JP2002263660A - Facility for purifying water - Google Patents

Facility for purifying water

Info

Publication number
JP2002263660A
JP2002263660A JP2001064293A JP2001064293A JP2002263660A JP 2002263660 A JP2002263660 A JP 2002263660A JP 2001064293 A JP2001064293 A JP 2001064293A JP 2001064293 A JP2001064293 A JP 2001064293A JP 2002263660 A JP2002263660 A JP 2002263660A
Authority
JP
Japan
Prior art keywords
water
filtration
mixing
sedimentation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001064293A
Other languages
Japanese (ja)
Other versions
JP3854471B2 (en
Inventor
Kunio Ebie
邦雄 海老江
Tomoaki Miyanoshita
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2001064293A priority Critical patent/JP3854471B2/en
Publication of JP2002263660A publication Critical patent/JP2002263660A/en
Application granted granted Critical
Publication of JP3854471B2 publication Critical patent/JP3854471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the final quality of treated water. SOLUTION: After mixing inorganic flocculant with water in a inorganic mixing basin 10, high molecular flocculant is mixed with the resultant solution in a polymer mixing basin 18. The agitation strength when mixing this high molecular flocculant is made powerful. Flocculation is performed in a flocculation basin 26 thereafter, and solid material is precipitated in a sedimentation basin 30. After filtering the sedimentation-treated water with a fiber filter 32, the water is filtered in a sand filtration basin 34. Since the agitation is made powerful, fine flocks are contained in the sedimentation treated water. However, the flocks are removed by the fiber filter 32, and hence the turbidity of water supplied to the sand filtration basin 34 is stabilized, and the filtration resistance in the sand filtration basin 34 is reduced. With such a configuration, the scale of the whole facility can be made smaller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無機凝集剤を混合
後に有機高分子凝集剤(ポリマー)を混合し凝集沈殿処
理を行う凝集沈殿処理装置と、凝集沈殿処理水について
砂ろ過処理を行う砂ろ過装置を有する浄水処理装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coagulation / sedimentation treatment apparatus for mixing an inorganic coagulant and then mixing an organic polymer coagulant (polymer) for coagulation / sedimentation treatment, and a sand for performing sand filtration treatment on coagulation / sedimentation treatment water The present invention relates to a water purification device having a filtration device.

【0002】[0002]

【従来の技術】従来より河川水、湖沼水等の表流水を原
水とする浄水処理において、凝集沈殿処理と砂ろ過を組
み合わせた処理が広く採用されている。
2. Description of the Related Art Conventionally, in water purification treatment using surface water such as river water, lake water, or the like as raw water, treatment that combines coagulation sedimentation treatment and sand filtration has been widely used.

【0003】この凝集沈殿処理では、アルミ系や鉄系の
無機凝集剤が利用されているが、これら無機凝集剤に有
機高分子凝集剤を併用する場合も多い。これは、ポリマ
ーを利用することで、微細な無機凝集剤フロックや懸濁
物質を容易に粗大化でき、沈降速度を上昇して良好な沈
殿上澄み液を安定して得ることができるからである。
In this coagulation-precipitation treatment, an aluminum-based or iron-based inorganic coagulant is used. In many cases, an organic polymer coagulant is used in combination with these inorganic coagulants. This is because, by using a polymer, a fine inorganic flocculant floc or a suspended substance can be easily coarsened, a sedimentation speed can be increased, and a good sedimentation supernatant can be stably obtained.

【0004】そこで、良好なフロックが形成されるよう
に凝集条件を決定している。通常の場合、ポリマー添加
後の急速撹拌強度をG値で300sec−1(以下s
−1と記す)未満、急速撹拌時間を5分未満になるよう
にしている。これによって、フロックの最大成長径は1
0mm前後あるいはそれ以上に達し、沈殿池におけるフ
ロック沈降速度が上昇し、沈殿上澄み液の水質を向上す
ることができる。
[0004] Therefore, the coagulation conditions are determined so that a good floc is formed. In the normal case, the rapid stirring intensity after adding the polymer is 300 sec −1 (hereinafter referred to as s) in G value.
-1 ) and the rapid stirring time is less than 5 minutes. Thus, the maximum growth diameter of the flock is 1
When it reaches about 0 mm or more, the floc sedimentation velocity in the sedimentation basin increases, and the water quality of the sedimentation supernatant can be improved.

【0005】[0005]

【発明が解決しようとする課題】ところが、フロックの
成長を優先させて、撹拌強度を300s−1未満とした
り、急速撹拌時間を5分未満になるようすると、沈殿池
でのフロックの除去性は向上し、沈殿上澄み水の濁度や
SS(懸濁物質濃度)といった定量的指標でみるとその
絶対値は小さくなる。しかし、このような凝集では微小
な粒子がフロックに取り込まれず、これがろ過池に供給
されてろ過抵抗が増加しやすいという問題があった。そ
して、ろ過抵抗が上昇しやすいと、逆洗頻度が増加し逆
洗が遅れるとブレークスルーが発生し、処理水質が悪化
してしまうという問題があった。
However, if the stirring intensity is set to less than 300 s -1 or the rapid stirring time is set to less than 5 minutes by giving priority to the growth of flocs, the removability of flocs in the sedimentation basin is reduced. The absolute value decreases when viewed from quantitative indices such as turbidity of the supernatant supernatant water and SS (concentration of suspended solids). However, in such agglomeration, there is a problem that fine particles are not taken into the flocs, and are supplied to the filtration pond to increase the filtration resistance. When the filtration resistance is easily increased, the frequency of the backwash increases, and if the backwash is delayed, a breakthrough occurs and the quality of the treated water is deteriorated.

【0006】一方、ポリマー添加後の急速撹拌の撹拌強
度を、G値で300s−1以上とし、5分以上行うと、
撹拌強度が比較的強いことにより、フロックの最大成長
径が数mmにとどまる。このため、フロックの沈降速度
は、無機単独の場合に比べそれほど増加せず、沈殿処理
水の濁度も攪拌強度を弱くした場合のようによくならな
い。このため、ポリマーを添加したにもかかわらず沈殿
池を小さくできないという問題があった。
On the other hand, when the stirring intensity of the rapid stirring after the addition of the polymer is set to a G value of 300 s −1 or more, when the stirring is performed for 5 minutes or more,
Due to the relatively high stirring intensity, the maximum growth diameter of the flocks is limited to several mm. For this reason, the sedimentation speed of the floc does not increase so much as compared with the case of the inorganic substance alone, and the turbidity of the sedimentation treatment water is not as good as when the stirring intensity is weakened. For this reason, there was a problem that the size of the sedimentation basin could not be reduced despite the addition of the polymer.

【0007】本発明は上記課題に鑑みなされたものであ
り、最終的な処理水水質を向上することができる浄水装
置を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a water purification device capable of improving the quality of final treated water.

【0008】[0008]

【課題を解決するための手段】本発明は、無機凝集剤を
混合後に有機高分子凝集剤を混合し凝集沈殿処理を行う
凝集沈殿処理装置と、凝集沈殿処理水について砂ろ過処
理を行う砂ろ過装置を有する浄水処理装置であって、前
記有機高分子凝集剤の混和を撹拌強度G値で300〜1
000sec−1で5分以上行うとともに、前記砂ろ過
装置の前段で繊維をろ材に用いた繊維ろ過装置による粗
ろ過処理を行うことを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a coagulation / sedimentation treatment apparatus for mixing an inorganic coagulant, mixing an organic polymer coagulant and performing coagulation / sedimentation treatment, and a sand filtration apparatus for performing sand filtration on coagulation / sedimentation treatment water. A water purification treatment device having a device, wherein the mixing of the organic polymer flocculant is 300 to 1 with stirring intensity G value.
000 sec -1 for 5 minutes or more, and a rough filtration treatment by a fiber filtration device using a fiber as a filter medium is performed in a preceding stage of the sand filtration device.

【0009】このように、比較的強い攪拌で、有機高分
子凝集剤を混合することで、有機高分子凝集剤により、
微細な懸濁物質を細くすることができる。一方、このよ
うな強い攪拌を行うと、フロック径が十分大きくなら
ず、微細フロックが沈殿池より流出する可能性が高い
が、これは繊維ろ過で除去することができる。繊維ろ過
器はろ過速度を大きくとれるため、装置の全体としての
大きさ(浄水装置全体)を小さくできる。そして、繊維
ろ過器の処理水には、微細懸濁物質が非常に少ないた
め、砂ろ過供給水濁度が安定し、砂ろ過装置におけるろ
過抵抗の低減が図れる。
As described above, by mixing the organic polymer flocculant with relatively strong stirring,
Fine suspended substances can be thinned. On the other hand, when such strong stirring is performed, the floc diameter does not become sufficiently large, and there is a high possibility that the fine floc flows out of the sedimentation basin. However, this can be removed by fiber filtration. Since the filtration speed of the fiber filter can be increased, the overall size of the apparatus (the entire water purification apparatus) can be reduced. And, since there is very little fine suspended substance in the treated water of the fiber filter, the turbidity of the sand filtration supply water is stabilized, and the filtration resistance in the sand filtration device can be reduced.

【0010】また、前記凝集沈殿装置の表面負荷率(単
位時間の処理水量/沈殿池の有効断面積)が3.5m/
時以上、前記繊維ろ過装置のろ過速度が10m/時以上
であることが好適である。
Further, the surface load ratio (the amount of treated water per unit time / the effective sectional area of the sedimentation basin) of the coagulation settling apparatus is 3.5 m /
It is preferable that the filtration speed of the fiber filtration device be 10 m / hour or more.

【0011】また、前記繊維ろ過装置のろ材が長さ50
cm〜300cmの長繊維束であることが好適である。
Further, the filter medium of the fiber filtration device has a length of 50
It is preferably a long fiber bundle of cm to 300 cm.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態につい
て、図面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】河川水、湖沼水等の表流水からなる原水
は、無機混和池10に導入される。この無機混和池10
には、攪拌翼12aと、これを回転させるモータ12b
からなる攪拌機12が配置されている。また、この無機
混和池10には、無機凝集剤タンク14内の無機凝集剤
がポンプ16によって供給される。無機凝集剤として
は、例えばPAC(ポリ塩化アルミニウム:Al
10%含有)が利用される。なお、この無機混和池10
の急速攪拌強度は通常300s−1未満、滞留時間は5
分未満であるが、これに限定されない。
Raw water consisting of surface water such as river water and lake water is introduced into the inorganic mixing pond 10. This inorganic mixing pond 10
Includes a stirring blade 12a and a motor 12b for rotating the stirring blade 12a.
Is disposed. The inorganic coagulant 10 is supplied with an inorganic coagulant in an inorganic coagulant tank 14 by a pump 16. As the inorganic flocculant, for example, PAC (polyaluminum chloride: Al 2 O 3)
10%). In addition, this inorganic mixing pond 10
Has a rapid stirring intensity of usually less than 300 s -1 and a residence time of 5
Minutes, but not limited to.

【0014】次に、無機凝集剤が混合された水は、高分
子混和池18に導入される。この高分子混和池18に
は、攪拌翼20aと、これを回転させるモータ20bか
らなる攪拌機20が配置されており、また高分子凝集剤
タンク22内の高分子凝集剤ががポンプ24によって供
給される。高分子凝集剤としては、例えばノニオン性ア
クリルアミドポリマーが利用される。また、アニオン性
アクリルアミドポリマーが好適な場合もあるが、これら
に限定されるものではない。この高分子混和池18の急
速攪拌強度は300s−1以上、滞留時間は5分以上に
設定されている。
Next, the water mixed with the inorganic coagulant is introduced into the polymer mixing pond 18. A stirrer 20 including a stirring blade 20 a and a motor 20 b for rotating the stirring blade 20 a is disposed in the polymer mixing pond 18. The polymer flocculant in the polymer flocculant tank 22 is supplied by a pump 24. You. As the polymer flocculant, for example, a nonionic acrylamide polymer is used. In some cases, an anionic acrylamide polymer is suitable, but is not limited thereto. The rapid stirring strength of the polymer mixing pond 18 is set to 300 s -1 or more, and the residence time is set to 5 minutes or more.

【0015】高分子混和池18からの無機凝集剤および
高分子凝集剤が混合された水は、凝集池26に導入され
る。この凝集池26には横軸パドル式の緩速攪拌機28
が設けられており、ここで緩速攪拌されフロックの粗大
化が図られる。
The water mixed with the inorganic coagulant and the polymer coagulant from the polymer mixing pond 18 is introduced into the coagulation pond 26. The coagulation pond 26 has a horizontal paddle type slow stirrer 28
Is provided, and the floc is agitated at a low speed to increase the floc size.

【0016】そして、無機凝集剤および高分子凝集剤に
よりフロック形成された水が沈殿池30に導入され、こ
こで固形物が沈殿される。この沈殿池30で沈殿された
固形物は汚泥として系外に排除され、上澄み水は繊維ろ
過器32に導入される。
Then, water flocculated by the inorganic flocculant and the polymer flocculant is introduced into the sedimentation basin 30, where solids are precipitated. The solids precipitated in the sedimentation basin 30 are removed as sludge outside the system, and the supernatant water is introduced into the fiber filter 32.

【0017】この繊維ろ過器32は、特公平5−120
02号公報、特公平5−11482号公報、特許第27
99376号公報などに記載されている長繊維束を利用
したものが好適である。この繊維ろ過器32では、ろ過
塔の底部近傍に支持体を設け、この上方に長さ50cm
〜300cmの長繊維束の下端を固定するとともに、上
端を自由端とする。そして、この長繊維束をろ過塔内に
ほぼ直立状態を維持するように充填し、ろ過体を形成す
る。そして、ろ過塔内に下降流で水を通過させてろ過体
により懸濁物質を捕捉除去する。このような繊維ろ過器
32は、比較的空隙率が高く、砂ろ過池などに比べろ過
速度を十分大きくとれ、砂ろ過池に流入する水について
の粗ろ過が行える。すなわち、砂ろ過において、ろ過抵
抗上昇の原因となる微細なフロックを効果的に除去する
ことができる。なお、長繊維束の場合、このようなろ過
の際にその長さが上述のように50cm〜300cmが
好適である。
The fiber filter 32 has a structure of Japanese Patent Publication No. 5-120.
No. 02, Japanese Patent Publication No. 5-11482, Patent No. 27
Those using long fiber bundles described in, for example, Japanese Patent No. 99376 are preferable. In the fiber filter 32, a support is provided near the bottom of the filtration tower, and a length of 50 cm is provided above the support.
The lower end of the long fiber bundle of ~ 300 cm is fixed and the upper end is a free end. Then, the long fiber bundle is filled in the filtration tower so as to maintain a substantially upright state, thereby forming a filter. Then, water is passed through the filtration tower in a downward flow, and the suspended solids are captured and removed by the filter. Such a fiber filter 32 has a relatively high porosity, a sufficiently high filtration speed as compared with a sand filter or the like, and can perform coarse filtration of water flowing into the sand filter. That is, in sand filtration, fine flocs which cause an increase in filtration resistance can be effectively removed. In addition, in the case of a long fiber bundle, the length thereof is preferably 50 cm to 300 cm during the filtration as described above.

【0018】この繊維ろ過器32のろ過処理水は、次に
砂ろ過池34に供給され、残留する懸濁物質がろ過処理
される。この砂ろ過池34は、例えばアンスラサイト、
ケイ砂の二層で形成されており、比較的精密なろ過を行
う。これによって、水道水として配水できる水質のろ過
処理水が安定して得られる。
The filtered water from the fiber filter 32 is then supplied to a sand filtration pond 34 where the remaining suspended solids are filtered. The sand filtration pond 34 includes, for example, anthracite,
It is formed of two layers of silica sand and performs relatively precise filtration. As a result, filtered water having a quality that can be distributed as tap water can be stably obtained.

【0019】ろ過処理水は、処理水タンク36に貯留さ
れ、消毒された後配水される。また、処理水タンク36
内の処理水は、逆洗ポンプ38によって、砂ろ過池3
4、繊維ろ過器32の底部に供給できるようになってお
り、これによって砂ろ過池34、繊維ろ過器32を逆洗
できる。また、砂ろ過池34、繊維ろ過器32の底部に
はブロア40からの空気も供給できるようになってお
り、これによって空気逆洗も行われる。
The filtered water is stored in a treated water tank 36, and disinfected before being distributed. The treated water tank 36
The treated water in the sand filter pond 3
4. It can be supplied to the bottom of the fiber filter 32, so that the sand filter 34 and the fiber filter 32 can be backwashed. Further, the air from the blower 40 can be supplied to the bottoms of the sand filtration pond 34 and the fiber filter 32, whereby the air is backwashed.

【0020】このような浄水装置において、沈殿池30
からの沈殿処理水に微細なフロックが含まれても、この
懸濁物質は繊維ろ過器32において除去される。繊維ろ
過器32は、元々空隙率が高く、懸濁物質の保持容量が
大きい。そこで、沈殿処理水中の懸濁物質量が増えて
も、その繊維ろ過水における処理水質の変動はあまりな
い。沈殿処理水が、砂ろ過池34に直接供給される場合
には、沈殿処理水中の懸濁物質量が増えるとすぐに目詰
まり発生などの問題が生じるが、繊維ろ過器32を設け
ることでこのような問題が生じない。
In such a water purification apparatus, the sedimentation basin 30
The suspended solids are removed in the fiber filter 32 even if fine flocs are contained in the settling water from the process. The fiber filter 32 originally has a high porosity and a large holding capacity for suspended substances. Therefore, even if the amount of suspended solids in the settling water increases, the quality of the treated water in the fiber filtration water does not vary much. When the sedimentation treatment water is directly supplied to the sand filtration pond 34, a problem such as clogging occurs as soon as the amount of suspended solids in the sedimentation treatment water increases. Such a problem does not occur.

【0021】従って、本実施形態の浄水処理装置では、
沈殿池30の表面負荷率を比較的大きくすることにより
沈殿池30を小さくできる。また、繊維ろ過器32は、
ろ過速度を大きくとれるため、小型にできる。そして、
本実施形態では、高分子混和池18において、攪拌強度
を300s−1以上、滞留時間を5分以上に設定してい
る。これによって、高分子凝集剤が無機混和池10から
供給される水と確実に混合される。そして、このような
比較的強力な攪拌によって、フロックサイズは小さくな
るが、高分子凝集剤に微細な懸濁物質が捕捉される。こ
のような凝集処理によって沈殿池30で得られる上澄み
水は、比較的にSSの多いものとなる。しかし、これら
の多くは繊維ろ過器32において除去される。そして、
砂ろ過池34に供給される水には微細な懸濁質はほとん
ど含まれなくなり、砂ろ過池34におけるろ過処理の負
荷を減少して好適なろ過処理が行える。
Therefore, in the water treatment apparatus of the present embodiment,
By making the surface load rate of the sedimentation basin 30 relatively large, the size of the sedimentation basin 30 can be reduced. In addition, the fiber filter 32 is
Since the filtration speed can be increased, the size can be reduced. And
In the present embodiment, in the polymer mixing pond 18, the stirring intensity is set to 300 s -1 or more, and the residence time is set to 5 minutes or more. This ensures that the polymer flocculant is mixed with the water supplied from the inorganic mixing pond 10. Then, the floc size is reduced by such relatively intense stirring, but fine suspended substances are captured by the polymer flocculant. The supernatant water obtained in the sedimentation basin 30 by such coagulation treatment has a relatively large amount of SS. However, many of these are removed in the fiber filter 32. And
The water supplied to the sand filtration pond 34 hardly contains fine suspended solids, so that the load of the filtration treatment in the sand filtration pond 34 can be reduced and a suitable filtration treatment can be performed.

【0022】すなわち、高分子凝集剤混合後の攪拌を弱
くすると、フロックは粗大化するが、微細な懸濁物質が
残り、砂ろ過池34におけるろ過抵抗が大きくなる。本
実施形態によれば、攪拌強度の強い高分子混和池18
と、繊維ろ過器32と、砂ろ過池34を組み合わせるこ
とによって、装置の全体としての大きさを小さくして、
良好な最終処理水を得ることができる。
That is, when the stirring after mixing of the polymer flocculant is weakened, the floc is coarsened, but fine suspended substances remain, and the filtration resistance in the sand filtration pond 34 increases. According to the present embodiment, the polymer mixing pond 18 having a strong stirring intensity
By combining the fiber filter 32 and the sand filter 34, the overall size of the device is reduced,
Good final treated water can be obtained.

【0023】なお、本実施形態では、無機凝集剤にPA
Cを用いているが、硫酸バンド、塩化第二鉄、硫酸第二
鉄、ポリ硫酸アルミニウム・鉄等の鉄やアルミニウムを
原料とするものであれば、特に限定する必要はない。ま
た凝集助剤として、硫酸、塩酸、炭酸、水酸化ナトリウ
ム、消石灰等を加えることも好ましい。
In the present embodiment, PA is used as the inorganic coagulant.
Although C is used, there is no particular limitation as long as iron or aluminum is used as a raw material such as a sulfate band, ferric chloride, ferric sulfate, and polyaluminum sulfate / iron. It is also preferable to add sulfuric acid, hydrochloric acid, carbonic acid, sodium hydroxide, slaked lime, or the like as a coagulation aid.

【0024】本実施形態では、凝集池26の前でのみ高
分子凝集剤の混和を行っているが、繊維ろ過器32の前
でも高分子凝集剤の混和を行っても良い。また、繊維ろ
過器32の前でのみ高分子凝集剤の混和を行っても良
い。
In this embodiment, the mixing of the polymer flocculant is performed only before the flocculation pond 26, but the polymer flocculant may be mixed before the fiber filter 32. Further, the mixing of the polymer flocculant may be performed only before the fiber filter 32.

【0025】[0025]

【実施例】(1)凝集沈殿ろ過法(比較例) 図1の構成から繊維ろ過器32を省略した装置を用いて
実験を行った。この実験条件を以下に示す。
EXAMPLES (1) Agglomerated sedimentation filtration method (comparative example) An experiment was conducted using an apparatus in which the fiber filter 32 was omitted from the configuration of FIG. The experimental conditions are shown below.

【0026】「実験条件」 ・原水流量:1,000m/時 ・無機混和池:滞留時間3分、撹拌強度200s−1 ・高分子混和池:滞留時間5分、撹拌強度600s−1 ・凝集池:横軸パドル3段式、滞留時間40分 ・沈殿池:上向流式傾斜板付き沈殿池、滞留時間40
分、上昇速度3m/時 ・砂ろ過池:ケイ砂700mm、有効径0.6mm、均
等係数1.3、ろ過速度120m/日 ・原水濁度:30度 ・原水pH:7.2 ・凝集剤:PAC 注入率20mg/l ・凝集助剤:高分子凝集剤(ノニオン性アクリルアミド
ポリマー)、注入率0.3mg/L
"Experimental conditions" Raw water flow rate: 1,000 m 3 / h Inorganic mixing pond: residence time 3 minutes, stirring intensity 200 s -1 Polymer mixing pond: residence time 5 minutes, stirring intensity 600 s -1 Coagulation Pond: Horizontal paddle three-stage type, residence time 40 minutes-Sedimentation basin: Upflow type sedimentation basin with inclined plate, residence time 40
Min, ascending speed 3m / h ・ Sand filtration tank: silica sand 700mm, effective diameter 0.6mm, uniformity coefficient 1.3, filtration speed 120m / day ・ Raw turbidity: 30 ° ・ Raw water pH: 7.2 ・ Coagulant : PAC injection rate 20 mg / l ・ Aggregation aid: high-molecular coagulant (nonionic acrylamide polymer), injection rate 0.3 mg / L

【0027】このように、濁度30度の原水に、凝集剤
としてPAC20mg/Lを無機混和池10で加え、急
速撹拌をG値200s−1で3分間行い、引き続き凝集
助剤として高分子凝集剤を高分子混和池18で加え、急
速撹拌をG値600s−1で5分間行い、凝集池26に
てフロック形成を行い、沈殿池30にて沈殿分離を行っ
て、砂ろ過池34にてろ過処理を行い処理水を得る。砂
ろ過池34は48時間に1回、空気逆流洗浄を通水速度
60m/時×5分間を行った後、逆流水洗浄を通水速度
36m/時×8分間行った。
As described above, 20 mg / L of PAC as a coagulant was added to the raw water having a turbidity of 30 degrees in the inorganic mixing pond 10, and rapid stirring was performed at a G value of 200 s -1 for 3 minutes. The agent is added in the polymer mixing pond 18, rapid stirring is performed at a G value of 600 s −1 for 5 minutes, floc formation is performed in the coagulation pond 26, sedimentation and separation are performed in the sedimentation pond 30, and the sand filtration pond 34 is used. Filtration is performed to obtain treated water. The sand filtration basin 34 was subjected to air backflow cleaning at a flow rate of 60 m / hour × 5 minutes once every 48 hours, and then backflow water cleaning was performed at a water flow rate of 36 m / hour × 8 minutes.

【0028】この時の各工程での濁度は、原水30度、
沈殿処理水0.9度、ろ過水濁度0.04度となってい
た。また砂ろ過池の通水時間48時間でのろ過抵抗は、
1,500mmであった。
At this time, the turbidity in each step was 30 degrees in raw water,
The precipitation-treated water was 0.9 ° and the turbidity of the filtered water was 0.04 °. In addition, the filtration resistance of the sand filtration pond during 48 hours of water flow is as follows:
1,500 mm.

【0029】(2)凝集沈殿ろ過法(実施形態) 図1の装置を用いて実験を行った。実験条件を以下に示
す。
(2) Coagulation-sedimentation filtration method (Embodiment) An experiment was conducted using the apparatus shown in FIG. The experimental conditions are shown below.

【0030】[実験条件] ・原水流量:1,000m/時 ・無機混和池:滞留時間3分、撹拌強度 200s−1 ・高分子混和池:滞留時間5分、撹拌強度 600s
−1 ・凝集池:横軸パドル3段式、滞留時間40分 ・沈殿池:上向流式傾斜板付き沈殿池、滞留時間20
分、上昇速度6m/時 ・繊維ろ過器:アクリル製長繊維ろ材、ろ材長150c
m、充填密度100kg/m、ろ過速度 480m/
日(20m/時) ・砂ろ過池:ケイ砂700mm、有効径0.6mm、均
等係数 1.3、ろ過速度240m/日 ・原水濁度:30度 ・原水pH:7.2 ・凝集剤:PAC 注入率20mg/l ・凝集助剤:高分子凝集剤(ノニオン性アクリルアミド
ポリマー)、注入率0.3mg/L
[Experimental conditions]-Raw water flow rate: 1,000 m 3 / hour-Inorganic mixing pond: residence time 3 minutes, stirring intensity 200 s- 1 -Polymer mixing pond: residence time 5 minutes, stirring intensity 600 s
-1. Coagulation pond: 3-stage horizontal paddle type, residence time 40 minutes.-Sedimentation basin: upward flow type sedimentation basin with inclined plate, residence time 20.
Min, ascending speed 6m / h ・ Fiber filter: acrylic long fiber filter media, filter media length 150c
m, packing density 100 kg / m 2 , filtration speed 480 m / m
Day (20 m / hr)-Sand filter: sand sand 700 mm, effective diameter 0.6 mm, uniformity coefficient 1.3, filtration speed 240 m / day-Raw water turbidity: 30 degrees-Raw water pH: 7.2-Flocculant: PAC Injection rate 20 mg / l Coagulation aid: High-molecular coagulant (nonionic acrylamide polymer), injection rate 0.3 mg / L

【0031】濁度30度の原水に、凝集剤としてPAC
20mg/Lを無機混和池10で加え、急速撹拌をG値
200s−1で3分間行い、引き続き凝集助剤として高
分子凝集剤を高分子混和池18で加え、急速撹拌をG値
600s−1で5分行い、凝集池26にてフロック形成
を行い、沈殿池30にて固液分離を行って、さらに繊維
ろ過器32にて粗ろ過を行った後、砂ろ過池34にてろ
過処理を行い処理水を得る。繊維ろ過器32は24時間
に1回、水・空気逆流洗浄を水通水速度100m/時、
空気通水速度300m/時で6分間行っている。砂ろ過
池34は48時間に1回、空気逆流洗浄を通水速度60
m/時×5分間行った後、逆流水洗浄を通水速度36m
/時×8分間行った。
In raw water having a turbidity of 30 degrees, PAC is used as a flocculant.
20 mg / L was added in the inorganic mixing pond 10 and rapid stirring was performed at a G value of 200 s -1 for 3 minutes. Subsequently, a polymer flocculant was added as a coagulant in the polymer mixing pond 18 and the rapid stirring was performed with a G value of 600 s -1. After 5 minutes, floc formation is performed in the flocculation pond 26, solid-liquid separation is performed in the sedimentation pond 30, coarse filtration is performed in the fiber filter 32, and then filtration is performed in the sand filter 34. To obtain treated water. The fiber filter 32 performs water / air backwashing once every 24 hours with a water flow rate of 100 m / hour.
The air flow rate is 300 m / h for 6 minutes. The sand filtration pond 34 has a backflow air cleaning rate of 60 once every 48 hours.
m / hour x 5 minutes, then backflow water washing 36m
/ Hour × 8 minutes.

【0032】この時の各工程での濁度は、原水30度、
沈殿処理水1.2度(比較例0.9度)、繊維ろ過処理
水濁度0.1度、砂ろ過水濁度0.03度(比較例0.
04度)となっていた。沈殿処理水濁度で比べると、比
較例よりも高い値となっているが、繊維ろ過処理水つま
り砂ろ過供給水では、比較例よりも低い値となってい
る。また砂ろ過池の通水時間48時間でのろ過抵抗は、
ろ過速度が従来法の2倍であるにも拘わらず700mm
と比較例のろ過抵抗1,500mmの半分以下であっ
た。
At this time, the turbidity in each step was 30 degrees in raw water,
Precipitation treatment water 1.2 degrees (Comparative Example 0.9 degrees), fiber filtration treatment water turbidity 0.1 degrees, sand filtration water turbidity 0.03 degrees (Comparative Example 0.
04 degrees). When compared with the turbidity of the sedimentation treatment water, the value is higher than that of the comparative example, but the value of the fiber filtration treatment water, that is, the supply water of sand filtration is lower than that of the comparative example. In addition, the filtration resistance of the sand filtration pond during 48 hours of water flow is as follows:
700mm despite the double filtration speed of the conventional method
And the filtration resistance of the comparative example was not more than half of 1,500 mm.

【0033】比較例の各設備の設置面積を100とした
場合の設置面積を比較すると、表1の様に沈殿池で50
%、ろ過池(本発明では繊維ろ過器+砂ろ過池)で75
%に縮小できている。
Comparing the installation area with the installation area of each facility of the comparative example assuming that the installation area is 100, as shown in Table 1, 50
%, 75 in the filter pond (fiber filter + sand filter in the present invention)
%.

【表1】 [Table 1]

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
比較的強い攪拌で、有機高分子凝集剤を混合すること
で、有機高分子凝集剤により、微細な懸濁物質を捕捉す
ることができる。一方、このような強い攪拌を行うと、
フロック径が十分大きくならず、微細フロックが沈殿池
より流出する可能性が高いが、これは繊維ろ過で除去す
ることができる。繊維ろ過器はろ過速度を大きくとれる
ため、装置の全体としての大きさ(浄水装置全体)を小
さくできる。そして、繊維ろ過器の処理水には、微細懸
濁物質が非常に少ないため、砂ろ過供給水濁度が安定
し、砂ろ過装置におけるろ過抵抗の低減が図れる。
As described above, according to the present invention,
By mixing the organic polymer flocculant with relatively strong stirring, fine suspended substances can be captured by the organic polymer flocculant. On the other hand, when such strong stirring is performed,
The floc diameter is not large enough, and there is a high possibility that the fine floc flows out of the sedimentation basin, which can be removed by fiber filtration. Since the filtration speed of the fiber filter can be increased, the overall size of the apparatus (the entire water purification apparatus) can be reduced. And, since there is very little fine suspended substance in the treated water of the fiber filter, the turbidity of the sand filtration supply water is stabilized, and the filtration resistance in the sand filtration device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態の装置の全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of an apparatus according to an embodiment.

【符号の説明】[Explanation of symbols]

10 無機混和池、18 高分子混和池、20 攪拌装
置、26 凝集池、30 沈殿池、32 繊維ろ過器、
34 砂ろ過池。
10 inorganic mixing pond, 18 polymer mixing pond, 20 stirrer, 26 coagulation pond, 30 sedimentation pond, 32 fiber filter,
34 Sand filtration pond.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 23/16 Fターム(参考) 4D015 BA12 BA19 BB08 BB12 CA14 DA04 DA05 DA06 DA13 DA16 DB03 DC07 DC08 EA06 FA15 FA16 4D041 BA01 BB04 BB10 CA04 CB03──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 23/16 F term (Reference) 4D015 BA12 BA19 BB08 BB12 CA14 DA04 DA05 DA06 DA13 DA16 DB03 DC07 DC08 EA06 FA15 FA16 4D041 BA01 BB04 BB10 CA04 CB03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 無機凝集剤を混合後に有機高分子凝集剤
を混合し凝集沈殿処理を行う凝集沈殿処理装置と、凝集
沈殿処理水について砂ろ過処理を行う砂ろ過装置を有す
る浄水処理装置であって、 前記有機高分子凝集剤の混和を撹拌強度G値で300〜
1000sec−1で5分以上行うとともに、 前記砂ろ過装置の前段で繊維をろ材に用いた繊維ろ過装
置による粗ろ過処理を行うことを特徴とする浄水処理装
置。
The present invention relates to a water purification treatment apparatus having a coagulation / sedimentation treatment apparatus for mixing and coagulating sedimentation treatment with an organic polymer coagulant after mixing an inorganic coagulant, and a sand filtration apparatus for performing sand filtration treatment on coagulation / sedimentation treatment water. The mixing of the organic polymer flocculant is 300 to
A water purification treatment device, wherein the treatment is performed at 1000 sec -1 for 5 minutes or more, and a coarse filtration treatment is performed by a fiber filtration device using fibers as a filter material in a preceding stage of the sand filtration device.
【請求項2】 請求項1に記載の装置において、 前記凝集沈殿装置の表面負荷率が3.5m/時以上、前
記繊維ろ過装置のろ過速度が10m/時以上であること
を特徴とする浄水処理装置。
2. The water purifying apparatus according to claim 1, wherein the surface load factor of the coagulating sedimentation device is 3.5 m / h or more, and the filtration speed of the fiber filtration device is 10 m / h or more. Processing equipment.
【請求項3】 請求項1または2に記載の装置におい
て、 前記繊維ろ過装置のろ材が長さ50cm〜300cmの
長繊維束であることを特徴とする浄水処理装置。
3. The apparatus according to claim 1, wherein the filter medium of the fiber filtration device is a long fiber bundle having a length of 50 cm to 300 cm.
JP2001064293A 2001-03-08 2001-03-08 Water purification equipment Expired - Fee Related JP3854471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064293A JP3854471B2 (en) 2001-03-08 2001-03-08 Water purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064293A JP3854471B2 (en) 2001-03-08 2001-03-08 Water purification equipment

Publications (2)

Publication Number Publication Date
JP2002263660A true JP2002263660A (en) 2002-09-17
JP3854471B2 JP3854471B2 (en) 2006-12-06

Family

ID=18923128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064293A Expired - Fee Related JP3854471B2 (en) 2001-03-08 2001-03-08 Water purification equipment

Country Status (1)

Country Link
JP (1) JP3854471B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292207A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Apparatus for treating water
JP2006043626A (en) * 2004-08-06 2006-02-16 Hara Giken Kogyo:Kk Water treatment apparatus
JP2017159199A (en) * 2016-03-07 2017-09-14 株式会社東芝 Solid-liquid separator and control device
JP2018192453A (en) * 2017-05-22 2018-12-06 オルガノ株式会社 Membrane filtration apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292207A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Apparatus for treating water
JP4523731B2 (en) * 2001-03-30 2010-08-11 オルガノ株式会社 Water treatment equipment
JP2006043626A (en) * 2004-08-06 2006-02-16 Hara Giken Kogyo:Kk Water treatment apparatus
JP2017159199A (en) * 2016-03-07 2017-09-14 株式会社東芝 Solid-liquid separator and control device
JP2018192453A (en) * 2017-05-22 2018-12-06 オルガノ株式会社 Membrane filtration apparatus and method

Also Published As

Publication number Publication date
JP3854471B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP4223870B2 (en) Water purification method
JP4707752B2 (en) Water treatment method and water treatment system
JP2009066508A (en) Coagulation method for organic matter-containing water
JP4761447B2 (en) Method and apparatus for treating manganese-containing water
JP5818148B2 (en) Outside tank type membrane separation activated sludge method and activated sludge treatment equipment
JP3854471B2 (en) Water purification equipment
JP2014168729A (en) Water treatment method and water treatment apparatus
Thiruvenkatachari et al. Flocculation—cross-flow microfiltration hybrid system for natural organic matter (NOM) removal using hematite as a flocculent
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
JP2019198806A (en) Water treatment method, and water treatment device
JP2009183901A (en) Membrane filtration concentration method of coagulation treated water and coagulated waste muddy water
JP5211432B2 (en) Method for treating water containing suspended matter and chromaticity components
JP3891739B2 (en) Operation method of membrane filtration device
JP4353584B2 (en) Sand-added coagulating sedimentation equipment
JP7142540B2 (en) Water purification method and water purification device
JP2002346347A (en) Method and apparatus for filtration
JP3438508B2 (en) Advanced water treatment method and apparatus
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JPH10235373A (en) Water treatment
JP2927702B2 (en) Wastewater treatment method
JP6833645B2 (en) Water treatment method and water treatment equipment
JP4228394B2 (en) Water treatment method and system
JPH11253704A (en) Flocculator and operation method thereof
JP4528643B2 (en) How to reuse acid backwash wastewater
JP2003170172A (en) Coagulating filtration method and system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060908

R150 Certificate of patent or registration of utility model

Ref document number: 3854471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees