JP2002249819A - Gas cooling method of metallic material - Google Patents

Gas cooling method of metallic material

Info

Publication number
JP2002249819A
JP2002249819A JP2001046614A JP2001046614A JP2002249819A JP 2002249819 A JP2002249819 A JP 2002249819A JP 2001046614 A JP2001046614 A JP 2001046614A JP 2001046614 A JP2001046614 A JP 2001046614A JP 2002249819 A JP2002249819 A JP 2002249819A
Authority
JP
Japan
Prior art keywords
temperature
cooling
motor
furnace
cooling fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001046614A
Other languages
Japanese (ja)
Inventor
Kinya Kisoda
欣弥 木曽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2001046614A priority Critical patent/JP2002249819A/en
Priority to TW090132230A priority patent/TW544470B/en
Priority to US10/239,894 priority patent/US6821114B2/en
Priority to PCT/JP2001/011421 priority patent/WO2002066687A1/en
Priority to CNB018084133A priority patent/CN1232660C/en
Priority to KR1020027013174A priority patent/KR20020093884A/en
Publication of JP2002249819A publication Critical patent/JP2002249819A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas cooling method along a cooling curve by driving a motor for a cooling fan to get its maximum output while preventing burnout of the motor and driving the motor at the speed of revolution corresponding to the temperature of the metallic material. SOLUTION: In the gas cooling method of the metallic material in which the metallic material W heated to the hardening temperature is subjected to the forced convection cooling in the in-furnace atmosphere, the preset cooling curve is compared with the in-furnace atmospheric temperature or the in-furnace metallic material temperature, the speed of revolution of the motor M for driving the cooling fan is controlled based on the difference therebetween. When the output of the motor reaches the limit, the motor for driving the cooling fan is continuously rotated at the maximum output limit irrespective of the load fluctuation caused by the temperature change.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材部品等の金属
材料の焼入処理におけるガス冷却方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas cooling method for quenching metal materials such as steel parts.

【0002】[0002]

【従来の技術】従来、金属材料の焼入処理における冷却
方法の一形態としてガス冷却方式があり、また、焼入処
理には、たとえば、焼入れ温度に保持された金属材料を
マルテンサイト変態開始温度の直上温度までの臨界区域
はできるだけ急速に冷却させ、逆にマルテンサイト変態
開始温度以下の危険区域はゆっくりと冷却させる方法が
ある。
2. Description of the Related Art Conventionally, there is a gas cooling method as one form of a cooling method in a quenching treatment of a metal material. In the quenching treatment, for example, a metal material kept at a quenching temperature is heated to a martensitic transformation start temperature. The critical zone up to the temperature immediately above the temperature is cooled as quickly as possible, and conversely, the critical zone below the martensitic transformation starting temperature is cooled slowly.

【0003】そして、前記ガス冷却方法には内部循環式
(炉内に循環ファンを配置するもの)と外部循環式(炉
外に循環ブロアを配置するもの)とに大別できるが、い
ずれの方式でも同一炉で異なる鋼種の金属材料あるいは
異なる形状の金属材料を熱処理することから、各金属材
料の種類あるいは形状に応じた適正な温度パターンで冷
却することが歪みの発生を減少させるとともに、所期の
目的を達成するために必要である。
[0003] The gas cooling methods can be broadly classified into an internal circulation type (a method in which a circulation fan is disposed inside a furnace) and an external circulation type (a method in which a circulation blower is disposed outside the furnace). However, since different types of metal materials or metal materials of different shapes are heat-treated in the same furnace, cooling with an appropriate temperature pattern according to the type or shape of each metal material reduces the occurrence of distortion and reduces the expected It is necessary to achieve the purpose.

【0004】ところで、対流冷却では、循環雰囲気の温
度変化に対応してガス密度が変化(伝熱係数の変化)す
ることから、ファンの回転数が一定であれば、冷却初期
時(高温時)においてはガス密度が低いことから冷却効
率が低下する。そのため、ファンの回転数を炉内の雰囲
気あるいは金属材料温度の変化に応じて高温時には高速
回転、低温時には低速回転することで、冷却効率を向上
させる方法が提案されている(特開昭52−11940
8号公報)。
In the convection cooling, the gas density changes (changes in the heat transfer coefficient) in response to a change in the temperature of the circulating atmosphere. In the above, the cooling efficiency is lowered because the gas density is low. For this reason, there has been proposed a method of improving the cooling efficiency by rotating the fan at a high speed at a high temperature and at a low speed at a low temperature in accordance with a change in the atmosphere in the furnace or the temperature of the metal material in accordance with a change in the furnace atmosphere (Japanese Patent Application Laid-Open No. 52-1982). 11940
No. 8).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記方
法は、炉内雰囲気あるいは金属材料の温度に基づいて直
接的にファンの回転数を変更するに過ぎないため冷却能
力が不足し、設定冷却曲線に対応した冷却ができないと
いう課題を有する。
However, in the above method, the cooling capacity is insufficient because the rotation speed of the fan is directly changed based on the atmosphere in the furnace or the temperature of the metal material. There is a problem that corresponding cooling cannot be performed.

【0006】また、前記循環ファン(内部循環式の場
合)あるいは循環ブロア(外部循環式の場合)における
冷却ファン駆動用モータの容量は、設備容量、効率等を
考慮して決められるため、冷却状態によっては冷却ファ
ン駆動用モータの定格容量以上で駆動する可能性があ
り、冷却ファン駆動用モータが焼損する危険性があると
いう課題を有する。
The capacity of the cooling fan drive motor in the circulation fan (in the case of the internal circulation type) or the circulation blower (in the case of the external circulation type) is determined in consideration of the equipment capacity, efficiency, and the like. Depending on the case, there is a possibility that the cooling fan driving motor may be driven at a rated capacity or more, and there is a problem that the cooling fan driving motor may be burned.

【0007】したがって、本発明は、設定冷却速度が実
冷却速度より大の時、その時点における冷却ファン駆動
用モータの許容最大出力で駆動させて冷却能力の不足を
改善する一方、それ以外の時には炉内雰囲気温度あるい
は炉内金属材料温度が設定冷却速度となるように冷却フ
ァン駆動用モータの回転数を調節し冷却速度をコントロ
ールするようにして、前記課題を解決する金属材料の冷
却方法を提供することを目的とする。
Therefore, according to the present invention, when the set cooling speed is higher than the actual cooling speed, the cooling fan driving motor is driven at the maximum allowable output at that time to improve the shortage of the cooling capacity. To provide a method for cooling a metal material which solves the above problem by adjusting the rotation speed of a motor for driving a cooling fan and controlling a cooling speed so that an atmosphere temperature in a furnace or a metal material temperature in a furnace becomes a set cooling speed. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明は、前記目的を達
成するために、焼入れ温度に加熱された金属材料を炉内
雰囲気中で強制対流冷却する金属材料のガス冷却方法に
おいて、設定冷却曲線と炉内雰囲気温度または炉内金属
材料温度とを比較して、その偏差に基づき冷却ファン駆
動用モータの回転数を制御するとともに、当該モータの
出力が限界に達したとき、温度変化による負荷変動にか
かわらず当該限界の最大出力で前記冷却ファン駆動用モ
ータを回転させ続けるようにしたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a gas cooling method for a metal material in which a metal material heated to a quenching temperature is subjected to forced convection cooling in a furnace atmosphere. And the furnace ambient temperature or the metal material temperature in the furnace, and based on the deviation, control the number of rotations of the motor for driving the cooling fan, and when the output of the motor reaches the limit, load fluctuation due to temperature change Regardless of the above, the cooling fan drive motor is kept rotating at the maximum output of the limit.

【0009】[0009]

【発明の実施の形態】つぎに、本発明の実施の形態につ
いて図1にしたがって説明する。図において、1は単室
型真空熱処理炉で、ケーシング2内に処理室4が配設さ
れるとともに、ケーシング2の一方側には前記処理室4
の扉5を備えた装入・抽出扉3が設けられ、他方側には
冷却ファン駆動用モータMが設けられ、この冷却ファン
駆動用モータMにより冷却ファン8が回転するようにな
っている。なお、9は冷却ファン8の前方に配置したク
ーラ、10a,10bはダンパである。
Next, an embodiment of the present invention will be described with reference to FIG. In the drawing, reference numeral 1 denotes a single-chamber vacuum heat treatment furnace, in which a processing chamber 4 is provided in a casing 2 and the processing chamber 4 is provided on one side of the casing 2.
The charging / extracting door 3 provided with the door 5 is provided, and a cooling fan driving motor M is provided on the other side, and the cooling fan 8 is rotated by the cooling fan driving motor M. In addition, 9 is a cooler arranged in front of the cooling fan 8, and 10a and 10b are dampers.

【0010】そして、前記処理室4内にはヒータHが配
設されるとともに、処理室4の天井部および底部には開
口6a,6bが設けられ、この開口6a,6bはそれぞ
れ昇降式扉7a,7bにより開閉されるようになってい
る。
A heater H is provided in the processing chamber 4, and openings 6a and 6b are provided in the ceiling and the bottom of the processing chamber 4, and the openings 6a and 6b are respectively provided with the lifting doors 7a. , 7b.

【0011】また、冷却ファン駆動用モータMにはイン
バータ15が接続され、このインバータ15は出力周波
数制御と出力電力による制御機能とを備えるもので、前
記出力周波数制御は処理室内雰囲気温度あるいは金属材
料温度に基づくフィードバック制御であると同時に冷却
ファン駆動用モータMが限界出力となった場合は、冷却
ファン駆動用モータMの実電力値をフィードバックし、
温度変化による冷却ファン駆動用モータMの負荷変動に
かかわらず、限界出力で運転し続ける制御を行うもので
ある。
An inverter 15 is connected to the motor M for driving the cooling fan. The inverter 15 has an output frequency control and a control function based on output power. When the cooling fan drive motor M reaches the limit output at the same time as the feedback control based on the temperature, the actual power value of the cooling fan drive motor M is fed back,
The control is performed to keep the operation at the limit output irrespective of the load fluctuation of the cooling fan driving motor M due to the temperature change.

【0012】つぎに、前記構成からなる金属材料のガス
冷却方法を冷却ファン駆動モータMの制御回路とともに
説明する。まず、装入・抽出扉3を処理室4の扉5と一
緒に開き、処理室4内に金属材料Wを装入し、前記装入
・抽出扉3および扉5を閉じるとともに、処理室4内を
図示しない手段により所定の真空度としたのちヒータH
により金属材料Wを加熱する。なお、この場合、前記昇
降式扉7a,7bは閉である。
Next, the gas cooling method for the metal material having the above-described structure will be described together with the control circuit of the cooling fan drive motor M. First, the charging / extracting door 3 is opened together with the door 5 of the processing chamber 4, the metal material W is charged into the processing chamber 4, and the charging / extracting door 3 and the door 5 are closed. The inside of the heater H is set to a predetermined degree of vacuum by means (not shown), and then the heater H
Heats the metal material W. In this case, the elevating doors 7a and 7b are closed.

【0013】そして、金属材料Wが焼入れ温度に達する
と、ヒータHをOFFとするとともに処理室4内を復圧
したのち昇降式扉7a,7bを開とし、ダンパー10
a,10bを図示の通りとしたうえで冷却ファン8によ
り当該金属材料Wは所定の冷却曲線にしたがって冷却す
る。
When the metal material W reaches the quenching temperature, the heater H is turned off and the inside of the processing chamber 4 is restored, and then the liftable doors 7a and 7b are opened, and the damper 10 is opened.
The metal material W is cooled by the cooling fan 8 in accordance with a predetermined cooling curve, with a and 10b as illustrated.

【0014】すなわち、炉内雰囲気温度を温度検出器P
で検出し、変換器16を介してその温度値信号が温度調
節計17に入力されるとともに、前記温度調節計17に
はプログラム設定器18からの温度設定値信号が入力さ
れる。この温度調節計17で前記温度検出値信号値と前
記温度設定値信号値とが比較されて回転数設定信号Aが
信号セレクター19に入力される。
That is, the atmosphere temperature in the furnace is measured by the temperature detector P.
, And the temperature signal is input to the temperature controller 17 via the converter 16, and the temperature controller 17 is input with the temperature set value signal from the program setting unit 18. The temperature controller 17 compares the detected temperature signal value with the set temperature signal value, and inputs a rotation speed setting signal A to the signal selector 19.

【0015】一方、冷却ファン駆動用モータMの電圧お
よび電流が検知され、その実電圧値信号Dおよび実電流
値信号Eが出力電力演算調節器20に入力されるととも
に、この出力電力演算調節器20には限界電力設定値2
1からの限界電力設定値信号が入力される。この出力電
力演算調節器20で実電力が演算される。この出力電力
演算調節器20で前記実電力値信号と限界電力値信号と
が比較され、実電力値信号≧限界電力値信号のときは、
冷却ファン駆動用モータMの焼損を防止するため電力値
の差に相当する回転数を減速した回転数設定信号Bを、
また、実電力値信号<限界電力値信号のときは、回転数
に余裕があるため電力値の差に相当する回転数を増速し
た回転数設定信号Bを出力する。なお、限界電力値信号
は、限界の最大出力時における連続運転時間あるいは冷
却ファン駆動用モータMの仕様等により変更することが
できる。
On the other hand, the voltage and current of the motor M for driving the cooling fan are detected, and the actual voltage value signal D and the actual current value signal E are input to the output power calculation controller 20. Power limit value 2
A limit power set value signal from 1 is input. The actual power is calculated by the output power calculation controller 20. The output power calculation controller 20 compares the real power value signal with the limit power value signal, and when the real power value signal ≧ the limit power value signal,
A rotation speed setting signal B obtained by reducing the rotation speed corresponding to the difference in the electric power value in order to prevent the cooling fan drive motor M from burning out,
When the actual power value signal is smaller than the limit power value signal, a rotation speed setting signal B is output in which the rotation speed corresponding to the difference between the power values is increased because the rotation speed has a margin. The limit power value signal can be changed according to the continuous operation time at the time of the maximum output of the limit, the specification of the cooling fan driving motor M, or the like.

【0016】そして、前記回転数設定信号Bは信号セレ
クター19に入力され、この信号セレクター19で温度
調節計17からの前記回転数設定信号Aと出力電力演算
調節器20からの前記回転数設定信号Bとが比較され、
回転数設定信号A≦回転数設定信号Bのときは、回転数
設定信号Aを回転数設定信号Cとして、また、回転数設
定信号A>回転数設定信号Bのときは、回転数設定信号
Bを回転数設定信号Cとしてインバータ15に入力さ
れ、冷却ファン駆動用モータMの回転数を制御するもの
である。
Then, the rotation speed setting signal B is input to a signal selector 19, which uses the rotation speed setting signal A from the temperature controller 17 and the rotation speed setting signal from the output power calculation controller 20. B is compared with
When the rotation speed setting signal A ≦ the rotation speed setting signal B, the rotation speed setting signal A is used as the rotation speed setting signal C. When the rotation speed setting signal A> the rotation speed setting signal B, the rotation speed setting signal B is used. Is input to the inverter 15 as a rotation speed setting signal C to control the rotation speed of the cooling fan driving motor M.

【0017】なお、前記冷却ファン8が回転すると、ダ
ンパー10a,10bの作用により単室型真空熱処理炉
1内の雰囲気はクーラ9を通って冷却されたのち炉内循
環し、金属材料Wを冷却する。
When the cooling fan 8 rotates, the atmosphere in the single-chamber vacuum heat treatment furnace 1 is cooled by the action of the dampers 10a and 10b through the cooler 9 and then circulated in the furnace to cool the metal material W. I do.

【0018】そして、所定の焼入処理が完了すると、冷
却ファン駆動用モータMを停止し、装入・抽出扉3を開
放して金属材料Wを炉外に抽出する。
When the predetermined quenching process is completed, the motor M for driving the cooling fan is stopped, and the charging / extracting door 3 is opened to extract the metal material W out of the furnace.

【0019】本発明の金属材料のガス冷却方法は前述の
ものに限定されるものでなく、温度のフィードバックを
前述の炉内雰囲気温度で行うことなく、金属材料Wの表
面温度で行ってもよく、また、冷却ファン8、クーラ9
等の冷却機構を炉外に設置し、ダクトで炉と冷却機構と
を接続した外部循環方式としてもよい。
The gas cooling method for a metal material of the present invention is not limited to the method described above. The temperature feedback may be performed at the surface temperature of the metal material W without performing the temperature feedback at the furnace atmosphere temperature. And a cooling fan 8 and a cooler 9
An external circulation system in which a cooling mechanism such as that described above is installed outside the furnace and the furnace and the cooling mechanism are connected by a duct may be used.

【0020】さらに、効率、レスポンス、制御性は悪い
が、一定の効果を有する炉内圧力制御と組み合わせて、
一層効果的な制御を行うようにしてもよい。
Further, in combination with the furnace pressure control which has a certain effect although the efficiency, response and controllability are poor,
More effective control may be performed.

【0021】[0021]

【発明の効果】以上の説明で明らかなように、本発明
は、金属材料の急速冷却が必要な場合には、出力フィー
ドバックにて回転数制御を行なって常時冷却ファン駆動
用モータの最大出力限界で運転を行うため、冷却ファン
駆動用モータの焼損を防止しながら設備の有する最大冷
却能力を発揮する。そして、その後、比較的緩慢かつ制
御された金属材料の冷却が必要な場合には、温度フィー
ドバックにての回転数制御を行うというフィードバック
制御を併用することにより、急冷時に最大の冷却能力を
発揮するとともに、徐冷時には金属材料の温度を連続的
に制御した状態で冷却を行うため、金属材料の種類、形
状に適合した設定冷却曲線に柔軟に対応した冷却処理を
行うことができる。
As is apparent from the above description, according to the present invention, when rapid cooling of a metal material is necessary, the rotational speed is controlled by output feedback to thereby continuously limit the maximum output of the cooling fan drive motor. As a result, the maximum cooling capacity of the equipment is exhibited while preventing the cooling fan drive motor from burning. Then, when relatively slow and controlled cooling of the metal material is required, by using the feedback control of performing the rotation speed control by temperature feedback together, the maximum cooling capacity is exhibited during rapid cooling. In addition, at the time of slow cooling, cooling is performed while the temperature of the metal material is continuously controlled, so that a cooling process flexibly corresponding to a set cooling curve suitable for the type and shape of the metal material can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を適用する単室型真空熱処理炉および
その制御回路を示す図。
FIG. 1 is a diagram showing a single-chamber vacuum heat treatment furnace to which the present invention is applied and a control circuit thereof.

【符号の説明】[Explanation of symbols]

1〜単室型真空熱処理炉、2〜ケーシング、3〜装入・
抽出扉、4〜処理室、5〜扉、6a,6b〜開口、7
a,7b〜昇降式扉、8〜冷却ファン、9〜クーラ、M
〜冷却ファン駆動用モータ。
1-single-chamber vacuum heat treatment furnace, 2-casing, 3-charging
Extraction door, 4 to processing room, 5 to door, 6a, 6b to opening, 7
a, 7b-elevator door, 8-cooling fan, 9-cooler, M
~ Cooling fan drive motor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 焼入れ温度に加熱された金属材料を炉内
雰囲気中で強制対流冷却する金属材料のガス冷却方法に
おいて、設定冷却曲線と炉内雰囲気温度または炉内金属
材料温度とを比較して、その偏差に基づき冷却ファン駆
動用モータの回転数を制御するとともに、当該モータの
出力が限界に達したとき、温度変化による負荷変動にか
かわらず当該限界の最大出力で前記冷却ファン駆動用モ
ータを回転させ続けることを特徴とする金属材料のガス
冷却方法。
1. A gas cooling method for a metal material in which a metal material heated to a quenching temperature is forcibly convection cooled in a furnace atmosphere by comparing a set cooling curve with a furnace atmosphere temperature or a furnace metal material temperature. Controlling the rotation speed of the cooling fan driving motor based on the deviation, and when the output of the motor reaches a limit, the cooling fan driving motor is driven at the maximum output of the limit regardless of a load change due to a temperature change. A gas cooling method for a metal material, characterized by continuously rotating.
JP2001046614A 2001-02-22 2001-02-22 Gas cooling method of metallic material Pending JP2002249819A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001046614A JP2002249819A (en) 2001-02-22 2001-02-22 Gas cooling method of metallic material
TW090132230A TW544470B (en) 2001-02-22 2001-12-25 A gas-cooled single-chamber type heat-treating furnace and a gas cooling process in the furnace
US10/239,894 US6821114B2 (en) 2001-02-22 2001-12-26 Gas-cooled single chamber heat treating furnace, and method for gas cooling in the furnace
PCT/JP2001/011421 WO2002066687A1 (en) 2001-02-22 2001-12-26 Gas-cooled single chamber heat treating furnace, and method for gas cooling in the furnace
CNB018084133A CN1232660C (en) 2001-02-22 2001-12-26 Gas-cooled single chamber heat treating furnace, and method for gas cooling in furnace
KR1020027013174A KR20020093884A (en) 2001-02-22 2001-12-26 Gas-cooled single chamber heat treatment furnace, and method for gas cooling in the furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046614A JP2002249819A (en) 2001-02-22 2001-02-22 Gas cooling method of metallic material

Publications (1)

Publication Number Publication Date
JP2002249819A true JP2002249819A (en) 2002-09-06

Family

ID=18908206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046614A Pending JP2002249819A (en) 2001-02-22 2001-02-22 Gas cooling method of metallic material

Country Status (1)

Country Link
JP (1) JP2002249819A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333277A (en) * 2001-05-14 2002-11-22 Chugai Ro Co Ltd Gas cooling type single chamber heat treating furnace
JP2008527176A (en) * 2005-01-17 2008-07-24 エチューズ エ コンストリクションズ メカニクス Gas quenching cell for steel parts
JPWO2012118175A1 (en) * 2011-03-02 2014-07-07 株式会社ニコン Heat treatment apparatus for optical ceramic material, heat treatment method for optical ceramic material, heat treatment method for synthetic quartz glass, optical system manufacturing method, and exposure apparatus manufacturing method
WO2015053118A1 (en) * 2013-10-11 2015-04-16 三菱日立パワーシステムズ株式会社 Method for heat treatment of stainless member, and method for producing forged stainless product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333277A (en) * 2001-05-14 2002-11-22 Chugai Ro Co Ltd Gas cooling type single chamber heat treating furnace
JP2008527176A (en) * 2005-01-17 2008-07-24 エチューズ エ コンストリクションズ メカニクス Gas quenching cell for steel parts
JPWO2012118175A1 (en) * 2011-03-02 2014-07-07 株式会社ニコン Heat treatment apparatus for optical ceramic material, heat treatment method for optical ceramic material, heat treatment method for synthetic quartz glass, optical system manufacturing method, and exposure apparatus manufacturing method
JP6024653B2 (en) * 2011-03-02 2016-11-16 株式会社ニコン Synthetic quartz glass heat treatment apparatus, synthetic quartz glass heat treatment method, optical system manufacturing method, and exposure apparatus manufacturing method
WO2015053118A1 (en) * 2013-10-11 2015-04-16 三菱日立パワーシステムズ株式会社 Method for heat treatment of stainless member, and method for producing forged stainless product
JP2015074822A (en) * 2013-10-11 2015-04-20 三菱重工業株式会社 Method of heat-treating stainless member and method of producing stainless forged product
US10370734B2 (en) 2013-10-11 2019-08-06 Mitsubishi Hitachi Power Systems, Ltd. Method for heat treatment of stainless member, and method for producing forged stainless product

Similar Documents

Publication Publication Date Title
US6821114B2 (en) Gas-cooled single chamber heat treating furnace, and method for gas cooling in the furnace
US4932864A (en) Roller hearth type heat treating furnace
CN205473901U (en) Controllable at uniform velocity heat sink of heat treatment cooling process
KR101095587B1 (en) Flow equalization and cooling modules mounted accelerated sintering heat treatment
JP2002249819A (en) Gas cooling method of metallic material
JP5178975B2 (en) Heat treatment method for metal workpieces
JP4054597B2 (en) Hot air circulation oven
CN105018686B (en) The quick annealing method and equipment of generator claw pole
CN110846495A (en) Intelligent furnace temperature control device and method for vehicle bottom furnace
JPS5924544A (en) Method and apparatus for heat treatment of forged product
JP2572017B2 (en) Cooling method of treated material in Matsufuru furnace
JPS6115079A (en) Gas circulation type heating or cooling furnace
JP2968062B2 (en) Semiconductor heat treatment equipment
JPH07155672A (en) Drying furnace
JP3525074B2 (en) Batch oven
JPS6150123B2 (en)
JPH0599572A (en) Continuous vacuum furnace
JP4078612B2 (en) Induction heating type carbonization furnace and operation method thereof
JPH05157461A (en) Heating furnace
CN215144050U (en) Thermoforming apparatus
CN211316963U (en) Heating furnace capable of being heated uniformly
JPH05239558A (en) Traveling furnace hearth type continuous heat treatment apparatus
JP2500082Y2 (en) Continuous degreasing and sintering furnace
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
CN109827329A (en) A kind of novel high-frequency air-heating furnace