JP4562947B2 - Superconducting magnet - Google Patents

Superconducting magnet Download PDF

Info

Publication number
JP4562947B2
JP4562947B2 JP2001144806A JP2001144806A JP4562947B2 JP 4562947 B2 JP4562947 B2 JP 4562947B2 JP 2001144806 A JP2001144806 A JP 2001144806A JP 2001144806 A JP2001144806 A JP 2001144806A JP 4562947 B2 JP4562947 B2 JP 4562947B2
Authority
JP
Japan
Prior art keywords
superconducting
coil
permanent current
current switch
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001144806A
Other languages
Japanese (ja)
Other versions
JP2002343622A (en
Inventor
眞一 能瀬
郁夫 伊藤
俊夫 上出
雄一 小川
利行 三戸
成卓 岩熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2001144806A priority Critical patent/JP4562947B2/en
Publication of JP2002343622A publication Critical patent/JP2002343622A/en
Application granted granted Critical
Publication of JP4562947B2 publication Critical patent/JP4562947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、強磁界を利用するプラズマ実験装置,磁気浮上列車,MRI(磁気共鳴撮像装置)などに使用される永久電流スイッチを備えた超電導磁石、特に、永久電流スイッチの構成に関する。
【0002】
【従来の技術】
永久電流スイッチは、永久電流モードで運転する超電導コイルに不可欠な要素であり、永久電流スイッチを備えた超電導磁石としては、種々の構成が知られ、多くの特許提案がなされている(例えば、特開平7−86025号公報,特開平11−87129号公報,特開平11−340533号公報等参照)。
【0003】
前記永久電流モードとは、超電導マグネットの端子間に短絡スイッチを設け、定格電流値まで励磁後、短絡し、励磁電源を取外しても、一定電流の通電が継続されることを利用する運転モードである。このための短絡スイッチを永久電流スイッチと呼び、短絡時の抵抗を低くするため、通常、超電導体を用いる。また、ON−OFF動作を行なうスイッチ機構としては、熱式、磁気式、機械式等の方式がある。
【0004】
上記熱式は、永久電流スイッチを構成する超電導線の臨界温度を境にON−OFF動作をさせるものであり、従来から、磁気浮上列車,MRIなどの超電導磁石に利用されている。通常は、超電導線と共に巻回したヒータ用導線への通電または非通電によって超電導線の温度を制御し、ON−OFF動作を行なう。また、運転時の冷却を良好にするために、冷媒中に浸漬して使用するのが一般的である。
【0005】
図4は、永久電流スイッチを備える超電導磁石の概略回路構成と永久電流モード運転方法を説明するための図で、前記特開平11−340533号公報に図6として記載された図を、一部修正して示す図である。図4(a)は永久電流スイッチOFF(励磁時)、図4(b)は永久電流スイッチON(永久電流モード運転時)を示す。
【0006】
図4において、1は超電導コイル、2は超電導線2aとヒータ線2bを有する永久電流スイッチ、3は励磁電源、4はヒータ電源、3a,4aは前記各電源用スイッチである。永久電流スイッチ2は、超電導線材とヒータ線とを、共にコイル状に巻き、エポキシ樹脂などで熱絶縁を施したものが用いられる。
【0007】
上記構成において、ヒータ加熱時には、超電導線は臨界温度Tc以上となり、抵抗が発生してスイッチはOFF状態となり、非加熱時には、超電導状態となって、スイッチはONの状態となる。この永久電流スイッチ2を、図4のように、超電導コイル1の両端P,Q点で接続しておく。P,Q点は、図示しない電流リードよりもコイル側とし、永久電流スイッチ2は超電導コイル1と共に、図示しない同一のクライオスタット内に納められるのが通例である。
【0008】
永久電流モード運転は、次の手順で得られる。図4(a)に示すように、ヒータをONし、永久電流スイッチをOFF状態にして、励磁電源3でマグネットを定格電流まで励磁する。続いて、図4(b)に示すように、ヒータをOFF、永久電流スイッチをON状態にし、励磁電源3の電流を0まで下げる。このとき、永久電流スイッチ2の電流は超電導コイル1の定格電流値まで上昇する。この状態で励磁電源3は取り外される。また、場合によっては、電流リードも超電導コイル1から切り離される。
【0009】
ところで、前記永久電流スイッチのOFF時の抵抗値は、接続する超電導コイルのエネルギーや励磁時間等を考慮して決定するが、OFF時抵抗を大きくするためには、使用する超電導線のいわゆる母材の抵抗を大きくする必要があり、母材として、キュプロニッケルなどが使用されることが多い。しかしながら、これは結果として磁気的安定性の悪い永久電流スイッチをもたらすこととなるので、永久電流スイッチは超電導コイルの磁界がなるべく及ばない場所に設置し、かつ液体ヘリウムなどの冷媒液に浸漬状態で使われ、また永久電流スイッチ用超電導線は無誘導巻きとして磁界が発生しないように巻回するなどの提案がなされている。
【0010】
次に、この発明の応用対象の一つとしてのプラズマ実験装置に関して、その従来技術の概要を以下に述べる。
【0011】
ひとくちにプラズマ実験装置といっても、実験目的に応じて種々の構成および実験機能を備えたものがある。本件発明が対象とするプラズマ実験装置は、プラズマの物理的な研究のための装置であって、高ベータプラズマ(β>1)の安定保持を目的とするものである。前記β値とは、プラズマの閉じ込めの効率を表し、β値=(プラズマの圧力/磁場の圧力)である。
【0012】
この方式のプラズマ実験装置は、1970年代にLevitronと呼ばれて、英国や米国で開発され、現在も米国のMITがLDX(Levitated Dipole eXperiment)計画として開発している。この装置において、プラズマは、直径約5mの真空容器内のドーナツ状の超電導コイルの周りにトラップされる。
【0013】
上記装置において、超電導コイル(F-coil=Floatingと呼ばれるコイル)は、空間に浮かんでいる必要がある。浮上させる方法としては、中央部にメカニカルな浮上機構部があり、一旦、浮かせたい所定の場所に前記F−coilを保持し、装置上部にある吊上げコイル(L-coilと呼ばれるコイル)を励磁して浮上させる。
F-Coilはあらかじめ励磁しておく。
【0014】
前記LDXにおいては、F-coilが浮上する前に、装置下部にあるC-coil(Chargingと呼ばれる常電導コイル)の電流を遮断することにより誘導でF-coilに電流を誘起させる。また、LDXにおいて、F-coilは金属系のNb3Sn(ニオブ3スズ)の超電導線で製作されている。この場合、F-coilへの電流誘起法が誘導法のため、F-coilの両端は短絡されているだけであり、永久電流スイッチは使用されていない。
【0015】
さらに、LDXにおいては、Nb3Snの臨界温度が約15Kであるため、装置の運転温度は5Kから10K程度である。冷却は極低温のヘリウムガスであり、冷却初期は圧力が低いが時間が経過して温度レベルが上がると内圧上昇するので比較的肉厚の容器を必要としている。
【0016】
【発明が解決しようとする課題】
ところで、近年、高温超電導導体として、臨界温度が110Kのものが実用化されている。このような臨界温度が高い高温超電導導体を用い、冷媒として、例えば、定格温度20Kのヘリウムガスを用いることにより、冷媒の温度と臨界温度との間の大きな温度差により、発熱があってもクエンチに至るまでの超電導導体の熱容量が増大するので、より安全かつ経済的な運転ができるようになる。さらに、前記プラズマ実験装置においては、高温超電導導体を用いることにより、初期冷却状態から、実験中真空容器が高温のプラズマにさらされて熱侵入によって温度上昇し、臨界温度に到達するまでの時間が長くなるので、その間の実験時間の増大が図れる利点がある。
【0017】
上記観点から、前記プラズマ実験装置におけるF−coilを、高温超電導線(例えば、臨界温度が110Kのビスマス2223系)で製作し、運転温度は20K(最大40K程度まで可能とする)とした場合、永久電流スイッチが必要となる。その理由を以下に述べる。
【0018】
例えば、一回の実験が終了した時点でF-coil温度が110K以上に上昇していれば、コイル電流はゼロになり、誘導法で励磁しても毎回同じ電流値が誘起される。しかしながら、実験の都度、F-coil温度を110K以上にするのは、経済的ではないし、実験頻度が高い場合には、時間の無駄もあり基本的に好ましくない。これを避けるためには、臨界温度以下であって電流がゼロでない状態で励磁する必要があるが、この場合には、毎回同じ磁場が保証されない。
【0019】
従ってこの場合、前記F−coilは永久電流スイッチを備え、永久電流スイッチ部のみの温度を20Kと110Kとの間で往復させてスイッチのON/OFFを行なう。スイッチOFFの状態でF−coilの励磁及び消磁を行い、スイッチONの状態でF−coilを永久電流モードでプラズマ実験を行なうようにする。なお、この場合、熱侵入を低減するために、電流リードやコイルの冷却装置等は、着脱式とすることが望ましい。
【0020】
前記プラズマ実験装置におけるF−coilを含む超電導磁石は、前述のように、永久電流スイッチにより励磁と消磁を行い、実験中において一様な起磁力が得られるようにするとともに、前記磁気的浮上の安定化の観点から、寸法・重量の軽減は勿論のこと、空間的に対称性があって浮揚重量のバランスがよいことが望まれる。上記要請は、前記プラズマ実験装置に限らず、磁気浮上列車やMRIなどに使用される永久電流スイッチを備えた超電導磁石においても、同様である。
【0021】
この発明は上記に鑑みてなされたもので、本発明の課題は、空間的に対称性があって浮揚重量のバランスがよく、かつ寸法・重量の軽減を図った、永久電流スイッチを備えた超電導磁石を提供することにある。
【0022】
【課題を解決するための手段】
前述の課題を解決するため、この発明は、超電導導体を巻回してコイル状に形成した超電導コイルと、この超電導コイル用の励磁電源に対して前記超電導コイルと電気的に並列に接続した熱式の永久電流スイッチとを備える超電導磁石において、前記永久電流スイッチは、前記超電導コイルの外側に、超電導コイルと同心状に超電導導体を超電導コイルの外周域全体にわたって巻回してコイル状に形成してなるものとする(請求項1の発明)。
【0023】
上記により、永久電流スイッチの重量分布を円周方向に均一に分散でき、空間的に対称性となって浮揚重量のバランスがよくなる。また、永久電流スイッチが磁界を発生する超電導コイルの外周部に設置されるため、スイッチを構成する超電導導体の受ける磁界が小さく、超電導コイルの定格磁場の約1/4〜1/5となる。従って、その分、超電導導体の軽量化が可能となる。
【0024】
また、上記請求項1の発明において、前記超電導コイルおよび永久電流スイッチは、前記各コイル状に形成した超電導導体に流れる電流の向きが互いに同方向となるように超電導導体を巻回してなり、必要な起磁力を前記超電導コイルと永久電流スイッチとで分担するようにしてなるものとする(請求項2の発明)。これにより、必要な起磁力を両者で分担するため、その分超電導コイルの超電導導体の巻線の量を減らすことができる。従って、全体として、寸法・重量を軽減することができる。
【0025】
さらに、上記請求項1または2の発明において、前記永久電流スイッチは、巻枠にヒータ用導体と超電導導体とを巻回してなり、かつ、前記巻枠は、永久電流スイッチ用の超電導導体冷却用冷媒を通流する冷却パイプを備えるものとする(請求項3の発明)。これにより、永久電流スイッチ用の冷媒収納容器が不要となり、装置全体の軽量化が可能となる。
【0026】
また、前記請求項1ないし3のいずれかの発明において、前記超電導コイルおよび永久電流スイッチにおける超電導導体は、高温超電導導体とする(請求項4の発明)。これにより、前述のように、従来より安全かつ経済的な運転ができ、さらに、前記プラズマ実験装置においては、高温超電導導体を用いることにより、初期冷却状態からの実験時間の増大が図れる。
また、請求項4記載の超電導磁石において、前記高温超電導導体の断面形状は矩形とする(請求項5の発明)。断面形状が矩形の高温超電導導体は現在工業的に生産されており、構成上、本発明に好適である。
【0027】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下に述べる。
【0028】
図1は本発明による超電導磁石の実施例の模式的断面図を示し、図2は、超電導コイルおよび永久電流スイッチの概略部分断面図を示し、図3は、永久電流スイッチの異なる実施例の部分断面図を示す。
【0029】
図1に示す超電導磁石は、超電導導体を巻回してコイル状に形成した超電導コイル10と、この超電導コイル用の図示しない励磁電源に対して超電導コイル10と電気的に並列に接続した熱式の永久電流スイッチ20とを備える。この永久電流スイッチ20は、超電導コイル10の外側に、超電導コイルと同心状に超電導導体を巻回してコイル状に形成する。なお、図1において、30は真空容器からなるクライオスタットであり、ヘリウムガス冷媒により、超電導コイル10と永久電流スイッチ20とを冷却する図示しない冷却手段を備える。
【0030】
図2は、ソレノイド状の超電導コイルと永久電流スイッチの部分断面を示しており、永久電流スイッチの超電導巻線22は超電導コイル10の巻線方向と同じ方向に巻かれている。図ではどちらの巻線も電流の向きが紙面に対して表から裏側に流れていることを示している。また、永久電流スイッチは、超電導巻線22の内周側に、ヒータ21を備える。
【0031】
図3は、本発明の異なる実施例を示し、永久電流スイッチの冷却手段を含む永久電流スイッチの断面構成を示す。図3に示すものは、巻枠23にヒータ用導体と超電導コイル用の導体とを巻回して、永久電流スイッチのON−OFFに必要なヒータ21と超電導巻線22とを構成する。また、熱良伝導体で構成された巻枠23は、永久電流スイッチ用の超電導導体冷却用冷媒を通流する熱良伝導体の冷却パイプ24を備え、このパイプ中を流通する冷媒によって超電導線22は間接的に冷却される。
【0032】
上記実施例に関し、前記プラズマ実験装置に適用する超電導磁石の主要諸元および構成の一例を下記に述べる。超電導コイルの定格磁場は約2T、トロイド主半径は約0.4m、小半径は約0.06mとする。
【0033】
超電導コイルおよび永久電流スイッチに使用する高温超電導導体について、以下に述べる。比較的臨界温度レベルが高い超電導導体としては、下記が知られている。
即ち、(1)Bi2212(Bi2Sr2Ca1Cu2O8):臨界温度80K、(2)Bi2223(Bi2Sr2Ca2Cu3O10):臨界温度110K、(3)Y123(YBa2Cu3Ox):臨界温度90Kなどである。現在工業的に生産されているのは、Bi2223であり、断面形状の矩形のものが生産されているので、特に本発明の構成に適している。なお、永久電流スイッチはこの場合、OFF時抵抗をあまり大きくする必要がないので、超電導コイルと同じマンガン添加の銀シース線を使用することができる。
【0034】
次に永久電流スイッチの構成について述べる。永久電流スイッチの構成は、図3の構成とし、巻枠は真鍮製で冷却パイプ付きとする。巻枠の内側にヒータ線(マンガニン線)を巻き、その上に、前記高温超電導導体を巻いて外側をガラステープで熱絶縁する。
【0035】
次に、高温超電導導体の冷却方法について述べる。冷媒は、ヘリウムガスとし、15Kの極低温のヘリウムガスが供給できる冷凍機を使用する。高温超電導導体は、前記極低温ヘリウムガスにより、常温から定格温度の20Kまで冷却し、その後、冷却は一旦停止し、熱侵入により40Kまで温度上昇する間(例えば、約6時間)に、プラズマ実験を行なう。40Kに到達後、再度実験を行なう場合には、電流リードを接続して電源と接続後、一旦、電流をゼロに戻した後、コイルを再度20Kまで冷却した後、再励磁する。
【0036】
上記のように超電導磁石を構成することにより、浮揚重量のバランスをよくし、かつ寸法・重量の軽減を図ることができ、前記プラズマ実験装置に好適な永久電流スイッチを備えた超電導磁石とすることができる。
【0037】
【発明の効果】
この発明によれば前述のように、超電導導体を巻回してコイル状に形成した超電導コイルと、この超電導コイル用の励磁電源に対して前記超電導コイルと電気的に並列に接続した熱式の永久電流スイッチとを備える超電導磁石において、前記永久電流スイッチは、前記超電導コイルの外側に、超電導コイルと同心状に超電導導体を超電導コイルの外周域全体にわたって巻回してコイル状に形成してなるものとすることにより、
永久電流スイッチの重量分布を円周方向に均一に分散でき、空間的に対称性となって浮揚重量のバランスの向上を図り、さらに装置全体として、寸法・重量の軽減を図った、永久電流スイッチを備えた超電導磁石を提供することができる。

【図面の簡単な説明】
【図1】本発明の超電導磁石の実施例の模式的断面図
【図2】本発明の超電導コイルおよび永久電流スイッチの概略部分断面図
【図3】本発明の異なる構成の永久電流スイッチの概略部分断面図
【図4】永久電流スイッチを備える超電導磁石の概略回路構成と永久電流モード運転方法の説明図
【符号の説明】
1,10:超電導コイル、2,20:永久電流スイッチ、3:励磁電源、4:ヒータ電源、21:ヒータ、22:超電導巻線、23:巻枠、24:冷却パイプ、30:クライオスタット。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superconducting magnet provided with a permanent current switch used in a plasma experimental apparatus, a magnetic levitation train, an MRI (magnetic resonance imaging apparatus), etc. using a strong magnetic field, and more particularly to a configuration of a permanent current switch.
[0002]
[Prior art]
The permanent current switch is an indispensable element for a superconducting coil operated in the permanent current mode, and various configurations are known and many patent proposals have been made for superconducting magnets equipped with a permanent current switch (for example, special patents). (See Kaihei 7-86025, JP-A-11-87129, JP-A-11-340533, etc.).
[0003]
The permanent current mode is an operation mode in which a short-circuit switch is provided between the terminals of the superconducting magnet, the current is energized to a constant current value, then short-circuited. is there. A short-circuit switch for this purpose is called a permanent current switch, and a superconductor is usually used in order to reduce the resistance during a short-circuit. As a switch mechanism for performing the ON-OFF operation, there are a thermal type, a magnetic type, a mechanical type, and the like.
[0004]
The thermal type is used for ON-OFF operation at the critical temperature of the superconducting wire constituting the permanent current switch, and has been conventionally used for superconducting magnets such as magnetic levitation trains and MRI. Normally, the temperature of the superconducting wire is controlled by energizing or de-energizing the heater conducting wire wound together with the superconducting wire, and an ON-OFF operation is performed. Further, in order to improve cooling during operation, it is generally used by immersing in a refrigerant.
[0005]
FIG. 4 is a diagram for explaining a schematic circuit configuration and a permanent current mode operation method of a superconducting magnet having a permanent current switch. The figure described as FIG. 6 in Japanese Patent Laid-Open No. 11-340533 is partially modified. It is a figure shown. FIG. 4A shows the permanent current switch OFF (excitation), and FIG. 4B shows the permanent current switch ON (permanent current mode operation).
[0006]
In FIG. 4, 1 is a superconducting coil, 2 is a permanent current switch having a superconducting wire 2a and a heater wire 2b, 3 is an excitation power source, 4 is a heater power source, and 3a and 4a are switches for the power sources. As the permanent current switch 2, a superconducting wire and a heater wire are both wound in a coil shape and thermally insulated with an epoxy resin or the like.
[0007]
In the above configuration, when the heater is heated, the superconducting wire becomes the critical temperature Tc or higher, resistance is generated and the switch is turned off, and when not heated, the superconducting state is turned on and the switch is turned on. The permanent current switch 2 is connected at both ends P and Q of the superconducting coil 1 as shown in FIG. The points P and Q are on the coil side of a current lead (not shown), and the permanent current switch 2 is usually housed in the same cryostat (not shown) together with the superconducting coil 1.
[0008]
The permanent current mode operation is obtained by the following procedure. As shown in FIG. 4A, the heater is turned on, the permanent current switch is turned off, and the magnet is excited to the rated current by the excitation power source 3. Subsequently, as shown in FIG. 4B, the heater is turned off, the permanent current switch is turned on, and the current of the excitation power source 3 is lowered to zero. At this time, the current of the permanent current switch 2 rises to the rated current value of the superconducting coil 1. In this state, the excitation power supply 3 is removed. In some cases, the current lead is also disconnected from the superconducting coil 1.
[0009]
By the way, the resistance value when the permanent current switch is OFF is determined in consideration of the energy of the superconducting coil to be connected, the excitation time, etc. In order to increase the resistance when OFF, a so-called base material of the superconducting wire to be used is used. Therefore, cupronickel is often used as a base material. However, this results in a permanent current switch with poor magnetic stability. Therefore, the permanent current switch is installed in a place where the magnetic field of the superconducting coil is as short as possible and immersed in a refrigerant liquid such as liquid helium. It has been proposed that the superconducting wire for the permanent current switch is wound as non-inductive winding so as not to generate a magnetic field.
[0010]
Next, the outline of the prior art regarding the plasma experimental apparatus as one of the application objects of the present invention will be described below.
[0011]
Some plasma experimental devices have various configurations and experimental functions according to the purpose of the experiment. The plasma experimental apparatus targeted by the present invention is an apparatus for physical research of plasma, and aims to stably maintain high beta plasma (β> 1). The β value represents the plasma confinement efficiency, and β value = (plasma pressure / magnetic field pressure).
[0012]
This type of plasma experiment apparatus was called Levitron in the 1970s and was developed in the UK and the US, and is currently being developed by the MIT in the United States as an LDX (Levitated Dipole eXperiment) project. In this apparatus, the plasma is trapped around a donut-shaped superconducting coil in a vacuum vessel having a diameter of about 5 m.
[0013]
In the above device, the superconducting coil (coil called F-coil = Floating) needs to float in the space. As a method of levitation, there is a mechanical levitation mechanism at the center. Once the F-coil is held in a predetermined place where it is desired to float, a lifting coil (coil called L-coil) at the top of the device is excited. To surface.
F-Coil is excited beforehand.
[0014]
In the LDX, before the F-coil rises, the current is induced in the F-coil by cutting off the current of the C-coil (normal conducting coil called Charging) at the lower part of the apparatus. In LDX, F-coil is made of a metallic Nb 3 Sn (niobium 3 tin) superconducting wire. In this case, since the current induction method for the F-coil is an induction method, both ends of the F-coil are only short-circuited, and no permanent current switch is used.
[0015]
Furthermore, in LDX, since the critical temperature of Nb 3 Sn is about 15K, the operating temperature of the apparatus is about 5K to 10K. Cooling is a cryogenic helium gas, and the pressure is low in the initial stage of cooling, but the internal pressure rises as the temperature level rises with time, so a relatively thick container is required.
[0016]
[Problems to be solved by the invention]
Incidentally, in recent years, high-temperature superconducting conductors having a critical temperature of 110 K have been put into practical use. Using such a high-temperature superconducting conductor with a high critical temperature and using a helium gas with a rated temperature of 20K as a refrigerant, for example, quenching is possible even if heat is generated due to a large temperature difference between the refrigerant temperature and the critical temperature. Since the heat capacity of the superconducting conductor up to is increased, safer and more economical operation becomes possible. Further, in the plasma experimental apparatus, by using a high-temperature superconducting conductor, the time from the initial cooling state until the vacuum vessel is exposed to high-temperature plasma during the experiment and the temperature rises due to heat penetration and reaches the critical temperature is reached. Since it becomes long, there exists an advantage which can aim at the increase in the experiment time during that.
[0017]
From the above viewpoint, when the F-coil in the plasma experimental apparatus is manufactured with a high-temperature superconducting wire (for example, a bismuth 2223 system having a critical temperature of 110K) and the operating temperature is 20K (up to about 40K is possible) A permanent current switch is required. The reason is described below.
[0018]
For example, if the F-coil temperature has risen to 110 K or more at the end of one experiment, the coil current becomes zero, and the same current value is induced each time even if excitation is performed by the induction method. However, it is not economical to set the F-coil temperature to 110 K or higher for each experiment, and it is basically not preferable when the experiment frequency is high because there is a waste of time. In order to avoid this, it is necessary to excite in a state where the temperature is below the critical temperature and the current is not zero, but in this case, the same magnetic field is not guaranteed every time.
[0019]
Therefore, in this case, the F-coil is provided with a permanent current switch, and the temperature of only the permanent current switch section is reciprocated between 20K and 110K to turn on / off the switch. Excitation and demagnetization of the F-coil is performed in the switch OFF state, and the plasma experiment is performed on the F-coil in the permanent current mode in the switch ON state. In this case, in order to reduce heat intrusion, it is desirable that the current lead, the coil cooling device, and the like be detachable.
[0020]
As described above, the superconducting magnet including the F-coil in the plasma experimental apparatus is excited and demagnetized by a permanent current switch so that a uniform magnetomotive force can be obtained during the experiment, and the magnetic levitation is performed. From the standpoint of stabilization, it is desirable that the balance of the floating weight is good with space symmetry as well as reduction in size and weight. The above request is not limited to the plasma experimental apparatus, but also applies to a superconducting magnet having a permanent current switch used for a magnetic levitation train, MRI, or the like.
[0021]
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to provide a superconducting device having a permanent current switch that is spatially symmetric, has a good balance of levitation weight, and is reduced in size and weight. It is to provide a magnet.
[0022]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a superconducting coil formed by winding a superconducting conductor into a coil shape, and a thermal type electrically connected in parallel to the superconducting coil with respect to an excitation power source for the superconducting coil. In the superconducting magnet provided with a permanent current switch, the permanent current switch is formed in a coil shape by winding a superconducting conductor concentrically with the superconducting coil around the entire outer peripheral area of the superconducting coil. (Invention of claim 1).
[0023]
As a result, the weight distribution of the permanent current switch can be evenly distributed in the circumferential direction, spatially symmetrical, and the balance of the floating weight is improved. Further, since the permanent current switch is installed on the outer periphery of the superconducting coil that generates the magnetic field, the magnetic field received by the superconducting conductor constituting the switch is small, and is about 1/4 to 1/5 of the rated magnetic field of the superconducting coil. Therefore, the weight of the superconducting conductor can be reduced correspondingly.
[0024]
Further, in the invention described in claim 1, it said superconducting coil and a permanent current switch, by winding the superconducting conductor as the direction of the current flowing in the superconducting conductor formed in shape each coil is the same direction doctor each other Thus, the necessary magnetomotive force is shared by the superconducting coil and the permanent current switch (invention of claim 2). Accordingly, since the necessary magnetomotive force is shared by both, the amount of the superconducting conductor of the superconducting coil can be reduced accordingly. Therefore, overall dimensions and weight can be reduced.
[0025]
Further, in the invention of claim 1 or 2, the permanent current switch is formed by winding a heater conductor and a superconducting conductor around a winding frame, and the winding frame is for cooling the superconducting conductor for the permanent current switch. A cooling pipe through which the refrigerant flows is provided (invention of claim 3). This eliminates the need for a refrigerant container for the permanent current switch, and allows the entire apparatus to be reduced in weight.
[0026]
In the invention of any one of claims 1 to 3, the superconducting conductor in the superconducting coil and the permanent current switch is a high-temperature superconducting conductor (invention of claim 4). Thereby, as mentioned above, safer and more economical operation can be performed than before, and furthermore, in the plasma experimental apparatus, the use of the high-temperature superconducting conductor can increase the experiment time from the initial cooling state.
Further, in the superconducting magnet according to claim 4, the cross-sectional shape of the high-temperature superconducting conductor is rectangular (invention of claim 5). High-temperature superconducting conductors having a rectangular cross-sectional shape are currently industrially produced and are suitable for the present invention in terms of configuration.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0028]
FIG. 1 shows a schematic sectional view of an embodiment of a superconducting magnet according to the present invention, FIG. 2 shows a schematic partial sectional view of a superconducting coil and a permanent current switch, and FIG. 3 shows parts of different embodiments of the permanent current switch. A cross-sectional view is shown.
[0029]
The superconducting magnet shown in FIG. 1 is a superconducting coil 10 formed by winding a superconducting conductor into a coil shape, and a thermal type electrically connected in parallel with the superconducting coil 10 to an excitation power source (not shown) for this superconducting coil. And a permanent current switch 20. The permanent current switch 20 is formed in a coil shape by winding a superconducting conductor concentrically with the superconducting coil on the outside of the superconducting coil 10. In FIG. 1, reference numeral 30 denotes a cryostat made of a vacuum vessel, which includes a cooling means (not shown) for cooling the superconducting coil 10 and the permanent current switch 20 with a helium gas refrigerant.
[0030]
FIG. 2 shows a partial cross section of a solenoid-like superconducting coil and a permanent current switch. The superconducting winding 22 of the permanent current switch is wound in the same direction as the winding direction of the superconducting coil 10. In the figure, both windings indicate that the direction of current flows from the front side to the back side with respect to the paper surface. The permanent current switch includes a heater 21 on the inner peripheral side of the superconducting winding 22.
[0031]
FIG. 3 shows a different embodiment of the present invention and shows a cross-sectional configuration of a permanent current switch including cooling means for the permanent current switch. In FIG. 3, a heater conductor and a superconducting coil conductor are wound around a winding frame 23 to form a heater 21 and a superconducting winding 22 necessary for ON / OFF of a permanent current switch. The winding frame 23 made of a good thermal conductor includes a cooling pipe 24 of a good thermal conductor through which a superconducting conductor cooling refrigerant for a permanent current switch flows, and the superconducting wire is formed by the refrigerant flowing through the pipe. 22 is indirectly cooled.
[0032]
An example of the main specifications and configuration of the superconducting magnet applied to the plasma experimental apparatus will be described below with respect to the above embodiment. The rated magnetic field of the superconducting coil is about 2T, the toroid main radius is about 0.4 m, and the small radius is about 0.06 m.
[0033]
The high temperature superconducting conductor used for the superconducting coil and the permanent current switch is described below. The following is known as a superconducting conductor having a relatively high critical temperature level.
That, (1) Bi2212 (Bi 2 Sr 2 Ca 1 Cu 2 O 8): critical temperature 80K, (2) Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O 10): critical temperature 110K, (3) Y123 (YBa 2 Cu 3 O x ): critical temperature 90K, etc. Currently, Bi2223 is industrially produced, and a rectangular one having a cross-sectional shape is produced, which is particularly suitable for the configuration of the present invention. In this case, since the permanent current switch does not need to have a very large resistance when OFF, the same manganese-added silver sheath wire as that of the superconducting coil can be used.
[0034]
Next, the configuration of the permanent current switch will be described. The permanent current switch is configured as shown in FIG. 3, and the winding frame is made of brass and has a cooling pipe. A heater wire (manganin wire) is wound inside the winding frame, and the high-temperature superconducting conductor is wound on the heater wire, and the outside is thermally insulated with glass tape.
[0035]
Next, a method for cooling the high-temperature superconducting conductor will be described. The refrigerant is helium gas, and a refrigerator that can supply 15K cryogenic helium gas is used. The high-temperature superconducting conductor is cooled from normal temperature to the rated temperature of 20K with the cryogenic helium gas. After that, the cooling is temporarily stopped and the temperature is increased to 40K due to heat penetration (for example, about 6 hours). To do. When the experiment is performed again after reaching 40K, the current lead is connected and connected to the power source, the current is once returned to zero, the coil is cooled again to 20K, and then re-excited.
[0036]
By configuring the superconducting magnet as described above, it is possible to improve the balance of levitation weight and reduce the size and weight, and to provide a superconducting magnet equipped with a permanent current switch suitable for the plasma experimental apparatus. Can do.
[0037]
【The invention's effect】
According to the present invention, as described above, a superconducting coil formed by winding a superconducting conductor into a coil shape, and a thermal permanent magnet electrically connected in parallel with the superconducting coil to the excitation power source for the superconducting coil. In the superconducting magnet provided with a current switch, the permanent current switch is formed in a coil shape by winding a superconducting conductor concentrically with the superconducting coil over the entire outer peripheral area of the superconducting coil. By doing
The permanent current switch can distribute the weight distribution of the permanent current switch uniformly in the circumferential direction, is spatially symmetric and improves the balance of levitation weight, and further reduces the size and weight of the entire device. The superconducting magnet provided with can be provided.

[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an embodiment of a superconducting magnet of the present invention. FIG. 2 is a schematic partial cross-sectional view of a superconducting coil and a permanent current switch of the present invention. Partial cross-sectional view [Fig. 4] Schematic circuit configuration of a superconducting magnet equipped with a permanent current switch and explanatory diagram of the permanent current mode operation method
DESCRIPTION OF SYMBOLS 1,10: Superconducting coil, 2,20: Permanent current switch, 3: Excitation power supply, 4: Heater power supply, 21: Heater, 22: Superconducting winding, 23: Winding frame, 24: Cooling pipe, 30: Cryostat.

Claims (5)

超電導導体を巻回してコイル状に形成した超電導コイルと、この超電導コイル用の励磁電源に対して前記超電導コイルと電気的に並列に接続した熱式の永久電流スイッチとを備える超電導磁石において、
前記永久電流スイッチは、前記超電導コイルの外側に、超電導コイルと同心状に超電導導体を超電導コイルの外周域全体にわたって巻回してコイル状に形成してなるものとすることを特徴とする超電導磁石。
In a superconducting magnet comprising a superconducting coil formed by winding a superconducting conductor into a coil shape, and a thermal permanent current switch electrically connected in parallel with the superconducting coil to the excitation power source for the superconducting coil,
The permanent current switch is formed by winding a superconducting conductor concentrically with the superconducting coil around the entire outer periphery of the superconducting coil to form a coil.
請求項1記載の超電導磁石において、前記超電導コイルおよび永久電流スイッチは、前記各コイル状に形成した超電導導体に流れる電流の向きが互いに同方向となるように超電導導体を巻回してなり、必要な起磁力を前記超電導コイルと永久電流スイッチとで分担するようにしてなるものとすることを特徴とする超電導磁石。A superconducting magnet according to claim 1, wherein the superconducting coil and a permanent current switch, said Ri direction of the current flowing through the superconducting conductor formed in shape each coil name by winding a superconducting conductor so that the same direction to physicians each other A superconducting magnet characterized in that a necessary magnetomotive force is shared by the superconducting coil and a permanent current switch . 請求項1または2記載の超電導磁石において、前記永久電流スイッチは、巻枠にヒータ用導体と超電導導体とを巻回してなり、かつ、前記巻枠は、永久電流スイッチ用の超電導導体冷却用冷媒を通流する冷却パイプを備えることを特徴とする超電導磁石。  3. The superconducting magnet according to claim 1, wherein the permanent current switch is formed by winding a heater conductor and a superconducting conductor around a winding frame, and the winding frame is a refrigerant for cooling the superconducting conductor for the permanent current switch. A superconducting magnet comprising a cooling pipe flowing therethrough. 請求項1ないし3のいずれかに記載の超電導磁石において、前記超電導コイルおよび永久電流スイッチにおける超電導導体は、高温超電導導体とすることを特徴とする超電導磁石。  4. The superconducting magnet according to claim 1, wherein the superconducting conductor in the superconducting coil and the permanent current switch is a high-temperature superconducting conductor. 請求項4記載の超電導磁石において、前記高温超電導導体の断面形状は矩形とすることを特徴とする超電導磁石。5. The superconducting magnet according to claim 4, wherein the high-temperature superconducting conductor has a rectangular cross-sectional shape.
JP2001144806A 2001-05-15 2001-05-15 Superconducting magnet Expired - Lifetime JP4562947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144806A JP4562947B2 (en) 2001-05-15 2001-05-15 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144806A JP4562947B2 (en) 2001-05-15 2001-05-15 Superconducting magnet

Publications (2)

Publication Number Publication Date
JP2002343622A JP2002343622A (en) 2002-11-29
JP4562947B2 true JP4562947B2 (en) 2010-10-13

Family

ID=18990705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144806A Expired - Lifetime JP4562947B2 (en) 2001-05-15 2001-05-15 Superconducting magnet

Country Status (1)

Country Link
JP (1) JP4562947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105974A1 (en) * 2021-12-10 2023-06-15 株式会社日立製作所 Superconducting coil apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735387A (en) * 1980-08-13 1982-02-25 Hitachi Ltd Superconductive device
JPH03261184A (en) * 1990-03-09 1991-11-21 Fuji Electric Co Ltd Permanent current switch
JPH04167403A (en) * 1990-10-31 1992-06-15 Toshiba Corp Manufacture of superconducting magnet
JPH0620831A (en) * 1992-07-06 1994-01-28 Mitsubishi Electric Corp Superconductive magnet device
JPH08181014A (en) * 1994-12-26 1996-07-12 Showa Electric Wire & Cable Co Ltd Superconductive magnet device and its manufacture
JPH09129438A (en) * 1995-10-30 1997-05-16 Hitachi Ltd Oxide superconductive coil and manufacture thereof
JPH10294213A (en) * 1997-04-22 1998-11-04 Hitachi Ltd Manufacture for oxide based superconducting magnet system and oxide based superconducting magnet system and superconducting magnetic field generation apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482505A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Superconducting coil device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735387A (en) * 1980-08-13 1982-02-25 Hitachi Ltd Superconductive device
JPH03261184A (en) * 1990-03-09 1991-11-21 Fuji Electric Co Ltd Permanent current switch
JPH04167403A (en) * 1990-10-31 1992-06-15 Toshiba Corp Manufacture of superconducting magnet
JPH0620831A (en) * 1992-07-06 1994-01-28 Mitsubishi Electric Corp Superconductive magnet device
JPH08181014A (en) * 1994-12-26 1996-07-12 Showa Electric Wire & Cable Co Ltd Superconductive magnet device and its manufacture
JPH09129438A (en) * 1995-10-30 1997-05-16 Hitachi Ltd Oxide superconductive coil and manufacture thereof
JPH10294213A (en) * 1997-04-22 1998-11-04 Hitachi Ltd Manufacture for oxide based superconducting magnet system and oxide based superconducting magnet system and superconducting magnetic field generation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105974A1 (en) * 2021-12-10 2023-06-15 株式会社日立製作所 Superconducting coil apparatus

Also Published As

Publication number Publication date
JP2002343622A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
EP0470762B1 (en) Superconductive switch
US20120094840A1 (en) Refrigerator cooling-type superconducting magnet
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
US20110218111A1 (en) High temperature superconducting parallel conductors, high temperature superconducting coil using the same, and high temperature superconducting magnet
JP2006313924A (en) High temperature superconducting coil, and high temperature superconducting magnet and high temperature superconducting magnet system employing it
JPH07142237A (en) Superconducting magnet device
JP2001244109A (en) High-temperature superconducting coil device
JP4612991B2 (en) Superconducting switch device
Tosaka et al. Persistent current HTS magnet cooled by cryocooler (4)-persistent current switch characteristics
Stenvall et al. A checklist for designers of cryogen-free MgB2 coils
CN210041676U (en) High-temperature superconducting uninsulated magnet
JP4562947B2 (en) Superconducting magnet
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JPH11340533A (en) High-temperature superconducting coil persistent current switch
US6094333A (en) Operation control method for superconducting coil
Haldar et al. Development of Bi-2223 HTS high field coils and magnets
JP2000150224A (en) Excitation control method of superconducting coil
JPH0745420A (en) Current lead of superconducting apparatus
JP3677166B2 (en) Permanent current magnet device for high magnetic field generation
WO2023105974A1 (en) Superconducting coil apparatus
US20240045009A1 (en) Superconducting magnet apparatus, magnetic resonance imaging apparatus, and method for demagnetizing superconducting magnet
JP3382794B2 (en) Permanent current switch
WO1994012991A1 (en) Stable flux jumping resistant superconducting tape and superconducting magnet
SU1130148A1 (en) Powerful cryotron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term