JP2002252139A - Nickel ultra-fine powder and laminated ceramic capacitor - Google Patents

Nickel ultra-fine powder and laminated ceramic capacitor

Info

Publication number
JP2002252139A
JP2002252139A JP2001047345A JP2001047345A JP2002252139A JP 2002252139 A JP2002252139 A JP 2002252139A JP 2001047345 A JP2001047345 A JP 2001047345A JP 2001047345 A JP2001047345 A JP 2001047345A JP 2002252139 A JP2002252139 A JP 2002252139A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
nickel
particle size
multilayer ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001047345A
Other languages
Japanese (ja)
Inventor
Zenichi Akiyama
善一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001047345A priority Critical patent/JP2002252139A/en
Publication of JP2002252139A publication Critical patent/JP2002252139A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide nickel ultra-fine powder which is used for the internal electrode of a laminated ceramic capacitor and improved in grading, so as to decrease the internal electrode in thickness, to increase the ceramic capacitor in capacity, and to ensure electrical safety for the ceramic capacitor and a laminated ceramic capacitor. SOLUTION: For solving the is problem, nickel ultra-fine powder used for the internal electrode of a laminated ceramic capacitor is set at 0.2 to 0.5 μm in average grain diameter, and the abundance ratio of coarse particles, whose grain diameter is twice as large as the average grain diameter to the whole particles, is set at 0.1% or smaller, on the basis of number.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサの内部電極に用いるニッケル超微粉及び積層セ
ラミックコンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine nickel powder used for an internal electrode of a multilayer ceramic capacitor and a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】特開平1−136910号公報には、純
度99%以上、粒径0.1〜0.3μmのニッケル粉を
湿式法で製造する技術が記載されている。しかし、実際
にペーストを試作して電子部品の電極に使用したという
記述はない。本発明における調査では、従来の湿式法に
よるニッケル粉をペーストにして積層セラミックコンデ
ンサの電極とする場合、焼成時に体積変化が大きく、デ
ラミネーションやクラックの発生が多発し易いことが判
明した。これはニッケル粉の製造温度が例えば100℃
未満の低温であるため、結晶が大きく成長せずに、微細
な1次粒子の集合体となっており、過焼結が発生し易
く、あるいは焼成時に体積変化が大きいことに起因する
と考えられる。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 1-136910 describes a technique for producing nickel powder having a purity of 99% or more and a particle size of 0.1 to 0.3 μm by a wet method. However, there is no description that a paste was actually produced and used for an electrode of an electronic component. Investigations in the present invention have revealed that, when nickel powder obtained by a conventional wet method is used as a paste to form an electrode of a multilayer ceramic capacitor, the volume change is large during firing, and delamination and cracks are likely to occur. This is because the production temperature of nickel powder is 100 ° C, for example.
Since the temperature is lower than the lower limit, it is considered that the crystal does not grow greatly, but is an aggregate of fine primary particles, which is likely to cause oversintering or a large volume change during firing.

【0003】また、特開昭64−80007号公報に
は、平均粒径1.0μm、純度99.9%のニッケル粉
末を用いた磁器コンデンサ用電極ペーストが記載されて
いる。この電極ペーストは、焼成時のクラックや剥離を
防止することを目的として、ペーストに炭化物粉末を添
加することが示されている。しかしながら、クラックや
剥離の発生等に及ぼすニッケル粉自体の特性の影響につ
いてはなんら記載されていない。
Japanese Patent Application Laid-Open No. 64-80007 discloses an electrode paste for a ceramic capacitor using nickel powder having an average particle size of 1.0 μm and a purity of 99.9%. This electrode paste is disclosed to add carbide powder to the paste for the purpose of preventing cracking and peeling during firing. However, there is no description on the influence of the characteristics of the nickel powder itself on the occurrence of cracks and peeling.

【0004】特開平8−246001号公報には、平均
粒径0.1〜1.0μm、純度99.5重量%以上のニ
ッケル粉末を用いた積層セラミックスコンデンサ用ニッ
ケル超微粉が記載されており、粒径分布の幾何標準偏差
が2.0以下、という記述がある。これは平均粒子径が
0.4μmの場合、1μm以上の粗粒子を個数基準で8
%程度まで容認することを意味しており、また、実施例
でも数%の粗粒子の存在を容認している。
Japanese Patent Application Laid-Open No. 8-246001 describes a nickel ultrafine powder for a multilayer ceramic capacitor using a nickel powder having an average particle size of 0.1 to 1.0 μm and a purity of 99.5% by weight or more. There is a description that the geometric standard deviation of the particle size distribution is 2.0 or less. This means that when the average particle size is 0.4 μm, coarse particles of 1 μm or more
%, And the examples also permit the presence of several% of coarse particles.

【0005】以下、積層セラミックコンデンサの内部電
極の例を挙げて説明する。積層セラミックコンデンサ
は、酸化チタン、チタン酸バリウム、複合ペロブスカイ
トなどのセラミック誘電体と、金属の内部電極とを交互
に層状に重ねて圧着し、これを焼成して一体化したもの
である。積層セラミックコンデンサは近年電子部品とし
て急速に成長している。また、電子機器の高性能化に伴
ない、積層セラミックコンデンサは小型化、高容量化が
促進され、内部電極は薄層化されつつある。この積層セ
ラミックコンデンサの内部電極として従来はパラジウム
が用いられていたが、近年比較的安価で信頼性の高いニ
ッケルの使用割合が増加している。
Hereinafter, an example of internal electrodes of a multilayer ceramic capacitor will be described. The multilayer ceramic capacitor is obtained by alternately stacking and compressing a ceramic dielectric such as titanium oxide, barium titanate, or a composite perovskite, and a metal internal electrode in layers, and firing and integrating them. Multilayer ceramic capacitors have been rapidly growing as electronic components in recent years. In addition, as the performance of electronic devices has become higher, the size and capacitance of multilayer ceramic capacitors have been promoted, and the thickness of internal electrodes has been reduced. Conventionally, palladium has been used as the internal electrode of the multilayer ceramic capacitor. However, in recent years, the use ratio of nickel, which is relatively inexpensive and has high reliability, has been increasing.

【0006】このニッケル超微粉は、積層セラミックコ
ンデンサの内部電極、水素ニッケル二次電池の多孔性電
極、燃料の酸化反応を電気化学的に行わせることによっ
て電気エネルギーを取出す燃料電池の中空多孔質電極、
その他種々な電気部品の電極等を形成する材料として注
目されている。
The nickel ultrafine powder is used as an internal electrode of a multilayer ceramic capacitor, a porous electrode of a hydrogen nickel secondary battery, and a hollow porous electrode of a fuel cell for extracting electric energy by electrochemically oxidizing a fuel. ,
In addition, it is receiving attention as a material for forming electrodes and the like of various electric components.

【0007】また、ニッケル超微粉は、粒径分布をもっ
た粉体であるため、平均粒子径よりも粒径の大きい粗粒
子が存在する。この粗粒子の存在率が大きいほど、積層
セラミックコンデンサの内部電極を薄層化したとき、積
層する誘電体層を突き破って近隣の内部電極と電気回路
的に接触する可能性が高まる。セラミックコンデンサの
内部電極構成は、対向する電極対に誘電体層が挿入され
た構成を取る。
[0007] Further, since the ultrafine nickel powder is a powder having a particle size distribution, coarse particles having a particle size larger than the average particle size exist. As the abundance of the coarse particles increases, when the internal electrodes of the multilayer ceramic capacitor are thinned, the possibility of breaking through the dielectric layers to be laminated and coming into electrical circuit contact with neighboring internal electrodes increases. The internal electrode configuration of the ceramic capacitor adopts a configuration in which a dielectric layer is inserted between opposing electrode pairs.

【0008】[0008]

【発明が解決しようとする課題】このようなニッケル超
微粉粒子の内、粒径の大きい粒子が存在すると、これら
の粒子が誘電体層をつき抜けて対向電極間の短絡が発生
する。従って、電子機器の使用時、通電すると内部電極
同士の接触は電気的ショートとなり、電子回路の損傷
(電子機器の故障)をもたらす。従って、検査工程でこ
れらの積層コンデンサを除外する処置をとっており、除
外処理等の費用は莫大なものとなっている。
If there are large particles among such ultrafine nickel particles, these particles can pass through the dielectric layer and cause a short circuit between the counter electrodes. Therefore, when the electronic device is used, when the power is supplied, the contact between the internal electrodes is electrically short-circuited, resulting in damage to the electronic circuit (failure of the electronic device). Therefore, measures are taken to exclude these multilayer capacitors in the inspection process, and the cost of such exclusion processing is enormous.

【0009】上記のニッケル超微粉を用いた積層セラミ
ックコンデンサの製造においては、近年増々内部電極を
薄層化、小型化、高容量化することが重要な技術となっ
てきており、焼成時にクラックや剥離が発生するのを防
止すると共に、電極間の短絡による不良品の発生を防ぐ
必要がある。
In the production of multilayer ceramic capacitors using the above-mentioned nickel ultra-fine powder, it has recently become increasingly important to make internal electrodes thinner, smaller, and higher in capacity. It is necessary to prevent the occurrence of peeling and to prevent the occurrence of defective products due to a short circuit between the electrodes.

【0010】よって、本発明は、上記の問題点を解決
し、積層セラミックコンデンサの内部電極で用いるニッ
ケル超微粉の粒度を改善し、特に、内部電極の薄層化、
高容量化を図ると共に、電気的安全性を確保することの
できるニッケル超微粉及び積層セラミックコンデンサを
提供することを目的とする。
Therefore, the present invention solves the above-mentioned problems, improves the particle size of the nickel ultrafine powder used for the internal electrode of the multilayer ceramic capacitor, and particularly, makes the internal electrode thinner,
It is an object of the present invention to provide a nickel ultrafine powder and a multilayer ceramic capacitor capable of increasing the capacity and securing electrical safety.

【0011】[0011]

【課題を解決するための手段】請求項1に記載の発明に
よれば、ニッケル超微粉の平均粒径が0.2〜0.5μ
mであり、かつ平均粒径の2倍以上の粒径をもつ粗粒子
の存在率が個数基準で0.1%以下であることにより、
積層セラミックコンデンサにおいてクラックや剥離が発
生しにくく、薄層化、高容量化を図ると共に、電気的安
全性を確保することができる。
According to the first aspect of the present invention, the nickel ultrafine powder has an average particle size of 0.2 to 0.5 μm.
m, and the abundance of coarse particles having a particle size of twice or more the average particle size is 0.1% or less based on the number,
In the multilayer ceramic capacitor, cracks and peeling are less likely to occur, making it possible to reduce the thickness and increase the capacity and to secure electrical safety.

【0012】請求項2に記載の発明によれば、ニッケル
超微粉が塩化ニッケル蒸気の気相水素還元法によって製
造されることにより、塩化ニッケル蒸気の濃度、反応温
度及び反応器の構造等の選択で積層セラミックコンデン
サ用の電極材料に最適なニッケル超微粉を製造すること
ができる。
According to the second aspect of the present invention, the ultrafine nickel powder is produced by a gas-phase hydrogen reduction method of nickel chloride vapor, whereby the concentration of nickel chloride vapor, the reaction temperature, the structure of the reactor and the like can be selected. Thus, it is possible to manufacture a nickel ultrafine powder that is optimal for an electrode material for a multilayer ceramic capacitor.

【0013】請求項3に記載の発明によれば、ニッケル
超微粉が積層セラミックコンデンサの内部電極に用いら
れることにより、積層セラミックコンデンサの内部電極
の薄層化、小型化、高容量化を図ることができる。ま
た、比較的安価で信頼性の高いニッケル超微粉を用いた
積層セラミックコンデンサを製造することができる。
According to the third aspect of the present invention, the ultra-fine nickel powder is used for the internal electrodes of the multilayer ceramic capacitor, so that the internal electrodes of the multilayer ceramic capacitor can be made thinner, smaller, and have a higher capacity. Can be. In addition, it is possible to manufacture a multilayer ceramic capacitor using nickel ultrafine powder which is relatively inexpensive and highly reliable.

【0014】請求項4に記載の発明によれば、ニッケル
超微粉が内部電極に用いられることにより、積層セラミ
ックコンデンサの内部電極の薄層化、小型化、高容量化
を図ることができる。また、比較的安価で信頼性の高い
ニッケル超微粉を用いた積層セラミックコンデンサを製
造することができる。
According to the fourth aspect of the present invention, since the ultrafine nickel powder is used for the internal electrodes, the internal electrodes of the multilayer ceramic capacitor can be made thinner, smaller, and higher in capacity. Further, a multilayer ceramic capacitor using nickel ultrafine powder which is relatively inexpensive and highly reliable can be manufactured.

【0015】[0015]

【発明の実施の形態】本発明は、次の技術手段を講じた
ことを特徴とするニッケル超微粉である。すなわち、本
発明は、平均粒径が0.2〜0.5μmであり、かつ平
均粒径の2倍以上の粒径をもつ粗粒子の存在率が個数基
準で0.1%以下であることを特徴とするニッケル超微
粉である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is an ultrafine nickel powder characterized by taking the following technical means. That is, in the present invention, the average particle diameter is 0.2 to 0.5 μm, and the abundance of coarse particles having a particle diameter twice or more the average particle diameter is 0.1% or less based on the number. It is a nickel ultrafine powder characterized by the following.

【0016】種々のニッケル粉について積層セラミック
コンデンサの製造実験を行った結果、積層セラミックコ
ンデンサ製造工程で内部電極のショートが発生しにく
く、内部電極を薄層化・高容量化できる電極材料として
要求される特性はニッケル超微粉の平均粒径と粗粒子の
存在率に依存することが判明した。
As a result of conducting an experiment for manufacturing a multilayer ceramic capacitor with various nickel powders, short-circuiting of the internal electrodes hardly occurs in the manufacturing process of the multilayer ceramic capacitor, and it is required as an electrode material capable of thinning and increasing the capacity of the internal electrodes. It was found that the characteristics depended on the average particle size of the ultrafine nickel powder and the abundance of the coarse particles.

【0017】平均粒径としては、0.2〜0.5μmの
範囲のものが好ましい。平均粒径は電子顕微鏡写真を画
像解析して求めた個数基準の粒度分布において50%粒
子径(d50)である。また、粗粒子の存在率は、上記の
画像処理においてカウントされた個数基準の存在率であ
る。ニッケル超微粉の平均粒径を0.2〜0.5μmと
したのは、工業的に比較的安価に製造が可能で、これを
ペースト化して絶縁層フィルムに印刷して十分に薄層で
密実な内部電極を形成するために必要な粒径を確保する
ためである。ニッケル粒子の平均粒径は、0.2μm未
満でも、また、0.5μmを超えても内部電極の薄層化
と積層セラミックコンデンサの高容量化は困難であり、
工業的にも比較的、高価になる。
The average particle size is preferably in the range of 0.2 to 0.5 μm. The average particle size is a 50% particle size (d50) in a number-based particle size distribution obtained by image analysis of an electron micrograph. The abundance of coarse particles is the abundance based on the number counted in the image processing. The reason why the average particle size of the nickel ultrafine powder is 0.2 to 0.5 μm is that it can be manufactured relatively inexpensively on an industrial scale. This is to secure a particle size necessary for forming a real internal electrode. Even if the average particle size of the nickel particles is less than 0.2 μm or more than 0.5 μm, it is difficult to reduce the thickness of the internal electrodes and increase the capacitance of the multilayer ceramic capacitor,
It is relatively expensive industrially.

【0018】また、本発明では、ニッケル超微粉中に含
まれる平均粒径0.2〜0.5μmの粗粒子の存在率を
0.1%以下とする。粉粒体の粒径分布は、粉粒体の気
相反応製造工程が粒子の凝集焼結の確率過程であるた
め、単一粒径の粉粒体を製造することはできず、必ず粒
度分布が生ずる。本発明ではこの粒度分布を極力シャー
プな分布とするように製造条件を調整するが、平均粒径
の2倍以上の粒径をもつ粗粒子がなく同一粒径の粉粒体
を製造することは困難であるから、粗粒子を平均粒径の
2倍以上の粒径をもつ粒子と規定し、これができるだけ
生じないようにする。最近の積層セラミックコンデンサ
の小型化の趨勢及び要請から、電極原料粒子の最大粒径
の制限が厳しく、例えば、粗粒子の粒径を1μm以上程
度に限定すれば、ニッケル超微粉の平均粒径は、0.5
μmに限定する必要がある。
In the present invention, the abundance of coarse particles having an average particle size of 0.2 to 0.5 μm contained in the ultrafine nickel powder is set to 0.1% or less. Since the gas phase reaction manufacturing process of the powder is a stochastic process of agglomeration and sintering of the particles, it is not possible to produce a powder of a single particle size. Occurs. In the present invention, the production conditions are adjusted so as to make this particle size distribution as sharp as possible, but it is not possible to produce a powder having the same particle size without coarse particles having a particle size more than twice the average particle size. Because of the difficulty, the coarse particles are defined as particles having a particle size of twice or more the average particle size, and this is minimized. Due to recent trends and demands for miniaturization of multilayer ceramic capacitors, the maximum particle size of electrode raw material particles is severely restricted. For example, if the particle size of coarse particles is limited to about 1 μm or more, the average particle size of nickel ultrafine powder is , 0.5
It is necessary to limit to μm.

【0019】また、本発明のニッケル超微粉は塩化ニッ
ケル蒸気の気相水素還元法によって製造されたものであ
ると、粒形、粒径分布、純度その他の特性が適切であり
好ましい。ニッケル超微粉は、ニッケル水素電池の多孔
性電極や燃料電池の中空多孔質電極などにも用いること
ができるが、特に積層セラミックコンデンサ用電極とし
てクラックや剥離が発生しにくく、薄層、高容量である
特性を利用する用途に好適に用いることができる。
The ultrafine nickel powder of the present invention is preferably produced by a gas-phase hydrogen reduction method of nickel chloride vapor, because the particle shape, particle size distribution, purity and other properties are suitable. Nickel ultrafine powder can be used for porous electrodes of nickel-metal hydride batteries and hollow porous electrodes of fuel cells, etc. It can be suitably used for applications utilizing certain characteristics.

【0020】また、本発明は平均粒径の2倍以上の粒径
をもつ粗粒子のニッケル超微粉中の存在率を個数基準で
0.1%以下にすれば、薄層で高容量の積層セラミック
コンデンサとして工業的に十分使用することができる。
Further, the present invention provides a laminate having a thin layer and a high capacity if the abundance ratio of coarse particles having a particle diameter of twice or more of the average particle diameter in the nickel ultrafine powder is 0.1% or less based on the number. It can be used industrially as a ceramic capacitor.

【0021】上記ニッケル超微粉は、塩化ニッケル蒸気
の気相水素還元方法による気相反応によって、塩化ニッ
ケル蒸気の濃度、反応温度及び反応器の構造を適切に選
択することにより製造することができる。上記塩化ニッ
ケル蒸気の気相水素還元方法は、蒸発るつぼを有する蒸
発部と、この蒸発部から不活性ガスで搬送された塩化ニ
ッケル蒸気と供給された水素ガスとを所定の温度で接触
させる反応部と、反応部からの発生ニッケル粉を含む反
応ガスを間接冷却する冷却部とを、連続配置した反応器
を用いて実現することができる。
The nickel ultrafine powder can be produced by appropriately selecting the concentration of nickel chloride vapor, the reaction temperature and the structure of the reactor by a gas phase reaction by a vapor phase hydrogen reduction method of nickel chloride vapor. The above-mentioned gas-phase hydrogen reduction method for nickel chloride vapor comprises an evaporating section having an evaporating crucible, and a reaction section for bringing nickel chloride vapor carried by an inert gas from the evaporating section into contact with supplied hydrogen gas at a predetermined temperature. And a cooling unit that indirectly cools a reaction gas containing nickel powder generated from the reaction unit can be realized using a reactor that is continuously arranged.

【0022】[0022]

【実施例】平均粒径が0.2〜0.5μmのニッケル超
微粉のペーストを用いて積層セラミックコンデンサを作
製し、1000個の積層セラミックコンデンサの内部電
極のショート率(積層セラミック個数基準)の発生の有
無を調べた。なお、ニッケル超微粉のペーストは、誘電
体の厚さが約2.5μmのグリーンシート上に厚みが
1.2μmになるように印刷した。電極と誘電体層を交
互に200層積み重ねて圧着した後切断して、乾燥、脱
バインダ後、1200℃の水素、水蒸気、窒素混合ガス
中で焼成した。得られた積層コンデンサの大きさは、縦
3.2×横1.6×厚さ1.6mmであった。実施例及
び比較例を表1に示した。
EXAMPLE A multilayer ceramic capacitor was manufactured using a paste of nickel ultrafine powder having an average particle size of 0.2 to 0.5 μm, and the short-circuit rate (based on the number of multilayer ceramics) of the internal electrodes of 1,000 multilayer ceramic capacitors was determined. The occurrence was examined. Note that the paste of the nickel ultrafine powder was printed on a green sheet having a dielectric thickness of about 2.5 μm so that the thickness became 1.2 μm. After alternately stacking 200 layers of electrodes and dielectric layers, crimping, cutting, drying, and removing the binder, firing was performed at 1200 ° C. in a mixed gas of hydrogen, steam, and nitrogen. The size of the obtained multilayer capacitor was 3.2 × 1.6 × 1.6 mm in thickness. Table 1 shows Examples and Comparative Examples.

【0023】[0023]

【表1】 表1に示すように、本発明の特性を満足する実施例のニ
ッケル超微粉を用いた場合に、すなわち、平均粒径の2
倍以上の粒径の粗粒子の存在率を個数基準で0.1%以
下としたニッケル超微粉を用いた場合に、小径、高容量
の積層セラミックコンデンサの内部電極用として、内部
電極のショート率が低く、積層セラミックコンデンサの
不良率が低く良好な成績を得た。これに対し、比較例で
は内部電極のショート率が高く、積層セラミックコンデ
ンサの不良率が高くなっている。
[Table 1] As shown in Table 1, when the nickel ultrafine powder of the example satisfying the characteristics of the present invention was used, that is, when the average particle diameter was 2
When using ultra-fine nickel powder with the abundance of coarse particles having a particle size more than twice as large as 0.1% or less based on the number, the short-circuit rate of the internal electrodes for the internal electrodes of small-diameter, high-capacity multilayer ceramic capacitors And the defective rate of the multilayer ceramic capacitor was low and good results were obtained. On the other hand, in the comparative example, the short-circuit rate of the internal electrodes is high, and the defective rate of the multilayer ceramic capacitor is high.

【0024】以上の説明では、積層セラミックコンデン
サの内部電極として用いられるニッケル超微粉を主体に
説明したが、本発明のニッケル超微粉は、この用途に限
られる訳ではなく、二次電池、燃料電池その他の電極材
料として用いることができるものである。
In the above description, the nickel ultrafine powder used as the internal electrode of the multilayer ceramic capacitor has been mainly described. However, the nickel ultrafine powder of the present invention is not limited to this application, but may be used for secondary batteries and fuel cells. It can be used as another electrode material.

【0025】[0025]

【発明の効果】本発明のニッケル超微粉及び積層セラミ
ックコンデンサによれば、すぐれた粒径分布特性を有す
るニッケル超微粉が提供され、特に積層セラミックコン
デンサの内部電極の薄層化、高容量化、内部電極のショ
ート率の低下による積層セラミックコンデンサの不良品
発生を低下させることができる。
According to the ultrafine nickel powder and the multilayer ceramic capacitor of the present invention, a nickel ultrafine powder having excellent particle size distribution characteristics is provided. In particular, the internal electrode of the multilayer ceramic capacitor can be made thinner and higher in capacity. It is possible to reduce the occurrence of defective products of the multilayer ceramic capacitor due to a reduction in the short-circuit rate of the internal electrodes.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が0.2〜0.5μmであり、
かつ平均粒径の2倍以上の粒径をもつ粗粒子の存在率が
個数基準で0.1%以下であることを特徴とするニッケ
ル超微粉。
An average particle size is 0.2 to 0.5 μm,
An ultrafine nickel powder characterized in that the abundance of coarse particles having a particle size of twice or more the average particle size is 0.1% or less on a number basis.
【請求項2】 塩化ニッケル蒸気の気相水素還元法によ
って製造されたことを特徴とする請求項1記載のニッケ
ル超微粉。
2. The ultrafine nickel powder according to claim 1, produced by a gas phase hydrogen reduction method of nickel chloride vapor.
【請求項3】 積層セラミックコンデンサの内部電極に
用いられることを特徴とする請求項1又は2記載のニッ
ケル超微粉。
3. The ultrafine nickel powder according to claim 1, which is used for an internal electrode of a multilayer ceramic capacitor.
【請求項4】 前記請求項1乃至3いずれか一項記載の
ニッケル超微粉が内部電極に用いられることを特徴とす
る積層セラミックコンデンサ。
4. A multilayer ceramic capacitor, wherein the ultrafine nickel powder according to any one of claims 1 to 3 is used for an internal electrode.
JP2001047345A 2001-02-22 2001-02-22 Nickel ultra-fine powder and laminated ceramic capacitor Pending JP2002252139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001047345A JP2002252139A (en) 2001-02-22 2001-02-22 Nickel ultra-fine powder and laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001047345A JP2002252139A (en) 2001-02-22 2001-02-22 Nickel ultra-fine powder and laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2002252139A true JP2002252139A (en) 2002-09-06

Family

ID=18908794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001047345A Pending JP2002252139A (en) 2001-02-22 2001-02-22 Nickel ultra-fine powder and laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2002252139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658995B2 (en) 2004-06-16 2010-02-09 Toho Titanium Co., Ltd. Nickel powder comprising sulfur and carbon, and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658995B2 (en) 2004-06-16 2010-02-09 Toho Titanium Co., Ltd. Nickel powder comprising sulfur and carbon, and production method therefor

Similar Documents

Publication Publication Date Title
JPH11189801A (en) Nickel super fine powder
KR101862883B1 (en) Lithium ion secondary battery and electronic device
JP3640511B2 (en) Nickel super fine powder
KR20140056069A (en) Porous composite and manufacturing method thereof
JP2019083315A (en) Ceramic electronic component and method of manufacturing the same, and electronic device
JP2002348603A (en) Method for manufacturing metal powder, metal powder, conductive paste, and laminated ceramic electronic component
JP2004189588A (en) Dielectric ceramic, method of manufacturing the same, and monolithic ceramic capacitor
CN113169372A (en) All-solid-state secondary battery
JP4100244B2 (en) Nickel powder and method for producing the same
JP2008085041A (en) Multilayer ceramic capacitor and its manufacturing method
JP5738150B2 (en) Secondary battery
KR101141441B1 (en) A method of manufacturing ceramic paste for multilayer ceramic electronic component and a method of manufacturing multilayer ceramic electronic component
JP2002252139A (en) Nickel ultra-fine powder and laminated ceramic capacitor
JP2004179349A (en) Laminated electronic component and its manufacturing method
WO2010035573A1 (en) Nickel-copper alloy powder, process for producing the nickel-copper alloy powder, conductive paste, and electronic component
JP5348918B2 (en) Nickel powder, base metal powder manufacturing method, conductor paste, and electronic components
JP2014172769A (en) Laminated ceramic capacitor
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same
US20230163301A1 (en) All-solid-state battery
JPH11189802A (en) Nickel super fine powder
JP2004292950A (en) Nickel-based ultrafine powder
JP2024018489A (en) Nickel alloy powder and method for producing nickel alloy powder
JP2023125396A (en) All-solid battery
JP2024018487A (en) Nickel alloy powder and method for producing nickel alloy powder