JP2002313338A - Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it - Google Patents

Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it

Info

Publication number
JP2002313338A
JP2002313338A JP2001116974A JP2001116974A JP2002313338A JP 2002313338 A JP2002313338 A JP 2002313338A JP 2001116974 A JP2001116974 A JP 2001116974A JP 2001116974 A JP2001116974 A JP 2001116974A JP 2002313338 A JP2002313338 A JP 2002313338A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
carbonate
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001116974A
Other languages
Japanese (ja)
Inventor
Katsuya Kase
克也 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001116974A priority Critical patent/JP2002313338A/en
Publication of JP2002313338A publication Critical patent/JP2002313338A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium composite oxide based positive electrode active material, its raw material, and a method for manufacturing it, allowing a nonaqueous electrolyte secondary battery having high charge and discharge capacity, excellent rate characteristics and excellent cycle characteristics. SOLUTION: In this method for manufacturing the raw material of a positive electrode active material, a solution of a transition metal compound, a neutralizer or alkali carbonate, and carbon oxide are supplied into a reaction tank as its inside is being agitated, and basic transition metal carbonate produced is continuously extracted, and the transition metal carbonate wherein a particle having a fillet diameter of 5-30 μm on a projected plan by SEM observation occupies 95 volume % is used as the raw material of the positive electrode, and it is mixed with lithium salt and fired at 800-1000 deg.C to obtain the positive electrode active material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にリチウムイオ
ン二次電池に使用される、非水系電解質二次電池用の正
極活物質、その原料、及びそれらの製造方法に関し、さ
らに詳しくは、高い充放電容量を有し、レート特性及び
サイクル特性にも優れた二次電池を与えるリチウム複合
酸化物系の正極活物質、その原料、及びそれらの製造方
法に関する。
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery mainly used for a lithium ion secondary battery, a raw material thereof, and a method for producing the same. The present invention relates to a lithium composite oxide-based positive electrode active material which provides a secondary battery having a charge / discharge capacity and excellent rate characteristics and cycle characteristics, a raw material thereof, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、携帯電話やノート型パソコン等の
携帯情報端末の普及に伴い、高エネルギー密度を有し小
型軽量な二次電池が強く求められている。このため、特
に、高電圧かつ高エネルギー密度を達成することが可能
な、リチウム等の軽金属を可動イオン種として含む炭素
材料を負極として、リチウムコバルト系複合酸化物(C
oの一部をNi、Mn等で置換した酸化物もあるが、以
下、LiCoOと称す)を正極として用いるリチウム
イオン二次電池に関する研究開発が広範に行われてお
り、初期容量特性やサイクル特性について多くの成果が
得られている。
2. Description of the Related Art In recent years, with the spread of portable information terminals such as portable telephones and notebook personal computers, small and lightweight secondary batteries having a high energy density have been strongly demanded. For this reason, in particular, a lithium-cobalt-based composite oxide (C
There is an oxide in which a part of o is replaced by Ni, Mn, etc., but hereafter, research and development on a lithium ion secondary battery using LiCoO 2 as a positive electrode has been extensively performed, and the initial capacity characteristics and cycle Many results have been obtained for the characteristics.

【0003】ところで、LiCoOは、一般に、例え
ば、炭酸リチウムと炭酸コバルトとを所定量混合し、6
00〜1100℃の温度で焼成する(特開平1−304
664号公報)、炭酸リチウムと平均粒径2〜25μm
の四三酸化コバルトとを所定量混合し、800〜900
℃で焼成する(特開平9−283144号)ことで得ら
れるが、LiCoO結晶は六方晶の結晶格子を持つこ
とから、通常、C軸に直角の方向に成長して板状の結晶
となりやすく、また、大きさも不揃いとなりやすい。
[0003] By the way, LiCoO 2 is generally prepared by mixing a predetermined amount of lithium carbonate and cobalt carbonate, for example.
Baking at a temperature of 00 to 1100 ° C. (JP-A-1-304)
664), lithium carbonate and an average particle size of 2 to 25 μm
Is mixed with a predetermined amount of cobalt trioxide, 800 to 900
It is obtained by firing at 0 ° C. (Japanese Patent Application Laid-Open No. 9-283144). However, since LiCoO 2 crystal has a hexagonal crystal lattice, it usually grows in a direction perpendicular to the C-axis and easily becomes a plate-like crystal. Also, the size tends to be irregular.

【0004】リチウムイオン二次電池の充放電容量を増
加させるには、単位体積当たりに充填できる活物質量を
増加、即ち、活物質の充填密度を増加させることが不可
欠であるが、従来のLiCoOでは、導電剤等と混合
しても隙間が多く、高い充填密度を得ることが困難であ
った。
In order to increase the charge / discharge capacity of a lithium ion secondary battery, it is essential to increase the amount of active material that can be filled per unit volume, that is, to increase the active material packing density. In No. 2 , even if mixed with a conductive agent or the like, there were many gaps, and it was difficult to obtain a high packing density.

【0005】また、LiCoO結晶と電解液間のリチ
ウムイオンの移動はC軸に垂直な面に対して起こるた
め、結晶成長がC軸に直角の方向に進んだ従来のLiC
oOでは、リチウムイオンの移動が制限され、リチウ
ムイオン二次電池の充放電特性、レート特性、サイクル
特性の面でも問題があった。
In addition, since the movement of lithium ions between the LiCoO 2 crystal and the electrolyte occurs on a plane perpendicular to the C axis, the conventional LiCO crystal growth proceeds in a direction perpendicular to the C axis.
In the case of oO 2 , the movement of lithium ions is restricted, and there are also problems in charge / discharge characteristics, rate characteristics, and cycle characteristics of the lithium ion secondary battery.

【0006】さらに、従来のLiCoOには1μm以
下の微粒子が多量に含まれるため、比表面積が増加し、
導電性を付与するために添加するカーボン等の導電剤の
量が多くなることで、二次電池内での正極活物質の充填
量が低下、充放電容量が低下するという問題があった。
また、高率放電特性を向上させて大電流を流すために正
極活物質の微粒子化を進めようとすると、著しく充填性
が低下したり、集電体から脱離したりするという問題点
もあった。
Further, since the conventional LiCoO 2 contains a large amount of fine particles of 1 μm or less, the specific surface area increases,
When the amount of the conductive agent such as carbon added for imparting conductivity increases, there is a problem that the filling amount of the positive electrode active material in the secondary battery decreases and the charge / discharge capacity decreases.
In addition, there is also a problem in that when the fine particle of the positive electrode active material is advanced in order to improve the high rate discharge characteristic and allow a large current to flow, the filling property is significantly reduced or the cathode active material is detached from the current collector. .

【0007】このため、結晶成長と共に粒子形成を制御
し、高い充放電容量を有し、レート特性及びサイクル特
性にも優れた非水系電解質二次電池を与えるリチウム複
合酸化物系の正極活物質を開発することが強く求められ
ていた。
[0007] Therefore, a lithium composite oxide-based positive electrode active material that controls non-aqueous electrolyte secondary batteries that controls particle formation together with crystal growth, has a high charge / discharge capacity, and is also excellent in rate characteristics and cycle characteristics. There was a strong demand for development.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
の従来技術の問題点に鑑み、高い充放電容量を有し、レ
ート特性及びサイクル特性にも優れた非水系電解質二次
電池を与えるリチウム複合酸化物系の正極活物質、その
原料、及びそれらの製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high charge / discharge capacity and excellent rate characteristics and cycle characteristics in view of the above-mentioned problems of the prior art. An object of the present invention is to provide a lithium composite oxide-based positive electrode active material, a raw material thereof, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】発明者らは、上記目的を
達成するために鋭意研究を重ねた結果、特定の製造方法
により得られ、SEM観察による投影図形のフィレー径
5〜30μmの粒子が95体積%以上を占める塩基性の
遷移金属炭酸塩を原料とし、これをリチウム塩と混合、
焼成することにより、所望とする、高い充放電容量を有
し、レート特性及びサイクル特性にも優れた非水系電解
質二次電池を与えるリチウム複合酸化物系の正極活物質
が得られることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, particles obtained by a specific manufacturing method and having a fillet diameter of 5 to 30 μm in a projected figure obtained by SEM observation are obtained. Using a basic transition metal carbonate occupying 95% by volume or more as a raw material, mixing this with a lithium salt,
By firing, it has been found that a lithium composite oxide-based positive electrode active material that provides a desired nonaqueous electrolyte secondary battery having a high charge / discharge capacity and excellent rate characteristics and cycle characteristics can be obtained. The present invention has been completed.

【0010】即ち、本発明の第1の発明によれば、遷移
金属化合物溶液と、中和剤又は炭酸アルカリと、炭酸ガ
スとを反応槽内を撹拌しつつ供給し、かつ、生成する塩
基性の遷移金属炭酸塩を連続的に抜き出すことを特徴と
する正極活物質原料の製造方法が提供される。
That is, according to the first aspect of the present invention, the transition metal compound solution, the neutralizing agent or the alkali carbonate, and the carbon dioxide gas are supplied while stirring the inside of the reaction vessel, and the generated basic Wherein the transition metal carbonate is continuously extracted.

【0011】また、本発明の第2の発明によれば、第1
の発明において、遷移金属化合物は、コバルト化合物、
ニッケル化合物、及びマンガン化合物からなる群から選
ばれる少なくとも1種の化合物であることを特徴とする
正極活物質原料の製造方法が提供される。
According to the second aspect of the present invention, the first aspect is provided.
In the invention of the transition metal compound is a cobalt compound,
A method for producing a positive electrode active material raw material is provided, which is at least one compound selected from the group consisting of a nickel compound and a manganese compound.

【0012】また、本発明の第3の発明によれば、第1
の発明において、中和剤又は炭酸アルカリは、アンモニ
ア、炭酸アンモニウム、炭酸ナトリウム、炭酸カリウ
ム、及び炭酸リチウムからなる群から選ばれる少なくと
も1種の化合物であることを特徴とする正極活物質原料
の製造方法が提供される。
Further, according to the third invention of the present invention, the first invention
Wherein the neutralizing agent or the alkali carbonate is at least one compound selected from the group consisting of ammonia, ammonium carbonate, sodium carbonate, potassium carbonate, and lithium carbonate. A method is provided.

【0013】また、本発明の第4の発明によれば、第1
〜第3のいずれかの発明において、中和剤又は炭酸アル
カリの供給量は、遷移金属化合物溶液の中和に必要な化
学量論量の1.1〜2.0倍であり、かつ、炭酸ガスの
供給量は、遷移金属化合物溶液の炭酸化に必要な化学量
論量から中和剤又は炭酸アルカリ中に存在する炭酸イオ
ン量を差し引いた量の3〜10倍であることを特徴とす
る正極活物質原料の製造方法が提供される。
According to the fourth aspect of the present invention, the first aspect is provided.
In any one of the third to third inventions, the supply amount of the neutralizing agent or the alkali carbonate is 1.1 to 2.0 times the stoichiometric amount required for neutralizing the transition metal compound solution, and The gas supply amount is 3 to 10 times the amount obtained by subtracting the amount of carbonate ions present in the neutralizing agent or the alkali carbonate from the stoichiometric amount required for carbonation of the transition metal compound solution. A method for producing a positive electrode active material material is provided.

【0014】また、本発明の第5の発明によれば、第1
〜第4のいずれかの発明において、塩基性の遷移金属炭
酸塩を、反応槽内に1〜24時間滞留させることを特徴
とする正極活物質原料の製造方法が提供される。
According to the fifth aspect of the present invention, the first aspect is provided.
In any one of the fourth to fourth inventions, there is provided a method for producing a positive electrode active material material, wherein a basic transition metal carbonate is retained in a reaction tank for 1 to 24 hours.

【0015】さらに、本発明の第6の発明によれば、第
1〜第5のいずれかの発明の製造方法により得られた正
極活物質原料であって、SEM観察による投影図形のフ
ィレー径5〜30μmの粒子が95体積%以上を占める
ことを特徴とする正極活物質原料が提供される。
Further, according to a sixth aspect of the present invention, there is provided a positive electrode active material raw material obtained by the production method according to any one of the first to fifth aspects, wherein a fillet diameter of a projected figure 5 A positive electrode active material raw material is provided, in which particles having a size of 〜30 μm account for 95% by volume or more.

【0016】一方、本発明の第7の発明によれば、第6
の発明の正極活物質原料と、リチウム塩とを混合し、非
還元性雰囲気下、800〜1000℃で焼成することを
特徴とする正極活物質の製造方法が提供される。
On the other hand, according to the seventh aspect of the present invention, the sixth aspect
A method for producing a positive electrode active material is provided, comprising mixing the positive electrode active material raw material according to the invention with a lithium salt and firing the mixture at 800 to 1000 ° C. in a non-reducing atmosphere.

【0017】また、本発明の第8の発明によれば、第7
の発明の製造方法により得られた正極活物質であって、
SEM観察による投影図形のフィレー径5〜30μmの
粒子が95体積%以上を占めることを特徴とする正極活
物質が提供される。
According to the eighth aspect of the present invention, the seventh aspect is provided.
A positive electrode active material obtained by the production method of the invention,
A positive electrode active material is provided, wherein particles having a fillet diameter of 5 to 30 μm in a projected figure obtained by SEM observation occupy 95% by volume or more.

【0018】[0018]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0019】1.正極活物質 本発明のリチウム複合酸化物系の正極活物質は、粒子形
状が略球状であり、SEM観察による投影図形のフィレ
ー径で5〜30μmの範囲にある粒子が95体積%以上
を占めることを特徴とする。
1. Positive Electrode Active Material The lithium composite oxide-based positive electrode active material of the present invention has a substantially spherical particle shape, and particles having a fillet diameter of 5 to 30 μm in a projected figure by SEM observation occupy 95% by volume or more. It is characterized by.

【0020】非水系電解質二次電池は、リチウムをドー
プ、脱ドープし得る負極活物質と、リチウム複合酸化物
を活物質とする正極と、非水系電解質とで構成され、電
池の充放電容量を増加させるには、電極当たりの活物質
の充填量を増加させることが有効であるが、上記の如
く、正極活物質として現在汎用されているリチウムコバ
ルト複合酸化物の粒子は、結晶がC軸垂直方向に成長し
易いことに加えて、原料コバルト塩の結晶形状、粒子形
状の影響を大きく受けるため、球状粒子と板状粒子との
混合物からなる1次粒子の二次凝集体であることが多
く、高い充填密度を得ることは困難であった。
A non-aqueous electrolyte secondary battery is composed of a negative electrode active material capable of doping and undoping lithium, a positive electrode having a lithium composite oxide as an active material, and a non-aqueous electrolyte. To increase the amount, it is effective to increase the filling amount of the active material per electrode. However, as described above, particles of the lithium-cobalt composite oxide currently widely used as the positive electrode active material have crystals whose C axis is perpendicular to the C axis. In addition to being easy to grow in the direction, the crystal shape of the raw material cobalt salt is greatly affected by the particle shape, so it is often a secondary aggregate of primary particles composed of a mixture of spherical particles and plate-like particles. It was difficult to obtain a high packing density.

【0021】一般的に、粒子の充填密度を増加させるに
は、粒子が球状であり、かつブロードな粒度分布を持つ
ことが必要であるが、本発明の正極活物質、粒子形状が
略球状であり、SEM観察による投影図形のフィレー径
で5〜30μmの範囲にある粒子が95体積%以上を占
める正極活物質を用いることにより、高い充放電容量を
有し、レート特性及びサイクル特性にも優れた非水系電
解質二次電池が得られる。SEM観察による投影図形の
フィレー径で5〜30μmの範囲にある粒子が95体積
%未満であると、粒度分布がブロードになり過ぎ、数μ
m以下の微粉が多くなるため、導電剤の添加量が増加し
て活物質の充填密度が低下し、加えて、30μm以上の
粒子も多くなるため、粒子内部のリチウム複合酸化物結
晶から粒子表面へのリチウムイオンの移動が困難とな
り、結果として、充放電に関わるリチウムイオンの割合
が減少するために充放電特性が悪化する。
In general, in order to increase the packing density of the particles, it is necessary that the particles have a spherical shape and a broad particle size distribution. Yes, using a positive electrode active material in which particles in the range of 5 to 30 μm in the fillet diameter of a projected figure by SEM observation occupy 95% by volume or more, have a high charge / discharge capacity, and have excellent rate characteristics and cycle characteristics. Thus, a non-aqueous electrolyte secondary battery is obtained. If the particles in the range of 5 to 30 μm in the fillet diameter of the projected figure by SEM observation are less than 95% by volume, the particle size distribution becomes too broad and several μm.
m or less, the amount of conductive agent added increases the packing density of the active material, and the particles of 30 μm or more also increase. It becomes difficult for lithium ions to move to the surface, and as a result, the ratio of lithium ions involved in charge / discharge decreases, so that charge / discharge characteristics deteriorate.

【0022】本発明の正極活物質は、上記の形状、粒度
分布にほぼ等しい塩基性の遷移金属炭酸塩を原料とし、
これをリチウム塩と混合、焼成することにより得られ
る。即ち、略球状であり、SEM観察による投影図形の
フィレー径で5〜30μmの範囲にある粒子が95体積
%以上を占める塩基性の遷移金属炭酸塩と、リチウム塩
とを混合し、この混合物を、非還元性雰囲気下、例えば
空気又は酸素雰囲気下で、800〜1000℃で焼成・
合成することにより本発明の正極活物質を得ることがで
きる。
The positive electrode active material of the present invention comprises a basic transition metal carbonate having substantially the same shape and particle size distribution as described above,
This is obtained by mixing and firing with a lithium salt. That is, a basic transition metal carbonate occupying 95% by volume or more of particles having a substantially spherical shape and having a fillet diameter of 5 to 30 μm in a projected figure of a SEM observation, and a lithium salt are mixed. Baking at 800 to 1000 ° C. in a non-reducing atmosphere, for example, in an air or oxygen atmosphere.
By synthesizing, the positive electrode active material of the present invention can be obtained.

【0023】ここで、塩基性の遷移金属炭酸塩として
は、上記の粒子形状、粒度分布を有するコバルト、ニッ
ケル、マンガンの炭酸塩の1種又は2種以上を用いるこ
とができるが、以下に説明する本発明の遷移金属炭酸塩
を用いることが好ましく、特にコバルトの炭酸塩を用い
ることが好ましい。
As the basic transition metal carbonate, one or more of carbonates of nickel, manganese and manganese having the above-mentioned particle shape and particle size distribution can be used. It is preferable to use the transition metal carbonate of the present invention, and particularly to use a cobalt carbonate.

【0024】2.正極活物質原料 本発明の塩基性の遷移金属炭酸塩は、粒子形状が略球状
であり、SEM観察による投影図形のフィレー径で5〜
30μmの範囲にある粒子が95体積%以上を占めるこ
とを特徴とする。
2. Cathode Active Material Raw Material The basic transition metal carbonate of the present invention has a substantially spherical particle shape, and has a fillet diameter of 5 to 5 in a projected figure by SEM observation.
The particles in the range of 30 μm occupy 95% by volume or more.

【0025】本発明の遷移金属炭酸塩は、所定量の、遷
移金属化合物溶液と、中和剤又は炭酸アルカリと、炭酸
ガスとを反応槽内を撹拌しつつ供給し、かつ、生成する
塩基性の遷移金属炭酸塩を連続的に抜き出すことで製造
される。
The transition metal carbonate of the present invention is prepared by supplying a predetermined amount of a transition metal compound solution, a neutralizing agent or alkali carbonate, and carbon dioxide gas while stirring the inside of the reaction vessel, Is produced by continuously extracting the transition metal carbonate.

【0026】上記の遷移金属化合物としては、コバル
ト、ニッケル、マンガンの塩化物等の1種又は2種以上
を用いることができる。また、中和剤又は炭酸アルカリ
としては、アンモニア、水酸化アルカリ、炭酸アルカ
リ、炭酸アンモニウム等の1種又は2種以上を用いるこ
とができるが、二次電池用正極活物質の原料として用い
るには、アルカリ金属の含有量は少ない方が好ましいた
め、アンモニア、炭酸アンモニウムが特に好ましい。
As the above transition metal compound, one or more of cobalt, nickel, manganese chloride and the like can be used. As the neutralizer or alkali carbonate, one or more of ammonia, alkali hydroxide, alkali carbonate, ammonium carbonate, and the like can be used. Since the content of the alkali metal is preferably small, ammonia and ammonium carbonate are particularly preferable.

【0027】中和剤又は炭酸アルカリの供給量は、供給
する遷移金属化合物溶液の中和に必要な化学量論的量の
1.1〜2.0倍とすることが好ましい。中和剤又は炭
酸アルカリの供給量が遷移金属化合物溶液の中和に必要
な化学量論的量の1.1倍未満では、反応液中の炭酸イ
オンが欠乏して中和されない遷移金属が残留、塩基性の
遷移金属炭酸塩の収量が減少し、また、遷移金属炭酸塩
の粒成長が十分に進まないため、嵩密度の低い遷移金属
炭酸塩が生成する。一方、2.0倍を超える量を加えて
も、過剰量は反応に寄与せず、原料コストの増加を招く
ため好ましくない。
The supply amount of the neutralizing agent or alkali carbonate is preferably 1.1 to 2.0 times the stoichiometric amount required for neutralizing the supplied transition metal compound solution. If the supply amount of the neutralizing agent or the alkali carbonate is less than 1.1 times the stoichiometric amount required for neutralizing the transition metal compound solution, the transition metal that is not neutralized due to the lack of carbonate ions in the reaction solution remains. In addition, the yield of the basic transition metal carbonate is reduced, and the transition metal carbonate is not sufficiently grown, so that a transition metal carbonate having a low bulk density is produced. On the other hand, if the amount exceeds 2.0 times, the excessive amount does not contribute to the reaction and increases the raw material cost, which is not preferable.

【0028】ところで、本発明においては、中和剤又は
炭酸アルカリ以外に、反応槽中に炭酸ガスを吹き込み、
遷移金属を炭酸化することを特徴とする。炭酸ガスは反
応槽中で反応液に溶解し、炭酸イオンの供給源になると
共に、遷移金属と錯体を形成して、反応槽中での遷移金
属の溶解度を増加させる効果がある。反応槽中での遷移
金属の溶解度の増加により、晶析反応中の塩基性の遷移
金属炭酸塩は溶解−析出を繰り返しつつ成長し、球状の
粒子を形成しやすくなるため、反応系への炭酸ガスの供
給は、嵩密度の大きな遷移金属炭酸塩を得る上では極め
て有効である。
In the present invention, carbon dioxide gas is blown into the reaction tank in addition to the neutralizing agent or alkali carbonate.
The transition metal is carbonated. Carbon dioxide is dissolved in the reaction solution in the reaction tank, serves as a supply source of carbonate ions, and forms a complex with the transition metal, thereby increasing the solubility of the transition metal in the reaction tank. Due to the increase in the solubility of the transition metal in the reaction tank, the basic transition metal carbonate during the crystallization reaction grows while repeating the dissolution-precipitation, and tends to form spherical particles. The supply of gas is extremely effective in obtaining a transition metal carbonate having a large bulk density.

【0029】炭酸ガスの吹き込み量は、遷移金属化合物
溶液の炭酸化に必要な化学量論量から中和剤又は炭酸ア
ルカリ中に存在する炭酸イオン量を差し引いた量の3〜
10倍とすることが好ましい。吹き込んだ炭酸ガスの全
量が反応液中に溶解して遷移金属の炭酸化に使われるわ
けではなく、炭酸ガスの吹き込み量が3倍未満では、溶
液中の炭酸イオンが不足して微細な塩基性の遷移金属炭
酸塩が生成するため、嵩密度の小さな遷移金属炭酸塩と
なり、洗浄濾過による不純物の除去が困難となる。一
方、炭酸ガスの吹き込み量が10倍を超えると、反応に
寄与しない炭酸ガスが増加すると共に、反応槽中の炭酸
イオン濃度が増加するため、嵩密度の高い塩基性の遷移
金属炭酸塩が生成するものの、反応濾液中に残留する遷
移金属量も多くなり、遷移金属の損失が増加する。さら
に、廃水処理のコストも増加するため工業的にも望まし
くない。
The amount of carbon dioxide gas blown is 3 to 3 times the amount obtained by subtracting the amount of carbonate ions present in the neutralizing agent or alkali carbonate from the stoichiometric amount required for carbonation of the transition metal compound solution.
Preferably, it is 10 times. Not all of the injected carbon dioxide gas dissolves in the reaction solution and is used for carbonation of transition metals. If the injection amount of carbon dioxide gas is less than three times, the amount of carbonate ions in the solution becomes insufficient and fine basic Is produced, so that the transition metal carbonate has a low bulk density, and it is difficult to remove impurities by washing and filtering. On the other hand, when the blowing amount of carbon dioxide gas exceeds 10 times, the amount of carbon dioxide not contributing to the reaction increases, and the concentration of carbonate ions in the reaction tank increases, so that a basic transition metal carbonate having a high bulk density is generated. However, the amount of transition metal remaining in the reaction filtrate increases, and the loss of transition metal increases. Furthermore, the cost of wastewater treatment is increased, which is not industrially desirable.

【0030】本発明の製造方法においては、遷移金属炭
酸塩を製造する際に反応槽中の水素イオン濃度を制御す
る必要はない。これは、吹き込まれた炭酸ガスが、反応
液中に溶解する際に、溶液中に存在している炭酸イオン
と緩衝作用を起こし、反応液の水素イオン濃度が一定に
保持されるためである。
In the production method of the present invention, it is not necessary to control the hydrogen ion concentration in the reaction tank when producing the transition metal carbonate. This is because when the injected carbon dioxide gas dissolves in the reaction solution, it causes a buffering action with the carbonate ions present in the solution, and the hydrogen ion concentration of the reaction solution is kept constant.

【0031】また、生成する塩基性の遷移金属炭酸塩
を、反応槽内に、(反応槽容積)/(単位時間当たりの
原料溶液の総添加量)で算出される滞留時間に基づき、
1〜24時間滞留させることが好ましい。滞留時間が1
時間未満では、遷移金属炭酸塩の粒子が成長する前に系
外に排出されるため、嵩密度の高い塩基性の遷移金属炭
酸塩が得られず、遷移金属の損失が増加する。一方、滞
留時間が24時間を超えると、嵩密度の高い塩基性の遷
移金属炭酸塩が得られるものの、生産性が低下するため
工業的には望ましくない。
Further, based on the residence time calculated by (reaction tank volume) / (total amount of raw material solution per unit time), the generated basic transition metal carbonate is added to the reaction tank.
It is preferable to keep for 1 to 24 hours. Residence time 1
If the time is less than the time, since the transition metal carbonate particles are discharged out of the system before growing, a basic transition metal carbonate having a high bulk density cannot be obtained, and the transition metal loss increases. On the other hand, when the residence time exceeds 24 hours, although a basic transition metal carbonate having a high bulk density is obtained, the productivity is lowered, which is not industrially desirable.

【0032】[0032]

【実施例】以下に、本発明の実施例及び比較例を説明す
るが、本発明の趣旨を逸脱しない限り、本発明は、これ
らによって何ら限定されるものではない。
EXAMPLES Examples and comparative examples of the present invention will be described below, but the present invention is not limited by these without departing from the spirit of the present invention.

【0033】(実施例1)10.7g/l濃度の塩化ア
ンモニウム溶液を満たした内容積8400mlの反応槽
中に、1000rpmで攪拌しつつ炭酸ガスを流量20
00ml/minで吹き込んだ。この反応槽中に、11
0.0g/l濃度の塩化コバルト溶液を流量10.0m
l/minで、12.5%アンモニア水を流量4.0m
l/minで供給し、塩基性炭酸コバルトを連続的に製
造した。また、生成した炭酸コバルトは、オーバーフロ
ー方式で連続的に反応槽内から抜き出した。反応槽内に
おける塩基性炭酸コバルトの滞留時間は10時間であっ
た。次に、生成した塩基性炭酸コバルトを脱イオン水で
洗浄濾過して未反応原料を除去し、塩基性炭酸コバルト
を得た。得られた塩基性炭酸コバルトは、電子顕微鏡に
よる観察では、n〜数十μmの球状粒子であった。一
方、マイクロトラック粒度分布測定機により塩基性炭酸
コバルトの粒度分布を求めたところ、5〜30μmの粒
子の累積体積百分率は95.5体積%であった。次い
で、得られた炭酸コバルトと、炭酸リチウムとを、リチ
ウムとコバルトの比が1.01になるように精秤し、混
合物の重量の24wt%に相当する量の4wt%PVA
水溶液を添加しながら、SUS製の撹拌羽根とアジテー
タとを備えた混合造粒機で混合、造粒した。3〜5mm
に造粒された混合物を、120℃で8時間乾燥した後、
大気雰囲気下、960℃で10時間焼成した。得られた
LiCoOの組成は、ICPによる分析では、Li
7.12wt%、Co 60.1wt%であった。ま
た、CuKα線を用いた粉末X線回折による生成相の同
定では、JCPDSのファイル番号16−427番のL
iCoO 相以外には、LiCOとCoの相
が痕跡程度検出されたのみであった。さらに、得られた
LiCoOを32μmの目開きの篩いで整粒してSE
M観察を行った結果、投影図形のフェレー径がn〜50
μmの範囲にある球状あるいは楕円球状をした二次粒子
であった。一方、マイクロトラック粒度分布測定機によ
り上記焼成物の粒度分布を求めたところ、5〜30μm
の粒子の累積体積百分率は96.3体積%であった。続
いて、上記LiCoO2を正極活物質として電池を組
み、その充放電容量を測定した。LiCoO2の正極活
物質とアセチレンブラックとポリテトラフッ化エチレン
樹脂(PTFE)とを80:15:5の重量比で混合し
て合剤を作製した。次に、合剤50mgを直径10mm
φのディスクに200MPaの圧力でプレス成型し、真
空乾燥機中、120℃で12時間乾燥して正極とした。
負極として直径16mmφ、厚さ1mmのLi金属を用
い、電解液には1MのLiPFを支持塩とするエチレ
ンカーボネート(EC)と1,2ジメトキシエタン(D
ME)の等量混合溶液を用いた。セパレータには膜厚2
5μmのポリエチレン多孔膜を用い、2032型コイン
電池を、乾燥Ar雰囲気グローブボックス中で組み立て
た。コイン型電池は、組立後10時間放置してOCVを
安定させ、充電電流密度1.0mA/cmでカットオ
フ電圧4.3Vまで充電した後に2時間放置し、放電電
流密度1.0mA/cmで3.0Vまで放電試験を行
った。放電試験の結果は、1回目の充電容量は163.
8mAh/g、放電容量は155.3mAh/gであっ
た。また、同じ条件で充放電試験を繰り返したが、10
0回目の充電容量は147.2mAh/g、放電容量は
140.6mAh/gであった。放電容量の維持率(=
100回目の放電容量×100/1回目の放電容量)は
90.5%であった。
Example 1 10.7 g / l of chloride
8400 ml reactor filled with ammonium solution
While stirring at 1000 rpm, the flow rate of carbon dioxide was 20
Blowing was performed at 00 ml / min. In this reactor, 11
0.0 g / l cobalt chloride solution with a flow rate of 10.0 m
1 / min, 12.5% ammonia water flow rate 4.0m
1 / min to continuously produce basic cobalt carbonate
Built. In addition, the generated cobalt carbonate overflows
-Continuously withdrawn from the inside of the reaction tank by a method. In the reaction tank
The residence time of the basic cobalt carbonate was 10 hours.
Was. Next, the generated basic cobalt carbonate is deionized water.
Unfiltered material is removed by washing and filtering, and basic cobalt carbonate is removed.
I got The obtained basic cobalt carbonate is examined under an electron microscope.
According to the observation by the method, it was spherical particles of n to several tens of μm. one
On the other hand, basic carbonic acid
When the particle size distribution of cobalt was determined, the particle size was 5 to 30 μm.
The cumulative volume percentage of the pups was 95.5% by volume. Next
Then, the obtained cobalt carbonate and lithium carbonate are
Weigh accurately so that the ratio of cobalt to cobalt is 1.01, mix
4 wt% PVA in an amount corresponding to 24 wt% of the weight of the compound
While adding the aqueous solution, stir the SUS stirring blade
And granulated by a mixing granulator equipped with 3-5mm
After drying the mixture granulated at 120 ° C. for 8 hours,
Baking was performed at 960 ° C. for 10 hours in an air atmosphere. Got
LiCoO2Is analyzed by ICP to be Li
It was 7.12 wt% and Co 60.1 wt%. Ma
Of the product phase by powder X-ray diffraction using CuKα ray.
By default, JCPDS file number 16-427 L
iCoO 2Other than the phase, Li2CO3And Co3O4Phase of
Was detected only in traces. In addition, obtained
LiCoO2Is sieved with a 32 μm mesh sieve and SE
As a result of M observation, the Feret diameter of the projected figure was n to 50.
Spherical or elliptical secondary particles in the μm range
Met. On the other hand, a Microtrac particle size distribution analyzer
The particle size distribution of the calcined product was determined to be 5 to 30 μm
The cumulative volume percentage of the particles was 96.3% by volume. Continued
A battery using the above-mentioned LiCoO2 as a positive electrode active material.
And the charge / discharge capacity was measured. LiCoO2 cathode active
Substance, acetylene black and polytetrafluoroethylene
Mixed with a resin (PTFE) in a weight ratio of 80: 15: 5.
To prepare a mixture. Next, 50 mg of the mixture was added with a diameter of 10 mm.
Press molded into a φ disk with a pressure of 200MPa
It dried at 120 degreeC for 12 hours in an air dryer, and was set as the positive electrode.
Uses Li metal with a diameter of 16 mm and a thickness of 1 mm as the negative electrode
The electrolyte is 1M LiPF6With salt as a supporting salt
Carbonate (EC) and 1,2 dimethoxyethane (D
ME) was used. The separator has a thickness of 2
2032 type coin using 5μm polyethylene porous membrane
Assemble batteries in a dry Ar atmosphere glove box
Was. The coin-type battery is left for 10 hours after assembly,
Stabilize, charge current density 1.0mA / cm2In cut-o
After charging to 4.3V, the battery is left for 2 hours,
Flow density 1.0mA / cm2Discharge test to 3.0V
Was. As a result of the discharge test, the first charge capacity was 163.
8 mAh / g, and the discharge capacity was 155.3 mAh / g.
Was. The charge / discharge test was repeated under the same conditions.
The 0th charge capacity is 147.2 mAh / g, and the discharge capacity is
It was 140.6 mAh / g. Discharge capacity maintenance rate (=
(100th discharge capacity x 100 / 1st discharge capacity)
90.5%.

【0034】(比較例1)塩基性炭酸コバルトに代え
て、振動ミルで50μm以下に粉砕した市販炭酸コバル
トを使用した以外は実施例1と同様にして、LiCoO
を合成した。SEM観察の結果、得られたLiCoO
は、板状の1次粒子の凝集した二次粒子からなり、二
次粒子形状は不定形であった。また、粒径は0.n〜数
百μmであり、5〜30μmの粒子の割合は92.3体
積%であった。得られたLiCoOを用い、実施例と
同様にコイン電池を組み立てて電池特性を測定したとこ
ろ、1回目の充電容量は154.4mAh/g、放電容
量は146.1mAh/gであった。また、同じ条件で
充放電試験を繰り返したが、100回目の充電容量は1
32.8mAh/g、放電容量は120.7mAh/g
であった。放電容量の維持率は82.6%であった。
Comparative Example 1 LiCoO 2 was prepared in the same manner as in Example 1 except that a commercially available cobalt carbonate pulverized to 50 μm or less with a vibration mill was used instead of the basic cobalt carbonate.
Compound 2 was synthesized. LiCoO obtained as a result of SEM observation
No. 2 consisted of agglomerated secondary particles of plate-like primary particles, and the secondary particle shape was irregular. Further, the particle size is 0. n to several hundred μm, and the ratio of particles of 5 to 30 μm was 92.3% by volume. Using the obtained LiCoO 2 , a coin battery was assembled in the same manner as in the example, and the battery characteristics were measured. The first charge capacity was 154.4 mAh / g, and the discharge capacity was 146.1 mAh / g. The charge / discharge test was repeated under the same conditions.
32.8 mAh / g, discharge capacity is 120.7 mAh / g
Met. The maintenance ratio of the discharge capacity was 82.6%.

【0035】[0035]

【発明の効果】以上説明したとおり、本発明の正極活物
質によれば、高い充放電容量を有し、レート特性及びサ
イクル特性にも優れたリチウムイオン二次電池が得られ
る。
As described above, according to the positive electrode active material of the present invention, a lithium ion secondary battery having a high charge / discharge capacity and excellent rate characteristics and cycle characteristics can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB02 AB06 AC06 AE05 5H029 AJ03 AJ05 AK03 AL12 AM03 AM04 AM05 AM07 BJ03 CJ02 CJ08 CJ28 EJ03 EJ04 EJ12 HJ01 HJ05 HJ07 HJ14 5H050 AA07 AA08 BA17 CA08 CA09 CB12 EA10 EA24 GA02 GA10 GA14 HA01 HA05 HA07 HA14 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G048 AA04 AB02 AB06 AC06 AE05 5H029 AJ03 AJ05 AK03 AL12 AM03 AM04 AM05 AM07 BJ03 CJ02 CJ08 CJ28 EJ03 EJ04 EJ12 HJ01 HJ05 HJ07 HJ14 5H050 AA10 GA12 CA17 GA08 HA01 HA05 HA07 HA14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 遷移金属化合物の溶液と、中和剤又は炭
酸アルカリと、炭酸ガスとを反応槽内を撹拌しつつ供給
し、かつ、生成する塩基性の遷移金属炭酸塩を連続的に
抜き出すことを特徴とする正極活物質原料の製造方法。
1. A solution of a transition metal compound, a neutralizing agent or an alkali carbonate, and a carbon dioxide gas are supplied while stirring the inside of a reaction vessel, and a generated basic transition metal carbonate is continuously extracted. A method for producing a positive electrode active material raw material, comprising:
【請求項2】 遷移金属化合物は、コバルト化合物、ニ
ッケル化合物、及びマンガン化合物からなる群から選ば
れる少なくとも1種の化合物であることを特徴とする請
求項1に記載の正極活物質原料の製造方法。
2. The method according to claim 1, wherein the transition metal compound is at least one compound selected from the group consisting of a cobalt compound, a nickel compound, and a manganese compound. .
【請求項3】 中和剤又は炭酸アルカリは、アンモニ
ア、炭酸アンモニウム、炭酸ナトリウム、炭酸カリウ
ム、及び炭酸リチウムからなる群から選ばれる少なくと
も1種の化合物であることを特徴とする請求項1に記載
の正極活物質原料の製造方法。
3. The method according to claim 1, wherein the neutralizing agent or the alkali carbonate is at least one compound selected from the group consisting of ammonia, ammonium carbonate, sodium carbonate, potassium carbonate, and lithium carbonate. Method for producing a positive electrode active material raw material.
【請求項4】 中和剤又は炭酸アルカリの供給量は、遷
移金属化合物溶液の中和に必要な化学量論量の1.1〜
2.0倍であり、かつ、炭酸ガスの供給量は、遷移金属
化合物溶液の炭酸化に必要な化学量論量から中和剤又は
炭酸アルカリ中に存在する炭酸イオン量を差し引いた量
の3〜10倍であることを特徴とする請求項1〜3のい
ずれか1項に記載の正極活物質原料の製造方法。
4. The supply amount of the neutralizing agent or the alkali carbonate is 1.1 to stoichiometric amount required for neutralizing the transition metal compound solution.
2.0 times and the supply amount of carbon dioxide gas is 3 times the amount obtained by subtracting the amount of carbonate ions present in the neutralizing agent or alkali carbonate from the stoichiometric amount required for carbonation of the transition metal compound solution. The method for producing a positive electrode active material raw material according to any one of claims 1 to 3, wherein the ratio is 10 to 10 times.
【請求項5】 塩基性の遷移金属炭酸塩を、反応槽内に
1〜24時間滞留させることを特徴とする請求項1〜4
のいずれか1項に記載の正極活物質原料の製造方法。
5. The method according to claim 1, wherein the basic transition metal carbonate is retained in the reaction tank for 1 to 24 hours.
The method for producing a positive electrode active material raw material according to any one of the above.
【請求項6】 請求項1〜5のいずれか1項に記載の製
造方法により得られた正極活物質原料であって、SEM
観察による投影図形のフィレー径5〜30μmの粒子が
95体積%以上を占めることを特徴とする正極活物質原
料。
6. A positive electrode active material raw material obtained by the production method according to claim 1, wherein the raw material is a SEM.
A raw material for a positive electrode active material, wherein particles having a fillet diameter of 5 to 30 [mu] m in a projected figure obtained by observation occupy 95% by volume or more.
【請求項7】 請求項6に記載の正極活物質原料と、リ
チウム塩とを混合し、非還元性雰囲気下、800〜10
00℃で焼成することを特徴とする正極活物質の製造方
法。
7. A mixture of the positive electrode active material raw material according to claim 6 and a lithium salt, and the mixture is mixed under a non-reducing atmosphere at 800 to 10%.
A method for producing a positive electrode active material, characterized by firing at 00 ° C.
【請求項8】 請求項7に記載の製造方法により得られ
た正極活物質であって、SEM観察による投影図形のフ
ィレー径5〜30μmの粒子が95体積%以上を占める
ことを特徴とする正極活物質。
8. A positive electrode active material obtained by the production method according to claim 7, wherein particles having a fillet diameter of 5 to 30 μm in a projected figure by SEM observation account for 95% by volume or more. Active material.
JP2001116974A 2001-04-16 2001-04-16 Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it Pending JP2002313338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001116974A JP2002313338A (en) 2001-04-16 2001-04-16 Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001116974A JP2002313338A (en) 2001-04-16 2001-04-16 Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it

Publications (1)

Publication Number Publication Date
JP2002313338A true JP2002313338A (en) 2002-10-25

Family

ID=18967619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001116974A Pending JP2002313338A (en) 2001-04-16 2001-04-16 Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it

Country Status (1)

Country Link
JP (1) JP2002313338A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064180A1 (en) * 2003-01-08 2004-07-29 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
JP2006117517A (en) * 2004-09-27 2006-05-11 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium-transition metal complex oxide and lithium cell using the lithium-transition metal complex oxide
JP2007123255A (en) * 2005-09-27 2007-05-17 Ishihara Sangyo Kaisha Ltd Lithium transition metal complex oxide, its manufacturing method, and lithium cell made by using the same
JP2009179545A (en) * 2008-02-01 2009-08-13 Nippon Chem Ind Co Ltd Composite carbonate and method for producing the same
JP2009179544A (en) * 2008-02-01 2009-08-13 Nippon Chem Ind Co Ltd Composite carbonate and method for producing the same
JP2015508050A (en) * 2012-02-08 2015-03-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing transition metal carbonate containing hydroxide
JP2015227263A (en) * 2014-05-30 2015-12-17 住友金属鉱山株式会社 Nickel-cobalt-manganese composite hydroxide and production method of the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101069484B1 (en) 2003-01-08 2011-09-30 닛코킨조쿠 가부시키가이샤 Material for positive electrode of lithium secondary battery and process for producing the same
WO2004064180A1 (en) * 2003-01-08 2004-07-29 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
EP1587156B1 (en) * 2003-01-08 2018-12-12 JX Nippon Mining & Metals Corporation Material for positive electrode of lithium secondary battery and process for producing the same
JP2006117517A (en) * 2004-09-27 2006-05-11 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium-transition metal complex oxide and lithium cell using the lithium-transition metal complex oxide
JP4496150B2 (en) * 2004-09-27 2010-07-07 石原産業株式会社 Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP2007123255A (en) * 2005-09-27 2007-05-17 Ishihara Sangyo Kaisha Ltd Lithium transition metal complex oxide, its manufacturing method, and lithium cell made by using the same
JP2009179545A (en) * 2008-02-01 2009-08-13 Nippon Chem Ind Co Ltd Composite carbonate and method for producing the same
KR101451441B1 (en) 2008-02-01 2014-10-15 니폰 가가쿠 고교 가부시키가이샤 Carbonate composite and process for porducing thereof
KR101451440B1 (en) 2008-02-01 2014-10-15 니폰 가가쿠 고교 가부시키가이샤 Carbonate composite and process for producing thereof
JP2009179544A (en) * 2008-02-01 2009-08-13 Nippon Chem Ind Co Ltd Composite carbonate and method for producing the same
JP2015508050A (en) * 2012-02-08 2015-03-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing transition metal carbonate containing hydroxide
KR102057026B1 (en) 2012-02-08 2019-12-18 바스프 에스이 Method for producing mixed carbonates which can contain hydroxide(s)
JP2015227263A (en) * 2014-05-30 2015-12-17 住友金属鉱山株式会社 Nickel-cobalt-manganese composite hydroxide and production method of the same

Similar Documents

Publication Publication Date Title
JP6241349B2 (en) Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
US10236507B2 (en) Nickel-manganese composite hydroxide particles, method for producing same, cathode active material for non-aqueous electrolyte secondary batteries, method for producing same, and non-aqueous electrolyte secondary battery
KR101576719B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
KR100694567B1 (en) Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
WO2012164752A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
EP2104163A1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
WO2011065423A1 (en) Li-ni composite oxide particle powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
WO2012020769A1 (en) Method for producing nickel-containing complex compound
JP2005097087A (en) New lithium-nickel-manganese multiple oxide and its manufacturing method
US20220246978A1 (en) Lithium ion battery positive electrode material, preparation method therefor, and lithium ion battery
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2020510981A (en) Precursor of cathode material with improved secondary battery performance and method of preparing the precursor
TWI622212B (en) Cathode compositions for lithium-ion batteries
JP2001240498A (en) High crystalline lithium titanate
JPH0922692A (en) Cobalt hydroxide and tricobalt tetraoxide for active material of nonaqueous electrolyte battery and manufacture thereof
US20210399330A1 (en) Nonaqueous electrolyte secondary battery positive electrode active material and method for manufacturing same, and nonaqueous electrolyte secondary battery
JP7114876B2 (en) Transition metal composite hydroxide particles and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP2002313338A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same