JP2002289260A - Flat nonaqueous electrolyte secondary battery - Google Patents

Flat nonaqueous electrolyte secondary battery

Info

Publication number
JP2002289260A
JP2002289260A JP2001093059A JP2001093059A JP2002289260A JP 2002289260 A JP2002289260 A JP 2002289260A JP 2001093059 A JP2001093059 A JP 2001093059A JP 2001093059 A JP2001093059 A JP 2001093059A JP 2002289260 A JP2002289260 A JP 2002289260A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
positive electrode
case
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001093059A
Other languages
Japanese (ja)
Inventor
Yuichi Kikuma
祐一 菊間
Munehito Hayami
宗人 早見
Kazuo Udagawa
和男 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2001093059A priority Critical patent/JP2002289260A/en
Publication of JP2002289260A publication Critical patent/JP2002289260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a flat nonaqueous electrolyte secondary battery having an improved heavy load discharging characteristic, and highly stabilized and reliable conductive connection. SOLUTION: The flat nonaqueous electrolyte secondary battery comprises a sealed structure having a negative electrode case and a positive electrode case which are fitted and caulked through an insulating gasket, in which a group of electrodes and nonaqueous electrolyte are contained. The sum total of the opposed area of the positive and negative electrodes through a separator for the group of electrodes is larger than the area of the opening of the insulating gasket. The positive electrode plate and the negative electrode plate comprise a positive current collector and a negative current collector, respectively. The positive current collector is exposed to one of the outer surfaces in the direction parallel to the flat surfaces of the battery and conductively connected with the inner bottom surface of the positive electrode case. The negative current collector is exposed to the other of the outer surfaces in the direction parallel to the flat surface of the battery and conductively connected with the inner bottom surface of the negative electrode case. Either one or both of the combination of 'the positive current collector and the inner bottom surface of the positive electrode case' or 'the negative current collector and the inner bottom surface of the negative electrode case' are conductively connected with a conductive adhesive. The conductive connection at a heavy load discharging can be satisfactorily maintained and a stable discharging is possible, even when the group of electrodes are expanded and shrunk due to charging and discharing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は扁平形非水電解質二
次電池に係わり、特に、電池内部抵抗および重負荷放電
性能の安定化を図った扁平形非水電解質二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat non-aqueous electrolyte secondary battery, and more particularly, to a flat non-aqueous electrolyte secondary battery in which internal resistance and heavy load discharge performance of the battery are stabilized.

【0002】[0002]

【従来の技術】携帯電話やPDAなどの小型情報端末を
中心に使用機器の小型化が加速しており、主電源である
二次電池についても小型化を図ることが要求されてきて
いる。これに対し、特願平11−240964号や特願
平11−241290号に示すような負極端子を兼ねる
金属製の負極ケースと、正極端子を兼ねる金属製の正極
ケースが、絶縁ガスケットを介して嵌合され、さらに正
極ケースまたは負極ケースが加締め加工により加締めら
れた封口構造を有し、その内部に少なくとも正極、セパ
レータ、負極を含む発電要素と、非水電解質を内包した
扁平形非水電解質二次電池において、扁平形電池の扁平
面に平行な垂直な方向の断面を見た場合、少なくとも3
面以上の正極と負極がセパレータを介し対向している正
負極対向面を有した電極群が収納され、かつ電極群内の
正負極対向面積の総和が絶縁ガスケットの開口面積より
も大きくした構造の扁平形非水電解質二次電池が小型化
の要求を満たす電池として開発されてきた。
2. Description of the Related Art The miniaturization of devices used, especially for small information terminals such as cellular phones and PDAs, is accelerating, and there is a demand for miniaturization of secondary batteries as main power supplies. On the other hand, a metal negative electrode case also serving as a negative electrode terminal and a metal positive electrode case also serving as a positive electrode terminal as shown in Japanese Patent Application Nos. 11-240964 and 11-241290 are provided via an insulating gasket. Fitted, further has a sealing structure in which the positive electrode case or the negative electrode case is crimped by crimping, and a power generating element including at least a positive electrode, a separator, and a negative electrode therein, and a flat non-aqueous water containing a non-aqueous electrolyte. When a cross section of the electrolyte secondary battery in a direction perpendicular to the flat surface of the flat battery is viewed, at least 3
A structure in which an electrode group having a positive / negative electrode facing surface in which a positive electrode and a negative electrode facing each other are interposed via a separator is housed, and the sum of the positive / negative electrode facing areas in the electrode group is larger than the opening area of the insulating gasket. Flat non-aqueous electrolyte secondary batteries have been developed as batteries that satisfy the demand for miniaturization.

【0003】しかし、このような扁平形非水電解質二次
電池は、正負極対向面積の大きな電極群を小型のケース
に収納するために、金属薄膜からなる集電体にリチウム
を吸蔵・放出可能な正極活物質を塗着した負極板とセパ
レータを介して捲回や積層することにより電極群とし、
有機電解液を含浸させて、この電解液を内包するように
金属製の正極ケース及び金属製の負極ケースとを絶縁ガ
スケットを介して加締めることで封口したものである。
However, such a flat nonaqueous electrolyte secondary battery can store and release lithium in a current collector made of a metal thin film in order to store an electrode group having a large area between the positive and negative electrodes in a small case. An electrode group by winding or laminating through a negative electrode plate and a separator coated with a positive electrode active material,
An organic electrolytic solution is impregnated, and a metal positive electrode case and a metal negative electrode case are sealed by caulking via an insulating gasket so as to include the electrolytic solution.

【0004】更に、電極群と金属ケースの正負極端子と
の導電接続に占める体積を極力減少させるために電極群
の扁平形電池の扁平面に水平な方向の一方の外面に正極
集電体を露出させ、その正極集電体の露出部を正極ケー
スの内底面に接触することで導電接続し、かつ電極群の
扁平形電池の扁平面に水平な方向のもう一方の外面に負
極集電体を露出させ、その負極集電体の露出部を負極ケ
ースの内底面に接触することで導電接続を行っている。
Further, in order to minimize the volume occupied by the conductive connection between the electrode group and the positive and negative terminals of the metal case, a positive electrode current collector is provided on one outer surface of the flat battery of the electrode group in a direction parallel to the flat surface. It is exposed, and the exposed part of the positive electrode current collector is conductively connected by contacting the inner bottom surface of the positive electrode case, and the negative electrode current collector is formed on the other outer surface in the direction parallel to the flat surface of the flat battery of the electrode group. Are exposed, and the exposed portion of the negative electrode current collector is brought into contact with the inner bottom surface of the negative electrode case to perform conductive connection.

【0005】しかしながら、接触による導電接続を用い
た場合、この電池系では充放電による電極の膨脹収縮が
あることから、特に重負荷放電での接触不良による作動
電圧低下といった問題が発生していた。この対策として
は、電極群の扁平形電池の扁平面に水平な方向の一方の
外面に露出した集電体と金属ケースとを溶接による接続
方法が試みられている。溶接方法としては、超音波溶接
や抵抗溶接方法などがある。
[0005] However, when the conductive connection by contact is used, in this battery system, since the electrodes expand and contract due to charging and discharging, there has been a problem that the operating voltage is reduced due to poor contact especially in heavy load discharge. As a countermeasure, a method of connecting a current collector and a metal case, which are exposed on one outer surface in a direction horizontal to the flat surface of the flat battery of the electrode group, by welding has been attempted. Examples of the welding method include an ultrasonic welding method and a resistance welding method.

【0006】[0006]

【発明が解決しようとする課題】しかし、溶接により集
電体と金属ケースとを接続する場合、次のごとき問題が
ある。すなわち、近年、この種の電池においても更なる
放電容量の向上が求められるようになり、特に、薄肉電
極を捲回もしくは積層により正負極の対向面積を拡大し
た電極群を内包した電池では、正極及び負極活物質以外
の構成要素の一つである集電体の体積を減少し、その減
少した分、活物質を詰め込むことで放電容量の向上が図
られてきた。つまり集電体のさらなる肉薄化は集電体の
体積減少に繋がるものであり、十分に検討する必要があ
る。
However, when the current collector and the metal case are connected by welding, there are the following problems. That is, in recent years, further improvement in the discharge capacity has been demanded even in this type of battery. Particularly, in a battery including an electrode group in which the facing area of the positive and negative electrodes is increased by winding or laminating a thin electrode, the positive electrode is In addition, the discharge capacity has been improved by reducing the volume of a current collector, which is one of the constituent elements other than the negative electrode active material, and packing the reduced amount of the active material. In other words, further reduction in the thickness of the current collector leads to a reduction in the volume of the current collector, and thus needs to be sufficiently studied.

【0007】ところで、集電体を肉薄化した場合、集電
体自体の強度が低下し、さらに溶接の際に加わる熱の影
響により脆くなることで、溶接部の破断といった溶接不
良が発生し、溶接による方法では前記接触不良の改善に
対して十分ではなかった。また、溶接を行う際には、超
音波溶接では超音波ホーンもしくは抵抗溶接では溶接電
極(以下溶接接触子という)にて集電体を押さえ付ける
必要があるが、溶接時に集電体と溶接接触子間に活物質
等の異物が介在した場合、溶接が困難となることから、
溶接部位の集電体は両面の活物質を未塗工もしくは剥離
する必要があり、有効な電極面積が減少してしまうとい
った問題があった。
However, when the current collector is thinned, the strength of the current collector itself decreases, and the current collector becomes brittle due to the influence of heat applied during welding. The method by welding was not sufficient for improvement of the contact failure. Also, when performing welding, it is necessary to press the current collector with an ultrasonic horn in ultrasonic welding or a welding electrode (hereinafter referred to as welding contactor) in resistance welding. If a foreign material such as an active material is interposed between the elements, welding becomes difficult.
The current collector at the welding site has a problem that the active material on both sides must be uncoated or peeled off, and the effective electrode area decreases.

【0008】本発明は上記状況に鑑みてなされたもの
で、その解決すべき課題は重負荷放電特性を改善すると
共に、導電接続の安定化と信頼性の高い扁平形非水電解
質二次電池を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a problem to be solved is a flat non-aqueous electrolyte secondary battery having improved heavy load discharge characteristics, stable conductive connection and high reliability. To provide.

【0009】[0009]

【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、扁平形非水電解質二次電池において、正
負極集電体と金属ケースとの導電接続は、導電接着剤に
より接着接続することで集電体を薄肉化した場合であっ
ても、重負荷放電において安定した特性を実現できるこ
とを見出した。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that in a flat nonaqueous electrolyte secondary battery, the conductive connection between the positive and negative electrode current collectors and the metal case is made by a conductive adhesive. It has been found that even when the current collector is thinned by adhesive connection, stable characteristics can be realized in heavy load discharge.

【0010】すなわち、正極端子を兼ねる金属製の正極
ケースと、負極端子を兼ねる金属製の負極ケースが絶縁
ガスケットを介して嵌合され、さらに前記正極ケースま
たは負極ケースが加締め加工により加締められた封口構
造を有し、その内部に少なくとも正極板、セパレータ、
負極板を含む電極群と、非水電解質を内包し、かつ前記
電極群の前記セパレータを介した正負極対向面積の総和
が前記絶縁ガスケットの開口面積より大きく、さらに、
正極板及び負極板はそれぞれ導電性を有する正極集電体
及び負極集電体を有し、電極群の扁平形電池の扁平面に
水平な方向の一方の外面に正極集電体を露出させ、その
正極集電体と正極ケースの内底面を導電接続し、かつ電
極群の扁平形電池の扁平面に水平なもう一方の外面に負
極集電体を露出させ、その負極集電体と負極ケースの内
底面を導電接続した扁平形非水電解質二次電池におい
て、正極集電体と正極ケース内底面および負極集電体と
負極ケース内底面の少なくとも一方が導電性接着剤によ
り導電接続されていることで、充放電による電極群の膨
脹収縮があった場合でも重負荷放電時の導電接続を良好
に保つことができ、安定した放電が可能であることを見
出した。
That is, a metal positive electrode case also serving as a positive electrode terminal and a metal negative electrode case also serving as a negative electrode terminal are fitted via an insulating gasket, and the positive electrode case or the negative electrode case is caulked by caulking. Having a closed structure, at least a positive electrode plate therein, a separator,
An electrode group including a negative electrode plate, containing a non-aqueous electrolyte, and the sum of the positive and negative electrode facing areas through the separator of the electrode group is larger than the opening area of the insulating gasket, further,
The positive electrode plate and the negative electrode plate each have a positive electrode current collector and a negative electrode current collector having conductivity, exposing the positive electrode current collector on one outer surface in a direction horizontal to the flat surface of the flat battery of the electrode group, The positive electrode current collector and the inner bottom surface of the positive electrode case are conductively connected, and the negative electrode current collector is exposed on the other outer surface that is horizontal to the flat surface of the flat battery of the electrode group. In a flat nonaqueous electrolyte secondary battery in which the inner bottom surface is conductively connected, at least one of the positive electrode current collector and the positive electrode case inner bottom surface and the negative electrode current collector and the negative electrode case inner bottom surface are conductively connected by a conductive adhesive. As a result, it has been found that even when the electrode group expands and contracts due to charge and discharge, the conductive connection during heavy load discharge can be maintained well, and stable discharge is possible.

【0011】本発明によれば、集電体と金属ケースの導
電接続する際の接続面積を大きくすることができる点も
導電接続を安定化する要因となる。超音波溶接において
は、接触子と被溶接面との接触を均一化することが必要
となるが、その方法としては接触面積を抑えると共に、
接触子の表面に凹凸を設け、凸部全体の接触面圧を均一
化することで溶接の安定化を図っている。同様に、抵抗
溶接の場合でも接触子の接触面圧が均一化でないと、溶
接電流が不均一となり、溶接が不安定となる。そのため
に、接触子の接触面積を集電体と金属ケースの対向した
面積の10%以下に抑えていた。これに対し、導電性接
着剤を用いた場合は、集電体と金属ケースの間に凹凸に
よる微小な空間が存在しても導電性接着剤が充填される
ことで、塗布面積全体が有効な導電接続をなしうる。塗
布面積としては少なくとも集電体と金属ケースの対向し
た面積の10%あればよく、なお好ましくは対向した面
積全体である。
According to the present invention, the point that the connection area when conducting current connection between the current collector and the metal case can be increased is also a factor for stabilizing the conducting connection. In ultrasonic welding, it is necessary to equalize the contact between the contact and the surface to be welded, but as a method, while suppressing the contact area,
Irregularities are provided on the surface of the contact, and the contact surface pressure of the entire convex portion is made uniform to stabilize welding. Similarly, even in the case of resistance welding, if the contact surface pressure of the contact is not uniform, the welding current becomes non-uniform, and the welding becomes unstable. For this reason, the contact area of the contact has been suppressed to 10% or less of the area of the current collector and the metal case facing each other. On the other hand, when a conductive adhesive is used, even if there is a minute space due to unevenness between the current collector and the metal case, the conductive adhesive is filled, so that the entire application area is effective. Conductive connections can be made. The application area may be at least 10% of the area where the current collector and the metal case face each other, and more preferably the entire area where the current collector and the metal case face each other.

【0012】また、集電体としては、薄肉化することで
その容量を減少し、活物質を詰め込むことで容量向上を
図るという目的で、金属薄膜としかつその厚さ20μm
以下であることが好ましい。この場合でも、本発明によ
れば、安定化した導電接続が得られる。なお、集電体の
材料に関しては如何なるものでも可能であるが、金属酸
化物等の高電位を有する作用物質を正極に用いた場合、
正極作用物質より卑な溶解電位を持つ金属薄膜を用いる
と、電池保存中に高電位のために劣化が起こり、電池性
能に影響を及ぼす。このため、正極側の金属薄膜はアル
ミニウムやチタン、またはクロム、モリブデンを多く含
むようなステンレス鋼がよい。負極側の金属薄膜に関し
ては正極よりも電位がかなり卑であるため、正極ほど耐
食性に配慮する必要はなく、ステンレス鋼や、ニッケ
ル、銅などがあげられる。
The current collector is made of a metal thin film having a thickness of 20 μm to reduce the capacity by reducing the thickness and to improve the capacity by packing the active material.
The following is preferred. Even in this case, according to the present invention, a stabilized conductive connection can be obtained. Note that any material can be used as the material of the current collector, but when an active substance having a high potential such as a metal oxide is used for the positive electrode,
If a metal thin film having a dissolution potential lower than that of the positive electrode active material is used, deterioration occurs due to a high potential during storage of the battery, which affects battery performance. Therefore, the metal thin film on the positive electrode side is preferably made of aluminum, titanium, or stainless steel containing a large amount of chromium and molybdenum. Since the potential of the metal thin film on the negative electrode side is much lower than that of the positive electrode, it is not necessary to consider corrosion resistance as much as the positive electrode, and examples thereof include stainless steel, nickel, and copper.

【0013】また、導電性接着剤としては、有機化合物
からなるバインダに金属微粉末や炭素粒子、カーボンブ
ラック等からなる導電性フィラーを分散したものを用い
ることができ、好ましくは炭素粒子からなり、さらには
炭素粒子表面活性を低く抑え、電解液等の分解反応によ
るリチウムの消費や炭素粒子表面での反応生成物皮膜に
よる接触抵抗の上昇を抑えるために、d002 面の面間隔
が0.342nm以下の炭素質を用いるのがよい。バイ
ンダーとしては、耐電解液性を有するものであれば同様
の効果が得られ、セルロース系樹脂やアクリル系樹脂が
好ましい。
As the conductive adhesive, a binder obtained by dispersing a conductive filler made of a metal fine powder, carbon particles, carbon black or the like in a binder made of an organic compound can be used, and preferably made of carbon particles. Furthermore, in order to suppress the surface activity of the carbon particles to a low level and to suppress the consumption of lithium due to the decomposition reaction of the electrolytic solution and the increase in the contact resistance due to the reaction product film on the surface of the carbon particles, the spacing between the d002 planes is 0.342 nm or less. It is preferable to use carbonaceous material of The same effect can be obtained as long as the binder has an electrolytic solution resistance, and a cellulose resin or an acrylic resin is preferable.

【0014】次に、本発明の電池は電極を含めた電池構
造に主点をおいたものであり、正極作用物質については
限定されるものではなく、MnO2 、V2 5 、Nb2
5、LiTi2 4 、LiTi5 12、LiFe2
4 、コバルト酸リチウム、ニッケル酸リチウム、マンガ
ン酸リチウムなどの金属酸化物、あるいはフッ化黒鉛、
FeS2 などの無機化合物、あるいはポリアニリンやポ
リアセン構造体などの有機化合物などあらゆる物が適用
可能である。ただし、この中で作動電位が高く、サイク
ル特性に優れるという点でコバルト酸リチウム、ニッケ
ル酸リチウム、マンガン酸リチウムやそれらの混合物や
それらの元素の一部を他の金属元素で置換したリチウム
含有酸化物がより好ましく、長期間に亘り使用されるこ
ともある扁平形非水電解質二次電池においては、高容量
で電解液や水分との反応性が低く化学的に安定であると
いう点でコバルト酸リチウム(LiCoO2 )がさらに
好ましい。
Next, the battery of the present invention mainly focuses on the battery structure including the electrodes, and there is no limitation on the positive electrode active material, and MnO 2 , V 2 O 5 , Nb 2
O 5 , LiTi 2 O 4 , LiTi 5 O 12 , LiFe 2 O
4 , metal oxides such as lithium cobaltate, lithium nickelate, lithium manganate, or graphite fluoride,
Any substance such as an inorganic compound such as FeS 2 or an organic compound such as a polyaniline or polyacene structure can be applied. However, lithium-containing oxides in which lithium cobalt oxide, lithium nickelate, lithium manganate, mixtures thereof, and some of these elements are replaced with other metal elements, because of their high operating potential and excellent cycle characteristics. In a flat type nonaqueous electrolyte secondary battery, which is more preferable and may be used for a long period of time, a cobalt oxide is preferred because of its high capacity, low reactivity with electrolyte and moisture, and chemical stability. Lithium (LiCoO 2 ) is more preferred.

【0015】次に、本発明の電池の負極作用物質につい
ては限定されるものではなく、金属リチウム、あるいは
Li−Al、Li−In、Li−Sn、Li−Si、L
i−Ge、Li−Bi、Li−Pbなどのリチウム合
金、あるいはポリアセン構造体などの有機化合物、ある
いはリチウムを吸蔵、放出可能な炭素質材料、あるいは
Nb2 5 、LiTi2 4 、LiTi5 12やLi含
有珪素酸化物のような酸化物等あらゆる物が適用可能で
あるが、サイクル特性に優れ、作動電圧が低く、高容量
であるという点で、Liを吸蔵、放出可能な炭素質材料
が好ましく、特に放電末期においても電池作動電圧の低
下の少ない点で天然黒鉛や人造黒鉛、膨張黒鉛、メソフ
ェ−ズピッチ焼成体、メソフェ−ズピッチ繊維焼成体な
どのd002面の面間隔が0.338nm以下の黒鉛構造
が発達した炭素質材料がより好ましい。
Next, the negative electrode active material of the battery of the present invention is not limited, and lithium metal, Li-Al, Li-In, Li-Sn, Li-Si, L
i-Ge, Li-Bi, an organic compound such as lithium alloys, or polyacene structure, such as Li-Pb, or absorbs lithium, releasable carbonaceous material or Nb 2 O 5, LiTi 2 O 4,, LiTi 5 Although any substance such as oxides such as O 12 and Li-containing silicon oxide can be applied, carbon materials capable of occluding and releasing Li are excellent in terms of excellent cycle characteristics, low operating voltage, and high capacity. Materials are preferred, and in particular, even at the end of discharge, the surface spacing of the d002 surface of natural graphite, artificial graphite, expanded graphite, mesophase pitch fired body, mesophase pitch fiber fired body, etc. is 0.338 nm in that the operating voltage of the battery is small. The following carbonaceous materials having a developed graphite structure are more preferable.

【0016】次に、電極については、正負極とも金属ネ
ットの金属基盤に合剤を充填する方法を用いてもよい
が、薄肉電極の作製が行ない易いという点で金属箔にス
ラリ−状の合剤を塗布、乾燥したものがよく、さらにそ
れを圧延したものも用いることができる。
Next, as for the electrodes, both the positive and negative electrodes may be filled with a mixture in the metal base of the metal net, but a slurry-like mixture is formed on the metal foil because thin electrodes can be easily manufactured. The agent is preferably applied and dried, and a rolled product can also be used.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施例及び比較例
について詳細に説明する。 (実施例1)図1は本発明の実施例1の扁平形非水電解
質二次電池の断面図である。図において、本実施例1の
扁平形非水電解質二次電池の電池ケースは、ステンレス
製の正極ケース1に絶縁ガスケット7を介して負極ケー
ス5を嵌合しており、この正極ケースまたは負極ケース
が加締め加工により加締められた封口構造を有してい
る。さらに、正極ケース1の下部内面には導電性接着剤
(正極側)2を設け、この導電性接着剤2上に、正極板
3と負極板4の間にセパレータ8を介して渦巻状に捲回
された発電要素を載置した後、導電性接着剤(負極側)
6を設け、負極ケース5を被せて、上記したように絶縁
ガスケット7を介して正極ケースまたは負極ケースが加
締め加工されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention and comparative examples will be described in detail. (Embodiment 1) FIG. 1 is a sectional view of a flat nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention. In the figure, the battery case of the flat nonaqueous electrolyte secondary battery according to the first embodiment has a negative electrode case 5 fitted to a stainless steel positive electrode case 1 via an insulating gasket 7. Has a sealing structure caulked by caulking. Furthermore, a conductive adhesive (positive electrode side) 2 is provided on the lower inner surface of the positive electrode case 1, and the conductive adhesive 2 is spirally wound between the positive electrode plate 3 and the negative electrode plate 4 via a separator 8. After placing the turned power generating element, conductive adhesive (negative electrode side)
6, the negative electrode case 5 is covered, and the positive electrode case or the negative electrode case is crimped through the insulating gasket 7 as described above.

【0018】次に、本実施例1の扁平形非水電解質二次
電池の製造方法を説明する。まず、LiCoO2 100
質量部に対し導電材としてアセチレンブラック5質量部
と黒鉛粉末5質量部を加え、結着剤としてポリフッ化ビ
ニリデンを5質量部加え、N−メチルピロリドンで希
釈、混合し、スラリー状の正極合剤を得た。次にこの正
極合剤を、正極集電体である厚さ0.015mmのアル
ミ箔の片面にドクターブレード法により塗工、乾燥を行
い、アルミ箔表面に正極作用物質含有層3を形成した。
以後、正極作用物質含有層の塗膜厚さが両面で0.15
mmとなるように塗工、乾燥を繰り返し、両面塗工正極
を作製した。次に、この電極体の片面の端から10mm
部分の作用物質含有層を除去し、アルミ層を剥き出し通
電部とし、幅15mm、長さ120mm、厚さ0.15
の長さに切り出し、正極板を作製した。
Next, a method of manufacturing the flat nonaqueous electrolyte secondary battery of the first embodiment will be described. First, LiCoO 2 100
5 parts by mass of acetylene black and 5 parts by mass of graphite powder as a conductive material are added to 5 parts by mass, and 5 parts by mass of polyvinylidene fluoride are added as a binder, diluted and mixed with N-methylpyrrolidone, and a slurry-like positive electrode mixture is added. I got Next, this positive electrode mixture was applied to one surface of a 0.015 mm-thick aluminum foil as a positive electrode current collector by a doctor blade method, and dried to form a positive electrode active substance-containing layer 3 on the aluminum foil surface.
Thereafter, the coating thickness of the positive electrode active substance-containing layer was 0.15 on both sides.
Coating and drying were repeated to obtain a double-sided coated positive electrode. Next, 10 mm from the end of one side of this electrode body
A part of the active substance-containing layer was removed, and the aluminum layer was exposed to form a current-carrying part. The width was 15 mm, the length was 120 mm, and the thickness was 0.15.
To obtain a positive electrode plate.

【0019】次に、黒鉛化メソフェーズピッチ炭素繊維
粉末100質量部に結着剤としてスチレンブタジエンゴ
ム(SBR)とカルボキシメチルセルロース(CMC)
をそれぞれ2.5質量部を添加し、イオン交換水で希
釈、混合し、スラリー状の負極合剤を得た。得られた負
極合剤を負極集電体である厚さ0.015mmの銅箔に
負極作用物質含有層の厚さが両面で0.15mmとなる
ように正極の場合と同様に塗工、乾燥を繰り返し実施し
両面塗工負極を作製した。次に、この電極体の片面の端
から10mm部分の作用物質含有層を除去し、銅層を剥
き出し通電部とし、幅15mm、長さ120mm、厚さ
0.15の長さに切り出し、負極板を作製した。
Next, styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were used as binders in 100 parts by mass of the graphitized mesophase pitch carbon fiber powder.
Were added and diluted with ion-exchanged water and mixed to obtain a slurry-like negative electrode mixture. The obtained negative electrode mixture is applied and dried on a 0.015 mm thick copper foil as a negative electrode current collector in the same manner as in the case of the positive electrode so that the thickness of the negative electrode active substance containing layer is 0.15 mm on both sides. Was repeated to produce a double-sided coated negative electrode. Next, a 10 mm portion of the active substance-containing layer was removed from one end of the electrode body, and the copper layer was exposed to form a current-carrying part. Was prepared.

【0020】次に、正負極通電部面を外周巻き終わり側
とし、これら正極板と負極板の間に厚さ25μmのポリ
エチレン微多孔膜からなるセパレータ8を介して渦巻状
に捲回し、扁平形電池の扁平面に対し水平方向の外面に
正極通電面、もう一方の水平方向の外面に負極通電面を
持つように一定方向に捲回し、さらに電極の中心部の空
間がなくなるまで加圧した。
Next, the surface of the current-carrying portion of the positive and negative electrodes is set to the outer peripheral winding end side, and spirally wound between the positive electrode plate and the negative electrode plate via a separator 8 made of a 25 μm-thick polyethylene microporous film to form a flat battery. The electrode was wound in a fixed direction so as to have a positive electrode conducting surface on the outer surface in the horizontal direction with respect to the flat surface and a negative electrode conducting surface on the other horizontal outer surface, and further pressurized until there was no space in the center of the electrode.

【0021】作製した電極群を、絶縁ガスケット7を一
体化した負極金属ケース5の内底面に、電極群の片面塗
工の負極集電板通電部が接するように配置し、塗布面積
が集電体通電部と負極金属ケース5との対向した面積の
50%となるように塗布された導電性接着剤を介して接
着・導電接続した。同様に、もう一方の正極集電板通電
部を50%の面積となるように正極ケース1の内底面
に、正極ケース1が負極金属ケース5に完全には嵌合さ
れない状態で、導電性接着剤を介して接着・導電接続し
た。このケース及び電極群を85 で12h乾燥した
後、エチレンカーボネートとメチルエチルカーボネート
を体積比で1:1の割合で混合した溶液に支持塩として
LiPF6 を1mol/lの割合で溶解せしめた非水電
解質を注液し、正極ケース1を所定位置まで嵌合し、上
下反転後、正極ケースに加締め加工を実施し、封口し、
厚さ3mm、直径φ24.5mmの実施例1の扁平形非
水電解質二次電池を製作した。導電性接着剤として、d
002 面の面間隔が0.335nmの天然黒鉛をカルボキ
シメチルセルロースからなるバインダーに純水を分散媒
として分散したものを使用した。
The prepared electrode group is arranged on the inner bottom surface of the negative electrode metal case 5 in which the insulating gasket 7 is integrated so that the current-carrying portion of the single-side coated negative electrode current collector plate is in contact with the electrode group. Adhesion and conductive connection were made via a conductive adhesive applied so as to cover 50% of the area of the body conduction portion and the negative electrode metal case 5 facing each other. Similarly, the other positive current collector current-carrying part is electrically conductively bonded to the inner bottom surface of the positive electrode case 1 so as to have an area of 50% while the positive electrode case 1 is not completely fitted to the negative electrode metal case 5. Adhesion and conductive connection were made via the agent. After drying the case and the electrode group at 85 1 for 12 hours, a non-aqueous electrolyte obtained by dissolving LiPF6 at a rate of 1 mol / l as a supporting salt in a solution obtained by mixing ethylene carbonate and methyl ethyl carbonate at a volume ratio of 1: 1. , The positive electrode case 1 is fitted to a predetermined position, and after turning upside down, the positive electrode case is crimped and sealed,
The flat nonaqueous electrolyte secondary battery of Example 1 having a thickness of 3 mm and a diameter of 24.5 mm was manufactured. As a conductive adhesive, d
A dispersion obtained by dispersing natural graphite having a 002 plane spacing of 0.335 nm in a binder made of carboxymethyl cellulose using pure water as a dispersion medium was used.

【0022】(実施例2)導電性接着剤の塗布面積を正
極側、負極側ともに10%となるように接着した以外は
実施例1と同様に電池を作製した。
Example 2 A battery was manufactured in the same manner as in Example 1 except that the conductive adhesive was applied so that the application area was 10% on both the positive electrode side and the negative electrode side.

【0023】(実施例3)導電性接着剤による接着を正
極側のみとし、かつ導電性接着剤の塗布面積が10%と
なるように接着した以外は実施例1と同様に電池を作製
した。
Example 3 A battery was manufactured in the same manner as in Example 1 except that the conductive adhesive was used only for the positive electrode side and the conductive adhesive was applied so that the application area was 10%.

【0024】(実施例4)導電性接着剤による接着を負
極側のみとし、かつ導電性接着剤の塗布面積が10%と
なるように接着した以外は実施例1と同様に電池を作製
した。
Example 4 A battery was produced in the same manner as in Example 1 except that the conductive adhesive was used only for the negative electrode side and the conductive adhesive was applied so that the application area was 10%.

【0025】(比較例1)導電性接着剤の塗布面積を正
極側、負極側ともに5%となるように接着した以外は実
施例1と同様に電池を作製した。
Comparative Example 1 A battery was manufactured in the same manner as in Example 1 except that the conductive adhesive was applied so that the application area was 5% on both the positive electrode side and the negative electrode side.

【0026】(比較例2)電極群の正極通電面と正極金
属ケース1及び負極通電面と負極金属ケース5を共に導
電性接着剤を使用せず、接触のみによる導電接続とした
以外は実施例1と同様に電池を作製した。
(Comparative Example 2) The same procedure as in Example 1 was carried out except that the positive electrode conducting surface and the positive electrode metal case 1 of the electrode group and the negative electrode conducting surface and the negative electrode metal case 5 were both electrically connected only by contact without using a conductive adhesive. A battery was produced in the same manner as in Example 1.

【0027】(比較例3)電極群の正極通電面と正極金
属ケース1及び負極通電面と負極金属ケース5を共に超
音波により溶接し、その際の超音波ホーンの押え面積
を、集電体通電部と負極金属ケース5との対向した面積
の5%とした以外は実施例1と同様に電池を作製した。
(Comparative Example 3) The positive electrode energizing surface and the positive electrode metal case 1 of the electrode group and the negative electrode energizing surface and the negative electrode metal case 5 were both welded by ultrasonic waves. A battery was fabricated in the same manner as in Example 1, except that the area of the facing portion between the current-carrying part and the negative electrode metal case 5 was 5%.

【0028】(比較例4)正極板及び負極板の通電部を
両面未塗工とし、電極群の正極通電面と正極金属ケース
1及び負極通電面と負極金属ケース5を共に超音波によ
り溶接し、その際の超音波ホーンの押え面積を、集電体
通電部と負極金属ケース5との対向した面積の5%とし
た以外は実施例1と同様に電池を作製した。
(Comparative Example 4) The energized portions of the positive electrode plate and the negative electrode plate were not coated on both surfaces, and the positive electrode energized surface of the electrode group and the positive electrode metal case 1 and the negative electrode energized surface and the negative electrode metal case 5 were welded together by ultrasonic waves. A battery was manufactured in the same manner as in Example 1, except that the pressing area of the ultrasonic horn was set to 5% of the area of the current collector current-carrying part and the negative electrode metal case 5 facing each other.

【0029】(比較例5)正極板及び負極板の集電体厚
さを50μmとし、正極板及び負極板の通電部を両面未
塗工とし、電極群の正極通電面と正極金属ケース1及び
負極通電面と負極金属ケース5を共に超音波により溶接
し、その際の超音波ホーンの押え面積を、集電体通電部
と負極金属ケース5との対向した面積の5%とした以外
は実施例1と同様に電池を作製した。
(Comparative Example 5) The current collector thickness of the positive electrode plate and the negative electrode plate was set to 50 μm, and the current-carrying portions of the positive electrode plate and the negative electrode plate were not coated on both surfaces. The procedure was carried out except that the current carrying surface of the negative electrode and the negative electrode metal case 5 were both welded by ultrasonic waves, and the pressing area of the ultrasonic horn was set to 5% of the area of the current collector current-carrying part and the negative electrode metal case 5 facing each other. A battery was produced in the same manner as in Example 1.

【0030】以上の通り本実施例及び比較例の電池各1
00個を製作した。これらの電池について、4.2V、
3mAの定電流定電圧で48時間初充電を実施した。さ
らに3日間室温で放置後電圧を確認した。この際、比較
例3については、内部短絡による電圧降下が発生した。
これは超音波溶接の際に集電体に残存していた活物質が
超音波により脱落し、電池組み立て時に内部短絡を発生
したものと考えられる。よって電池評価は不能であっ
た。これにより比較例3以外の電池について、ランダム
に20個抜き取り、20℃の雰囲気下で1mAの定電流
で閉路電圧が3.0Vになるまで放電を実施し、放電容
量1を求めた。また、その他の電池をランダムに20個
抜き取り、20℃の雰囲気下で30mAの定電流で閉路
電圧が3.0Vになるまで放電を実施し、その後4.2
V、30mAの定電流定電圧による充電を3時間行い、
これを1サイクルとして10回サイクルを繰り返した後
に、200mAの定電流で閉路電圧が3.0Vになるま
で放電を実施し、放電容量2とし、放電容量1に対する
放電容量2の重負荷放電での放電利用率を求めた。
As described above, each one of the batteries of this embodiment and the comparative example was used.
00 pieces were produced. For these batteries, 4.2V,
Initial charging was performed for 48 hours at a constant current and constant voltage of 3 mA. After further standing at room temperature for 3 days, the voltage was confirmed. At this time, in Comparative Example 3, a voltage drop due to an internal short circuit occurred.
This is presumably because the active material remaining on the current collector at the time of ultrasonic welding fell off due to the ultrasonic wave, and an internal short circuit occurred during battery assembly. Therefore, battery evaluation was impossible. As a result, 20 batteries were randomly extracted from the batteries other than Comparative Example 3 and discharged at a constant current of 1 mA in an atmosphere at 20 ° C. until the closed circuit voltage became 3.0 V, to obtain a discharge capacity of 1. In addition, 20 other batteries were randomly sampled and discharged at a constant current of 30 mA in an atmosphere of 20 ° C. until the closed circuit voltage became 3.0 V, and then 4.2.
V, charge at a constant current and constant voltage of 30 mA for 3 hours,
After this cycle was repeated 10 times, discharging was performed at a constant current of 200 mA until the closed circuit voltage became 3.0 V. The discharging capacity was set to 2, and the discharging capacity 2 with respect to the discharging capacity 1 was subjected to heavy load discharging. The discharge utilization rate was determined.

【0031】各電池における放電容量1及び放電利用率
の各10個の平均値を表1に示した。この表1より明ら
かであるが、本発明の実施例では、初期放電及び重負荷
放電容量での放電利用率が良好な結果であった。これに
対し、比較例1では導電性接着剤を使用しているものの
接着面積が小さく、有効に機能していない。接着面積と
しては10%以上で同様の効果が得られる。
Table 1 shows the average value of the discharge capacity 1 and the discharge utilization rate of each of the ten batteries. As is evident from Table 1, in the examples of the present invention, the discharge utilization at the initial discharge and the heavy load discharge capacity was a good result. On the other hand, in Comparative Example 1, although the conductive adhesive was used, the bonding area was small and did not function effectively. The same effect can be obtained when the bonding area is 10% or more.

【0032】また、集電体と金属ケースの導電接続を接
触のみに依存している比較例2は、薄肉集電体を使用で
きるため初期容量については高い容量が得られるが、充
放電サイクル及び重負荷放電での電極の膨張収縮により
接触抵抗が上昇し、放電利用率が低下したものと考えら
れる。また、比較例4は超音波溶接での不具合を回避す
るために、集電体の溶接部分を両面未塗工としたこと
で、放電容量1が減少している。さらに、薄膜集電体を
使用しているために、溶接不良及び充放電サイクルでの
電極の膨張収縮で溶接部が外れることで、前記接触方式
と同様に内部抵抗による重負荷放電での利用率が低下し
いる。また、比較例5では、溶接部が両面未塗工である
こと及び集電体の厚さが厚いことから、初期容量が低下
している。ただし、溶接については良好であることか
ら、重負荷での放電利用率は実施例と同等であった。
In Comparative Example 2 in which the conductive connection between the current collector and the metal case relies solely on contact, a high capacity can be obtained for the initial capacity because a thin current collector can be used. It is considered that the contact resistance increased due to the expansion and contraction of the electrode during heavy load discharge, and the discharge utilization rate decreased. Further, in Comparative Example 4, the discharge capacity 1 was reduced by omitting the welding portion of the current collector on both sides in order to avoid problems in ultrasonic welding. Furthermore, since the thin film current collector is used, the welded portion is detached due to poor welding and expansion and contraction of the electrode in the charge / discharge cycle, and the utilization factor in heavy load discharge due to internal resistance is the same as in the contact method. Is decreasing. Further, in Comparative Example 5, since the welded portion was not coated on both sides and the thickness of the current collector was large, the initial capacity was low. However, since the welding was good, the discharge utilization rate under heavy load was equivalent to that of the example.

【0033】[0033]

【表1】 [Table 1]

【0034】なお、本発明の実施例は、非水電解質に非
水溶媒を用いた扁平形非水溶媒二次電池を用いて、さら
に電池形状については正極ケースの加締め加工により封
口するコイン形非水電解質二次電池を基に説明したが、
正負極電極を入れ替え、負極ケースの加締め加工により
封口することも可能である。さらに、電池形状について
も円形のコイン形である必要はなく小判形などの特殊形
状を有する扁平形非水電解質二次電池においても適用可
能である。
In the embodiment of the present invention, a flat non-aqueous solvent secondary battery using a non-aqueous solvent as a non-aqueous electrolyte is used. Although explained based on non-aqueous electrolyte secondary batteries,
It is also possible to replace the positive and negative electrodes and seal the negative electrode case by crimping. Further, the shape of the battery does not need to be a circular coin shape, and can be applied to a flat nonaqueous electrolyte secondary battery having a special shape such as an oval shape.

【0035】[0035]

【発明の効果】以上説明したとおり、本発明によれば、
電池の高容量を維持したまま、充放電サイクル及び重負
荷放電での電池内部抵抗の上昇を防止し、安定した重負
荷性能を得ることができる工業的価値の非常に大きな優
れた扁平形非水電解質二次電池を提供することができ
る。
As described above, according to the present invention,
Excellent flat non-water with great industrial value that can prevent increase in battery internal resistance during charge / discharge cycles and heavy load discharge while maintaining high battery capacity, and achieve stable heavy load performance. An electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の扁平形非水電解質二次電池
の断面図。
FIG. 1 is a cross-sectional view of a flat nonaqueous electrolyte secondary battery according to Embodiment 1 of the present invention.

【符号の説明】[Explanation of symbols]

1…正極ケース、2…導電性接着剤(正極側)、3…正
極板、4…負極板、5…負極ケース、6…導電性接着剤
(負極側)、7…絶縁ガスケット、8…セパレータ。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode case, 2 ... Conductive adhesive (positive electrode side), 3 ... Positive electrode plate, 4 ... Negative electrode plate, 5 ... Negative electrode case, 6 ... Conductive adhesive (negative electrode side), 7 ... Insulating gasket, 8 ... Separator .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇田川 和男 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H017 AA03 AS08 BB08 BB11 CC03 EE01 EE04 EE05 HH03 HH04 5H022 AA09 AA18 BB12 CC16 EE01 EE05 EE10 5H029 AJ02 AJ06 AJ14 AK01 AK02 AK03 AK05 AK16 AL03 AL06 AL07 AL12 AL16 AM03 AM05 AM07 BJ03 BJ14 CJ02 CJ05 CJ22 DJ05 DJ07 DJ12 EJ01 EJ04 EJ11 EJ12 HJ04 HJ07 HJ12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazuo Udagawa 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H017 AA03 AS08 BB08 BB11 CC03 EE01 EE04 EE05 HH03 HH04 5H022 AA09 AA18 BB12 CC16 EE01 EE05 EE10 5H029 AJ02 AJ06 AJ14 AK01 AK02 AK03 AK05 AK16 AL03 AL06 AL07 AL12 AL16 AM03 AM05 AM07 BJ03 BJ14 CJ02 CJ05 CJ22 DJ05 DJ07 DJ12 EJ01 EJ04 EJ11 EJ12 HJ04 HJ07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極端子を兼ねる金属製の正極ケース
と、負極端子を兼ねる金属製の負極ケースが絶縁ガスケ
ットを介して嵌合され、さらに前記正極ケースまたは前
記負極ケースが加締め加工により加締められた封口構造
を有し、その内部に少なくとも正極板、セパレータ、負
極板を含む電極群と、非水電解質を内包し、かつ前記電
極群の前記セパレータを介した正負極対向面積の総和が
前記絶縁ガスケットの開口面積より大きく、さらに、正
極板及び負極板はそれぞれ導電性を有する正極集電体及
び負極集電体を有し、電極群の扁平形電池の扁平面に水
平な方向の一方の外面に正極集電体を露出させ、その正
極集電体と正極ケースの内底面を導電接続し、かつ電極
群の扁平形電池の扁平面に水平なもう一方の外面に負極
集電体を露出させ、その負極集電体と負極ケースの内底
面を導電接続した扁平形非水電解質二次電池において、
前記正極集電体と前記正極ケース内底面および前記負極
集電体と前記負極ケース内底面の少なくとも一方が導電
性接着剤により導電接続されていることを特徴とする扁
平形非水電解質二次電池。
1. A metal positive electrode case also serving as a positive electrode terminal and a metal negative electrode case also serving as a negative electrode terminal are fitted via an insulating gasket, and the positive electrode case or the negative electrode case is crimped by crimping. Having a closed sealing structure, at least a positive electrode plate, a separator, an electrode group including a negative electrode plate therein, including a non-aqueous electrolyte, and the sum of the positive and negative electrode facing areas through the separator of the electrode group is It is larger than the opening area of the insulating gasket, and furthermore, the positive electrode plate and the negative electrode plate each have a positive electrode current collector and a negative electrode current collector having conductivity, and one of the directions parallel to the flat surface of the flat battery of the electrode group. Exposing the positive electrode current collector on the outer surface, electrically connecting the positive electrode current collector to the inner bottom surface of the positive electrode case, and exposing the negative electrode current collector on the other outer surface horizontal to the flat surface of the flat battery of the electrode group Let it In a flat nonaqueous electrolyte secondary battery in which the negative electrode current collector and the inner bottom surface of the negative electrode case are electrically connected,
A flat nonaqueous electrolyte secondary battery, wherein at least one of the positive electrode current collector and the inner bottom surface of the positive electrode case and the negative electrode current collector and at least one of the inner bottom surface of the negative electrode case are conductively connected by a conductive adhesive. .
【請求項2】 前記導電性接着剤の塗布面積が、前記正
極集電体と前記正極ケースもしくは前記負極集電体と前
記負極ケースとが対向した少なくとも一方の設置面積に
対して10%以上の面積であることを特徴とする請求項
1記載の扁平形非水電解質二次電池。
2. An application area of the conductive adhesive is 10% or more with respect to at least one installation area where the positive electrode current collector and the positive electrode case or the negative electrode current collector and the negative electrode case face each other. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the secondary battery has an area.
【請求項3】 前記正極集電体および前記負極集電体が
金属薄膜からなり、かつその厚さが20μm以下である
ことを特徴とする請求項1記載の扁平形非水電解質二次
電池。
3. The flat nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode current collector and the negative electrode current collector are formed of a metal thin film and have a thickness of 20 μm or less.
JP2001093059A 2001-03-28 2001-03-28 Flat nonaqueous electrolyte secondary battery Pending JP2002289260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001093059A JP2002289260A (en) 2001-03-28 2001-03-28 Flat nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001093059A JP2002289260A (en) 2001-03-28 2001-03-28 Flat nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002289260A true JP2002289260A (en) 2002-10-04

Family

ID=18947440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001093059A Pending JP2002289260A (en) 2001-03-28 2001-03-28 Flat nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002289260A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298803A (en) * 2001-03-30 2002-10-11 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2005032671A (en) * 2003-07-11 2005-02-03 Hitachi Maxell Ltd Coin-form nonaqueous secondary battery
JP2016018658A (en) * 2014-07-08 2016-02-01 株式会社Gsユアサ Power storage element
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
JP2021044084A (en) * 2019-09-06 2021-03-18 株式会社Gsユアサ Power storage element
SE2251078A1 (en) * 2022-09-16 2024-03-17 Northvolt Ab A secondary cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541250A (en) * 1991-08-02 1993-02-19 Matsushita Electric Ind Co Ltd Flat type organic electrolyte secondary battery
JPH09289011A (en) * 1996-04-19 1997-11-04 Seiko Instr Kk Nonaqueous electrolyte secondary battery
JPH11288703A (en) * 1998-04-01 1999-10-19 Gs Melcotec Kk Battery
JP2001068143A (en) * 1999-08-27 2001-03-16 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2001068160A (en) * 1999-08-27 2001-03-16 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541250A (en) * 1991-08-02 1993-02-19 Matsushita Electric Ind Co Ltd Flat type organic electrolyte secondary battery
JPH09289011A (en) * 1996-04-19 1997-11-04 Seiko Instr Kk Nonaqueous electrolyte secondary battery
JPH11288703A (en) * 1998-04-01 1999-10-19 Gs Melcotec Kk Battery
JP2001068143A (en) * 1999-08-27 2001-03-16 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2001068160A (en) * 1999-08-27 2001-03-16 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298803A (en) * 2001-03-30 2002-10-11 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2005032671A (en) * 2003-07-11 2005-02-03 Hitachi Maxell Ltd Coin-form nonaqueous secondary battery
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11217844B2 (en) 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024904B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
JP2016018658A (en) * 2014-07-08 2016-02-01 株式会社Gsユアサ Power storage element
JP2021044084A (en) * 2019-09-06 2021-03-18 株式会社Gsユアサ Power storage element
SE2251078A1 (en) * 2022-09-16 2024-03-17 Northvolt Ab A secondary cell

Similar Documents

Publication Publication Date Title
US20030138693A1 (en) Flat non-aqueous electrolyte secondary cell
JP2001357855A (en) Nonaqueous electrolyte secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP4199839B2 (en) Swirl type lithium ion battery electrode and spiral type lithium ion battery using the same
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JP2002289260A (en) Flat nonaqueous electrolyte secondary battery
JP2011222128A (en) Secondary battery
JP2010015852A (en) Secondary battery
JP3508411B2 (en) Lithium ion secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP2004265718A (en) Nonaqueous electrolyte secondary cell
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JP4901017B2 (en) Flat nonaqueous electrolyte secondary battery with lead terminals
JP3316113B2 (en) Rechargeable battery
JP4827112B2 (en) Flat non-aqueous electrolyte secondary battery
JP2001143763A (en) Flat non-aqueous electrolyte secondary battery
JP5072122B2 (en) Flat non-aqueous electrolyte secondary battery
JP4565530B2 (en) Flat non-aqueous electrolyte secondary battery
JPH10247522A (en) Nonaqueous electrolyte secondary battery
JP2000294296A (en) Nonaqueous electrolyte secondary battery
JP2002289259A (en) Flat nonaqueous electrolyte secondary battery
JP2003249201A (en) Flat-type nonaqueous electrolyte secondary battery
JP4656698B2 (en) Flat non-aqueous electrolyte secondary battery
JPH11283665A (en) Electrochemical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090618

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111221