JP2002343541A - 誘導加熱装置 - Google Patents

誘導加熱装置

Info

Publication number
JP2002343541A
JP2002343541A JP2002059585A JP2002059585A JP2002343541A JP 2002343541 A JP2002343541 A JP 2002343541A JP 2002059585 A JP2002059585 A JP 2002059585A JP 2002059585 A JP2002059585 A JP 2002059585A JP 2002343541 A JP2002343541 A JP 2002343541A
Authority
JP
Japan
Prior art keywords
magnetic field
generating means
field generating
heated
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002059585A
Other languages
English (en)
Other versions
JP2002343541A5 (ja
Inventor
Hiroichi Sekino
博一 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002059585A priority Critical patent/JP2002343541A/ja
Publication of JP2002343541A publication Critical patent/JP2002343541A/ja
Publication of JP2002343541A5 publication Critical patent/JP2002343541A5/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

(57)【要約】 【課題】被加熱体に効果的に磁束を作用させて、加熱効
率を向上させた誘導加熱装置を提供する。 【解決手段】導電性の被加熱体と交流磁場発生手段から
構成される誘導加熱装置において、直流磁場発生手段を
設け、前記直流磁場発生手段を永久磁石とし、直流磁場
発生手段により発生している直流磁場の磁束密度が0.
001T以上である領域内に、前記交流磁場発生手段を
配置するような構成として、直流磁場発生手段が発生す
る直流磁場に交流磁場発生手段が発生する交流磁場を作
用させることにより、被加熱体に流れる磁束に大きな変
化をもたらし、被加熱体表面において効果的に大きな渦
電流を発生させることができるため、被加熱体を急速に
加熱することができる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、誘導加熱装置およ
び定着装置に関するものである。
【0002】
【従来の技術】交流電流により交流磁界を発生させて行
なう誘導加熱の手法を用いた応用例として、特開平7
−295414 に記載された定着装置がある。この定
着装置では加熱ローラの外周面にコイルを配置してい
る。この場合、コイルによる交流磁界は加熱ローラ外周
面だけに作用するのではなく、ローラと対向する方向に
も磁場を発生させるため、これが定着器外に漏れたり、
その他の金属部材を加熱してしまうといった障害にな
る。また、磁束が集中しないため、効率も低下してい
た。
【0003】上記の問題を解決するため、特開平10−
360301のように、コイルから発生する磁場を遮断
するための磁性体と加熱ローラの間にコイルを挟むよう
に配置した例がある。この場合、定着器外への磁束の漏
れが低減でき、その他の金属部材の加熱を抑えることが
可能である。
【0004】また磁石を用いた誘導加熱装置として、特
開昭59−18970または特開平5−121157の
ように、複数の永久磁石あるいは多極着磁した永久磁石
からなる回転磁石ロールを所定の周速度で回転させて、
磁石が形成するN、S交番磁界を被加熱体に作用させる
ものがある。これに類似する例として特開平5−822
48があるが、これは常時一方向に発生する磁束を被加
熱体に作用させるものであり、磁石が形成するN、S交
番磁界とは異なり、連続放射磁界を利用するため、同じ
エネルギーの磁石を使用した場合には、加熱の効果はル
ート2倍となり、被加熱体との接近距離が大きくでき
る。さらに類似する例としては、特開2001−296
765がある。これはハロゲンヒータで加熱する定着ロ
ーラに対し、連続給紙する場合の補助的な熱源として、
磁石が形成するN、S交番磁界を被加熱体に作用させる
ものである。
【0005】また特開平10−153922のように、
定着ローラ内部にコイルを設け、そのコイル内部に挿入
した永久磁石と、磁性材料で形成されコイル両端に配置
された側磁路部材により、定着ローラを含む閉磁路を形
成させ、コイルに断続的に直流電流を流して磁界に変化
を与えて誘導加熱する例がある。
【0006】
【本発明が解決しようとする課題】しかしながら特開平
10−360301においては、磁場を遮断する磁性体
として、フェライト、鉄、珪素鋼板、パーマロイ等、い
わゆる軟磁性材料を使用しており、磁場を遮断する効果
はあるが、加熱ローラに十分な磁束を作用させ得るもの
ではない。また磁性体自体もコイルの交流磁界により加
熱されてしまい、加熱ローラの加熱効率を劇的に改善す
ることは困難である。
【0007】特開昭59−18970、特開平5−82
248および特開平5−121157においては、複数
の永久磁石により回転磁石ローラを多極化する必要があ
り、製作が困難である。また十分な周速度で回転しない
と、誘導加熱の効果が十分に得られない。同様に、特開
2001−296765においても、十分な周速度で回
転しないと、誘導加熱の効果が十分に得られない。
【0008】特開平10−153922においては、閉
磁路の一部として永久磁石を使用するため、永久磁石そ
のものが誘導加熱され、熱減磁あるいは熱破損する問題
がある。また、コイルがローラ内部に設けされているた
め、コイルそのものが加熱され、コイル抵抗が増加し効
率が低下する。
【0009】本発明は上記課題を解決するものであり、
被加熱体に容易かつ効果的に磁束を作用させて、加熱効
率を向上させた誘導加熱装置および本誘導加熱装置によ
り構成された定着装置を提供する。
【0010】
【課題を解決するための手段】本発明に係わる誘導加熱
装置は、導電性の被加熱体と交流磁場発生手段から構成
される誘導加熱装置において、直流磁場発生手段を設
け、前記直流磁場発生手段が発生する磁場を前記交流磁
場発生手段により変化させて前記被加熱体を加熱するこ
とを特徴とする。
【0011】また前記直流磁場発生手段により発生して
いる直流磁場が0.001T以上である領域内に、前記
交流磁場発生手段を配置することを特徴とする。
【0012】また前記直流磁場発生手段を永久磁石と
し、前記永久磁石が部分的に異なる大きさの残留磁束密
度を有する、又は部分的に異なる厚みを有することを特
徴とする。
【0013】さらに導電性の被加熱体からなる定着ロー
ラと前記被加熱体に対して交流磁界を与えて誘導加熱す
る交流磁場発生手段を備えた定着装置が、本発明の誘導
加熱装置によって構成されていることを特徴とする。
【0014】また前記定着装置において、直流磁場発生
手段が前記定着ローラの両端部に配置され、前記直流磁
場発生手段が前記定着ローラの回転とは無関係に自由に
回転可能であり、さらには前記直流磁場発生手段とする
永久磁石が、前記定着ローラの回転軸に対してラジアル
方向に着磁されていることを特徴とする。
【0015】
【発明の実施の形態】以下、本発明の実施形態について
図面を基に説明する。
【0016】図1は、本発明の誘導加熱装置の本実施形
態1を示す図である。交流磁場発生手段2としてコイル
を使用し、被加熱体を覆うように一定のギャップを保持
して配置する。さらに直流磁場発生手段3を、交流磁場
発生手段2の外側を覆うように一定のギャップを保持し
て配置する。ここで直流磁場発生手段3には永久磁石を
使用し、鉄やパーマロイなどの軟磁性材料に対して極め
て導電率の低い特性を持つもの、例えばサマリウム・コ
バルト系ボンド永久磁石を使用する。その結果、永久磁
石表面に発生する渦電流を劇的に小さくでき、磁石の熱
減磁を防ぐことができる。
【0017】本実施形態1について磁界解析手法を用い
て、その加熱特性を確認した。ここで被加熱体1には磁
性ステンレス材料の磁気特性を与え、その厚みを0.0
8mmとした。また被加熱体1と交流磁場発生手段2の
ギャップを約3mm、交流磁場発生手段2と直流磁場発
生手段3とのギャップを約1mmとした。また交流磁場
発生手段2に流す電流は50A、周波数は30kHzであ
り、これを基準値とした。なお、本解析で用いた直流磁
場発生手段3の磁気特性と電気特性の基準値は、それぞ
れ残留磁束密度0.8T、導電率2.3×103 S/m
であり、磁化条件の基準は完全着磁とした。
【0018】図2は、本実施形態1における直流磁場発
生手段3の磁化方向を、図1の交流磁場発生手段2の端
部側から見た概観図である。このように、直流磁場発生
手段3の磁化方向は、全ての領域において一様に被加熱
体1に対し直交する方向に設定されている。
【0019】加熱特性の評価基準としては、被加熱体1
表面のジュール損失量(W/m3)を用いる。図3はジュ
ール損失量の各評価部位を示す図であり、被加熱体1と
交流磁場発生手段2のみを表わした上視図である。ジュ
ール損失量の評価部位は、交流磁場発生手段2の長手方
向に沿った被加熱体表面(A1−A2)、交流磁場発生手
段2の長手方向中間部の被加熱体表面中央部(B1−B
2)、交流磁場発生手段2端部の被加熱体表面端部近傍
(C1−C2)の3箇所である。
【0020】図4は交流磁場発生手段2の長手方向に沿
った被加熱体表面のジュール損失量分布、図5は被加熱
体表面中央部のジュール損失量分布、図6は被加熱体表
面端部近傍のジュール損失量分布である。なお本発明の
誘導加熱装置と比較する従来例(a)として、定着装置
で使用されている磁場遮断手段を適用した場合の各評価
部位のジュール損失量分布をあわせて示す。
【0021】本実施形態1での各評価部位のジュール損
失量(b)は、従来例(a)の約10倍、すなわち被加
熱体1を加熱できる熱量が約10倍に増加する。
【0022】これは以下のように説明できる。
【0023】被加熱体1には、直流磁場発生手段3が形
成している磁場によりある一定の磁束が流れている。そ
の磁束量は、被加熱体1が磁気飽和しない程度としてい
るため、被加熱体1の磁気特性は透磁率が高い状態にあ
る。このような状態において、交流磁場発生手段2によ
る交流磁場を作用させると、小さな交流磁場の変化で
も、被加熱体1に流れる磁束に大きな変化が生じるた
め、被加熱体1に効率よく渦電流が発生し、ジュール損
失量が大幅に増加する。
【0024】すなわち、直流磁場発生手段3が形成して
いる空間磁場が、被加熱体1に対し、被加熱体1を磁気
飽和させない程度に作用していれば、交流磁場発生手段
2により効率よく加熱体1に渦電流を発生させることが
できるので、例えば図7、図8又は図9に示すように、
直流磁場発生手段3の磁化方向を設定する場合でも、効
果的に被加熱体1に渦電流を発生させ、ジュール損失量
を増加させることができる。
【0025】以上のことから、被加熱体の熱容量が一定
である条件において、加熱量を大幅に増加させることが
できるため、被加熱体の表面温度を急速に上昇させるこ
とができる。
【0026】図10は、本発明の誘導加熱装置の本実施
形態2の概観図である。
【0027】本実施形態2では、直流磁場発生手段3
を、交流磁場発生手段2と被加熱体1の間の空間領域内
において、被加熱体1の近傍に配置しているこのように
配置することにより、直流磁場発生手段3が、交流磁場
発生手段2の交流磁場を遮ることなく、かつ直流磁場発
生手段3が形成する磁場をより十分に被加熱体1に作用
させることができる。直流磁場発生手段3の磁化方向
は、直流磁場発生手段3からの磁束が交流磁場発生手段
2を横切るような方向とすることが望ましいが、図10
に示すような互いに対向する方向に限らず、同一方向に
磁化しても良い。また被加熱体1に対して平行な磁化方
向でなく、被加熱体1に対して直交する方向、または被
加熱体1に対して斜めの方向であっても良い。
【0028】図11は、本発明の誘導加熱装置の、本実
施形態3の概観図である。本実施形態3では、いくつか
の細いブロックに分割し、適当な間隔の隙間を設けて並
べた直流磁場発生手段3を、交流磁場発生手段2と被加
熱体1の間に挟まれる空間内に配置している。直流磁場
発生手段3に隙間を設けたことにより、交流磁場発生手
段2の交流磁場を遮ることがなく、交流磁場発生手段2
により十分に変化を受けた直流磁場発生手段3の磁場を
被加熱体1に作用させることができる。ここで直流磁場
発生手段3の磁化方向は、直流磁場発生手段3からの磁
束が被加熱体1に対して直交する方向とすることが望ま
しいが、図11に示す磁化方向と逆の方向にしても、又
は交互に磁化方向を逆向きにしても良い。また被加熱体
1に対して直交する磁化方向でなく、被加熱体1に対し
て平行な方向、または被加熱体1に対して斜めの方向で
あっても良い。
【0029】また直流磁場発生手段3を、交流磁場発生
手段2の交流磁界を遮断してしまうことが無い程度の大
きさとする場合には、図11に示したように直流磁場発
生手段3を分割して隙間を設ける必要は無い。
【0030】図12は、本実施形態2(c)又は本実施
形態3(d)の、コイルの長手方向に沿った被加熱体表
面(A1−A2)のジュール損失量分布、図13は被加
熱体表面中央部(B1−B2)のジュール損失量分布、
図14は被加熱体表面端部近傍(C1−C2)のジュー
ル損失量分布である。なお比較として従来例(a)のジ
ュール損失量分布をあわせて示す。
【0031】本実施形態2(c)、本実施形態3(d)
は、どちらもジュール損失量が従来例(a)に比べ数倍
に増加し、被加熱体1の表面温度を急速に上昇させるこ
とができる。またどちらの本実施形態も、本実施形態1
に比べて被加熱体1に近い位置に直流磁場発生手段3を
配置するため、少ない量で有効に同等の磁束量を被加熱
体1に作用させることができるため、コスト的にも有利
である。
【0032】ここで本発明の誘導加熱装置では、直流磁
場発生手段3である永久磁石の残留磁束密度又は使用
量、交流磁場発生手段2であるコイルに流す電流又は周
波数の調整により、ジュール損失量を容易に変えること
ができる。
【0033】直流磁場発生手段3の残留磁束密度と使用
量とジュール損失量の関係を示す。残留磁束密度は着磁
磁場の大きさや使用する永久磁石の種類の変更により調
整でき、使用量は体積(例えば厚みなど)で簡単に調整
することができる。
【0034】本実施形態1の図2に示した磁化方向にお
いて、交流磁場発生手段2の電流値、周波数は一定とし
た場合の、直流磁場発生手段3の残留磁束密度又は厚み
とジュール損失量との関係を以下に示す。
【0035】図15は直流磁場発生手段3の残留磁束密
度を変えた場合の、交流磁場発生手段2の長手方向に沿
った被加熱体表面(A1−A2)のジュール損失量分布
であり、図16は直流磁場発生手段3の厚みを変えた場
合の、交流磁場発生手段2の長手方向に沿った被加熱体
表面(A1−A2)のジュール損失量分布である。
【0036】ここで、(e)は直流磁場発生手段3の残
留磁束密度を基準値の1/2の0.4Tに減らした場
合、(f)は使用する直流磁場発生手段3をサマリウム
・コバルト系ボンド磁石の磁気特性からサマリウム・コ
バルト系焼結磁石の磁気特性に変更して、残留磁束密度
を約1.5倍の1.15Tに増やした場合、(g)直流
磁場発生手段3の厚みを約1/2とした場合、(h)は
直流磁場発生手段3の厚みを約1.5倍とした場合のジ
ュール損失量分布をそれぞれ示している。なお比較とし
て、前述の本実施形態1(b)と従来例(a)のジュー
ル損失量分布をあわせて示す。
【0037】ジュール損失量の全ての評価部位におい
て、直流磁場発生手段3の残留磁束密度を約1/2とし
た場合、ジュール損失量は本実施形態1(b)の約半分
に低下するが、従来例に比べ約3倍のジュール損失量が
確保できる。また直流磁場発生手段3の残留磁束密度を
1.5倍とした場合には、本実施形態1(b)に比べ、
ジュール損失量を約2倍に増加させることができる。
【0038】また直流磁場発生手段3の厚みを約1/2
とした場合も、ジュール損失量は本実施形態1(b)の
約半分に低下するが、従来例に比べ約3倍のジュール損
失量が確保できる。また直流磁場発生手段3の厚みを
1.5倍とした場合も、本実施形態1(b)に比べ、ジ
ュール損失量を約2倍に増加させることができる。
【0039】このように、直流磁場発生手段3の残留磁
束密度と使用量を調整して、被加熱体1に作用する総磁
束量を調整することにより、従来よりも多くのジュール
損失量を確保しつつ、総磁束量に応じたジュール損失量
を得ることができる。
【0040】次に、本実施形態1の図2に示した磁化方
向において、直流磁場発生手段3の残留磁束密度と使用
量を一定した条件での、交流磁場発生手段2に流す電流
値又は周波数とジュール損失量との関係を以下に示す。
【0041】図17は、交流磁場発生手段2の電流値を
変えた時の、交流磁場発生手段2の長手方向に沿った被
加熱体表面(A1−A2)のジュール損失量分布であ
る。(i)は電流値を基準値の2分の1の25Aとした
場合、(j)は基準値の50分の1の1Aとした場合の
各ジュール損失量を示している。なお比較として、前述
の本実施例1(b)と従来例(a)のジュール損失量分
布をあわせて示す。
【0042】電流値を下げるとジュール損失量は低下す
るが、電流値を1Aと大幅に基準値よりも小さくして
も、ジュール損失量の約1/2にしか低下しない。
【0043】このように、本発明の誘導加熱装置の加熱
特性は、交流磁場発生手段2に流す電流に対する依存性
は非常に小さく、電流値を大幅に低く設定しても従来に
比べより多くのジュール損失量を得ることができる。こ
のことから、定着装置の消費電力を大幅に低減すること
ができ、同時に電気回路の負荷が軽減できるため、耐久
性、長寿命化に有利な誘導加熱装置であると言える。
【0044】図18は、交流磁場発生手段2の電流周波
数を変えた時の、交流磁場発生手段2の長手方向に沿っ
た被加熱体表面(A1−A2)のジュール損失量分布で
ある。(k)は基準値の1.5倍の45kHzとした場
合、(l)は基準値の2分の1の15kHzとした場合
の各ジュール損失量を示している。なお比較として、前
述の本実施形態1(b)と従来例(a)のジュール損失
量分布をあわせて示す。
【0045】周波数を1.5倍に上げるとジュール損失
量は約2倍に増加し、周波数を1/2に下げるとジュー
ル損失量が約1/4に低下する。このように、電流の周
波数のジュール損失量への影響は大きく、これは渦電流
損が周波数の2乗に比例して変化することから説明でき
る。このことから電流周波数はできる限り高く設定する
ことが望ましい。
【0046】図19は、交流磁場発生手段2の電流値と
周波数をともに変えた時の、交流磁場発生手段2の長手
方向に沿った被加熱体表面(A1−A2)のジュール損
失量分布である。(m)は電流1A(基準値の50分の
1)、周波数45kHz(基準値の1.5倍)とした場
合のジュール損失量を示しており、比較として前述の本
実施形態1(b)と従来例(a)のジュール損失量分布
をあわせて示す。
【0047】図19からわかるように、本発明の誘導加
熱装置は僅かな電流でも、周波数を適値に設定すること
により、従来例に比べジュール損失量を大幅に増加させ
ることができ、前述の本実施形態1(b)と同等以上の
ジュール損失量を得ることができる。
【0048】すなわち、本発明の誘導加熱装置における
加熱特性は、交流磁場発生手段2に流す電流に対する依
存性が非常に小さく、周波数への依存性が大きいため、
電流値はできる限り低く設定し、周波数をできる限り高
く設定することが、最も適した稼動条件であり、このよ
うな条件で稼動させることにより、従来の誘導加熱装置
に比べ劇的に消費電力を低減しながら、加熱特性の良好
な誘導加熱装置を実現できる。
【0049】また本発明の誘導加熱装置では、加熱むら
の低減に対しては、直流磁場発生手段3の残留磁束密度
に図20に示すような分布を持たせることで可能とな
る。なお図20は、直流磁場発生手段3側から被加熱体
1方向に見た上視図である。すなわち、ジュール損失量
が多い中央部に配置する直流磁場発生手段3の残留磁束
密度を低く設定し、一方ジュール損失量が少ない端部に
配置する直流磁場発生手段3の残留磁束密度を高く設定
する。
【0050】また加熱むらを低減する他の対策として、
図21に示すように交流磁場発生手段2の端部付近のみ
に直流磁場発生手段3を配置し、交流磁場発生手段2の
中央部付近には直流磁場発生手段3を配置しないような
形態とする。なお図21は図20同様、直流磁場発生手
段3側から被加熱体1方向に見た上視図である。
【0051】図22は、加熱むらを低減する2つの対策
についてのジュール損失量分布を示した図であり、
(n)は、直流磁場発生手段3の端部の残留磁束密度分
布を0.8Tとし、永久磁石の中央部の残留磁束密度分
布を0.2Tとした場合、(o)は図21に示すような
直流磁場発生手段3の配置を行なった場合の、交流磁場
発生手段の長手方向に沿った被加熱体表面(A1−A
2)のジュール損失量分布を示している。なお比較とし
て、直流磁場発生手段3の残留磁束密度分布を一様に
0.4Tとした場合(e)のジュール損失分布をあわせ
て示す。
【0052】直流磁場発生手段3の端部領域の残留磁束
密度を大きく、中央部の残留磁束密度を小さく分布させ
ることにより、直流磁場発生手段3の残留磁束密度分布
を一様に0.4Tとした場合に比べ、被加熱体1の端部
付近のジュール損失量を約50%増加させることがで
き、被加熱体1の中央部のジュール損失量を約15%程
度の低下に抑えることができる。ここで、中央部と端部
のジュール損失量の差は、直流磁場発生手段3の残留磁
束密度分布を一様に0.4Tとした場合が9.5×10
7W/m3であるのに対し、直流磁場発生手段3の残留磁
束密度に分布を持たせた場合には7.1×107W/m3
となり、ジュール損失量の差が約20%低減されたジュ
ール損失量分布が得られるため、加熱むらを低減するこ
とができる。
【0053】なお直流磁場発生手段3の残留磁束密度に
分布を持たせる方法としては、同一の直流磁場発生手段
3を用いて厚みを変えて総磁束数を変える方法でも、残
留磁束密度の異なる複数の直流磁場発生手段3を用いる
方法でも良い。また図20では2種類の残留磁束密度の
異なる直流磁場発生手段3を配置しているが、これに限
らずさらに複数の残留磁束密度の異なる直流磁場発生手
段3を適度に配置することによって、より均一なジュー
ル損失量分布を得ることができる。
【0054】コイル端部付近のみに直流磁場発生手段3
を配置し、コイル中央部付近には配置しない形態とした
場合においても、直流磁場発生手段3の残留磁束密度分
布を一様に0.4Tとした場合に比べ、被加熱体1の端
部付近のジュール損失量を約2倍に増加させることがで
き、被加熱体1の中央部のジュール損失量を約10%の
低下に抑えることができる。ここで中央部と端部のジュ
ール損失量の差は、直流磁場発生手段3の残留磁束密度
分布を一様に0.4Tとした場合が9.5×107W/
3であるのに対し、コイル端部付近のみに直流磁場発
生手段3を配置した場合には6.6×107W/m3とな
り、ジュール損失量の差が約30%低減されたジュール
損失量分布が得られるため、加熱むらを低減することが
できる。
【0055】図23は、本発明の誘導加熱装置より構成
された定着装置の実施形態1を側面から見た断面図であ
り、図24は定着装置の実施形態1を端部から見た図で
ある。
【0056】定着装置は、回転軸6に固着され、表面が
被加熱体1で覆われた定着ローラ7と、被加熱体1を誘
導加熱するために被加熱体1を覆うように一定のギャッ
プを保持して配置した交流磁場発生手段2と、交流磁場
発生手段2の外側に適度な距離をおいて配置した直流磁
場発生手段3から構成される。
【0057】ここで直流磁場発生手段3には永久磁石を
使用し、鉄やパーマロイなどの軟磁性材料に対して極め
て導電率の低い特性を持つもの、例えばサマリウム・コ
バルト系ボンド永久磁石を使用する。その結果、永久磁
石表面に発生する渦電流を劇的に小さくでき、磁石の熱
減磁を防ぐことができる。また直流磁場発生手段3であ
る永久磁石は、図24中に太矢印で示したように、全て
の領域において一様に被加熱体1に対し直交する方向、
すなわちラジアル方向に着磁されている。
【0058】以上のように構成されている定着装置の実
施形態1について、磁界解析手法を用いてその加熱特性
を確認した。
【0059】被加熱体1には磁性ステンレス材料SUS
430の直流初磁化BH曲線の測定値を与え、その厚み
を0.08mmとした。また導電率は被加熱体1の表面温
度が200℃以上に達することを考慮し、室温時の約1
/2の8.85×105S/mとした。回転軸6と軸受
8の材質は一般的な鉄として扱い、炭素鋼の直流初磁化
BH曲線の測定値を与え、その導電率は1.0×107
S/mとした。被加熱体1と交流磁場発生手段2のギャ
ップを3mmとし、交流磁場発生手段2に流す電流を27
A、周波数は30kHzとした。また直流磁場発生手段3
である永久磁石の磁気特性と電気特性は、それぞれ残留
磁束密度0.8T、導電率2.3×10 3 S/mであ
り、磁化条件は完全着磁とした。なお定着ローラ2にお
いては、被加熱体1と回転軸7との間は、発泡シリコン
等の弾性体で構成されており、磁気特性としては空気と
同様の扱いとした。
【0060】加熱特性の評価基準としては、被加熱体1
表面のジュール損失量(W/m3)を用いる。
【0061】図25はジュール損失量の評価部位を示す
図であり、被加熱体1、交流磁場発生手段2、回転軸6
および軸受8を示した上視図である。ジュール損失量の
評価部位は、交流磁場発生手段2長手方向に沿った被加
熱体1表面(D1−D2)、交流磁場発生手段2に覆われた
幅領域の被加熱体1表面(E1−E2) および交流磁場発
生手段2に覆われた長手方向の被加熱体1表面(F1−F
2)であり、解析対象の形状が対称形であるため、定着
装置長手方向および幅領域ともに半分の領域について評
価する。
【0062】図26は直流磁場発生装置3を配置しない
従来例および直流磁場発生装置3を配置した定着装置の
実施形態1の、交流磁場発生手段2の中心部長手方向に
沿った被加熱体1表面(D1−D2)のジュール損失量を示
す図である。
【0063】図27は直流磁場発生装置3を配置しない
従来例および直流磁場発生装置3を配置した定着装置の
実施形態1の、交流磁場発生手段2に覆われた幅領域の
被加熱体1表面(E1−E2)のジュール損失量を示す図で
ある。
【0064】図28は直流磁場発生装置3を配置しない
従来例および直流磁場発生装置3を配置した定着装置の
実施形態1の、交流磁場発生手段2に覆われた長手方向
の被加熱体1表面(F1−F2)のジュール損失量を示す図
である。
【0065】これらの図が示すように、直流磁場発生装
置3を配置した定着装置の実施形態1の場合、被加熱体
1表面の全ての領域においてジュール損失量は増加して
おり、とりわけ交流磁場発生手段2に覆われた長手方向
については約10倍に増加する。
【0066】これは、前記本発明の誘導加熱装置と同
様、以下のように説明できる。
【0067】被加熱体1には、直流磁場発生手段3が形
成している磁場によりある一定の磁束が流れている。そ
の磁束量は、被加熱体1が磁気飽和しない程度としてい
るため、被加熱体1の磁気特性は透磁率が高い状態にあ
る。このような状態において、交流磁場発生手段2によ
る交流磁場を作用させると、小さな交流磁場の変化で
も、被加熱体1に流れる磁束に大きな変化が生じるた
め、被加熱体1に効率よく渦電流が発生し、ジュール損
失量が大幅に増加する。
【0068】すなわち、直流磁場発生手段3が形成して
いる空間磁場が、被加熱体1に対し、被加熱体1を磁気
飽和させない程度に作用していれば、交流磁場発生手段
2により効率よく加熱体1に渦電流を発生させることが
できるので、例えば図29、図30又は図31に示すよ
うに、直流磁場発生手段3の形状の変更および磁化方向
を設定した場合でも、効果的に被加熱体1に渦電流を発
生させ、ジュール損失量を増加させることができる。
【0069】また図10に示した本発明の誘導加熱装置
の本実施形態2または図11に示した本発明の誘導加熱
装置の本実施形態3のように、直流磁場発生手段3を配
置する位置を、被加熱体1と交流磁場発生手段2に挟ま
れた空間領域内とし、被加熱体1の近傍に配置しても、
いくつかの細いブロックに分割して適当な間隔の隙間を
設けて並べても、効果的に被加熱体1に渦電流を発生さ
せ、ジュール損失量を増加させることができる。
【0070】以上のことから、被加熱体1の熱容量が一
定である条件において、加熱量を大幅に増加させること
ができるため、被加熱体1の表面温度を急速に上昇させ
ることができる。その結果、従来の定着装置に比べ劇的
に消費電力を低減しながら、加熱特性の良好な定着装置
を実現できる。
【0071】また本発明の誘導加熱装置より構成された
定着装置の加熱むらの低減に対しては、以下のような構
成により実現できる。
【0072】図32は、本発明の誘導加熱装置より構成
された定着装置の実施形態2を側面から見た断面図であ
る。定着装置は、回転軸6に固着され、表面が被加熱体
1で覆われた定着ローラ7と、被加熱体を覆うように一
定のギャップを保持して配置し、被加熱体1を誘導加熱
するための交流磁場発生手段2と、さらに定着ローラ両
端面から適度に離した位置に、回転軸6にベアリング9
を介して自由に回転することを可能として配置した直流
磁場発生手段3から構成される。
【0073】図33は定着装置の実施形態2における直
流磁場発生装置3の構成を示す図である。ここで直流磁
場発生手段3には永久磁石を使用し、鉄やパーマロイな
どの軟磁性材料に対して極めて導電率の低い特性を持つ
もの、例えばサマリウム・コバルト系ボンド永久磁石を
使用する。その結果、永久磁石表面に発生する渦電流を
劇的に小さくでき、磁石の熱減磁を防ぐことができる。
ドーナツ状に成形した直流磁場発生手段3はベアリング
9に固着され、ベアリング8を介して回転軸6に取り付
けられている。よって、直流磁場発生装置3は定着ロー
ラの回転とは無関係に自由に回転できるため、直流磁場
発生装置3の磁界に対して交流磁場発生手段2の磁界が
及ぼす磁気的な力が、定着ローラの回転に対し作用する
ことを防止できる。
【0074】図34は定着装置の実施形態2における直
流磁場発生装置3である永久磁石の着磁状態を示す図で
ある。図34中において太矢印が示すように、磁石中
心、すなわち回転軸6を中心としてラジアル方向に着磁
されている。これにより、磁石近傍に存在する軟磁性体
で構成された被加熱体1のより広い表面の領域に対し
て、磁石から流れ出すより多くの磁束を作用させること
ができる。
【0075】以上のように構成された定着装置の実施形
態2について磁界解析手法および熱伝導解析手法を用い
て、その加熱特性を確認した。
【0076】磁界解析について説明する。被加熱体1に
は磁性ステンレス材料SUS430の直流初磁化BH曲
線の測定値を与え、その厚みを0.08mmとした。ま
た導電率は被加熱体1の表面温度が200℃以上に達す
ることを考慮し、室温時の約1/2の8.85×105
S/mとした。回転軸6と軸受8の材質は一般的な鉄と
して扱い、炭素鋼の直流初磁化BH曲線の測定値を与
え、その導電率は1.0×107S/mとした。被加熱
体1と交流磁場発生手段2のギャップを3mmとし、交流
磁場発生手段2に流す電流を27A、周波数は30kHz
とした。また直流磁場発生手段3である永久磁石の磁気
特性と電気特性は、それぞれ残留磁束密度0.8T、導
電率2.3×103 S/mであり、磁化条件は2000
00A/mとした。なお定着ローラ2においては、被加
熱体1と回転軸6との間は、発泡シリコン等の弾性体で
構成されており、磁気特性としては空気と同様の扱いと
した。
【0077】以上の条件において磁界解析より求められ
たジュール損失量(W/m3)を発熱源として、熱伝導解
析を行う。本熱伝導解析において用いた、各材質の熱伝
導率(W/m・K)、比熱(J/kg・K)、密度(Kg
/m3)を表1に示す。
【0078】表1
【0079】次に、各部位に設定した熱伝達係数(W/
2・K)を表2に示す。
【0080】表2
【0081】以上の解析条件において、初期温度を20
℃とし、10秒刻みに温度分布の変化を求めた。
【0082】加熱特性の評価は、被加熱体1の特定箇所
の表面温度で行った。
【0083】図35は、定着装置の実施形態2につい
て、交流磁場発生手段2の真上から見た概観図である。
図35中、P1からP5の計5箇所について、被加熱体
1の表面温度の時間変化を調べた。
【0084】図36は、直流磁場発生装置を配置しない
従来例の、各評価箇所での温度変化を示す図である。
【0085】図37は直流磁場発生装置を配置した定着
装置の実施形態2の各評価箇所での温度変化を示す図で
ある。
【0086】直流磁場発生装置を配置しない従来例で
は、定着ローラ端部付近のP4およびP5の温度が他の箇
所に比べ高く、定着ローラの中心付近の温度が約150
℃となる時間では、300℃を超えており、図36中に
矢印で示した温度差は約170℃である。
【0087】これに対し直流磁場発生装置を配置した定
着装置の実施形態2では、定着ローラ端部付近のP4お
よびP5の温度は他の箇所に比べ高いが、定着ローラの中
心付近の温度が約150℃となる時間では200℃程度
であり、図37中に矢印で示した温度差は約60℃と小
さい。
【0088】このように、直流磁場発生装置を定着ロー
ラの両端部に配置することにより、定着ローラ端部での
温度上昇が抑えられ、従来例に比べて定着ローラの表面
温度分布を均一化することができ、これに起因する定着
むらを低減できる。
【0089】
【発明の効果】本発明によれば、導電性の被加熱体と交
流磁場発生手段から構成される誘導加熱装置において、
直流磁場発生手段を設け、直流磁場発生手段を永久磁石
とし、直流磁場発生手段により発生している直流磁場の
磁束密度が0.001T以上である領域内に、前記交流
磁場発生手段を配置するような構成とし、直流磁場発生
手段が発生する磁場に交流磁場発生手段が発生する交流
磁場を作用させることにより、被加熱体の透磁率が高い
状態においては、小さな交流磁場の変化でも、被加熱体
に流れる磁束に大きな変化が生じさせることができる。
よって、被加熱体表面において効果的に大きな渦電流が
発生し、被加熱体を急速に加熱することができる。
【0090】また交流磁場発生手段の交流電流を大幅に
低減し、周波数を適値に設定することにより、従来に比
べ大幅に加熱特性を向上させつつ、誘導加熱装置の消費
電力を大幅に低減でき、耐久性、長寿命化に面でも優れ
た誘導加熱装置とすることができる。
【0091】また直流磁場発生手段として使用する永久
磁石の残留磁束密度に分布を与えたり、又は部分的に厚
みを異ならせることにより、加熱むらの少ない誘導加熱
装置とすることができる。
【0092】さらに、本発明の誘導加熱装置から構成さ
れた定着装置は、被加熱体の加熱量を大幅に増加させ、
被加熱体の表面温度を急速に上昇させることができた
め、従来の定着装置に比べ劇的に消費電力を低減しなが
ら、良好な加熱特性を実現できる。
【0093】また直流磁場発生手段である永久磁石を定
着ローラの両端部に配置することにより、従来例の比べ
て定着ローラの表面温度分布を均一化でき、温度むらに
よる定着むらを低減することができる。
【図面の簡単な説明】
【図1】本発明の誘導加熱装置の本実施形態1を示す図
【図2】本実施形態1の直流磁場発生手段の磁化方向を
示す図
【図3】ジュール損失量評価部位を説明する図
【図4】交流磁場発生手段長手方向に沿った被加熱体表
面のジュール損失量分布図
【図5】被加熱体表面中央部のジュール損失量分布図
【図6】被加熱体表面端部近傍のジュール損失量分布図
【図7】本実施形態1の直流磁場発生手段の異なる磁化
方向を示す図
【図8】本実施形態1の直流磁場発生手段の異なる磁化
方向を示す図
【図9】本実施形態1の直流磁場発生手段の異なる磁化
方向を示す図
【図10】本発明の定着装置の本実施形態2を示す図
【図11】本発明の定着装置の本実施形態3を示す図
【図12】本実施形態2又は本実施形態3の交流磁場発
生手段長手方向に沿った被加熱体表面のジュール損失量
分布図
【図13】本実施形態2又は本実施形態3の被加熱体表
面中央部のジュール損失量分布図
【図14】本実施形態2又は本実施形態3の被加熱体表
面端部近傍のジュール損失量分布図
【図15】本実施形態1の直流磁場発生手段の残留磁束
密度を変えた場合の交流磁場発生手段長手方向に沿った
被加熱体表面のジュール損失量分布図
【図16】本実施形態1の直流磁場発生手段の厚みを変
えた場合の交流磁場発生手段長手方向に沿った被加熱体
表面のジュール損失量分布図
【図17】本実施形態1の交流磁場発生手段の電流値を
変えた場合の交流磁場発生手段長手方向に沿った被加熱
体表面のジュール損失量分布図
【図18】本実施形態1の交流磁場発生手段の電流周波
数を変えた場合の交流磁場発生手段長手方向に沿った被
加熱体表面のジュール損失量分布図
【図19】本実施形態1の交流磁場発生手段の電流値と
周波数をともに変えた場合の交流磁場発生手段長手方向
に沿った被加熱体表面のジュール損失量分布図
【図20】直流磁場発生手段の残留磁束密度分布を示す
【図21】直流磁場発生手段の異なる配置を示す図
【図22】残留磁束密度に分布を与えた場合又は異なる
配置とした場合の交流磁場発生手段長手方向に沿った被
加熱体表面のジュール損失量分布図
【図23】本発明の誘導加熱装置より構成された定着装
置の実施形態1を側面から見た断面図
【図24】定着装置の実施形態1を端部から見た図
【図25】被加熱体表面のジュール損失量の評価部位を
示す図
【図26】従来例および定着装置の実施形態1におけ
る、交流磁場発生手段の中心部長手方向に沿った被加熱
体表面(D1−D2)のジュール損失量を示す図
【図27】従来例および定着装置の実施形態1におけ
る、交流磁場発生手段に覆われた幅領域の被加熱体表面
(E1−E2)のジュール損失量を示す図
【図28】従来例および定着装置の実施形態1におけ
る、交流磁場発生手段に覆われた長手方向の被加熱体表
面(F1−F2)のジュール損失量を示す図
【図29】定着装置の実施形態2を示す図
【図30】定着装置の実施形態3を示す図
【図31】定着装置の実施形態4を示す図
【図32】本発明の誘導加熱装置より構成された定着装
置の実施形態2を側面から見た断面図
【図33】定着装置の実施形態2における直流磁場発生
装置の構成を示す図
【図34】定着装置の実施形態2における永久磁石の着
磁状態を示す図
【図35】定着装置の実施形態2を交流磁場発生手段の
真上から見た概観図
【図36】従来例の各評価箇所での温度変化を示す図
【図37】定着装置の実施形態2の各評価箇所での温度
変化を示す図
【符号の説明】
1 被加熱体、 2 交流磁場発生手段 3 直流磁場発生手段 4 高残留磁束密度領域 5 低残留磁束密度領域 6 回転軸 7 定着ローラ 8 軸受 9 ベアリング

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】導電性の被加熱体と交流磁場発生手段から
    構成される誘導加熱装置において、直流磁場発生手段を
    設け、前記直流磁場発生手段が形成する磁場を前記交流
    磁場発生手段により変化させて前記被加熱体を加熱する
    ことを特徴とする誘導加熱装置。
  2. 【請求項2】前記被加熱体、前記交流磁場発生手段、前
    記直流磁場発生手段から構成される誘導加熱装置におい
    て、前記直流磁場発生手段が発生する直流磁場の磁束密
    度が0.001T以上である領域内に、前記交流磁場発
    生手段を配置することを特徴とする誘導加熱装置。
  3. 【請求項3】前記直流磁場発生手段が、永久磁石である
    ことを特徴とする請求項1記載又は請求項2記載の誘導
    加熱装置。
  4. 【請求項4】前記永久磁石が、部分的に異なる残留磁束
    密度を有することを特徴とする請求項3記載の誘導加熱
    装置。
  5. 【請求項5】前記永久磁石が、部分的に異なる厚みを有
    することを特徴とする請求項3記載の誘導加熱装置。
  6. 【請求項6】導電性の被加熱体から成る定着ローラと前
    記被加熱体に対して交流磁界を与えて誘導加熱する交流
    磁場発生手段を備えた定着装置において、請求項1から
    請求項5のいずれかに記載の誘導加熱装置によって構成
    された定着装置。
  7. 【請求項7】請求項6記載の定着装置において、前記直
    流磁場発生手段を前記定着ローラの両端部に配置するこ
    とを特徴とする定着装置。
  8. 【請求項8】請求項7記載の定着装置の前記直流磁場発
    生手段が、前記定着ローラの回転とは無関係に自由に回
    転できることを特徴とする定着装置。
  9. 【請求項9】請求項7または請求項8記載の定着装置に
    おいて、前記直流磁場発生手段とする永久磁石が、前記
    定着ローラの回転軸を中心としてラジアル方向に着磁さ
    れていることを特徴とする定着装置。
JP2002059585A 2001-03-13 2002-03-05 誘導加熱装置 Withdrawn JP2002343541A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059585A JP2002343541A (ja) 2001-03-13 2002-03-05 誘導加熱装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001070375 2001-03-13
JP2001-70375 2001-03-13
JP2002059585A JP2002343541A (ja) 2001-03-13 2002-03-05 誘導加熱装置

Publications (2)

Publication Number Publication Date
JP2002343541A true JP2002343541A (ja) 2002-11-29
JP2002343541A5 JP2002343541A5 (ja) 2005-04-21

Family

ID=26611147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059585A Withdrawn JP2002343541A (ja) 2001-03-13 2002-03-05 誘導加熱装置

Country Status (1)

Country Link
JP (1) JP2002343541A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074358A (ja) * 2010-09-27 2012-04-12 Chung Yuan Christian Univ 誘導加熱装置及びその制御方法
US8389911B2 (en) 2007-10-09 2013-03-05 Tsugumitsu Matsui Electromagnetic induction type heating device, hot air generating device and electrical power generating device
CN103442470A (zh) * 2013-09-05 2013-12-11 哈尔滨理工大学 电磁加热装置和用于该装置的加热方法
JP2017221061A (ja) * 2016-06-09 2017-12-14 本田技研工業株式会社 ハウジング昇温装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933785A (ja) * 1982-08-19 1984-02-23 松下電器産業株式会社 高周波誘導加熱ロ−ラ
JPS6486474A (en) * 1987-09-29 1989-03-31 Sumitomo Heavy Industries Induction heating device
JPH0582248A (ja) * 1991-08-08 1993-04-02 Berumateitsuku:Kk 誘導加熱方法並びにその装置
JPH10153922A (ja) * 1996-09-30 1998-06-09 Masahiro Tategami 加熱ローラ装置
JPH1197163A (ja) * 1997-09-24 1999-04-09 Mitsubishi Heavy Ind Ltd 高周波加熱コイルの設置間隙保持装置
JPH11203633A (ja) * 1998-01-05 1999-07-30 Alps Electric Co Ltd 磁気ヘッド
JP2000150131A (ja) * 1998-11-16 2000-05-30 Walzen Irle Gmbh 加熱ロ―ル用誘導加熱装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933785A (ja) * 1982-08-19 1984-02-23 松下電器産業株式会社 高周波誘導加熱ロ−ラ
JPS6486474A (en) * 1987-09-29 1989-03-31 Sumitomo Heavy Industries Induction heating device
JPH0582248A (ja) * 1991-08-08 1993-04-02 Berumateitsuku:Kk 誘導加熱方法並びにその装置
JPH10153922A (ja) * 1996-09-30 1998-06-09 Masahiro Tategami 加熱ローラ装置
JPH1197163A (ja) * 1997-09-24 1999-04-09 Mitsubishi Heavy Ind Ltd 高周波加熱コイルの設置間隙保持装置
JPH11203633A (ja) * 1998-01-05 1999-07-30 Alps Electric Co Ltd 磁気ヘッド
JP2000150131A (ja) * 1998-11-16 2000-05-30 Walzen Irle Gmbh 加熱ロ―ル用誘導加熱装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389911B2 (en) 2007-10-09 2013-03-05 Tsugumitsu Matsui Electromagnetic induction type heating device, hot air generating device and electrical power generating device
JP2012074358A (ja) * 2010-09-27 2012-04-12 Chung Yuan Christian Univ 誘導加熱装置及びその制御方法
CN103442470A (zh) * 2013-09-05 2013-12-11 哈尔滨理工大学 电磁加热装置和用于该装置的加热方法
JP2017221061A (ja) * 2016-06-09 2017-12-14 本田技研工業株式会社 ハウジング昇温装置

Similar Documents

Publication Publication Date Title
AU646466B2 (en) Electromagnetic device for heating metal elements
US4185183A (en) Induction heating apparatus with adjustable flux concentrators
BRPI0807653A2 (pt) aparelho de aquecimento por indução
JPH0335790B2 (ja)
EP0063162B1 (en) Induction motor
JPH059027B2 (ja)
US4218629A (en) MHD Power generator
JP2002343541A (ja) 誘導加熱装置
WO2004047494B1 (en) Induction heating work coil
JP2935087B2 (ja) 誘導加熱装置
JP2002296936A5 (ja)
JP4234235B2 (ja) 熱磁気エンジン
JP3661978B2 (ja) 可動コイル形リニアモータ
JP3513545B2 (ja) 加熱ローラ装置
JP2000015319A (ja) 金属板側部の誘導加熱装置
JP2001006861A (ja) 電磁誘導加熱装置
JP2979447B2 (ja) 電磁誘導加熱装置
JPS5828465Y2 (ja) 往復駆動装置
JPH1187031A (ja) 非鉄系誘導加熱装置
JPS6035985Y2 (ja) 誘導加熱装置
JPH0543455Y2 (ja)
JPH08511912A (ja) 力/運動発生装置
JPH11308824A (ja) 永久磁石の着磁方法
JP2572299Y2 (ja) フラットコイル振動型ボイスコイルモーター用永久磁石の二極着磁器
JP3767327B2 (ja) 誘導加熱コイル

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061025