JP2002343351A - Hydrogen storage alloy powder - Google Patents

Hydrogen storage alloy powder

Info

Publication number
JP2002343351A
JP2002343351A JP2001141952A JP2001141952A JP2002343351A JP 2002343351 A JP2002343351 A JP 2002343351A JP 2001141952 A JP2001141952 A JP 2001141952A JP 2001141952 A JP2001141952 A JP 2001141952A JP 2002343351 A JP2002343351 A JP 2002343351A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy powder
gas
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001141952A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sawada
俊之 澤田
Masaru Yanagimoto
勝 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2001141952A priority Critical patent/JP2002343351A/en
Publication of JP2002343351A publication Critical patent/JP2002343351A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide hydrogen storage alloy powder with superb electrochemical characteristics used as a material for a negative electrode of a Ni-hydrogen secondary battery. SOLUTION: Hydrogen storage alloy powder, manufactured by being gas- atomized with atomized gas consisting of residual inactive gas containing nitrogen gas of 91 vol.%, is of average specific surface of not less than 0.040 m<2> /g classified into less than 38 μm and not less than 25 μm in atomization state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ni−水素二次電
池負極用材料として使用される電気化学特性に優れた水
素吸蔵合金粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy powder having excellent electrochemical properties and used as a negative electrode material for a Ni-hydrogen secondary battery.

【0002】[0002]

【従来の技術】従来、水素吸蔵合金粉末の作製方法とし
ては、ガスアトマイズ法や鋳造粉砕法などが提案されて
いるが、鋳造粉砕粉末は凝固時に成分偏析などが発生
し、電気化学特性に悪影響を及ぼす。一方、Ar、He
などの不活性ガスでアトマイズした粉末は急冷凝固によ
り、成分偏析の少ない粉末が製作できる。また、雰囲気
ガスについては、例えば特開平2−253558号公報
のように、希ガスのような水素吸蔵合金と容易に反応す
ることのない不活性なものが望ましいとされている。こ
れは酸素または窒素を含有する雰囲気の場合には、高温
下ではそれぞれ水素吸蔵合金の構成金属の酸化物または
窒化物が生成して、水素の吸蔵・放出反応に関与する合
金の量が減少するという不都合が発生するからであると
している。
2. Description of the Related Art Conventionally, a gas atomizing method or a casting and pulverizing method has been proposed as a method for producing a hydrogen storage alloy powder. However, the cast and pulverized powder causes segregation of components at the time of solidification and adversely affects electrochemical characteristics. Exert. On the other hand, Ar, He
Powder that has been atomized with an inert gas such as that described above can be rapidly solidified to produce powder with less component segregation. Further, it is considered that an inert gas which does not easily react with a hydrogen storage alloy, such as a rare gas, is desirable as disclosed in, for example, JP-A-2-253558. This is because, in an atmosphere containing oxygen or nitrogen, at high temperatures, oxides or nitrides of the constituent metals of the hydrogen storage alloy are generated, and the amount of the alloy involved in the hydrogen storage / release reaction decreases. This is because such a problem occurs.

【0003】また、窒素を含むガスによるアトマイズと
しては、例えば特開平9−302431号公報に示すよ
うに、ミッシュメタル・ニッケル系水素吸蔵合金を溶解
後、0.1vol.%以上50vol.%未満の窒素ガ
スを含み、残りは不活性ガスからなるアトマイズガスで
ガスアトマイズした後、該粉末を酸溶液中で表面処理す
ることを特徴とする水素吸蔵合金粉末の製造方法が開示
されている。
As atomization by a gas containing nitrogen, for example, as disclosed in JP-A-9-302431, after dissolving a misch metal / nickel-based hydrogen storage alloy, 0.1 vol. % Or more and 50 vol. A method for producing a hydrogen-absorbing alloy powder is disclosed, which comprises subjecting the powder to gas atomization with an atomizing gas consisting of an inert gas containing less than 10% of nitrogen gas and then subjecting the powder to a surface treatment in an acid solution.

【0004】一方、不活性ガスによるガスアトマイズ粉
末は慨して球状をしており、負極を形成した際に個々の
水素吸蔵合金粉末間の接触抵抗が大きいため負極内部抵
抗が大きく電気化学特性を劣化させる。そこで、ガスア
トマイズ粉末を不定形状化する方法として、例えば特開
平4−126361号公報のように、ガスアトマイズ法
で製作した水素吸蔵合金粉末を、さらに、ボールミルな
どで機械的に微粉砕したり、あるいは水素の吸蔵放出を
行わせて微粉砕して平均粒径が例えば100μ以下の微
細な不定形状の水素吸蔵合金を製作するものが提案され
ている。
On the other hand, the gas atomized powder by an inert gas is generally spherical, and when the negative electrode is formed, the contact resistance between the individual hydrogen storage alloy powders is large, so that the internal resistance of the negative electrode is large and the electrochemical characteristics are deteriorated. Let it. Therefore, as a method of forming the gas atomized powder into an irregular shape, for example, as disclosed in Japanese Patent Application Laid-Open No. 4-126361, a hydrogen-absorbing alloy powder produced by a gas atomizing method is further mechanically pulverized by a ball mill or the like. For producing a fine irregular-shaped hydrogen storage alloy having an average particle diameter of, for example, 100 μm or less, by performing occlusion and release.

【0005】[0005]

【発明が解決しようとする課題】上記した特開平2−2
53558号公報は、酸素や窒素を含有する雰囲気では
高温下で酸化物や窒化物を生成し、電気化学特性が劣化
するとしているが、本発明は窒素ガスを積極的に使用す
ることで、粉末形状を不定形状化し、電気化学特性が向
上するものであり、また、特開平9−302431号公
報に示される窒素ガスを混合したガスでアトマイズした
粉末は、窒素混合率を50vol%未満にしているため
形状が球状または楕円形となっており、粉末間接触抵抗
が高い。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. Hei 2-2
Japanese Patent No. 53558 discloses that in an atmosphere containing oxygen or nitrogen, oxides and nitrides are generated at a high temperature and the electrochemical characteristics are degraded. The shape is made indefinite, and the electrochemical characteristics are improved. Further, the powder mixed with nitrogen gas described in Japanese Patent Application Laid-Open No. 9-302431 has a nitrogen mixing ratio of less than 50 vol%. Therefore, the shape is spherical or elliptical, and the contact resistance between powders is high.

【0006】さらに、特開平4−126361号公報
は、ガスアトマイズ粉末を不定形状化する方法として、
ガスアトマイズ法で製作した水素吸蔵合金粉末を、ボー
ルミルなどで機械的に微粉砕したり、あるいは水素の吸
蔵放出を行わせて微粉砕しているもので、アトマイズ工
程の後に別途粉砕工程を追加しなくてはならず、粉末製
造工程が煩雑になり、製造コスト高にもなる。上述のよ
うに、電気化学特性の良好な水素吸蔵合金粉末の作製方
法として、不活性ガスによるガスアトマイズ法等が提案
されてきたが、いずれの方法もそれぞれ問題がある。
Further, Japanese Patent Application Laid-Open No. 4-126361 discloses a method for forming a gas atomized powder into an irregular shape.
Hydrogen storage alloy powder produced by the gas atomization method is mechanically finely pulverized with a ball mill or the like, or is finely pulverized by absorbing and releasing hydrogen, without adding a separate pulverization step after the atomization step. In addition, the powder manufacturing process becomes complicated and the manufacturing cost increases. As described above, a gas atomizing method using an inert gas or the like has been proposed as a method for producing a hydrogen-absorbing alloy powder having good electrochemical characteristics, but each method has a problem.

【0007】[0007]

【課題を解決するための手段】上述のような問題を解消
するために、発明者らは鋭意開発を進めた結果、負極材
料として、不定形状のガスアトマイズ粉末を使用するこ
とで、別途粉砕工程を設けることなく、電気化学特性に
優れたNi−水素二次電池用水素吸蔵合金粉末を提供す
ることにある。その発明の要旨とするところは、 (1)91vol%以上の窒素ガスを含み、残部不活性
ガスからなるアトマイズガスでガスアトマイズし製造し
たことを特徴とする水素吸蔵合金粉末。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have intensively developed and as a result, by using a gas atomized powder of irregular shape as a negative electrode material, a separate pulverizing step was carried out. An object of the present invention is to provide a hydrogen-absorbing alloy powder for a Ni-hydrogen secondary battery having excellent electrochemical characteristics without providing the same. The gist of the invention is as follows: (1) A hydrogen storage alloy powder characterized by being produced by gas atomizing with an atomizing gas consisting of an inert gas containing at least 91 vol% of nitrogen gas.

【0008】(2)噴霧状態で38μm未満、25μm
以上に分級した粉末の平均比表面積が0.040m2
g以上となる前記(1)記載の水素吸蔵合金粉末。 (3)アトマイズ後、熱処理を施した前記(1)または
(2)に記載の水素吸蔵合金粉末。 (4)アトマイズ粉末を熱処理した後、酸処理を施した
前記(1)〜(3)記載の水素吸蔵合金粉末にある。
(2) When sprayed, less than 38 μm, 25 μm
The average specific surface area of the powder classified above is 0.040 m 2 /
g of the hydrogen storage alloy powder according to the above (1). (3) The hydrogen storage alloy powder according to (1) or (2), which has been subjected to heat treatment after atomization. (4) The hydrogen storage alloy powder according to the above (1) to (3), wherein the atomized powder is heat-treated and then subjected to an acid treatment.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明は、91vol%以上、好ましくは95v
ol%以上の窒素ガスを含み、残部不活性ガスからなる
アトマイズガスを使用することにより、水素吸蔵合金粉
末を不定形状化する。これにより比表面積が増大し、粉
末間接触も面接触となる。この場合、91vol%以上
の窒素ガス含有量にすることで、粉末の比表面積が急激
に増大し、水素吸蔵放出反応面積が増大する。また、負
極内部抵抗も減少し、結果として電気化学特性が向上す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, 91 vol% or more, preferably 95 v%
The hydrogen storage alloy powder is formed into an irregular shape by using an atomizing gas containing at least ol% of nitrogen gas and a balance of inert gas. As a result, the specific surface area increases, and the contact between the powders also becomes the surface contact. In this case, by setting the nitrogen gas content to 91 vol% or more, the specific surface area of the powder rapidly increases, and the hydrogen storage / release reaction area increases. Further, the internal resistance of the negative electrode is reduced, and as a result, the electrochemical characteristics are improved.

【0010】ここで、38μm未満、25μm以上の粉
末粒度を比表面積評価の対象とした理由は、アルゴンや
ヘリウムによる球状のガスアトマイズ粉末であっても、
50μm以上になると噴霧条件によってはフレークや針
状粉末が多く入ることがあり、比表面積の評価が適切で
なくなる可能性があるためであり、また、評価粒度を狭
くしておかないと粒度分布(頻度)の影響が出てしまう
ため、25μm未満の粉末を除外した。従って、噴霧状
態で38μm未満、25μm以上に分級した粉末を比表
面積、評価の対象とする。
Here, the reason why the particle size of less than 38 μm and 25 μm or more was targeted for the specific surface area evaluation was that even a spherical gas atomized powder of argon or helium was used.
If the particle size is 50 μm or more, a large amount of flakes and needle-like powders may enter depending on the spraying conditions, and the evaluation of the specific surface area may not be appropriate. Also, if the evaluation particle size is not narrowed, the particle size distribution ( Frequency), powder having a particle size of less than 25 μm was excluded. Therefore, the powder classified as less than 38 μm and 25 μm or more in the spray state is the target of the specific surface area and evaluation.

【0011】このような方法で製造した粉末のうち、噴
霧状態で38μm未満、25μm以上に分級した粉末の
平均比表面積が0.040m2 /g以上になる場合にさ
らに良好な電気化学特性が得られる。さらに、熱処理に
より、アトマイズ時の急冷による凝固歪みを緩和するこ
とで、さらに均一組織の粉末が製造でき、良好な電気化
学特性が得られる。また、アトマイズ粉末を熱処理した
後、酸処理により、粉末表面の不純物層の除去およびN
iリッチ層の露出によって、さらに電気化学特性は向上
する。
[0011] Among the powders produced by such a method, when the average specific surface area of the powder classified into less than 38 µm and 25 µm or more in a spray state becomes 0.040 m 2 / g or more, more excellent electrochemical characteristics can be obtained. Can be Furthermore, by heat treatment, solidification distortion due to rapid cooling during atomization is alleviated, whereby a powder having a more uniform structure can be produced, and good electrochemical characteristics can be obtained. After heat treatment of the atomized powder, removal of the impurity layer on the powder surface and N
The electrochemical properties are further improved by exposing the i-rich layer.

【0012】[0012]

【実施例】以下、本発明について実施例によって具体的
に説明する。ミッシュメタル・ニッケル系水素吸蔵合金
を溶解後、窒素/アルゴン比を表1に示す混合ガスでア
トマイズし、得られた粉末を、−106μmに分級し、
アルゴン気流中で1000℃−2h熱処理した。さらに
熱処理粉末をpH1の塩酸で酸処理し、酸処理液濾過後
純水にて3回洗浄、濾過を繰り返した後真空乾燥炉中で
24時間乾燥させる。評価法としては、走査型電子顕微
鏡による形状観察、BET法(粉体粒子の表面に吸着占
有面積の判った分子を液体窒素の温度で吸着させ、その
量から試料の比表面積を求める方法)による比表面積測
定、および電気化学特性の測定を実施した。
The present invention will be specifically described below with reference to examples. After dissolving the misch metal / nickel hydrogen storage alloy, the nitrogen / argon ratio was atomized with a mixed gas shown in Table 1, and the obtained powder was classified into −106 μm.
Heat treatment was performed at 1000 ° C. for 2 hours in an argon stream. Further, the heat-treated powder is acid-treated with hydrochloric acid having a pH of 1, filtered with an acid-treated solution, washed three times with pure water, and filtered repeatedly, and then dried in a vacuum drying furnace for 24 hours. As the evaluation method, the shape is observed by a scanning electron microscope, and the BET method (a method in which molecules whose adsorption occupation area is known is adsorbed on the surface of powder particles at the temperature of liquid nitrogen and the specific surface area of the sample is determined from the amount). Specific surface area measurement and measurement of electrochemical properties were performed.

【0013】また、電気化学容量として、上記方法で製
造された水素吸蔵合金粉末/PTFE粉(結着材)=9
/1(重量比)で混合、混錬しペレット状にし1.0g
φ20の円盤状に切り出しNiメッシュに挟んで成形し
負極とした。この負極をこれより体積の充分大きい焼結
ニッケル電極と組み合わせアルカリ液に浸漬し、実験用
Ni−水素二次電池とした。負極中の水素吸蔵合金粉末
1.0g当たり50mAとなる電流値で8時間充電し、
1時間休止の後、負極中の水素吸蔵合金粉末1.0g当
たり200mAとなる電流値で放電し、正負極間の電位
差が0.6Vになったところで放電をストップした。続
けて負極中の水素吸蔵合金粉末1.0g当たり50mA
となる電流値で同じ要領で放電した。この時の200m
Aおよび50mAの放電における合計放電量を負極中の
水素吸蔵合金粉末1.0g当たりの量に換算したものを
電気化学容量とした。
The electrochemical capacity is determined as follows: hydrogen storage alloy powder / PTFE powder (binder) = 9 produced by the above method.
/ 1 (weight ratio), knead and pelletize 1.0g
A negative electrode was obtained by cutting out into a disk shape of φ20 and sandwiching the Ni mesh. This negative electrode was combined with a sintered nickel electrode having a sufficiently large volume and immersed in an alkaline solution to obtain an experimental Ni-hydrogen secondary battery. Charged at a current value of 50 mA per 1.0 g of the hydrogen storage alloy powder in the negative electrode for 8 hours,
After the suspension for 1 hour, the battery was discharged at a current value of 200 mA per 1.0 g of the hydrogen storage alloy powder in the negative electrode, and the discharge was stopped when the potential difference between the positive and negative electrodes became 0.6 V. Continuously, 50 mA per 1.0 g of the hydrogen storage alloy powder in the negative electrode
The discharge was performed in the same manner at a current value of. 200m at this time
The electrochemical capacity was obtained by converting the total discharge amount in the discharge of A and 50 mA into the amount per 1.0 g of the hydrogen storage alloy powder in the negative electrode.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】表1および表2に示すように、試料No.
1〜4は本発明例であり、試料No.5〜10は比較例
である。試料No.5〜10はいずれも窒素量が90%
以下であり、そのために平均比表面積が0.040m2
/g未満であり、電気化学容量が低下していることが判
る。これに対し、本発明はいずれも平均比表面積が0.
040m2 /g以上であり、電気化学容量の値が高く、
電気化学特性の優れていることが判る。
As shown in Tables 1 and 2, Sample No.
Sample Nos. 1 to 4 are examples of the present invention. 5 to 10 are comparative examples. Sample No. 5 to 10 are all 90% nitrogen
Or less, so that the average specific surface area is 0.040 m 2
/ G, which indicates that the electrochemical capacity is reduced. On the other hand, in the present invention, the average specific surface area is in all cases of 0.1.
040 m 2 / g or more, the value of electrochemical capacity is high,
It can be seen that the electrochemical properties are excellent.

【0017】[0017]

【発明の効果】以上述べたように、本発明により電気化
学特性に優れたNi−水素二次電池の負極材料に好適な
水素吸蔵合金粉末を提供することが出来る優れた効果を
奏するものである。
As described above, the present invention has an excellent effect of providing a hydrogen storage alloy powder suitable for a negative electrode material of a Ni-hydrogen secondary battery having excellent electrochemical characteristics. .

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K017 AA04 BA03 BB12 DA09 EB05 FA03 4K018 BA04 BB10 BC01 BC09 BD07 5H050 AA19 BA14 CA03 CB16 DA03 DA15 FA17 GA02 GA06 GA14 HA01 HA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K017 AA04 BA03 BB12 DA09 EB05 FA03 4K018 BA04 BB10 BC01 BC09 BD07 5H050 AA19 BA14 CA03 CB16 DA03 DA15 FA17 GA02 GA06 GA14 HA01 HA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 91vol%以上の窒素ガスを含み、残
部不活性ガスからなるアトマイズガスでガスアトマイズ
し製造したことを特徴とする水素吸蔵合金粉末。
1. A hydrogen storage alloy powder containing 91 vol% or more of nitrogen gas and gas atomized with an atomizing gas consisting of an inert gas as a balance.
【請求項2】 噴霧状態で38μm未満、25μm以上
に分級した粉末の平均比表面積が0.040m2 /g以
上となる請求項1記載の水素吸蔵合金粉末。
2. The hydrogen storage alloy powder according to claim 1, wherein the average specific surface area of the powder classified as less than 38 μm and 25 μm or more in a spray state is 0.040 m 2 / g or more.
【請求項3】 アトマイズ後、熱処理を施した請求項1
または請求項2記載の水素吸蔵合金粉末。
3. A heat treatment is performed after the atomization.
Or the hydrogen storage alloy powder according to claim 2.
【請求項4】 アトマイズ粉末を熱処理した後、酸処理
を施した請求項1〜3記載の水素吸蔵合金粉末。
4. The hydrogen storage alloy powder according to claim 1, wherein the atomized powder is heat-treated and then subjected to an acid treatment.
JP2001141952A 2001-05-11 2001-05-11 Hydrogen storage alloy powder Withdrawn JP2002343351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001141952A JP2002343351A (en) 2001-05-11 2001-05-11 Hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001141952A JP2002343351A (en) 2001-05-11 2001-05-11 Hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JP2002343351A true JP2002343351A (en) 2002-11-29

Family

ID=18988327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001141952A Withdrawn JP2002343351A (en) 2001-05-11 2001-05-11 Hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP2002343351A (en)

Similar Documents

Publication Publication Date Title
JP2000038606A (en) Hydrogen storage alloy powder, its production and alkali secondary battery
JPWO2003054240A1 (en) Hydrogen storage alloy, hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery
JP7430648B2 (en) Hydrogen storage material, negative electrode, and nickel-metal hydride secondary battery
JP2002343351A (en) Hydrogen storage alloy powder
JPH10162820A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JP3079890B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JPH10102172A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
JP3238628B2 (en) Method for producing hydrogen storage alloy powder
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP2001303101A (en) Hydrogen storage alloy powder having high magnetization and excellent in initial charging and discharging characteristics
JPH02253558A (en) Manufacture of hydrogen storage electrode
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JP2001196057A (en) METHOD OF PREPARING HYDROGEN STORAGE ALLOY POWDER AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY USING SUCH POWDER
JP2001196058A (en) HYDROGEN STORAGE ALLOY POWDER, ITS PREPARATION AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY
JP2000169903A (en) Manufacture of hydrogen storage alloy powder
JP2001107112A (en) Manufacture of hydrogen storage alloy powder
JP3024402B2 (en) Manufacturing method of hydrogen storage alloy
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2001148246A (en) Hydrogen occluded alloy powder for negative electrode of alkaline secondary battery and its manufacturing method
JP3318197B2 (en) Method for producing hydrogen storage alloy powder
JPH0393159A (en) Hydrogen storage alloy
JPH10265886A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH0348618B2 (en)
JPH11140510A (en) Manufacture of hydrogen storage alloy powder
JPH08337805A (en) Production of hydrogen occlusion alloy powder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805