JP3318197B2 - Method for producing hydrogen storage alloy powder - Google Patents

Method for producing hydrogen storage alloy powder

Info

Publication number
JP3318197B2
JP3318197B2 JP12139796A JP12139796A JP3318197B2 JP 3318197 B2 JP3318197 B2 JP 3318197B2 JP 12139796 A JP12139796 A JP 12139796A JP 12139796 A JP12139796 A JP 12139796A JP 3318197 B2 JP3318197 B2 JP 3318197B2
Authority
JP
Japan
Prior art keywords
powder
hydrogen storage
storage alloy
atmosphere
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12139796A
Other languages
Japanese (ja)
Other versions
JPH09310135A (en
Inventor
勝 柳本
大助 木村
忠之 圓尾
俊一郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP12139796A priority Critical patent/JP3318197B2/en
Publication of JPH09310135A publication Critical patent/JPH09310135A/en
Application granted granted Critical
Publication of JP3318197B2 publication Critical patent/JP3318197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金粉
末、特にニッケル水素電池用の負極材料用のAB5型水
素吸蔵合金粉末の製造方法に関するものである。
The present invention relates to a hydrogen absorbing alloy powder, and more particularly to a method of manufacturing the AB 5 type hydrogen-absorbing alloy powder for the negative electrode material for a nickel-hydrogen battery.

【0002】[0002]

【従来の技術】近年、ニッケルカドミウム電池に代わる
二次電池としてニッケル水素電池が注目され、そのため
の水素吸蔵合金粉末が研究されているが、中でもAB5
型水素吸蔵合金粉末は電池用の負極材料として優れた特
性を備えて、利用されている。これは、例えばCe50
%、La25%,Nd15%、残りPrなどからなるミ
ッシュメタルMmと、例えばMn,Al,Co等を含む
ニッケル合金とを混合溶融したもので、例えば、Mm
1.0 Ni(5−x−y−z)MnxAlyCozのよう
な型の金属間化合物である。従来はこれを鋳造材の粉砕
や回転ドラムに接触させる急冷凝固薄帯の粉砕、ガスア
トマイズなどの諸手法によって粉末化していた。
In recent years, nickel-hydrogen battery is attracting attention as a secondary battery in place of nickel-cadmium battery, a hydrogen absorbing alloy powder therefor have been studied, among others AB 5
Hydrogen storage alloy powders are used with excellent characteristics as negative electrode materials for batteries. This is, for example, Ce50
%, La 25%, Nd 15%, remaining Pr, etc., and a mixture of a misch metal Mm and a nickel alloy containing, for example, Mn, Al, Co or the like.
1.0 is an intermetallic compound of the type such as Ni (5-xyz) MnxAlyCoz. Conventionally, the powder has been pulverized by various methods such as pulverization of a cast material, pulverization of a rapidly solidified thin ribbon brought into contact with a rotating drum, and gas atomization.

【0003】[0003]

【発明が解決しようとする課題】上述の諸粉末化方法の
うち、鋳造材を粉砕する方法は材料の偏析などにより各
粉末粒子の組成が均一にならず、二次電池に用いた場合
の性能はガスアトマイズ法や急冷凝固薄帯の粉砕などで
得た粉末に劣る。そして、ガスアトマイズ法によって得
た粉末は粒子の形状が球状であるため、鋳造材や急冷薄
帯を粉砕して得た粉末に比べて電池電極に組み入れた場
合の充填密度が優れ、同じ水素吸蔵特性を持つ粉末を電
極に使用した場合でも、電極のエネルギー密度を高くす
ることができ、容量の大きい電池の製造が可能である。
Among the various powdering methods described above, the method of pulverizing a cast material does not have a uniform composition of each powder particle due to segregation of the material and the like, and the performance when used in a secondary battery is reduced. Is inferior to powders obtained by gas atomization or crushing of rapidly solidified ribbons. Since the powder obtained by the gas atomization method has a spherical particle shape, the packing density when incorporated into a battery electrode is superior to that obtained by pulverizing a cast material or a quenched ribbon, and has the same hydrogen storage characteristics. Even when a powder having the following is used for the electrode, the energy density of the electrode can be increased, and a battery with a large capacity can be manufactured.

【0004】水素吸蔵合金粉末を二次電池に使用する場
合に要求される性能は、水素の吸蔵量が大きいことと、
水素の吸収・放出が迅速なこと、及び吸収・放出の反復
による水素吸蔵量の低下が少ないことである。水素吸蔵
量の大小は電池の容量に関係し、吸収・放出の速度は電
池の放電効率や充電の際の電池内圧の上昇に関係し、水
素吸蔵量の低下は二次電池としての寿命に関係する。
[0004] When the hydrogen storage alloy powder is used for a secondary battery, the performance required is that the hydrogen storage amount is large,
The quick absorption and release of hydrogen and the decrease in the amount of hydrogen storage due to the repeated absorption and release are small. The magnitude of the hydrogen storage capacity is related to the capacity of the battery, the rate of absorption and release is related to the discharge efficiency of the battery and the increase in the internal pressure of the battery during charging, and the decrease in the hydrogen storage capacity is related to the life of the secondary battery I do.

【0005】上述の水素の吸蔵量の大きさ及び吸収・放
出の速さは、合金粉末の表面の酸化物層に大きく影響さ
れる。ところが、上述の水素吸蔵合金粉末は希土類元素
を多量に含むために酸化しやすく、アルゴンガスアトマ
イズにより粉末化した場合でも、雰囲気中のわずかな酸
素分圧のために表面に酸化層ができ、その酸化層は鋳造
材を粉砕して得た粉末に比べて厚い場合が多い。
[0005] The magnitude of the amount of hydrogen absorbed and the speed of absorption and desorption are greatly affected by the oxide layer on the surface of the alloy powder. However, the above-mentioned hydrogen storage alloy powder is liable to be oxidized because it contains a large amount of rare earth elements, and even when powdered by argon gas atomization, an oxidized layer is formed on the surface due to a slight oxygen partial pressure in the atmosphere. The layer is often thicker than the powder obtained by grinding the cast material.

【0006】このように粒子の大部分の表面が酸化層で
覆われている粉末は、粉末が水素吸蔵できる状態にする
活性化工程が必要で、あるいは粉末を活性化せずにその
まま用いて電池を作製した場合は、長時間かけて充放電
を繰り返し、電池の容量を高めることが必要になり、生
産性を著しく妨げる。電池の特性をより向上させると共
に、生産性を上げる方法として、例えば特開平6−88
15号公報のような、粉末を酸処理して粒子表面の酸化
層を除くことが提案されている。
[0006] In the case of such a powder in which the surface of most of the particles is covered with an oxide layer, an activation step for bringing the powder into a state capable of absorbing hydrogen is required, or the powder is used as it is without activating the battery. In the case where is manufactured, it is necessary to repeatedly charge and discharge over a long period of time to increase the capacity of the battery, which significantly impairs productivity. As a method for further improving the characteristics of the battery and increasing the productivity, for example, JP-A-6-88
As disclosed in Japanese Patent Publication No. 15 (1999), it has been proposed to remove the oxidized layer on the particle surface by treating the powder with an acid.

【0007】上述の水素吸蔵量の低下は、充放電の繰り
返しによって粉末粒子が必要以上に細かく破砕されるこ
とが原因である。このような破砕は、粒子内部のミクロ
的な合金組成の不均一や、鋳造時の残留歪などが原因に
なって、水素を吸収・放出する際の体積の膨張・収縮が
一様に行われないことが一因となっている。そして破砕
面から酸化が進行して水素吸蔵能力が次第に失われてゆ
くのである。
[0007] The decrease in the amount of hydrogen occlusion described above is due to the fact that powder particles are crushed more than necessary by repeated charge and discharge. In such crushing, the expansion and contraction of the volume when absorbing and releasing hydrogen is performed uniformly due to unevenness of the microscopic alloy composition inside the particles and residual strain during casting. This is partly due to the absence. Then, oxidation proceeds from the crushed surface, and the hydrogen storage capacity is gradually lost.

【0008】従って、電池の寿命を延ばすためには、粉
末粒子の合金組成がミクロ的に均一で、かつ歪が残存し
ていないことが条件になる。そのために、従来では鋳造
・粉砕工程の途中に高温で長時間熱処理することが行わ
れている。ガスアトマイズ粉末の場合は鋳造材に比べ
て、合金組成がかなり均一で、歪の残存量も少なく、従
って、熱処理も鋳造材の場合よりも低い温度、短い時間
で良好な組織の粉末になる。上述のような理由によっ
て、現在ではガスアトマイズによって得た合金粉末を熱
処理し、その粉末を熱処理したものが電池用として最適
な粉末であると考えられる。
Therefore, in order to extend the life of the battery, it is a condition that the alloy composition of the powder particles is microscopically uniform and no strain remains. Therefore, conventionally, a long-time heat treatment is performed at a high temperature during the casting / crushing process. In the case of gas atomized powder, the alloy composition is considerably uniform and the residual amount of strain is small as compared with the cast material. Therefore, the heat treatment also becomes a powder having a good structure at a lower temperature and a shorter time than in the case of the cast material. For the reasons described above, it is considered at present that alloy powder obtained by gas atomization is heat-treated and the heat-treated alloy powder is the most suitable powder for batteries.

【0009】従来、酸処理方法としては、アトマイズさ
れたままの粉末又はそれを熱処理した粉末や焼結体を塩
酸などを純水で希釈した処理溶液と共に処理槽中に投入
し、処理液を攪拌することによって均一に表面処理を施
すことが一般的であった。この工程においては処理粉末
は処理液と常に接触した状態であり、処理槽中の雰囲気
とは直接には接触しないために、従来では粉末と処理液
を投入した処理槽中の雰囲気については、特に重要視さ
れず、空気雰囲気中で行うのが通常であった。
Conventionally, as an acid treatment method, an as-atomized powder or a powder or a sintered body obtained by heat-treating the same is put into a treatment tank together with a treatment solution obtained by diluting hydrochloric acid or the like with pure water, and the treatment liquid is stirred. It has been common practice to perform a uniform surface treatment by performing the above. In this process, the processing powder is always in contact with the processing liquid, and does not directly contact the atmosphere in the processing tank. It was not important, and was usually performed in an air atmosphere.

【0010】本発明者らは、処理槽中の雰囲気が処理液
や表面処理された粉末の特性に及ぼす影響を詳細に調査
した結果、均一な表面処理を図るための攪拌によって雰
囲気中の酸素が処理液中に溶存し、さらにその酸素が表
面処理された粉末の新生表面を再酸化して水素吸蔵特性
の向上を阻害していることを見出した。本発明は、この
問題を解決し、酸処理中の粉末表面の活性面を保護する
ことによって、酸処理液の粉末の性能を大幅に向上させ
ることを目的とした酸処理方法にある。
The present inventors have conducted a detailed investigation on the effect of the atmosphere in the processing tank on the properties of the processing solution and the powder subjected to the surface treatment. As a result, the oxygen in the atmosphere was reduced by stirring to achieve a uniform surface treatment. It was found that it dissolved in the treatment liquid, and that the oxygen re-oxidized the nascent surface of the surface-treated powder and hindered the improvement of the hydrogen storage properties. The present invention is directed to an acid treatment method which aims to solve this problem and to significantly improve the performance of the powder of the acid treatment liquid by protecting the active surface of the powder during the acid treatment.

【0011】[0011]

【課題を解決するための手段】この発明の要旨とすると
こらは、 (1)ミッシュメタル・ニッケル系水素吸蔵合金のガス
アトマイズ法によって得た粉末またはそれを熱処理する
ことによって得た粉末を酸溶液中に投入した後、周囲の
雰囲気の酸素含有量を1vol.%以下に保持した状態
で攪拌しながら表面処理を行うことを特徴とする水素吸
蔵合金粉末の製造方法。 (2)雰囲気は、アルゴンガスを密閉した状態またはア
ルゴンガス気流によって得られることを特徴とする前記
(1)に記載の水素吸蔵合金粉末の製造方法にある。
Means for Solving the Problems The gist of the present invention is as follows: (1) A powder obtained by gas atomizing a misch metal / nickel-based hydrogen storage alloy or a powder obtained by heat-treating the same in an acid solution. , The oxygen content of the surrounding atmosphere is reduced to 1 vol. %, Wherein the surface treatment is carried out while stirring at a concentration of not more than 5%. (2) The method for producing a hydrogen storage alloy powder according to the above (1), wherein the atmosphere is obtained in a state in which argon gas is sealed or in an argon gas flow.

【0012】以下、本発明について詳細に説明する。本
発明に係る不活性雰囲気とは、例えば、酸処理を行う容
器として密閉型容器を使用し、粉末と酸処理溶液以外の
空間の大気をアルゴンガス等で置換封入することによっ
て得られる状態である。また容器の一部を開放し、外部
からアルゴンガスを流入させて過剰のガスは開放口から
放出する。また、アルゴンガス気流の方式などによって
も不活性雰囲気が得られる。
Hereinafter, the present invention will be described in detail. The inert atmosphere according to the present invention is, for example, a state obtained by using a closed container as a container for performing the acid treatment, and replacing and enclosing the atmosphere in a space other than the powder and the acid treatment solution with argon gas or the like. . In addition, a part of the container is opened, and argon gas flows in from the outside, and excess gas is discharged from the opening. An inert atmosphere can also be obtained by an argon gas flow system or the like.

【0013】[0013]

【発明の実施の形態】前述のミッシュメタル・ニッケル
系水素吸蔵合金のアトマイズ粉末、またはその粉末を熱
処理して得られた粉末を、攪拌機能を有した湿式ミキサ
ーに酸溶液と共に挿入して攪拌する際、周囲の雰囲気を
不活性にすることによって雰囲気から溶液中への酸素の
溶存を防止できる。アトマイズ粉末の表面は酸処理によ
って酸化被膜が除去され、金属面が露出された状態にな
るが、溶存酸素が多く存在する場合にはこの酸素によっ
て再び酸化され、酸処理によって改善された水素吸蔵特
性が低下する。一方、酸処理中の雰囲気を不活性にした
場合は、雰囲気から酸溶液中への酸素溶存が無く、酸処
理によって露出した金属面が清浄な状態に保たれる。
BEST MODE FOR CARRYING OUT THE INVENTION Atomized powder of the above-mentioned misch metal / nickel-based hydrogen storage alloy or a powder obtained by heat-treating the powder is inserted into a wet mixer having a stirring function together with an acid solution and stirred. At this time, dissolving oxygen from the atmosphere into the solution can be prevented by making the surrounding atmosphere inert. The oxide film is removed from the surface of the atomized powder by the acid treatment, leaving the metal surface exposed. However, if there is a large amount of dissolved oxygen, it is oxidized again by this oxygen, and the hydrogen storage characteristics improved by the acid treatment Decrease. On the other hand, when the atmosphere during the acid treatment is made inert, oxygen is not dissolved from the atmosphere into the acid solution, and the metal surface exposed by the acid treatment is kept in a clean state.

【0014】[0014]

【実施例】Mm1.0 Ni3.5 Co0.7 Mn0.5 Al0.3
を構成するように配合した金属原料をアルミナ坩堝に収
容し、誘導溶解で溶解した後、1500℃の溶湯を直径
2mmのノズルを通して落下させ、これに5Nのアルゴ
ンガスを吹き付けて急冷してガスアトマイズ粉末を製造
した。得られた粉末を目開き106μのふるいで分級し
た後、鉄製容器に収容し、アルゴン気流中で700℃×
2時間熱処理した。熱処理後の粉末を攪拌機能の付いた
ミキサー中に挿入した後、処理液としてpH1.0の塩
酸溶液を粉末容積1に対して5の割合で投入し、pHを
モニターしながらpH6.5以上になるまで攪拌しなが
ら表面処理を行った。表面処理を施す際の雰囲気とし
て、表1に示した各条件で行った粉末について、単極特
性を測定して粉末単位重量当たりの電気化学容量を算出
した。表2に各条件で表面処理した粉末の電気化学容量
を示す。
[Example] Mm 1.0 Ni 3.5 Co 0.7 Mn 0.5 Al 0.3
Is placed in an alumina crucible and melted by induction melting, and then the molten metal at 1500 ° C. is dropped through a nozzle having a diameter of 2 mm, and is quenched by spraying 5N argon gas thereto to rapidly cool the gas atomized powder. Was manufactured. After classifying the obtained powder with a sieve having an opening of 106 μm, the powder was placed in an iron container, and placed in an argon stream at 700 ° C. ×
Heat treatment was performed for 2 hours. After the heat-treated powder is inserted into a mixer equipped with a stirring function, a hydrochloric acid solution having a pH of 1.0 is added as a treatment liquid at a ratio of 5 to a powder volume of 1, and the pH is increased to 6.5 or more while monitoring the pH. The surface treatment was performed while stirring until the surface treatment was completed. The monopolar characteristics of the powders subjected to the conditions shown in Table 1 were measured as the atmosphere for the surface treatment, and the electrochemical capacity per unit weight of the powder was calculated. Table 2 shows the electrochemical capacity of the powder surface-treated under each condition.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】表2の結果について、単位粉末重量当たり
300mAh以上の電気容量を示す粉末は特性が優れて
いるもので、310mAh以上の電気容量を示す粉末は
特に優れているものである。以上の結果より酸処理する
際、周囲の雰囲気の酸素含有量を1vol.%以下に抑
えることによって優れた電気化学特性の粉末が得られ
る。
In the results shown in Table 2, powders having an electric capacity of 300 mAh or more per unit powder weight have excellent properties, and powders having an electric capacity of 310 mAh or more are particularly excellent. From the above results, when performing the acid treatment, the oxygen content of the surrounding atmosphere was set to 1 vol. %, A powder having excellent electrochemical properties can be obtained.

【0018】[0018]

【発明の効果】以上述べたように、本発明による、酸処
理中の粉末表面の活性面を保護することによって、酸処
理液の粉末の性能を大幅に向上させることにより、粉末
の水素吸蔵速度が大幅に向上し、その粉末を電極に使用
した場合の電気化学特性も顕著に向上する極めて優れた
効果を奏するものである。
As described above, according to the present invention, by protecting the active surface of the powder surface during the acid treatment, the performance of the powder of the acid treatment liquid is greatly improved, and the hydrogen absorption rate of the powder is improved. Is greatly improved, and the electrochemical characteristics when the powder is used for an electrode are significantly improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 俊一郎 兵庫県姫路市飾磨区中島字一文字3007番 地 山陽特殊製鋼株式会社内 (56)参考文献 特開 平9−231970(JP,A) 特開 平9−49039(JP,A) 特開 平9−302431(JP,A) 特開 平5−225975(JP,A) 特開 平8−67936(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 19/00 B22F 1/00 C22C 1/00 H01M 4/38 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shunichiro Nishikawa 3007 character, Nakajima character, Shima, Ward, Himeji City, Hyogo Prefecture Inside Sanyo Special Steel Co., Ltd. JP-A-9-49039 (JP, A) JP-A-9-302431 (JP, A) JP-A-5-225975 (JP, A) JP-A-8-67936 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) C22C 19/00 B22F 1/00 C22C 1/00 H01M 4/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ミッシュメタル・ニッケル系水素吸蔵合
金のガスアトマイズ法によって得た粉末またはそれを熱
処理することによって得た粉末を酸溶液中に投入した
後、周囲の雰囲気の酸素含有量を1vol.%以下に保
持した状態で攪拌しながら表面処理を行うことを特徴と
する水素吸蔵合金粉末の製造方法。
1. A powder obtained by gas atomizing a misch metal / nickel-based hydrogen storage alloy or a powder obtained by heat-treating the same into an acid solution, and then the oxygen content of the surrounding atmosphere is reduced to 1 vol. %, Wherein the surface treatment is carried out while stirring at a concentration of not more than 5%.
【請求項2】 雰囲気はアルゴンガスを密閉した状態ま
たはアルゴンガス気流によって得られることを特徴とす
る請求項1記載の水素吸蔵合金粉末の製造方法。
2. The method for producing a hydrogen storage alloy powder according to claim 1, wherein the atmosphere is obtained in a state in which argon gas is sealed or in an argon gas flow.
JP12139796A 1996-05-16 1996-05-16 Method for producing hydrogen storage alloy powder Expired - Fee Related JP3318197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12139796A JP3318197B2 (en) 1996-05-16 1996-05-16 Method for producing hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12139796A JP3318197B2 (en) 1996-05-16 1996-05-16 Method for producing hydrogen storage alloy powder

Publications (2)

Publication Number Publication Date
JPH09310135A JPH09310135A (en) 1997-12-02
JP3318197B2 true JP3318197B2 (en) 2002-08-26

Family

ID=14810183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12139796A Expired - Fee Related JP3318197B2 (en) 1996-05-16 1996-05-16 Method for producing hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JP3318197B2 (en)

Also Published As

Publication number Publication date
JPH09310135A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
EP0975035B1 (en) Hydrogen absorbing alloy powder, process for producing same, and alkaline secondary battery
JP2024023286A (en) Method for manufacturing hydrogen storage material
JP3318197B2 (en) Method for producing hydrogen storage alloy powder
JPH07268519A (en) Hydrogen storage alloy for battery, its production and nickel hydrogen battery
JPH05303966A (en) Hydrogen storage alloy electrode
JP3238628B2 (en) Method for producing hydrogen storage alloy powder
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
US6245165B1 (en) Powder composition and process for the preparation thereof
JPH11140501A (en) Production of hydrogen storage alloy powder
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JP2000169903A (en) Manufacture of hydrogen storage alloy powder
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH0461756A (en) Manufacture of ni-h storage battery
FR2812887A1 (en) HYDRURABLE ALLOY
JP3432971B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JP2001303101A (en) Hydrogen storage alloy powder having high magnetization and excellent in initial charging and discharging characteristics
JPH11140510A (en) Manufacture of hydrogen storage alloy powder
JP2001196057A (en) METHOD OF PREPARING HYDROGEN STORAGE ALLOY POWDER AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY USING SUCH POWDER
JP3290895B2 (en) Hydrogen storage alloy powder for nickel-metal hydride batteries
JP3432976B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JPH10265801A (en) Production of hydrogen occlusion alloy powder and negative electrode for nickel-hydr0gen battery formed by using this powder
JPH10265886A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2002173706A (en) Method for treating hydrogen-storage alloy
JP2004217989A (en) Hydrogen storage alloy powder, production method therefor, and hydrogen storage device using the hydrogen storage alloy powder
JP2001107112A (en) Manufacture of hydrogen storage alloy powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

LAPS Cancellation because of no payment of annual fees