JP2001196058A - HYDROGEN STORAGE ALLOY POWDER, ITS PREPARATION AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY - Google Patents

HYDROGEN STORAGE ALLOY POWDER, ITS PREPARATION AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY

Info

Publication number
JP2001196058A
JP2001196058A JP2000002866A JP2000002866A JP2001196058A JP 2001196058 A JP2001196058 A JP 2001196058A JP 2000002866 A JP2000002866 A JP 2000002866A JP 2000002866 A JP2000002866 A JP 2000002866A JP 2001196058 A JP2001196058 A JP 2001196058A
Authority
JP
Japan
Prior art keywords
powder
storage alloy
hydrogen storage
battery
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000002866A
Other languages
Japanese (ja)
Inventor
Shunichiro Nishikawa
俊一郎 西川
Masaru Yanagimoto
勝 柳本
Toshiyuki Sawada
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2000002866A priority Critical patent/JP2001196058A/en
Publication of JP2001196058A publication Critical patent/JP2001196058A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy powder for a negative electrode material of a nickel-hydrogen battery, its preparation and a negative electrode for the battery using such powder for the negative electrode material. SOLUTION: The rare earth nickel based hydrogen storage alloy powder having a substantially spherical form, with powder surface layers containing less rare earth elements than the whole powder, and its preparation are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】本発明は、ニッケル水素電池
の負極材料用水素吸蔵合金粉末とその製造方法およびこ
れを負極材料に用いた電池用負極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy powder for a negative electrode material of a nickel-metal hydride battery, a method for producing the same, and a battery negative electrode using the same as a negative electrode material.

【0002】[0002]

【従来の技術】近年、ニッケルカドミウム電池に代わる
二次電池としてニッケル水素電池が注目され、これに用
いられる水素吸蔵合金粉末の研究が行われているが、中
でもAB5型水素吸蔵合金粉末は電池用の負極材料とし
て優れた特性を備えており、頻繁に利用されている。こ
れは、例えばCe50mass%、La25mass
%、Nd15mass%、残りPrなどからなるミッシュ
メタルMmと、例えばMn,Al,Co等を含むニッケ
ル合金とを混合溶融したもので、例えば、原子比でMm
1.0Ni(5−x−y−z)MnxAlyCozのよ
うな型の金属間化合物である。これを鋳造材の粉砕や回
転ドラムに接触させる急冷凝固薄帯の粉砕、ガスアトマ
イズなどの諸手法によって粉末化した後、シート状に成
形して二次電池用負極として使用する。
2. Description of the Related Art In recent years, nickel-metal hydride batteries have attracted attention as secondary batteries replacing nickel cadmium batteries, and hydrogen storage alloy powders used for these batteries have been studied. Among them, AB5 type hydrogen storage alloy powders are used for batteries. It has excellent characteristics as a negative electrode material and is frequently used. This is, for example, Ce50mass%, La25mass
%, Nd15mass%, remaining Pr etc., and a nickel alloy containing, for example, Mn, Al, Co, etc. are mixed and melted.
It is an intermetallic compound of the type such as 1.0Ni (5-x-yz) MnxAlyCoz. This is pulverized by various methods such as pulverization of a cast material, pulverization of a rapidly solidified thin strip brought into contact with a rotating drum, gas atomization, and the like, and then is formed into a sheet and used as a negative electrode for a secondary battery.

【0003】上述の諸粉末化方法のうち、鋳造材を粉砕
する方法は材料の偏析などにより各粉末粒子の組成が均
一にならず、二次電池に用いた場合の性能はガスアトマ
イズ法や急冷凝固薄帯の粉砕などで得た粉末に劣る。そ
して、ガスアトマイズ法によって得た粉末は球状である
ために、鋳造材や急冷薄帯を粉砕して得た粉末に比べて
電池電極にした場合の充填密度が高く、同じ水素吸蔵特
性を持つ粉末を電極に使用した場合でも、電極のエネル
ギー密度を高くすることができるため、他の製法によっ
て製造した水素吸蔵合金を使用した場合より容量の大き
い電池の製造が可能である。
Among the various powdering methods described above, the method of pulverizing a cast material does not make the composition of each powder particle uniform due to segregation of the material and the like, and the performance when used in a secondary battery is a gas atomizing method or a rapid solidification method. Inferior to powder obtained by crushing ribbons. And since the powder obtained by the gas atomization method is spherical, the packing density when used as a battery electrode is higher than the powder obtained by pulverizing a cast material or a quenched ribbon, and a powder having the same hydrogen storage characteristics is used. Even when used for an electrode, the energy density of the electrode can be increased, so that a battery with a larger capacity can be manufactured than when a hydrogen storage alloy manufactured by another manufacturing method is used.

【0004】而して、水素吸蔵合金粉末を二次電池に使
用する場合に要求される性能は、水素の吸蔵量が大きい
ことと、水素の吸収・放出が迅速なこと、及び吸収・放
出の反復による水素吸蔵量の低下が少ないことである。
水素吸蔵量の大小は電池の容量に関係し、吸収・放出の
速度は電池の放電効率や充電時の電池内圧に関係し、水
素吸蔵量の低下は二次電池としての寿命に関係する。
[0004] When a hydrogen storage alloy powder is used for a secondary battery, the performance required is as follows: a large amount of hydrogen storage, quick absorption and release of hydrogen, and absorption and release of hydrogen. That is, the decrease in the hydrogen storage amount due to repetition is small.
The magnitude of the hydrogen storage capacity is related to the capacity of the battery, the rate of absorption and release is related to the discharge efficiency of the battery and the internal pressure of the battery during charging, and the decrease in the hydrogen storage capacity is related to the life of the secondary battery.

【0005】上述の水素吸蔵量の大きさ及び吸収・放出
の速さは、合金粉末表面の酸化物層に大きく影響され
る。ところが、上述の水素吸蔵合金粉末は希土類元素を
多量に含むために酸化しやすく、アトマイズにより製造
した場合、アルゴン等の不活性ガスによって粉末化した
場合でも、雰囲気中のわずかな酸素のために表面に酸化
物層ができ、その酸化物層は鋳造材を粉砕して得た粉末
に比べて厚い場合が多い。このように表面が酸化物層等
で覆われている粉末を水素吸蔵できる状態にするために
は、長時間かけて充放電を繰り返して電池の容量を高め
ることが必要となるため、生産性を著しく妨げる。そこ
で、電池の特性をより向上させると共に、生産性を上げ
る方法として、粉末を酸やアルカリ溶液で処理して粉末
表面の酸化物を除くことが試みられている。
[0005] The magnitude of the above-mentioned hydrogen storage amount and the speed of absorption and desorption are greatly affected by the oxide layer on the surface of the alloy powder. However, the above-mentioned hydrogen-absorbing alloy powder contains a large amount of rare earth elements and is easily oxidized, and when manufactured by atomization, even when powdered with an inert gas such as argon, the surface of the hydrogen-absorbing alloy powder is scarce due to slight oxygen in the atmosphere. In many cases, an oxide layer is formed, and the oxide layer is often thicker than the powder obtained by pulverizing the cast material. In order for the powder whose surface is covered with an oxide layer or the like to be able to occlude hydrogen, it is necessary to repeatedly charge and discharge over a long period of time to increase the capacity of the battery. Significantly hinders. Therefore, as a method of further improving the characteristics of the battery and increasing the productivity, an attempt has been made to remove the oxide on the surface of the powder by treating the powder with an acid or alkali solution.

【0006】また、水素吸蔵量の低下は、充放電の繰り
返しによって粉末粒子が必要以上に細かく破砕されるこ
とが原因である。このような破砕は、粒子内部のミクロ
的な合金組成の不均一や、製造時の残留歪などが原因に
なって、水素を吸収・放出する際の体積の膨張・収縮が
一様に行なわれないことが一因となっている。そして破
砕面から酸化が進行することによって水素吸蔵能力が次
第に失われていくのである。
[0006] Further, the decrease in the amount of hydrogen occlusion is caused by the fact that powder particles are crushed more than necessary by repeated charge and discharge. In such crushing, the expansion and contraction of the volume when absorbing and releasing hydrogen is performed uniformly due to the unevenness of the microscopic alloy composition inside the particles and the residual strain during production. This is partly due to the absence. Then, as the oxidation proceeds from the crushed surface, the hydrogen storage capacity is gradually lost.

【0007】従って、電池の寿命を延ばすためには、粉
末粒子の合金組成がミクロ的に均一で、かつ歪が残存し
ていないことが条件になる。そのために、従来では鋳造
・粉砕工程の途中に高温で長時間の熱処理が行なわれて
いる。一方、ガスアトマイズ粉末の場合は鋳造材に比べ
て、合金組織がかなり均一であるため、鋳造材の場合よ
りも低い温度、短い時間の熱処理によって良好な組織の
粉末になる。上述のような理由から、球状で酸化物層等
がなく導伝性に優れ、かつ内部歪みがない粉末がニッケ
ル水素電池電極用水素吸蔵合金として理想的である。一
方で、球状粉末は粉末間の接触面積が破砕面を有した粉
末に比較して低いために、総括的な導電性が悪くなって
しまい、電極を作製した場合に高充填密度の有効性を充
分に発揮できないという問題があった。
Therefore, in order to extend the life of the battery, it is required that the alloy composition of the powder particles is microscopically uniform and no distortion remains. Therefore, conventionally, a long-time heat treatment is performed at a high temperature during the casting / crushing process. On the other hand, in the case of the gas atomized powder, since the alloy structure is considerably uniform as compared with the cast material, a powder having a good structure can be obtained by heat treatment at a lower temperature and for a shorter time than in the case of the cast material. For the reasons described above, a powder that is spherical, has no oxide layer or the like, has excellent conductivity, and has no internal distortion is ideal as a hydrogen storage alloy for a nickel-metal hydride battery electrode. On the other hand, since the contact area between the spherical powders is lower than that of the powder having a crushed surface, the overall conductivity is deteriorated. There was a problem that it could not be fully demonstrated.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは水素吸蔵
合金粉末の表面改質方法を検討した結果、ガスアトマイ
ズ等によって製造した高い充填密度を有する球状粉末に
おいて、該粉末表面層の希土類含有量を合金成分よりも
減少させた粉末を使用することによって、球状における
充填密度の優位性を充分に発揮できる水素吸蔵合金粉末
の製造が可能であることを発明した。
The inventors of the present invention have studied a method of modifying the surface of a hydrogen-absorbing alloy powder. As a result, in a spherical powder having a high packing density produced by gas atomization or the like, the rare earth content of the powder surface layer is reduced. It has been invented that it is possible to produce a hydrogen storage alloy powder capable of sufficiently exhibiting the superiority of the packing density in a spherical shape by using a powder having a lower content than the alloy component.

【0009】[0009]

【課題を解決するための手段】この発明の要旨とすると
ころは、該粉末表面近傍の希土類含有量を粉末全体の含
有率以下にした球状粉末を用いることで、充填性が高く
かつ電気的接触に優れた水素吸蔵合金電極を得ることが
可能であることである。また、該球状合金の製造方法と
してガスアトマイズ法で選られた粉末を熱処理すること
によって、電池寿命にも優れかつ工業的にも有効であ
る。
SUMMARY OF THE INVENTION The gist of the present invention is to use a spherical powder having a rare earth content near the surface of the powder less than or equal to the content of the whole powder to obtain a high filling property and an electrical contact. It is possible to obtain an excellent hydrogen storage alloy electrode. In addition, heat treatment of a powder selected by a gas atomization method as a method for producing the spherical alloy has excellent battery life and is industrially effective.

【0010】以下、本発明について詳細に説明する。ガ
スアトマイズ法等により製造した球状粉末もしくは更に
熱処理を施した粉末は充填密度が高い一方で粒子間の接
触が低いため、電極にした際に全ての合金が有効に働か
ず、電気容量の低下をまねいていた。これは球状粉末の
特徴である高い流動性が粉末間の接触による摩擦抵抗が
低いことに起因するのと同様の理由であると考えられ
る。そこで球状粉末を電池電極に用いる場合、合金表面
を異形粉末より導電性の良い状態にする必要がある。
Hereinafter, the present invention will be described in detail. Spherical powders produced by gas atomization or heat-treated powders have a high packing density but low contact between particles, so all alloys do not work effectively when used as electrodes, leading to a decrease in electric capacity. I was This is considered to be the same reason that the high fluidity characteristic of the spherical powder is caused by the low frictional resistance due to the contact between the powders. Therefore, when a spherical powder is used for a battery electrode, it is necessary to make the alloy surface more conductive than the deformed powder.

【0011】そこで、球状粉末の表面状態と電池特性の
関係を詳細に調査した結果、粉末表面層の希土類含有量
を粉末全体の含有率以下にすること、つまり希土類以外
の元素、例えばNi,Co,Mn,Alが表面層で濃縮
させることで、球状粉末であっても十分な導電性を有す
る粉末を得ることが可能となることを発明した。ここ
で、球状粉末の表面層とは、球状表面から中心部に向か
って約0.5μmまでの範囲(電子線マイクロアナライ
ザーによって情報が得られる範囲)を持って定義する。
また、そのときの希土類元素の球状粉末全体の含有率以
下とする。すなわち、希土類元素の含有する球状粉末に
おいて、球状表面から中心部に向かって約0.5μmま
での表面層を希土類元素以外の元素によって濃縮された
状態にすることにある。
Therefore, as a result of a detailed investigation of the relationship between the surface condition of the spherical powder and the battery characteristics, it was found that the content of the rare earth in the powder surface layer was not more than the content of the entire powder, that is, elements other than the rare earth, such as Ni and Co. , Mn, and Al are concentrated in the surface layer, so that it is possible to obtain a powder having sufficient conductivity even if it is a spherical powder. Here, the surface layer of the spherical powder is defined to have a range from the spherical surface toward the center to about 0.5 μm (a range in which information can be obtained by an electron beam microanalyzer).
In addition, the content is set to be equal to or less than the content of the entire rare earth element spherical powder at that time. That is, in the spherical powder containing the rare earth element, the surface layer from the spherical surface to about 0.5 μm from the spherical surface toward the center is made to be in a state of being concentrated by an element other than the rare earth element.

【0012】[0012]

【実施例】(実施例1)原子比でMm1.0Ni3.5
Co0.7Mn0.5Al0.3(希土類含有量約30
mass%)を構成するように配合した金属原料を高周
波誘導によって溶解して、耐火物ノズルより噴射する。
この溶湯に周囲より高速アルゴンガスを噴霧することに
よって溶湯を球状で凝固させて水素吸蔵合金粉末を得
た。この水素吸蔵合金粉末を平均粒径50μmになるよ
うに分級した後、アルゴン雰囲気において1000℃×
2時間の熱処理を施した。得られた粉末および焼結体
1.0kgをpH2.0に調整した塩酸水溶液各0.1
kg、0.3kg、0.5kg、1.0kgと共に、ミ
キサーで1時間攪拌した。攪拌後の粉末から加圧式濾過
機によって処理液を除去し、さらに弱アルカリ水溶液に
よって充分に洗浄した後、常温・真空中で乾燥させて試
料HCl−0.1、HCl−0.3、HCl−0.5、
HCl−1.0を得た。
EXAMPLES (Example 1) Atomic ratio of Mm1.0Ni3.5
Co0.7Mn0.5Al0.3 (Rare earth content about 30
mass%) is melted by high frequency induction and injected from a refractory nozzle.
By spraying a high-speed argon gas from the surroundings onto the molten metal, the molten metal was solidified in a spherical shape to obtain a hydrogen storage alloy powder. After classifying the hydrogen storage alloy powder so as to have an average particle size of 50 μm, the hydrogen storage alloy powder was subjected to 1000 ° C. ×
Heat treatment was performed for 2 hours. Each of the obtained powder and 1.0 kg of the sintered body was adjusted to pH 2.0 with an aqueous hydrochloric acid solution adjusted to pH 2.0.
The mixture was stirred with a mixer for 1 hour together with 0.3 kg, 0.5 kg, and 1.0 kg. The treatment liquid was removed from the powder after stirring by a pressure-type filter, and further thoroughly washed with a weak alkaline aqueous solution, and then dried at room temperature and under vacuum to obtain a sample HCl-0.1, HCl-0.3, HCl- 0.5,
HCl-1.0 was obtained.

【0013】(実施例2)原子比でMm1.0Ni3.
5Co0.7Mn0.5Al0.3(希土類含有量約3
0mass%)を構成するように配合した金属原料を高
周波誘導によって溶解して、耐火物ノズルより噴射す
る。この溶湯に周囲より高速アルゴンガスを噴霧するこ
とによって溶湯を粒状で凝固させて水素吸蔵合金粉末を
得た。この水素吸蔵合金粉末を平均粒径50μmになる
ように分級した後、アルゴン雰囲気において1000℃
×2時間の熱処理を施した。得られた粉末および焼結体
1.0kgをpH2.0に調整した酢酸水溶液各0.1
kg、0.3kg、0.5kg、1.0kgと共に、ミ
キサーで1時間攪拌した。攪拌後の粉末から加圧式濾過
機によって処理液を除去し、さらに弱アルカリ水溶液に
よって充分に洗浄した後、常温・真空中で乾燥させて試
料、CH3 COOH−0.1、CH3 COOH−0.
3、CH3 COOH−0.5、CH3 COOH−1.0
を得た。
(Example 2) Atomic ratio of Mm1.0Ni3.
5Co0.7Mn0.5Al0.3 (Rare earth content about 3
(0 mass%) is melted by high frequency induction and injected from a refractory nozzle. By spraying a high-speed argon gas from the surroundings onto the molten metal, the molten metal was solidified in a granular form to obtain a hydrogen storage alloy powder. After classifying the hydrogen storage alloy powder so as to have an average particle size of 50 μm, the hydrogen storage alloy powder was subjected to 1000 ° C. in an argon atmosphere.
The heat treatment was performed for 2 hours. Each of the obtained powder and the sintered body (1.0 kg) was adjusted to pH 2.0 with an aqueous acetic acid solution (0.1% each).
The mixture was stirred with a mixer for 1 hour together with 0.3 kg, 0.5 kg, and 1.0 kg. The treatment liquid is removed from the powder after stirring by a pressure filter, and further sufficiently washed with a weak alkali aqueous solution, and then dried at room temperature and under vacuum to obtain a sample, CH 3 COOH-0.1, CH 3 COOH-0. .
3, CH 3 COOH-0.5, CH 3 COOH-1.0
I got

【0014】(比較例)原子比でMm1.0Ni3.5
Co0.7Al0.3(希土類含有量約30mass
%)を構成するように配合した金属原料を高周波誘導に
よって溶解して、耐火物ノズルより噴射する。この溶湯
に周囲より高速アルゴンガスを噴霧することによって溶
湯を粒状で凝固させて水素吸蔵合金粉末を得た。この水
素吸蔵合金粉末を粉砕して異型粉として平均粒径50μ
mになるように分級した後、アルゴン雰囲気において1
0000℃×2時間の熱処理を施した。得られた粉末お
よび焼結体1.0kgをpH2.0に調整した酢酸水溶
液各0.1kg、0.3kg、0.5kg、1.0kg
と共に、ミキサーで1時間攪拌した。攪拌後の粉末から
加圧式濾過機によって処理液を除去し、さらに弱アルカ
リ水溶液によって充分に洗浄した後、常温・真空中で乾
燥させて試料比−0.1、比−0.3、比−0.5、比
−1.0を得た。
(Comparative Example) Mm1.0Ni3.5 in atomic ratio
Co0.7Al0.3 (Rare earth content about 30 mass
%) Is melted by high frequency induction and injected from a refractory nozzle. The molten aluminum was sprayed with high-speed argon gas from the surroundings to solidify the molten metal in granular form to obtain a hydrogen storage alloy powder. This hydrogen-absorbing alloy powder is pulverized to obtain an irregular powder having an average particle size of 50 μm.
m, and then classified in an argon atmosphere.
Heat treatment was performed at 0000 ° C. × 2 hours. 0.1 kg, 0.3 kg, 0.5 kg, 1.0 kg of an aqueous acetic acid solution obtained by adjusting the obtained powder and 1.0 kg of the sintered body to pH 2.0
And for 1 hour with a mixer. The treatment liquid was removed from the powder after stirring by a pressure filter, washed sufficiently with a weak alkaline aqueous solution, dried at room temperature and under vacuum, and the sample ratio -0.1, ratio -0.3, ratio- 0.5 and a ratio of -1.0 were obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例1、2、3および比較例で作製した
試料粉末1.0gに対して0.1gのポリテトラフルオ
ロエチレンを混合して、ペーストを作製する。このペー
ストをニッケルメッシュで包み500g/cm2 の圧力
で加圧し、電池負極とした。さらに上記負極電極より十
分に容量の大きいニッケル正極を組み合わせてニッケル
水素電池とした。尚、電池内圧は5気圧で電解液には3
0wt%KOHを使用した。作製した電池に400mA
/g充電した後、50mA/gで0.9Vになるまで放
電させて電気化学容量(表1)を得た。
A paste is prepared by mixing 0.1 g of polytetrafluoroethylene with 1.0 g of the sample powder prepared in Examples 1, 2, and 3 and Comparative Example. This paste was wrapped in a nickel mesh and pressurized at a pressure of 500 g / cm 2 to obtain a battery negative electrode. Further, a nickel-metal hydride battery was obtained by combining a nickel positive electrode having a sufficiently larger capacity than the above-mentioned negative electrode. The internal pressure of the battery was 5 atm and the electrolyte was 3 atm.
0 wt% KOH was used. 400 mA for the fabricated battery
/ G and then discharged at 50 mA / g to 0.9 V to obtain an electrochemical capacity (Table 1).

【0017】EPMA(電子線マイクロアナライザー)
による希土類含有量と電気化学容量の関係を調査する
と、異形粉においては希土類含有量に影響なく良好な電
気科学容量が得られている。一方、球状粉においては、
希土類含有量が高いと電気化学容量が低くなる傾向を示
した。これは、異形粉に比較して球状粉の方が接触的に
厳しいために、より電気的抵抗の少ない粉末表面が必要
となっていることを示している。さらに、参考として充
填密度率を測定した結果、従来技術通り異形粉末に比較
して球状粉末の方がより充填性に優れている結果となっ
た。
EPMA (Electron Beam Micro Analyzer)
Investigation of the relationship between the rare earth content and the electrochemical capacity by the method revealed that a good electrochemical capacity was obtained for the deformed powder without affecting the rare earth content. On the other hand, in spherical powder,
When the rare earth content was high, the electrochemical capacity tended to decrease. This indicates that a powder surface having lower electric resistance is required because the spherical powder is more severe in contact than the deformed powder. Furthermore, as a result of measuring the packing density ratio as a reference, it was found that the spherical powder had better filling properties than the irregularly shaped powder as in the prior art.

【0018】[0018]

【発明の効果】以上述べたように、本発明はガスアトマ
イズ法等により製造した球状粉末を電極として使用する
場合、粉末表面の希土類含有量を合金成分の希土類含有
量以下にすることで、十分な導電性を有する粉末を得る
ことが可能となり、球状粉末の充填密度の高さを有効に
利用した電極の製造を達成できることにある。
As described above, according to the present invention, when a spherical powder produced by a gas atomizing method or the like is used as an electrode, it is sufficient to make the rare earth content of the powder surface less than the rare earth content of the alloy component. It is possible to obtain a conductive powder, and to achieve the production of an electrode by effectively utilizing the high packing density of the spherical powder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤田 俊之 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 Fターム(参考) 4K017 AA04 BA08 BB06 CA01 DA01 EB00 EK01 4K018 AA07 BB03 BD07 FA08 KA38 5H003 BA00 BA01 BB02 BC01 BD03 5H016 AA02 BB01 BB12 EE01 HH01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshiyuki Sawada 3007 one character, Nakajima character, Shima, Himeji-shi, Hyogo F-term in Sanyo Special Steel Co., Ltd. 4K017 AA04 BA08 BB06 CA01 DA01 EB00 EK01 4K018 AA07 BB03 BD07 FA08 KA38 5H003 BA00 BA01 BB02 BC01 BD03 5H016 AA02 BB01 BB12 EE01 HH01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類ニッケル系水素吸蔵合金粉末にお
いて、実質的に球状を有し、かつ該粉末表面層の希土類
含有量を粉末全体に含有される希土類含有量以下とする
ことを特徴とする水素吸蔵合金粉末。
1. A rare earth nickel-based hydrogen storage alloy powder characterized in that it has a substantially spherical shape, and the rare earth content of the powder surface layer is not more than the rare earth content contained in the whole powder. Storage alloy powder.
【請求項2】 請求項1記載の水素吸蔵合金粉末を得る
方法として、ガスアトマイズ粉末によって製造した粉末
もしくはこれに熱処理を施した粉末もしくは焼結体を酸
またはアルカリ溶液によって処理することを特徴とする
水素吸蔵合金の製造方法。
2. A method for obtaining the hydrogen storage alloy powder according to claim 1, wherein the powder produced from gas atomized powder or the powder or sintered body subjected to heat treatment is treated with an acid or alkali solution. Manufacturing method of hydrogen storage alloy.
【請求項3】 請求項1および2記載の水素吸蔵合金を
用いたNi−水素電池用負極。
3. A negative electrode for a Ni-hydrogen battery using the hydrogen storage alloy according to claim 1.
JP2000002866A 2000-01-11 2000-01-11 HYDROGEN STORAGE ALLOY POWDER, ITS PREPARATION AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY Withdrawn JP2001196058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002866A JP2001196058A (en) 2000-01-11 2000-01-11 HYDROGEN STORAGE ALLOY POWDER, ITS PREPARATION AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002866A JP2001196058A (en) 2000-01-11 2000-01-11 HYDROGEN STORAGE ALLOY POWDER, ITS PREPARATION AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY

Publications (1)

Publication Number Publication Date
JP2001196058A true JP2001196058A (en) 2001-07-19

Family

ID=18531917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002866A Withdrawn JP2001196058A (en) 2000-01-11 2000-01-11 HYDROGEN STORAGE ALLOY POWDER, ITS PREPARATION AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY

Country Status (1)

Country Link
JP (1) JP2001196058A (en)

Similar Documents

Publication Publication Date Title
US5605585A (en) Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same
JP2024023286A (en) Method for manufacturing hydrogen storage material
JP2000038606A (en) Hydrogen storage alloy powder, its production and alkali secondary battery
JP4659936B2 (en) Hydrogen storage alloy, method for producing the same, secondary battery using the same, and electric vehicle
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
JP2001196058A (en) HYDROGEN STORAGE ALLOY POWDER, ITS PREPARATION AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY
JP2001303101A (en) Hydrogen storage alloy powder having high magnetization and excellent in initial charging and discharging characteristics
JP4117918B2 (en) Hydrogen storage alloy, manufacturing method thereof, and nickel metal hydride secondary battery
JP3079890B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP2000169903A (en) Manufacture of hydrogen storage alloy powder
JP2001126724A (en) Method for manufacturing hydrogen-occlusion alloy powder
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JP2001196057A (en) METHOD OF PREPARING HYDROGEN STORAGE ALLOY POWDER AND NEGATIVE ELECTRODE FOR Ni-HYDROGEN BATTERY USING SUCH POWDER
JPH0834100B2 (en) Hydrogen storage alloy electrode
JPH06187979A (en) Hydrogen storage alloy electrode
JP2000345253A (en) Production of hydrogen storage alloy and hydrogen storage alloy electrode
JP3238628B2 (en) Method for producing hydrogen storage alloy powder
JP3981421B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JPH02306541A (en) Manufacture of hydrogen storage alloy electrode for alkaline storage battery
US6300010B1 (en) Hydrogen absorbing alloy powder for use in the negative electrodes of alkaline rechargeable batteries and process for producing the same
KR100284901B1 (en) Method for manufacturing negative electrode for NI / MH secondary battery using CU
JPH10265888A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3789704B2 (en) Method for producing hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403