル
と電気的に並列に接続した熱式の永久電流スイッチとを
備える超電導磁石において、前記永久電流スイッチは、
前記超電導コイルの外側に、超電導コイルと同心状に超
電導導体を巻回してコイル状に形成してなるものとする
ことにより、永久電流スイッチの重量分布を円周方向に
均一に分散でき、空間的に対称性となって浮揚重量のバ
ランスの向上を図り、さらに装置全体として、寸法・重
量の軽減を図った、永久電流スイッチを備えた超電導磁
石を提供することができる。
According to the present invention, as described above, a superconducting coil formed by winding a superconducting conductor into a coil shape is electrically connected in parallel with the superconducting coil to an exciting power supply for the superconducting coil. And a thermal type permanent current switch, wherein the permanent current switch comprises:
Outside the superconducting coil, the superconducting conductor is wound concentrically with the superconducting coil so as to be formed in a coil shape, so that the weight distribution of the permanent current switch can be uniformly distributed in the circumferential direction, and spatially. Thus, a superconducting magnet provided with a permanent current switch can be provided which has a symmetrical structure to improve the balance of the levitation weight and, as a whole, reduces the size and weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超電導磁石の実施例の模式的断面図FIG. 1 is a schematic sectional view of an embodiment of a superconducting magnet of the present invention.

【図2】本発明の超電導コイルおよび永久電流スイッチ
の概略部分断面図
FIG. 2 is a schematic partial cross-sectional view of a superconducting coil and a persistent current switch of the present invention.

【図3】本発明の異なる構成の永久電流スイッチの概略
部分断面図
FIG. 3 is a schematic partial sectional view of a permanent current switch having a different configuration according to the present invention.

【図4】永久電流スイッチを備える超電導磁石の概略回
路構成と永久電流モード運転方法の説明図
FIG. 4 is a schematic diagram illustrating a circuit configuration of a superconducting magnet including a permanent current switch and a method of operating a permanent current mode.

【符号の説明】[Explanation of symbols]

1,10:超電導コイル、2,20:永久電流スイッ
チ、3:励磁電源、4:ヒータ電源、21:ヒータ、2
2:超電導巻線、23:巻枠、24:冷却パイプ、3
0:クライオスタット。
1, 10: superconducting coil, 2, 20: permanent current switch, 3: excitation power supply, 4: heater power supply, 21: heater, 2
2: superconducting winding, 23: winding frame, 24: cooling pipe, 3
0: Cryostat.

フロントページの続き (71)出願人 595113392 岩熊 成卓 福岡県大野城市下大利団地26棟402号 (72)発明者 能瀬 眞一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 伊藤 郁夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 上出 俊夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 小川 雄一 東京都新宿区市谷薬王寺町45−2−301 (72)発明者 三戸 利行 岐阜県可児市桂ケ丘1−62 (72)発明者 岩熊 成卓 福岡県大野城市下大利団地26−402 Fターム(参考) 4M114 AA25 AA30 AA31 BB01 BB04 CC03 CC11 CC15 DB13 DB16 DB24 DB27 Continuation of the front page (71) Applicant 595113392 Narita Iwakuma Fukuoka Prefecture, Onojo City, Shimo-Oritari 26, No. 402 (72) Inventor Shinichi Nose 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Fuji Electric Co., Ltd. (72 Inventor Ikuo Ito 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (72) Inventor Toshio Ude 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. 72) Inventor Yuichi Ogawa 45-2-301, Ichigaya-Yakuji-cho, Shinjuku-ku, Tokyo F term (reference) 4M114 AA25 AA30 AA31 BB01 BB04 CC03 CC11 CC15 DB13 DB16 DB24 DB27

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導導体を巻回してコイル状に形成し
た超電導コイルと、この超電導コイル用の励磁電源に対
して前記超電導コイルと電気的に並列に接続した熱式の
永久電流スイッチとを備える超電導磁石において、 前記永久電流スイッチは、前記超電導コイルの外側に、
超電導コイルと同心状に超電導導体を巻回してコイル状
に形成してなるものとすることを特徴とする超電導磁
石。
A superconducting coil formed by winding a superconducting conductor into a coil, and a thermal permanent current switch electrically connected in parallel with the superconducting coil to an excitation power supply for the superconducting coil. In the superconducting magnet, the permanent current switch is provided outside the superconducting coil,
A superconducting magnet characterized in that a superconducting conductor is wound concentrically with a superconducting coil to form a coil.
【請求項2】 請求項1記載の超電導磁石において、前
記超電導コイルおよび永久電流スイッチは、前記各コイ
ル状に形成した超電導導体に流れる電流の向きが、互い
に同方向となるように超電導導体を巻回してなるものと
することを特徴とする超電導磁石。
2. The superconducting magnet according to claim 1, wherein the superconducting coil and the permanent current switch are wound around the superconducting conductor such that the directions of currents flowing in the coil-shaped superconducting conductors are the same as each other. A superconducting magnet characterized by being turned.
【請求項3】 請求項1または2記載の超電導磁石にお
いて、前記永久電流スイッチは、巻枠にヒータ用導体と
超電導導体とを巻回してなり、かつ、前記巻枠は、永久
電流スイッチ用の超電導導体冷却用冷媒を通流する冷却
パイプを備えることを特徴とする超電導磁石。
3. The superconducting magnet according to claim 1, wherein the permanent current switch is formed by winding a heater conductor and a superconducting conductor around a winding frame, and the winding frame is used for a permanent current switch. A superconducting magnet comprising a cooling pipe through which a superconducting conductor cooling refrigerant flows.
【請求項4】 請求項1ないし3のいずれかに記載の超
電導磁石において、前記超電導コイルおよび永久電流ス
イッチにおける超電導導体は、高温超電導導体とするこ
とを特徴とする超電導磁石。
4. A superconducting magnet according to claim 1, wherein the superconducting conductor in the superconducting coil and the permanent current switch is a high-temperature superconducting conductor.
JP2001144806A 2001-05-15 2001-05-15 Superconducting magnet Expired - Lifetime JP4562947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144806A JP4562947B2 (en) 2001-05-15 2001-05-15 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144806A JP4562947B2 (en) 2001-05-15 2001-05-15 Superconducting magnet

Publications (2)

Publication Number Publication Date
JP2002343622A true JP2002343622A (en) 2002-11-29
JP4562947B2 JP4562947B2 (en) 2010-10-13

Family

ID=18990705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144806A Expired - Lifetime JP4562947B2 (en) 2001-05-15 2001-05-15 Superconducting magnet

Country Status (1)

Country Link
JP (1) JP4562947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023086180A (en) * 2021-12-10 2023-06-22 株式会社日立製作所 Superconducting coil device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735387A (en) * 1980-08-13 1982-02-25 Hitachi Ltd Superconductive device
JPS6482505A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Superconducting coil device
JPH03261184A (en) * 1990-03-09 1991-11-21 Fuji Electric Co Ltd Permanent current switch
JPH04167403A (en) * 1990-10-31 1992-06-15 Toshiba Corp Manufacture of superconducting magnet
JPH0620831A (en) * 1992-07-06 1994-01-28 Mitsubishi Electric Corp Superconductive magnet device
JPH08181014A (en) * 1994-12-26 1996-07-12 Showa Electric Wire & Cable Co Ltd Superconductive magnet device and its manufacture
JPH09129438A (en) * 1995-10-30 1997-05-16 Hitachi Ltd Oxide superconductive coil and manufacture thereof
JPH10294213A (en) * 1997-04-22 1998-11-04 Hitachi Ltd Manufacture for oxide based superconducting magnet system and oxide based superconducting magnet system and superconducting magnetic field generation apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735387A (en) * 1980-08-13 1982-02-25 Hitachi Ltd Superconductive device
JPS6482505A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Superconducting coil device
JPH03261184A (en) * 1990-03-09 1991-11-21 Fuji Electric Co Ltd Permanent current switch
JPH04167403A (en) * 1990-10-31 1992-06-15 Toshiba Corp Manufacture of superconducting magnet
JPH0620831A (en) * 1992-07-06 1994-01-28 Mitsubishi Electric Corp Superconductive magnet device
JPH08181014A (en) * 1994-12-26 1996-07-12 Showa Electric Wire & Cable Co Ltd Superconductive magnet device and its manufacture
JPH09129438A (en) * 1995-10-30 1997-05-16 Hitachi Ltd Oxide superconductive coil and manufacture thereof
JPH10294213A (en) * 1997-04-22 1998-11-04 Hitachi Ltd Manufacture for oxide based superconducting magnet system and oxide based superconducting magnet system and superconducting magnetic field generation apparatus

Also Published As

Publication number Publication date
JP4562947B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
EP0470762B1 (en) Superconductive switch
CA1280153C (en) Conical unimpregnated winding for mr magnets
US5686876A (en) Superconducting magnet apparatus
JP3153243B2 (en) Thermal interface for superconducting switch of cryogen-free superconducting magnet
JP4612991B2 (en) Superconducting switch device
Tosaka et al. Persistent current HTS magnet cooled by cryocooler (4)-persistent current switch characteristics
US6621395B1 (en) Methods of charging superconducting materials
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP2002343622A (en) Superconducting magnet
JPS61113218A (en) Superconductive magnet
KR20190070537A (en) Superconducting switch of superconducting magnet for magnetic levitation
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
US6094333A (en) Operation control method for superconducting coil
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
JPH04361526A (en) Superconducting magnet device for crystal pullingup device
JPH11340533A (en) High-temperature superconducting coil persistent current switch
Mito et al. Engineering design of the Mini-RT device
Haldar et al. Development of Bi-2223 HTS high field coils and magnets
Noto et al. Development of a 50 A-fast response, magnetically controlled persistent current switch
Shen et al. Development of 9.5 T NbTi cryogen-free magnet
JPH10116725A (en) Superconducting magnet device
Yanagi et al. Engineering research and development of magnetically levitated high-temperature superconducting coil system for mini-RT project
JP2000150224A (en) Excitation control method of superconducting coil
JP3382794B2 (en) Permanent current switch
Yanagi et al. Experiments of the HTS floating coil system in the mini-RT project

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term