JP2002336664A - Hydrogen-permeable membrane unit and its manufacturing method - Google Patents

Hydrogen-permeable membrane unit and its manufacturing method

Info

Publication number
JP2002336664A
JP2002336664A JP2001143409A JP2001143409A JP2002336664A JP 2002336664 A JP2002336664 A JP 2002336664A JP 2001143409 A JP2001143409 A JP 2001143409A JP 2001143409 A JP2001143409 A JP 2001143409A JP 2002336664 A JP2002336664 A JP 2002336664A
Authority
JP
Japan
Prior art keywords
permeable membrane
hydrogen
porous support
hydrogen permeable
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001143409A
Other languages
Japanese (ja)
Inventor
Takeshi Sasaki
剛 佐々木
Masashi Takahashi
正史 高橋
Takashi Ebisawa
孝 海老沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2001143409A priority Critical patent/JP2002336664A/en
Publication of JP2002336664A publication Critical patent/JP2002336664A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen-permeable membrane unit obtained by depositing a thin metallic hydrogen-permeable membrane 2 on the surface of a porous support 4 without causing a pinhole and to provide a method for manufacturing the hydrogen-permeable membrane unit. SOLUTION: This hydrogen-permeable membrane unit has the membrane 2 joined to the surface of the support 4. The membrane 2 is formed by incorporating a hole filling material 7 in the support 4, depositing the membrane 2 on the material 7 and then removing the material 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素透過膜ユニッ
ト及びその製造方法に関するものである。
The present invention relates to a hydrogen permeable membrane unit and a method for manufacturing the same.

【0002】[0002]

【従来の技術及びその課題】従来の水素透過膜ユニット
として、例えば特開平4−346824公報に記載され
るものが知られている。これは、金網を焼結した多孔質
支持体を担体とし、この上に水素を選択的に透過させる
Pd又はPd合金からなる水素透過膜を形成している。
2. Description of the Related Art As a conventional hydrogen permeable membrane unit, for example, one described in Japanese Patent Application Laid-Open No. 4-346824 is known. In this method, a porous support obtained by sintering a wire mesh is used as a carrier, and a hydrogen permeable membrane made of Pd or a Pd alloy for selectively permeating hydrogen is formed thereon.

【0003】図11には、この種の水素透過膜を備える
水素透過膜ユニットを示す。この水素透過膜ユニット5
0は、金属製の枠体52を備え、水素透過膜51を枠体
52及び多孔質支持体53の内の少なくとも一方に、接
合部54によつて接合させている。接合部54は、例え
ばメッキ、CVD(気相化学反応)、スパッタリングの
方法によつて、水素透過膜51を枠体52又は多孔質支
持体53の表面に形成することで、同時に形成させてい
る。
FIG. 11 shows a hydrogen permeable membrane unit having this kind of hydrogen permeable membrane. This hydrogen permeable membrane unit 5
Numeral 0 includes a metal frame 52, and the hydrogen permeable membrane 51 is bonded to at least one of the frame 52 and the porous support 53 by a bonding portion 54. The bonding portion 54 is formed simultaneously by forming the hydrogen-permeable film 51 on the surface of the frame 52 or the porous support 53 by, for example, plating, CVD (gas phase chemical reaction), or sputtering. .

【0004】多孔質支持体53は、セラミックス、ガラ
ス、ステンレス等の粉末や繊維の焼結体であり、水素を
通過させる連通孔を有している。この枠体52と多孔質
支持体53とは、リークを生じないように溶接、ろう付
けなどによつて接合され、接合部55を有している。
The porous support 53 is a sintered body of powder or fiber of ceramics, glass, stainless steel or the like, and has a communication hole through which hydrogen passes. The frame 52 and the porous support 53 are joined by welding, brazing, or the like so as not to cause a leak, and have a joint 55.

【0005】このような水素透過膜ユニット50は、燃
料電池の水素源として天然ガスや都市ガスを使用する
際、メンブレンリアクタ方式の水素改質器への適用が検
討されている。触媒上で天然ガス又は都市ガスと水蒸気
とが反応することにより、H2、CO、CO2 などの混
合ガスが生成し、水素透過膜51の例えば図上で上方の
供給側に到達する。水素透過膜51は、H2 のみを透過
させるから、供給側の混合ガス中からH2 のみを選択的
に分離させることができる。水素透過膜51を矢印A方
向に透過したH2 は、連通孔を有する多孔質支持体53
を透過し、水素放出側に至り、水素利用装置である燃料
電池等に供給される。なお、水素透過膜51の図上で下
方を供給側とし、H2 を矢印A方向と反対方向に透過さ
せることもできる。
[0005] Application of such a hydrogen permeable membrane unit 50 to a membrane reactor type hydrogen reformer when using natural gas or city gas as a hydrogen source for a fuel cell is being studied. When natural gas or city gas reacts with water vapor on the catalyst, a mixed gas such as H 2 , CO, or CO 2 is generated, and reaches a supply side of the hydrogen permeable membrane 51, for example, an upper side in the drawing. Since the hydrogen permeable membrane 51 allows only H 2 to permeate, it can selectively separate only H 2 from the mixed gas on the supply side. H 2 that has passed through the hydrogen permeable membrane 51 in the direction of arrow A is converted into a porous support 53 having communication holes.
, Reaches the hydrogen release side, and is supplied to a fuel cell or the like which is a hydrogen utilization device. The lower side of the hydrogen permeable membrane 51 in the drawing may be the supply side, and H 2 may be transmitted in the direction opposite to the arrow A direction.

【0006】水素透過膜51におけるH2 の透過は、拡
散現象を利用するので、透過方向の厚さが薄いほど、ま
た、所定の高温状態であるほど、透過速度が大きい。ま
た、水素透過膜ユニット50の供給側は、水素放出側よ
りも圧力を高くする必要がある。このとき、薄い水素透
過膜51のみでは圧力差により破損するので、水素透過
膜51の一側を多孔質支持体53によつて担持させ、機
械的強度を付与している。
The permeation of H 2 in the hydrogen permeable membrane 51 utilizes the diffusion phenomenon, so that the permeation speed increases as the thickness in the permeation direction decreases and as the temperature increases to a predetermined high temperature. Further, the pressure on the supply side of the hydrogen permeable membrane unit 50 needs to be higher than that on the hydrogen release side. At this time, since only the thin hydrogen permeable membrane 51 is broken by the pressure difference, one side of the hydrogen permeable membrane 51 is supported by the porous support 53 to provide mechanical strength.

【0007】更に、水素透過膜51を薄くして水素透過
性能を向上させながら耐久性を確保するための多孔質支
持体53には、所定の高温における耐酸化性が要求され
る。このため、多孔質支持体53の材料として、セラミ
ックス、ガラス、ステンレス等の使用が検討されている
が、周囲部材との接合性や機械加工性などを考慮する
と、金属、特にステンレスが望ましい。
Further, the porous support 53 for securing the durability while improving the hydrogen permeable performance by thinning the hydrogen permeable membrane 51 is required to have oxidation resistance at a predetermined high temperature. For this reason, the use of ceramics, glass, stainless steel, etc. as the material of the porous support 53 has been studied, but metals, particularly stainless steel, are desirable in consideration of the bonding property with peripheral members and the machinability.

【0008】このような水素透過膜51は、上述したよ
うに透過方向の厚さが薄いことが求められるが、水素以
外のガスの透過を防ぐ上からピンホールを含んでいない
ことが必要である。ピンホールを防止するための水素透
過膜51の最低膜厚は、多孔質支持体53の表面の孔径
に依存し、この孔径が大きいほどピンホールが生じ易く
なる。
As described above, such a hydrogen permeable film 51 is required to have a small thickness in the permeation direction. However, it is necessary that the hydrogen permeable film 51 does not include a pinhole in order to prevent permeation of gases other than hydrogen. . The minimum thickness of the hydrogen permeable membrane 51 for preventing pinholes depends on the pore size on the surface of the porous support 53, and the larger the pore size, the more likely the occurrence of pinholes.

【0009】多孔質支持体53がガラス製の場合、例え
ば平均細孔径が310nmのものを使用する報告があ
り、Pd製の水素透過膜51の厚さは13μmである
(Chemistry Letters No.10,
pp.1687−1690,1988)。これに対し、
ステンレスにて多孔質支持体53を製作する場合、ステ
ンレスの粉末や繊維の焼結体において、平均細孔径を1
μm未満にすることは困難であるので、ガラス製の場合
よりも水素透過膜51の膜厚が大きくならざるを得ず、
水素透過能が低下する。
When the porous support 53 is made of glass, for example, it is reported to use one having an average pore diameter of 310 nm, and the thickness of the hydrogen-permeable membrane 51 made of Pd is 13 μm (Chemistry Letters No. 10, No. 10).
pp. 1687-1690, 1988). In contrast,
When the porous support body 53 is made of stainless steel, the average pore diameter of the sintered body of stainless steel powder or fiber is 1
Since it is difficult to reduce the thickness to less than μm, the thickness of the hydrogen-permeable film 51 must be larger than that of the case made of glass,
Hydrogen permeability decreases.

【0010】一方、従来の水素透過膜は、このように水
素を選択的に透過させる薄膜として、Pd又はPd合金
を使用するものが主であるが、Pdに代わる合金などの
研究も行なわれている。
On the other hand, conventional hydrogen permeable membranes mainly use Pd or a Pd alloy as a thin film for selectively permeating hydrogen as described above, but researches on alloys replacing Pd have been conducted. I have.

【0011】特公平4−74045公報、特公平5−7
9367公報、特公平6−98281公報には、Pdに
代えてV合金で構成させた水素透過膜51について記載
されている。これらのV合金を数μmオーダーまで薄膜
化することを考えた場合、延性の乏しさから圧延で薄膜
を作製することには困難を伴い、CVD(気相化学反
応)、スパッタリングなどのドライプロセスにより、母
材となる多孔質支持体53の表面に透過合金を析出させ
ることが有効な手法の一つと考えられる。ところで、こ
れらのV合金は、いずれも表面に水素透過の障害となる
酸化物を形成し易いことから、酸化を防止する目的でP
d又はPd合金を極薄く被覆させることについて言及し
ている。
Japanese Patent Publication No. 4-74045, Japanese Patent Publication No. 5-7
No. 9367 and Japanese Patent Publication No. 6-98281 describe a hydrogen permeable film 51 made of a V alloy instead of Pd. When considering thinning these V alloys to the order of several μm, it is difficult to produce thin films by rolling due to poor ductility, and dry processes such as CVD (gas phase chemical reaction) and sputtering are required. Precipitating a permeable alloy on the surface of the porous support 53 serving as a base material is considered to be one of effective methods. By the way, since these V alloys all easily form oxides on the surface that hinder hydrogen permeation, P alloys are used for the purpose of preventing oxidation.
Reference is made to a very thin coating of d or Pd alloy.

【0012】しかしながら、例えば多孔質支持体53に
Pd又はPd合金、非Pd合金、Pd又はPd合金の順
にコーティングすることを考えた場合、図12に模式的
に示すように多孔質支持体53の多孔体粒子53aに薄
いPd又はPd合金51aが部分的に形成され、このP
d又はPd合金51aと非Pd合金51bとが非接触の
箇所を生じ、非Pd合金51bに露出箇所を生じるた
め、十分な耐酸化性を付与することができない。これの
防止のために、多孔体粒子53aに形成したPd又はP
d合金51aによつて非Pd合金51bを完全に覆う場
合には、図13に示すように多孔体粒子53a上に形成
するPd又はPd合金51aが厚くなり、水素透過能が
低下するのみならず、高価なPdの使用量が増加するた
め、好ましくない。なお、非Pd合金51b上のPd又
はPd合金51cは、平面上への加工になるため、薄く
形成できる。
However, when coating the porous support 53 in the order of Pd or a Pd alloy, a non-Pd alloy, Pd or a Pd alloy, for example, as shown in FIG. A thin Pd or Pd alloy 51a is partially formed on the porous particles 53a.
Since d or the Pd alloy 51a and the non-Pd alloy 51b form a non-contact portion and an exposed portion occurs in the non-Pd alloy 51b, sufficient oxidation resistance cannot be imparted. To prevent this, Pd or Pd formed on the porous particles 53a
When the non-Pd alloy 51b is completely covered by the d alloy 51a, the Pd or Pd alloy 51a formed on the porous particles 53a becomes thick as shown in FIG. However, the amount of expensive Pd used is undesirably increased. Note that Pd or the Pd alloy 51c on the non-Pd alloy 51b can be formed thin because it is processed on a plane.

【0013】このように、従来の水素透過膜51は主と
してPd又はPd合金を材料としているが、水素透過性
能に劣り、所要の水素透過速度を確保するために大きな
膜面積を必要とし、結果として改質器も大きくならざる
を得ない。
As described above, the conventional hydrogen permeable film 51 is mainly made of Pd or a Pd alloy, but is inferior in hydrogen permeation performance and requires a large film area to secure a required hydrogen permeation speed. The reformer must also be large.

【0014】そこで、本発明は、Pd又はPd合金など
の水素透過膜の薄膜化を可能とし、その使用量を削減し
た水素透過膜ユニット及び水素透過膜ユニットの製造方
法を提供し、その製作を容易かつ安価とすることを目的
としている。
Therefore, the present invention provides a hydrogen permeable membrane unit and a method for manufacturing the hydrogen permeable membrane unit, which enable thinning of a hydrogen permeable membrane such as Pd or a Pd alloy, and reduce the amount of use thereof. It is intended to be easy and cheap.

【0015】すなわち、本発明は、多孔質支持体53の
表面に析出させる金属製の水素透過膜51にピンホール
を生じさせることなく、薄膜化させた水素透過膜ユニッ
ト及びその製造方法の提供を目的としている。
That is, the present invention provides a hydrogen permeable membrane unit which is thinned without forming a pinhole in the metal hydrogen permeable membrane 51 deposited on the surface of the porous support 53, and a method of manufacturing the same. The purpose is.

【0016】[0016]

【課題を解決するための手段】本発明は、このような従
来の技術的課題に鑑みてなされたもので、その構成は、
次の通りである。請求項1の発明は、多孔質支持体4の
表面に接合させた水素透過膜2を有する水素透過膜ユニ
ットであつて、前記水素透過膜2が、多孔質支持体4に
含有させた穴埋材7の上に成膜させた後に該穴埋材7を
除去して形成されていることを特徴とする水素透過膜ユ
ニットである。請求項2の発明は、多孔質支持体4の表
面に接合させた水素透過膜2を有する水素透過膜ユニッ
トの製造方法であつて、多孔質支持体4の少なくとも表
層部に穴埋材7を含有させて表面の空孔を塞いだ後、該
多孔質支持体4及び穴埋材7の表面に水素透過膜2を成
膜させ、次いで、穴埋材7を除去することを特徴とする
水素透過膜ユニットの製造方法である。請求項3の発明
は、多孔質支持体4の表面に接合させた水素透過膜2を
有する水素透過膜ユニットの製造方法であつて、多孔質
支持体4の少なくとも表層部に穴埋材7を含有させて表
面の空孔を塞ぐと共に、多孔質支持体4の表面の穴埋材
(7)を除去して多孔体粒子4aからなる凸部4bを形
成させた後、多孔質支持体4及び穴埋材7の表面に水素
透過膜2を成膜させ、次いで、穴埋材7を除去すること
を特徴とする水素透過膜ユニットの製造方法である。請
求項4の発明は、多孔質支持体4の表面に接合させた水
素透過膜2を有する水素透過膜ユニットの製造方法であ
つて、多孔質支持体4の表層部に研磨を施して研磨片か
らなる肉薄部分4cを形成し、該肉薄部分4cによつて
表面の空孔を大略塞いで平滑状平面を形成させた後、該
多孔質支持体4の表面に水素透過膜2を成膜させ、次い
で、腐食液に浸して肉薄部分4cを除去することを特徴
とする水素透過膜ユニットの製造方法である。請求項5
の発明は、水素透過膜2が、非Pd合金2bの表裏両面
を白金族元素又はその合金2a,2cによつてコーティ
ングして形成されていることを特徴とする請求項2,3
又は4の水素透過膜ユニットの製造方法である。
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional technical problem.
It is as follows. The invention according to claim 1 is a hydrogen permeable membrane unit having a hydrogen permeable membrane 2 joined to the surface of a porous support 4, wherein the hydrogen permeable membrane 2 is filled in a porous support 4. A hydrogen permeable membrane unit formed by forming a film on a material 7 and removing the filling material 7. The invention according to claim 2 is a method for producing a hydrogen permeable membrane unit having a hydrogen permeable membrane 2 bonded to the surface of a porous support 4, wherein a hole filling material 7 is provided on at least a surface layer of the porous support 4. After filling the pores on the surface to contain the hydrogen, a hydrogen permeable film 2 is formed on the surfaces of the porous support 4 and the hole filling material 7, and then the hydrogen filling material 7 is removed. It is a manufacturing method of a permeable membrane unit. The invention according to claim 3 is a method for manufacturing a hydrogen permeable membrane unit having a hydrogen permeable membrane 2 bonded to the surface of a porous support 4, wherein a hole filling material 7 is provided on at least a surface layer of the porous support 4. After filling the pores on the surface and removing the hole filling material (7) on the surface of the porous support 4 to form the projections 4b made of the porous particles 4a, the porous support 4 A method for manufacturing a hydrogen permeable membrane unit, comprising forming a hydrogen permeable film 2 on the surface of a filling material 7 and then removing the filling material 7. The invention according to claim 4 is a method for manufacturing a hydrogen permeable membrane unit having a hydrogen permeable membrane 2 bonded to the surface of a porous support 4, wherein the surface layer of the porous support 4 is polished to obtain a polishing piece. A thin portion 4c is formed, and the thin portion 4c substantially closes the pores on the surface to form a smooth flat surface. Then, the hydrogen permeable film 2 is formed on the surface of the porous support 4. And then removing the thin portion 4c by immersion in a corrosive liquid. Claim 5
The invention according to claim 2, wherein the hydrogen permeable membrane 2 is formed by coating the front and back surfaces of the non-Pd alloy 2b with a platinum group element or its alloys 2a, 2c.
Or a method for manufacturing a hydrogen permeable membrane unit of 4.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1,図2は、本発明に係
る水素透過膜ユニットの第1実施の形態を示す。図1は
水素透過膜ユニット1を示し、従来例と実質的に同様の
構成部材を有している。すなわち、水素透過膜ユニット
1は、Pd又はPd合金製の水素透過膜2を有し、この
水素透過膜2が、金属からなる枠体3及び多孔質支持体
4の内の少なくとも一方に、接合部5によつて接合され
ている。接合部5は、多孔質支持体4の上に、メッキ、
CVD(気相化学反応)、スパッタリング、イオンプレ
ーティング、蒸着などの方法によつて水素透過膜2を形
成することで、同時に形成される。多孔質支持体4は、
セラミックス、ガラス、ステンレス等の粉末や繊維の焼
結体、好ましくは金属、特にステンレスの粉末や繊維の
焼結体であり、水素透過のための連通孔からなる細い空
孔を有している。枠体3と多孔質支持体4とは、リーク
を生じないように溶接、ろう付けなどによつて接合さ
れ、接合部6を有している。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a hydrogen permeable membrane unit according to a first embodiment of the present invention. FIG. 1 shows a hydrogen permeable membrane unit 1 having substantially the same components as those of the conventional example. That is, the hydrogen permeable membrane unit 1 has a hydrogen permeable membrane 2 made of Pd or a Pd alloy, and this hydrogen permeable membrane 2 is bonded to at least one of the metal frame 3 and the porous support 4. It is joined by a part 5. The bonding portion 5 is formed by plating on the porous support 4,
The hydrogen permeable film 2 is formed at the same time by forming the hydrogen permeable film 2 by a method such as CVD (gas phase chemical reaction), sputtering, ion plating, or vapor deposition. The porous support 4 is
It is a sintered body of powder or fiber of ceramics, glass, stainless steel or the like, preferably a sintered body of powder or fiber of metal, particularly stainless steel, and has fine pores formed of communication holes for hydrogen permeation. The frame 3 and the porous support 4 are joined by welding, brazing or the like so as not to cause a leak, and have a joint 6.

【0018】水素透過膜ユニット1の製造に際しては、
予め、多孔質支持体4の少なくとも表層部に穴埋材7を
含有させ、多孔質支持体4の表面の空孔を穴埋材7によ
つて塞ぐ。その後、この多孔質支持体4及び穴埋材7の
上に水素透過膜2を成膜・接合させ、その後に穴埋材7
を除去し、水素透過のための連通孔を復活させる。な
お、図2の多孔質支持体4は、焼結体の表面に位置する
多孔体粒子4aのみを示し、他の多孔体粒子4aは省略
してある。
In manufacturing the hydrogen permeable membrane unit 1,
The hole-filling material 7 is contained at least in the surface layer of the porous support 4 in advance, and pores on the surface of the porous support 4 are closed by the hole-filling material 7. After that, the hydrogen permeable membrane 2 is formed and bonded on the porous support 4 and the hole filling material 7.
Is removed, and the communication hole for hydrogen permeation is restored. Note that the porous support 4 in FIG. 2 shows only the porous particles 4a located on the surface of the sintered body, and the other porous particles 4a are omitted.

【0019】具体的には、多孔質支持体4の表層部に穴
埋材7である樹脂を含有させ、細孔を塞いでほぼ平滑面
を形成させ、必要に応じて穴埋材7を含有する多孔質支
持体4の表面を平滑に削成した後、水素透過金属からな
る水素透過膜2を成膜させる。穴埋材7は、溶融状態の
ものを塗布などの手段によつて多孔質支持体4に含有さ
せ、硬化させることで形成することができ、多孔質支持
体4よりも低融点のものが望ましい。水素透過膜2を成
膜させた後、穴埋材7を除去して多孔質支持体4の連通
孔を復活させる。穴埋材7が樹脂からなる場合には、穴
埋材7を有する多孔質支持体4及び水素透過膜2を適当
な有機溶剤中に浸し、穴埋材7を溶融除去させる。ま
た、穴埋材7が熱可塑性樹脂からなる場合には、穴埋材
7を有する多孔質支持体4及び水素透過膜2を加熱し、
穴埋材7を溶融除去させることもできる。
Specifically, a resin which is a filling material 7 is contained in the surface layer of the porous support 4 to form a substantially smooth surface by closing the pores, and the filling material 7 is contained if necessary. After smoothing the surface of the porous support 4 to be formed, a hydrogen-permeable film 2 made of a hydrogen-permeable metal is formed. The filling material 7 can be formed by incorporating a material in a molten state into the porous support 4 by means of coating or the like and curing the material. A material having a melting point lower than that of the porous support 4 is desirable. . After the hydrogen permeable membrane 2 is formed, the hole filling material 7 is removed, and the communication holes of the porous support 4 are restored. When the filling material 7 is made of resin, the porous support 4 having the filling material 7 and the hydrogen permeable membrane 2 are immersed in an appropriate organic solvent to melt and remove the filling material 7. When the filling material 7 is made of a thermoplastic resin, the porous support 4 having the filling material 7 and the hydrogen permeable membrane 2 are heated,
The hole filling material 7 can be melted and removed.

【0020】これにより、ほぼ平滑面にした多孔質支持
体4の表面に水素透過膜2を成膜させることになるの
で、多孔質支持体4の上に薄い水素透過膜2を成膜させ
ながら、水素透過膜2にピンホールが形成されることを
防止することができる。すなわち、水素透過膜2に、多
孔質支持体4の細孔を埋めるための膜厚を与える必要が
なく、目的に沿つた必要最小限の膜厚で均一にコーティ
ングすることができる。水素透過金属である水素透過膜
2の膜厚は、水素透過膜ユニット1をメンブレンリアク
タに組み込み、メンブレンリアクタを運転させる際に負
荷される圧力に対して、膜が多孔質支持体4の空孔部分
で破損しない強度を保てる程度でよい。
As a result, the hydrogen permeable film 2 is formed on the surface of the porous support 4 having a substantially smooth surface, so that the thin hydrogen permeable film 2 is formed on the porous support 4 In addition, it is possible to prevent pinholes from being formed in the hydrogen permeable film 2. That is, there is no need to provide the hydrogen permeable membrane 2 with a film thickness for filling the pores of the porous support 4, and it is possible to uniformly coat the hydrogen permeable film 2 with a minimum necessary film thickness for the purpose. The thickness of the hydrogen permeable membrane 2, which is a hydrogen permeable metal, depends on the pressure applied when the hydrogen permeable membrane unit 1 is incorporated into the membrane reactor and the membrane reactor is operated. It only needs to be strong enough not to break at the part.

【0021】図3は、水素透過膜2の他の構造例を示
し、水素透過膜2が、Pd又はPd合金2a、非Pd合
金2b及びPd又はPd合金2cの3層構造を有してい
る。この場合にも、多孔質支持体4の表面に水素透過膜
2を形成する前に、樹脂からなる穴埋材7を塗布などの
手段によつて含浸させ、金属多孔体である多孔質支持体
4の孔を塞ぎ、多孔質支持体4の一側表面を平滑な状態
にする。
FIG. 3 shows another example of the structure of the hydrogen permeable film 2. The hydrogen permeable film 2 has a three-layer structure of Pd or Pd alloy 2a, non-Pd alloy 2b and Pd or Pd alloy 2c. . Also in this case, before the hydrogen permeable membrane 2 is formed on the surface of the porous support 4, a hole filling material 7 made of resin is impregnated by means such as coating to form a porous support made of a porous metal. The pores of No. 4 are closed, and one surface of the porous support 4 is made smooth.

【0022】続いて、穴埋材7を含有させた多孔質支持
体4の平滑表面上に、水素透過膜2を形成させる。水素
透過膜2は、Pd又はPd合金2a、非Pd合金2b、
Pd又はPd合金2cの順に成膜させる。このようにし
て水素透過膜2を接合させた多孔質支持体4は、穴埋材
7の種類に応じた所要の手段、つまり、加熱、溶剤の塗
布等の手段により、穴埋材7を除去する。穴埋材7の除
去は、減圧環境下で行なうこともできる。
Subsequently, the hydrogen permeable membrane 2 is formed on the smooth surface of the porous support 4 containing the filling material 7. The hydrogen permeable membrane 2 is made of Pd or a Pd alloy 2a, a non-Pd alloy 2b,
Pd or a Pd alloy 2c is formed in this order. The porous support 4 to which the hydrogen permeable membrane 2 has been bonded in this manner is used to remove the hole filling material 7 by a necessary means according to the type of the hole filling material 7, that is, by heating, applying a solvent, or the like. I do. The removal of the filling material 7 can also be performed under a reduced pressure environment.

【0023】この構造例によれば、水素透過膜2を、多
孔質支持体4の孔が穴埋材7によつて塞がれて平滑表面
をなしている状態で形成させるため、特にPd又はPd
合金2aに孔を埋めるための膜厚を与える必要はなく、
目的に沿つた必要最小限の膜厚でコーティングすること
ができる。すなわち、図3に示す水素透過膜2では、非
Pd合金2bに耐酸化性を付与できる程度のPd又はP
d合金2a,2cの膜厚でよい。水素透過膜ユニット1
をメンブレンリアクタに組み込み、メンブレンリアクタ
を運転させる際に負荷される圧力に対しては、Pd又は
Pd合金2a、非Pd合金2b及びPd又はPd合金2
cの3層構造によつて対抗することになる。なお、薄層
をなすPd又はPd合金2a,2cは、耐酸化性と水素
分子の解離性(触媒能)と水素透過能とが備わつていれ
ばよく、Pdを含む白金族元素(Ru,Rh,Os,I
r,Pt)及びその合金を広く使用することが可能であ
る。
According to this structural example, the hydrogen permeable membrane 2 is formed in a state where the pores of the porous support 4 are closed by the hole filling material 7 to form a smooth surface. Pd
There is no need to give the alloy 2a a film thickness to fill the holes,
Coating can be performed with the minimum necessary film thickness according to the purpose. That is, in the hydrogen-permeable film 2 shown in FIG. 3, Pd or Pd is sufficient to provide the non-Pd alloy 2b with oxidation resistance.
The thickness of the d alloys 2a and 2c may be sufficient. Hydrogen permeable membrane unit 1
Is incorporated in the membrane reactor, and Pd or Pd alloy 2a, non-Pd alloy 2b and Pd or Pd alloy 2 are applied to the pressure applied when operating the membrane reactor.
c. The thin layer of Pd or the Pd alloys 2a and 2c only needs to have oxidation resistance, hydrogen molecule dissociation (catalytic ability) and hydrogen permeability, and a platinum group element containing Pd (Ru , Rh, Os, I
(r, Pt) and its alloys can be widely used.

【0024】図4〜図7は、本発明に係る水素透過膜ユ
ニット1の第2実施の形態を示し、第1実施の形態と同
一部分には同一符号を付してある。第2実施の形態にあ
つては、図4に示すように多孔質支持体4に穴埋材7を
含浸させた後、図5に示すように多孔質支持体4の表面
に多孔体粒子4aからなる僅かな凸部4bを形成させ、
その後、図6に示すように凸部4bの上に水素透過膜2
を成膜させ、図7に示すように穴埋材7を除去してい
る。従つて、第1実施の形態と比較して、水素透過膜2
との接合部5が凸部4bに広く形成されている。この水
素透過膜2は、図7に示すように例えばPd又はPd合
金2a、非Pd合金2b及びPd又はPd合金2cの3
層構造を有している。この多孔質支持体4の上に形成す
るPd又はPd合金2aは、非Pd合金2bに耐酸化性
を付与するように形成させればよく、非Pd合金2bに
露出箇所を生じさせない程度に薄く形成させることがで
きる。これにより、多孔体粒子4aの凸部4bと水素透
過膜2との凹凸係合によるアンカー効果が生じるので、
水素透過膜2の耐剥離性が向上する。なお、凸部4b
が、Pd又はPd合金2aのみならず非Pd合金2bに
対しても凹凸係合する状態にすれば、アンカー効果が良
好に生じる。
FIGS. 4 to 7 show a second embodiment of the hydrogen permeable membrane unit 1 according to the present invention, and the same parts as those in the first embodiment are denoted by the same reference numerals. In the second embodiment, after the porous support 4 is impregnated with the hole filling material 7 as shown in FIG. 4, the porous particles 4a are formed on the surface of the porous support 4 as shown in FIG. A slight convex portion 4b made of
After that, as shown in FIG.
Is formed, and the hole filling material 7 is removed as shown in FIG. Therefore, as compared with the first embodiment, the hydrogen permeable membrane 2
Is widely formed on the projection 4b. As shown in FIG. 7, this hydrogen permeable film 2 is made of, for example, Pd or Pd alloy 2a, non-Pd alloy 2b and Pd or Pd alloy 2c.
It has a layered structure. The Pd or Pd alloy 2a formed on the porous support 4 may be formed so as to impart oxidation resistance to the non-Pd alloy 2b, and is thin enough not to cause an exposed portion in the non-Pd alloy 2b. Can be formed. As a result, an anchor effect is generated due to the concave-convex engagement between the convex portions 4b of the porous particles 4a and the hydrogen permeable membrane 2, so that
The peel resistance of the hydrogen permeable film 2 is improved. The protrusion 4b
However, the anchor effect can be satisfactorily generated if the uneven engagement is performed not only with Pd or the Pd alloy 2a but also with the non-Pd alloy 2b.

【0025】ところで、非Pd合金2bとしてTaを使
用する場合、Taは、水素透過能に優れているが、耐水
素脆性に乏しい。本発明者等は、Taに、水素化物生成
を抑制させる効果があるFe及びMoの内の少なくとも
1種の金属元素を添加金属として添加することにより、
Taの水素透過能の低下を僅かな量に抑えつつ、耐水素
脆性が向上することを見いだした。これらの添加金属の
添加量が少量では、十分な水素化物抑制効果が認められ
ないことから、添加量が5原子%以上、好ましくは下限
が10原子%であることが望ましい。一方、これらの添
加は、透過能を低下させる効果を有することから、大量
添加は水素透過能を著しく減少させる。そこで、Fe又
はMoのTaへの添加量は、70原子%以下、好ましく
は上限が60原子%であることが望ましい。
When Ta is used as the non-Pd alloy 2b, Ta has excellent hydrogen permeability, but poor hydrogen embrittlement resistance. By adding at least one metal element of Fe and Mo, which has an effect of suppressing hydride generation, to Ta as an additional metal,
It has been found that the hydrogen embrittlement resistance is improved while suppressing the decrease in the hydrogen permeability of Ta to a small amount. If the addition amount of these additional metals is small, a sufficient hydride suppression effect is not recognized, so that the addition amount is desirably 5 atomic% or more, and preferably the lower limit is 10 atomic%. On the other hand, since these additions have the effect of lowering the permeability, a large amount of addition significantly reduces the hydrogen permeability. Therefore, the amount of Fe or Mo added to Ta is desirably 70 atomic% or less, and preferably has an upper limit of 60 atomic%.

【0026】このようなTaをベース金属とし、Fe及
びMoの内の少なくとも1種の金属元素を添加したTa
合金を用いる水素透過膜2によれば、水素透過性と耐水
素脆化性とを両立させることが可能である。加えて、T
a、Fe及びMoは、いずれもPd合金よりも材料単価
が非常に低廉かつ入手容易であるため、水素透過膜2を
安価かつ十分に供給することが可能になる。なお、Ta
にFe及びMoの内の少なくとも1種を添加すると、い
ずれの場合においても水素透過係数は減少するものの、
冷却時における割れの発生が抑制される。水素透過膜2
に、Taをベース金属とし、Fe及びMoの内の少なく
とも1種の金属元素を添加したTa合金を用いることに
より、Pd又はPd合金とほぼ同等又はそれ以上に水素
透過性又は耐水素脆化性に優れる水素透過膜を得ること
ができる。
[0026] Such Ta is used as a base metal, and Ta added with at least one metal element of Fe and Mo is used.
According to the hydrogen permeable film 2 using an alloy, it is possible to achieve both hydrogen permeability and hydrogen embrittlement resistance. In addition, T
Since a, Fe, and Mo are all very inexpensive and easily available as compared with the Pd alloy, it is possible to supply the hydrogen permeable membrane 2 at low cost and sufficiently. In addition, Ta
When at least one of Fe and Mo is added to, the hydrogen permeability coefficient decreases in any case,
Generation of cracks during cooling is suppressed. Hydrogen permeable membrane 2
By using Ta as a base metal and using a Ta alloy to which at least one metal element of Fe and Mo is added, hydrogen permeability or hydrogen embrittlement resistance is substantially equal to or more than Pd or a Pd alloy. And a hydrogen permeable membrane having excellent heat resistance can be obtained.

【0027】なお、図3に示すように水素透過膜2が非
Pd合金を含んで3層をなす場合、つまりPd又はPd
合金2a、非Pd合金2b及びPd又はPd合金2cを
有する場合には、多孔体粒子4aの凸部4bがPd又は
Pd合金2aにのみ凹凸係合するよりも、多孔質支持体
4側のPd又はPd合金2a膜を形成した状態におい
て、凸部4bがPd又はPd合金2aの表面から露出す
る程度の大きさに凸部4bを形成し、その上に非Pd合
金2bを成膜させ、凸部4bと非Pd合金2bとを凹凸
係合させることが望まれる。これにより、多孔体粒子4
aの凸部4bと非Pd合金2bとの凹凸係合によるアン
カー効果が良好に生じるので、水素透過膜2の耐剥離性
を向上させることができる。
As shown in FIG. 3, when the hydrogen permeable film 2 is made of three layers including a non-Pd alloy, that is, Pd or Pd
In the case of having the alloy 2a, the non-Pd alloy 2b and the Pd or Pd alloy 2c, the Pd on the porous support 4 side is larger than the protrusions 4b of the porous particles 4a are engaged with the Pd or Pd alloy 2a only. Alternatively, in a state where the Pd alloy 2a film is formed, the convex portion 4b is formed in such a size that the convex portion 4b is exposed from the surface of the Pd or the Pd alloy 2a, and the non-Pd alloy 2b is formed thereon. It is desired that the portion 4b and the non-Pd alloy 2b be engaged in a concave and convex manner. Thereby, the porous material particles 4
Since the anchor effect is favorably generated by the concave-convex engagement between the convex portion 4b and the non-Pd alloy 2b, the peeling resistance of the hydrogen-permeable film 2 can be improved.

【0028】[0028]

【実施例】〔実施例1〕母材に平均細孔径1μmのステ
ンレス多孔体を準備し、このステンレス製の多孔質支持
体4の表層部に樹脂を含浸させ、穴埋材7とした。その
後、研磨により、多孔質支持体4の表面の余分な樹脂を
除去し、この多孔質支持体4の表面に、Pd、Ta(非
Pd合金)、Pdの順にスパッタリング法により表1に
示す厚さにコーティングを行い、図3に示すものと同様
の構造の水素透過膜2を形成させた。コーティングの
後、真空中で加熱して樹脂を溶融除去させ、試料iを作
製した。
EXAMPLES Example 1 A porous stainless steel body having an average pore diameter of 1 μm was prepared as a base material, and a resin was impregnated into the surface layer of the porous support 4 made of stainless steel to obtain a hole filling material 7. Thereafter, excess resin on the surface of the porous support 4 is removed by polishing, and Pd, Ta (non-Pd alloy), and Pd are deposited on the surface of the porous support 4 in this order by a sputtering method. Then, coating was performed to form a hydrogen permeable membrane 2 having the same structure as that shown in FIG. After the coating, the resin was melted and removed by heating in a vacuum to prepare a sample i.

【0029】また、比較例i,iiとして、同様の多孔
質支持体4に穴埋材7を含浸させずに、Pd、Ta(非
Pd合金)、Pdからなる金属透過膜をそれぞれ表1に
示す厚さにコーティングした比較試料i,iiを用意し
た。
As Comparative Examples i and ii, metal permeable membranes made of Pd, Ta (non-Pd alloy), and Pd without impregnating the same porous support 4 with the hole filling material 7 are shown in Table 1, respectively. Comparative samples i and ii coated to the indicated thickness were prepared.

【0030】これらの試料i及び比較試料i,iiを水
素透過試験装置に設置し、500℃における水素透過速
度を測定したところ、実施例1に係る試料iに関しては
表1に示す値(130cm3 /cm2 /min)が得ら
れた。
These sample i and comparative samples i and ii were set in a hydrogen permeation test apparatus, and the hydrogen permeation rate at 500 ° C. was measured. As for sample i according to Example 1, the value shown in Table 1 (130 cm 3) was obtained. / Cm 2 / min).

【0031】 〔表1〕 試料名 : 実施例1(樹脂埋め有り) 透過膜厚さ: Pd:50nm+Ta:10μm+Pd:50nm 透過速度 : 130cm3 /cm2 /min 試料名 : 比較例i(樹脂埋め無し) 透過膜厚さ: Pd:50nm+Ta:10μm+Pd:50nm 透過速度 : リーク有り 試料名 : 比較例ii(樹脂埋め無し) 透過膜厚さ: Pd:50nm+Ta:30μm+Pd:50nm 透過速度 : 透過せず [Table 1] Sample name: Example 1 (with resin filling) Transmission film thickness: Pd: 50 nm + Ta: 10 μm + Pd: 50 nm Transmission speed: 130 cm 3 / cm 2 / min Sample name: Comparative example i (without resin filling) ) Transmission film thickness: Pd: 50 nm + Ta: 10 μm + Pd: 50 nm Transmission speed: Leaked Sample name: Comparative example ii (without resin filling) Transmission film thickness: Pd: 50 nm + Ta: 30 μm + Pd: 50 nm Transmission speed: No transmission

【0032】比較例iに係る比較試料iについては、透
過試験前のHeを用いた膜のリークチェックにより、リ
ークが認められた。この比較試料iでは、金属透過膜の
コーティング前の穴埋材7の形成を行なわなかつたた
め、多孔質支持体4の空孔が薄い金属透過膜(Pd、T
a、Pd)によつて完全には塞がらなかつたものと推定
される。また、比較試料iiに関しては、Heのリーク
は認められなかつたものの、水素透過が生じなかつた。
これは、Pdが50nmと薄いために、図12に示すも
のと同様に、多孔質支持体4側においてPd(Pd又は
Pd合金51a)とTa(非Pd合金51b)が接触し
ない箇所を生じ、このTa(非Pd合金51b)の露出
部位においてTaが酸化されて透過能が消失したものと
考えられる。
As for the comparative sample i according to the comparative example i, a leak was confirmed by a leak check of the film using He before the transmission test. In this comparative sample i, since the hole filling material 7 was not formed before coating with the metal permeable membrane, the pores of the porous support 4 were thin and the metal permeable membrane (Pd, T
a, Pd), it is presumed that it was not completely closed. Further, for the comparative sample ii, although He leakage was not observed, hydrogen permeation did not occur.
Since Pd is as thin as 50 nm, as in the case shown in FIG. 12, a portion where Pd (Pd or Pd alloy 51a) and Ta (non-Pd alloy 51b) do not come into contact on the porous support 4 side is generated. It is considered that Ta was oxidized at the exposed portion of the Ta (non-Pd alloy 51b), and the permeability was lost.

【0033】〔実施例2〕実施例1と同様に、多孔質支
持体4の表面の余分な樹脂からなる穴埋材7を除去した
後、多孔質支持体4の表面にスパッタリングエッチング
を行なつた。樹脂はステンレスよりもエッチング率が大
きく、多量に飛散(蒸発)するので、穴埋材7を選択的
に除去することが可能である。このようにして、穴埋材
7を僅かに除去して多孔体表面、つまり多孔質支持体4
の表面の多孔体粒子4aに凸部4bを生じさせ、その
後、Pd、非Pd合金2bとしてのTa、Pdの順に実
施例1と同様に成膜させて水素透過膜2を形成させ、試
料iiiを製作した。また、比較例iiiとして、凸部
4bを有しない点でのみ試料iiiと相違する比較試料
iii、つまり凸部4bを生じさせないで水素透過膜2
を成膜させた実施例1と同様の比較試料iiiを用意し
た。
Example 2 In the same manner as in Example 1, the surface of the porous support 4 was subjected to sputtering etching after removing the excess resin filling material 7 made of resin from the surface of the porous support 4. Was. Since the resin has a higher etching rate than stainless steel and scatters (evaporates) in a large amount, the hole filling material 7 can be selectively removed. In this manner, the hole filling material 7 is slightly removed, and the surface of the porous body, that is, the porous support 4 is removed.
Then, a convex portion 4b is formed on the porous particles 4a on the surface of Pd, and then a film of Pd, Ta as the non-Pd alloy 2b, and Pd are formed in this order in the same manner as in Example 1 to form the hydrogen permeable film 2, and the sample iii Was made. Further, as Comparative Example iii, a comparative sample iii which is different from Sample iii only in that it does not have the convex portion 4b, that is, the hydrogen permeable membrane 2 having no convex portion 4b.
A comparative sample iii similar to that of Example 1 in which was formed into a film was prepared.

【0034】これらの試料iii及び比較試料iiiに
ついて、水素吸蔵・放出試験を繰り返し行なつた。その
結果、前者における膜が剥離するまでの繰り返し回数
は、後者を上回り、凸部4bの積極的な形成により耐剥
離性が向上することが認められた。
A hydrogen storage / release test was repeatedly performed on these sample iii and comparative sample iii. As a result, it was recognized that the number of repetitions until the film was peeled in the former exceeded that of the latter, and that the peeling resistance was improved by the active formation of the projections 4b.

【0035】図8〜図10は、本発明に係る水素透過膜
ユニット1の第3実施の形態を示し、第1実施の形態と
同一部分には同一符号を付してある。第3実施の形態に
あつては、先ず、図8に示すように多孔質支持体4の表
面を研磨し、多孔質支持体4の表面の空孔を多孔質支持
体4の多孔体粒子4aの研磨片からなる肉薄部分4cに
よつてほぼ塞ぎ、平滑状平面を形成させる。肉薄部分4
cは、研磨することにより、多孔質支持体4の表層の一
部が潰れて塑性変形した肉薄の研磨片を生じて形成され
る。その後、この多孔質支持体4の平滑状平面をなす表
面上に、図9に示すように水素透過膜2を成膜・接合さ
せる。この水素透過膜2は、非Pd合金2bに相当する
Ta若しくはその合金の両面を白金族元素若しくはその
合金(2a,2c)で挟んだものであり、図3に示すも
のと同様にサンドイッチ状をなしている。
FIGS. 8 to 10 show a third embodiment of the hydrogen permeable membrane unit 1 according to the present invention, and the same parts as those in the first embodiment are denoted by the same reference numerals. In the third embodiment, first, as shown in FIG. 8, the surface of the porous support 4 is polished to remove pores on the surface of the porous support 4 so that the porous particles 4a of the porous support 4 are removed. This is almost closed by the thin portion 4c made of the polishing piece to form a smooth flat surface. Thin part 4
By polishing, part of the surface layer of the porous support 4 is crushed to form a thin polished piece plastically deformed. Thereafter, a hydrogen permeable membrane 2 is formed and bonded on the surface of the porous support 4 which forms a smooth flat surface, as shown in FIG. This hydrogen permeable membrane 2 is formed by sandwiching both sides of Ta corresponding to the non-Pd alloy 2b or an alloy thereof with a platinum group element or an alloy thereof (2a, 2c), and has a sandwich shape as shown in FIG. No.

【0036】次に、水素透過膜2を成膜させた多孔質支
持体4を腐食液に浸し、肉薄部分4cを溶解させて除去
し、水素透過のための連通孔を復活させる。水素透過膜
2は、多孔体粒子4aの表面に接合されたままである。
腐食液は、水洗して除去させる。多孔質支持体4をステ
ンレス鋼によつて製作し、多孔質支持体4に接する透過
膜を白金族元素又は白金族元素を含んだ合金によつて製
作すれば、この透過膜の耐腐食性が良好なため、腐食液
によつて侵され難い。このため、肉薄部分4cが、多孔
体粒子4aに比して早期に溶解・除去される。従つて、
腐食液は、多孔質支持体4を早期又は選択的に溶解さ
せ、多孔質支持体4に接合する水素透過膜2を溶解させ
難い液体であればよく、多孔質支持体4及び水素透過膜
2の材料に応じて、王水、希硝酸などが使用される。
Next, the porous support 4 on which the hydrogen permeable membrane 2 has been formed is immersed in a corrosive liquid to dissolve and remove the thin portion 4c, thereby restoring the communication hole for hydrogen permeation. The hydrogen permeable membrane 2 remains bonded to the surface of the porous particles 4a.
The etchant is removed by washing with water. If the porous support 4 is made of stainless steel and the permeable membrane in contact with the porous support 4 is made of a platinum group element or an alloy containing a platinum group element, the corrosion resistance of the permeable membrane is reduced. Good, not easily attacked by corrosive liquids. For this reason, the thin portion 4c is dissolved and removed earlier than the porous particles 4a. Therefore,
The etchant may be any liquid that dissolves the porous support 4 early or selectively and hardly dissolves the hydrogen permeable membrane 2 bonded to the porous support 4. Aqua regia, diluted nitric acid, and the like are used depending on the material used.

【0037】[0037]

【発明の効果】以上の説明によつて理解されるように、
本発明に係る水素透過膜ユニット及びその製造方法によ
れば、次の効果を奏することができる。請求項1〜5に
係る発明によれば、Pd又はPd合金を含む白金族元素
又はその合金などの水素透過膜を薄膜化させ、その使用
量を削減することができる。これにより、水素透過膜の
製作、ひいては水素透過膜ユニットの製作を容易かつ安
価とすることができる。
As will be understood from the above description,
According to the hydrogen permeable membrane unit and the method of manufacturing the same according to the present invention, the following effects can be obtained. According to the first to fifth aspects of the present invention, the hydrogen-permeable film made of a platinum group element containing Pd or a Pd alloy or an alloy thereof can be made thinner, and the amount of use thereof can be reduced. This makes it easy and inexpensive to manufacture the hydrogen permeable membrane and thus the hydrogen permeable membrane unit.

【0038】加えて、請求項1〜3に係る発明によれ
ば、多孔質支持体の少なくとも表層部に穴埋材を含有さ
せて表面の空孔を塞いだ後、多孔質支持体の表面に水素
透過膜を成膜させ、次いで、穴埋材を除去する。このよ
うに、多孔質支持体の孔を穴埋材によつて埋めて事実上
の平滑面を形成した後に水素透過膜を成膜させるので、
ピンホールを防止しながら、水素透過膜の厚さを必要最
小限に抑えることができる。その結果、水素透過膜ユニ
ットの水素透過能が向上するのみならず、成膜に使用す
る材料を削減して、重量を低減させることができる。
In addition, according to the first to third aspects of the present invention, at least the surface layer portion of the porous support is filled with a hole filling material to close the pores on the surface, and then the surface of the porous support is A hydrogen permeable film is formed, and then the hole filling material is removed. As described above, the hydrogen permeable membrane is formed after the pores of the porous support are filled with the hole filling material to form a practically smooth surface.
The thickness of the hydrogen permeable membrane can be minimized while preventing pinholes. As a result, not only can the hydrogen permeability of the hydrogen permeable membrane unit be improved, but also the material used for film formation can be reduced and the weight can be reduced.

【0039】請求項3に係る発明によれば、更に、多孔
質支持体の表面の穴埋材を一部除去して多孔体粒子から
なる凸部を形成させた後、多孔質支持体及び穴埋材の表
面に水素透過膜を成膜させるので、水素透過膜が多孔質
支持体に凹凸係合した状態になり、水素透過膜の耐剥離
性が向上する。その結果、多孔質支持体と水素透過膜と
の熱膨張差に起因する剥離が抑制され、材料に制限を受
け難くなると共に、水素透過膜ユニットの耐久性が向上
する。特に、水素透過膜が水素吸蔵性能を有する金属に
て製作されている場合には、水素吸蔵時に体積膨張を生
ずるが、これに起因する剥離も抑制されることになり、
水素透過膜ユニットの耐久性が著しく向上する。
According to the third aspect of the present invention, after the hole filling material on the surface of the porous support is partially removed to form a projection made of porous particles, the porous support and the hole are removed. Since the hydrogen permeable film is formed on the surface of the filling material, the hydrogen permeable film is in a state of being unevenly engaged with the porous support, and the peeling resistance of the hydrogen permeable film is improved. As a result, peeling due to the difference in thermal expansion between the porous support and the hydrogen permeable membrane is suppressed, the material is not easily restricted, and the durability of the hydrogen permeable membrane unit is improved. In particular, when the hydrogen permeable film is made of a metal having a hydrogen storage performance, volume expansion occurs at the time of hydrogen storage, but peeling due to this is also suppressed,
The durability of the hydrogen permeable membrane unit is significantly improved.

【0040】請求項4に係る発明によれば、多孔質支持
体の表層部に研磨を施して研磨片からなる肉薄部分を形
成し、該肉薄部分によつて表面の空孔を大略塞いで平滑
状平面を形成させた後、該多孔質支持体の表面に水素透
過膜を成膜させ、次いで、肉薄部分を除去する。このよ
うに、多孔質支持体の孔を多孔質支持体の肉薄部分によ
つて埋めて平滑状面を形成した後に水素透過膜を成膜さ
せるので、請求項1,2に係る発明と同様の効果を奏す
ることができる。
According to the fourth aspect of the present invention, the surface layer of the porous support is polished to form a thin portion made of a polished piece, and the thin portion substantially closes the pores on the surface and is smooth. After forming the flat surface, a hydrogen permeable film is formed on the surface of the porous support, and then the thin portion is removed. As described above, the hydrogen permeable membrane is formed after the pores of the porous support are filled with the thin portions of the porous support to form a smooth surface, and thus the same as in the first and second aspects of the present invention. The effect can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施の形態に係る水素透過膜ユ
ニットの概略を示す断面図。
FIG. 1 is a sectional view schematically showing a hydrogen permeable membrane unit according to a first embodiment of the present invention.

【図2】 同じく要部を示す拡大図。FIG. 2 is an enlarged view showing a main part of the same.

【図3】 他の構造例に係る水素透過膜ユニットの要部
を示す拡大図。
FIG. 3 is an enlarged view showing a main part of a hydrogen permeable membrane unit according to another structural example.

【図4】 本発明の第2実施の形態に係る水素透過膜ユ
ニットの製造過程を示す拡大図。
FIG. 4 is an enlarged view showing a manufacturing process of the hydrogen permeable membrane unit according to the second embodiment of the present invention.

【図5】 同じく製造過程を示す拡大図。FIG. 5 is an enlarged view showing the same manufacturing process.

【図6】 同じく製造過程を示す拡大図。FIG. 6 is an enlarged view showing the same manufacturing process.

【図7】 本発明の第2実施の形態に係る水素透過膜ユ
ニットの要部を示す拡大図。
FIG. 7 is an enlarged view showing a main part of a hydrogen permeable membrane unit according to a second embodiment of the present invention.

【図8】 本発明の第3実施の形態に係る水素透過膜ユ
ニットの製造過程を示す拡大図。
FIG. 8 is an enlarged view showing a process of manufacturing the hydrogen permeable membrane unit according to the third embodiment of the present invention.

【図9】 同じく製造過程を示す拡大図。FIG. 9 is an enlarged view showing the same manufacturing process.

【図10】 本発明の第3実施の形態に係る水素透過膜
ユニットの要部を示す拡大図。
FIG. 10 is an enlarged view showing a main part of a hydrogen permeable membrane unit according to a third embodiment of the present invention.

【図11】 従来の水素透過膜ユニットを示す断面図。FIG. 11 is a sectional view showing a conventional hydrogen permeable membrane unit.

【図12】 同じく要部を示す拡大図。FIG. 12 is an enlarged view showing a main part of the same.

【図13】 同じく要部を示す拡大図。FIG. 13 is an enlarged view showing a main part of the same.

【符号の説明】[Explanation of symbols]

1:水素透過膜ユニット、2:水素透過膜、2a:Pd
又はPd合金(白金族元素又はその合金)、2b:非P
d合金、2c:Pd又はPd合金(白金族元素又はその
合金)、3:枠体、4:多孔質支持体、4a:多孔体粒
子、4b:凸部、4c:肉薄部分、5,6:接合部、
7:穴埋材。
1: hydrogen permeable membrane unit, 2: hydrogen permeable membrane, 2a: Pd
Or Pd alloy (platinum group element or alloy thereof), 2b: non-P
d alloy, 2c: Pd or Pd alloy (platinum group element or alloy thereof), 3: frame, 4: porous support, 4a: porous particle, 4b: convex portion, 4c: thin portion, 5, 6: Joints,
7: Filling material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海老沢 孝 神奈川県横浜市金沢区福浦2丁目2−1 株式会社日本製鋼所内 Fターム(参考) 4D006 GA41 MA07 MA08 MA10 MA31 MB03 MC02X MC03 MC04 NA31 NA32 NA33 NA46 NA49 NA50 PA01 PB66 PC69 4G040 FA02 FB09 FC01 FD04 FE01 5H027 AA02 BA16 DD05  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Takashi Ebisawa 2-2-1 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa F-term in Japan Steel Works, Ltd. (reference) 4D006 GA41 MA07 MA08 MA10 MA31 MB03 MC02X MC03 MC04 NA31 NA32 NA33 NA46 NA49 NA50 PA01 PB66 PC69 4G040 FA02 FB09 FC01 FD04 FE01 5H027 AA02 BA16 DD05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔質支持体(4)の表面に接合させた
水素透過膜(2)を有する水素透過膜ユニットであつ
て、前記水素透過膜(2)が、多孔質支持体(4)に含
有させた穴埋材(7)の上に成膜させた後に該穴埋材
(7)を除去して形成されていることを特徴とする水素
透過膜ユニット。
1. A hydrogen permeable membrane unit having a hydrogen permeable membrane (2) bonded to a surface of a porous support (4), wherein the hydrogen permeable membrane (2) is a porous support (4). A hydrogen permeable membrane unit formed by forming a film on the hole filling material (7) contained in the above and removing the hole filling material (7).
【請求項2】 多孔質支持体(4)の表面に接合させた
水素透過膜(2)を有する水素透過膜ユニットの製造方
法であつて、多孔質支持体(4)の少なくとも表層部に
穴埋材(7)を含有させて表面の空孔を塞いだ後、該多
孔質支持体(4)及び穴埋材(7)の表面に水素透過膜
(2)を成膜させ、次いで、穴埋材(7)を除去するこ
とを特徴とする水素透過膜ユニットの製造方法。
2. A method for producing a hydrogen permeable membrane unit having a hydrogen permeable membrane (2) bonded to a surface of a porous support (4), wherein a hole is formed in at least a surface layer of the porous support (4). After filling the pores on the surface with the filling material (7), a hydrogen-permeable membrane (2) is formed on the surfaces of the porous support (4) and the filling material (7). A method for manufacturing a hydrogen permeable membrane unit, comprising removing a filling material (7).
【請求項3】 多孔質支持体(4)の表面に接合させた
水素透過膜(2)を有する水素透過膜ユニットの製造方
法であつて、多孔質支持体(4)の少なくとも表層部に
穴埋材(7)を含有させて表面の空孔を塞ぐと共に、多
孔質支持体(4)の表面の穴埋材(7)を除去して多孔
体粒子(4a)からなる凸部(4b)を形成させた後、
多孔質支持体(4)及び穴埋材(7)の表面に水素透過
膜(2)を成膜させ、次いで、穴埋材(7)を除去する
ことを特徴とする水素透過膜ユニットの製造方法。
3. A method for producing a hydrogen permeable membrane unit having a hydrogen permeable membrane (2) bonded to a surface of a porous support (4), wherein a hole is formed in at least a surface layer of the porous support (4). The filling material (7) is contained to close the pores on the surface, and the filling material (7) on the surface of the porous support (4) is removed to form a convex portion (4b) made of porous particles (4a). After forming
Production of a hydrogen permeable membrane unit, characterized in that a hydrogen permeable membrane (2) is formed on the surfaces of the porous support (4) and the hole filling material (7), and then the hole filling material (7) is removed. Method.
【請求項4】 多孔質支持体(4)の表面に接合させた
水素透過膜(2)を有する水素透過膜ユニットの製造方
法であつて、多孔質支持体(4)の表層部に研磨を施し
て研磨片からなる肉薄部分(4c)を形成し、該肉薄部
分(4c)によつて表面の空孔を大略塞いで平滑状平面
を形成させた後、該多孔質支持体(4)の表面に水素透
過膜(2)を成膜させ、次いで、腐食液に浸して肉薄部
分(4c)を除去することを特徴とする水素透過膜ユニ
ットの製造方法。
4. A method for producing a hydrogen permeable membrane unit having a hydrogen permeable membrane (2) bonded to the surface of a porous support (4), wherein the surface layer of the porous support (4) is polished. To form a thin portion (4c) made of a polishing piece, and to form a smooth flat surface by substantially closing the pores on the surface with the thin portion (4c). A method for producing a hydrogen-permeable membrane unit, comprising: forming a hydrogen-permeable membrane (2) on the surface; and immersing the hydrogen-permeable membrane (2) in an etchant to remove the thin portion (4c).
【請求項5】 水素透過膜(2)が、非Pd合金(2
b)の表裏両面を白金族元素又はその合金(2a,2
c)によつてコーティングして形成されていることを特
徴とする請求項2,3又は4の水素透過膜ユニットの製
造方法。
5. A non-Pd alloy (2) comprising a hydrogen permeable membrane (2).
b) a platinum group element or its alloy (2a, 2
5. The method for producing a hydrogen-permeable membrane unit according to claim 2, wherein the hydrogen-permeable membrane unit is formed by coating according to c).
JP2001143409A 2001-05-14 2001-05-14 Hydrogen-permeable membrane unit and its manufacturing method Withdrawn JP2002336664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001143409A JP2002336664A (en) 2001-05-14 2001-05-14 Hydrogen-permeable membrane unit and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001143409A JP2002336664A (en) 2001-05-14 2001-05-14 Hydrogen-permeable membrane unit and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002336664A true JP2002336664A (en) 2002-11-26

Family

ID=18989562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001143409A Withdrawn JP2002336664A (en) 2001-05-14 2001-05-14 Hydrogen-permeable membrane unit and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002336664A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054788A (en) * 2005-08-26 2007-03-08 Sumitomo Metal Mining Co Ltd Hydrogen-permeable alloy membrane and its manufacturing method
JP2007229616A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hydrogen separation complex and its manufacturing method
JP2007307848A (en) * 2006-05-22 2007-11-29 National Institute For Materials Science Multilayered thin film and its manufacturing method
US7393392B2 (en) 2004-02-27 2008-07-01 Mikuni Corporation Hydrogen-permeable membrane and process for production thereof
WO2008081855A1 (en) 2006-12-28 2008-07-10 Mikuni Corporation Hydrogen permeable film and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393392B2 (en) 2004-02-27 2008-07-01 Mikuni Corporation Hydrogen-permeable membrane and process for production thereof
JP2007054788A (en) * 2005-08-26 2007-03-08 Sumitomo Metal Mining Co Ltd Hydrogen-permeable alloy membrane and its manufacturing method
JP2007229616A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Hydrogen separation complex and its manufacturing method
JP2007307848A (en) * 2006-05-22 2007-11-29 National Institute For Materials Science Multilayered thin film and its manufacturing method
WO2008081855A1 (en) 2006-12-28 2008-07-10 Mikuni Corporation Hydrogen permeable film and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6649559B2 (en) Supported metal membrane, a process for its preparation and use
US6152987A (en) Hydrogen gas-extraction module and method of fabrication
JP4879883B2 (en) Multistage nanohole array metal membrane production method and gas / ion species selective membrane production method supported by the membrane structure
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
TW200836395A (en) Method for producing separator for fuel cell, separator for fuel cell, and fuel cell
WO2004011130A1 (en) Thin film supporting substrate used in filter for hydrogen production and method for manufacturing filter for hydrogen production
WO2009110428A1 (en) Compound material comprising silicone matrix and method of producing the same
JPH11276866A (en) Hydrogen-permeable membrane and its manufacture
US20020028345A1 (en) Process for preparing a composite metal membrane, the composite metal membrane prepared therewith and its use
JP3213053B2 (en) Method for producing hydrogen separation membrane
JP2004500484A (en) Method for forming thermomechanically stable metal / porous substrate composite film
KR101261994B1 (en) Filmy self-supporting thin metal film for hydrogen separation and process for producing the same
JP5526387B2 (en) Defect-free hydrogen separation membrane, method for producing defect-free hydrogen separation membrane, and hydrogen separation method
JP2002336664A (en) Hydrogen-permeable membrane unit and its manufacturing method
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JP2007268404A (en) Hydrogen purification filter and its production method
JP2005262082A (en) Hydrogen separation membrane, production method therefor, and hydrogen separation method
JPH04346824A (en) Hydrogen separating membrane
US8070860B2 (en) Pd menbrane having improved H2-permeance, and method of making
JP5093288B2 (en) Manufacturing method of fuel cell
JP4411409B2 (en) Method for manufacturing hydrogen permeation device
JP5061695B2 (en) Hydrogen purification filter and method for producing the same
CN112955269B (en) Method for producing an open-pore metal body with an oxide layer and metal body produced by this method
JP2003334418A (en) Manufacturing method for hydrogen separator
US20020164496A1 (en) Membrane and a method for making a membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100312