JP2000091654A - Manufacture of high-temperature single electron pair tunnel element using layered oxide superconducting material - Google Patents

Manufacture of high-temperature single electron pair tunnel element using layered oxide superconducting material

Info

Publication number
JP2000091654A
JP2000091654A JP10256478A JP25647898A JP2000091654A JP 2000091654 A JP2000091654 A JP 2000091654A JP 10256478 A JP10256478 A JP 10256478A JP 25647898 A JP25647898 A JP 25647898A JP 2000091654 A JP2000091654 A JP 2000091654A
Authority
JP
Japan
Prior art keywords
tunnel
electron pair
single crystal
narrow groove
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10256478A
Other languages
Japanese (ja)
Other versions
JP3995810B2 (en
Inventor
Tsutomu Yamashita
努 山下
Yurij Latyshev
ラティシェフ ユーリー
Sosai Kin
相宰 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP25647898A priority Critical patent/JP3995810B2/en
Publication of JP2000091654A publication Critical patent/JP2000091654A/en
Application granted granted Critical
Publication of JP3995810B2 publication Critical patent/JP3995810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-temperature single electron pair tunnel element using a layered oxide superconducting material which is provided with a tunnel junction layer of sub-micron square order or smaller and can operate at a temperature equal to that of liquid helium (4.2 K) or higher. SOLUTION: A method for manufacturing a high-temperature single electron pair tunnel element using a layered oxide superconducting material having a laminated crystal structure composed of an electric conductive layer and a tunnel barrier layer includes a step of fixing the acicular single crystal 1 of the layered oxide superconducting material to the holder of a focused ion beam device, a step of forming a first narrow groove 3 having a length in the x-direction, a width in the y-direction, and a depth which is equal to or deeper than the half of the thickness of the single crystal 1 in the z-direction at a prescribed position on one surface of the crystal 1 with an ion beam, a step of fixing the worked single crystal 1 with silver paste, a step of forming a second narrow groove 2 having the same length, width, and depth as the first narrow groove 1 has on a parallel line, and a step of removing unnecessary portions left.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、層状酸化物超伝導
体を用いた高温単電子対トンネル素子の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-temperature single-electron pair tunnel device using a layered oxide superconductor.

【0002】[0002]

【従来の技術】従来、積層構造を持つ単電子トンネル素
子としては、以下に示すようなものがあった。図5は銅
酸化物超伝導体のBi2 Sr2 CaCu2 y の結晶構
造を示す模式図である。
2. Description of the Related Art Conventionally, there has been a single electron tunnel element having a laminated structure as shown below. FIG. 5 is a schematic diagram showing a crystal structure of a copper oxide superconductor Bi 2 Sr 2 CaCu 2 O y .

【0003】この図に示すように、超伝導層(Cu
2 )1とトンネル障壁層(BiO)2が交互に積層し
た構造となっている。これを電極モデルで描いたもの
が、図6である。この図6において、Sは面積、dは格
子間隔である。このモデルで、電極AとBの間の静電容
量Cは、 C=(ε0 S)/(dN) …(1) となる。ここで、εは誘電率である。
As shown in FIG. 1, a superconducting layer (Cu
O 2 ) 1 and the tunnel barrier layer (BiO) 2 are alternately stacked. FIG. 6 illustrates this with an electrode model. In FIG. 6, S is the area, and d is the grid spacing. In this model, the capacitance C between the electrodes A and B is as follows: C = (ε 0 S) / (dN) (1) Here, ε is a dielectric constant.

【0004】また、トンネル抵抗Rは、 R=(Np0 )(d/S) …(2) ここで、p0 は比抵抗である。このような構造を持つ素
子が単電子トンネル効果を示す条件は、超伝導電子の電
荷2eの一つを電極Aから電極Bへ移動したときのエネ
ルギー(2e2 /C)が、熱雑音エネルギーkB Tより
十分大きいときである。ここで、kB はボルツマン定数
である。
The tunnel resistance R is as follows: R = (Np 0 ) (d / S) (2) where p 0 is a specific resistance. An element having such a structure shows a single-electron tunnel effect under the condition that the energy (2e 2 / C) when one of the superconducting electron charges 2e is transferred from the electrode A to the electrode B is the thermal noise energy k. is when sufficiently larger than B T. Here, k B is a Boltzmann constant.

【0005】よって、 (2e2 /C)>(kB T) …(3) 上記(1)式と(2)式より、単電子トンネル効果のお
こる層の数Nの条件は、 N>〔(εS)/d〕〔(kB T)/(2e2 )〕 …(4) となる。1μm2 の素子をBi2 Sr2 CaCu2 y
単結晶で作ったときの、液体ヘリウム温度4Kで観測で
きる層数Nは、N>50となり、容易に実現できる厚さ
である。また、10分の1μm2 ではN>5となり、実
現可能である。
Therefore, (2e 2 / C)> (k B T) (3) From the above equations (1) and (2), the condition of the number N of layers where the single electron tunnel effect occurs is: N> [ (.epsilon.s) / d] and made [(k B T) / (2e 2) ] ... (4). A device of 1 μm 2 is formed of Bi 2 Sr 2 CaCu 2 O y
The number N of layers that can be observed at a liquid helium temperature of 4 K when formed from a single crystal is N> 50, and is a thickness that can be easily realized. Also, at 1/10 μm 2 , N> 5, which is feasible.

【0006】また、単電子トンネル効果の観測できるも
う一つの条件は、素子の抵抗Rが量子抵抗R0 、 R0 =h/(4e2 )=6kΩ …(5) より大きくなければならない。 R>h/(4e2 ) …(6) よって、上記(2)式と(5)式より N>〔S/(p0 d)〕〔h/(4e2 )〕 …(7) となり、1μm2 の上の素子の場合も、やはり、層数N
は、N>50となる。N>50で1μm2 の素子を作る
ことは、通常のN=1に比して著しく容易である。ま
た、10分の1μm2 の素子の場合は、N=5となり、
実現可能である。
Another condition under which the single-electron tunnel effect can be observed is that the resistance R of the element must be larger than the quantum resistance R 0 , R 0 = h / (4e 2 ) = 6 kΩ (5) R> h / (4e 2 ) (6) Therefore, from the above equations (2) and (5), N> [S / (p 0 d)] [h / (4e 2 )] (7) In the case of an element above 1 μm 2, the number of layers N
Is N> 50. Fabricating a 1 μm 2 device with N> 50 is much easier than with normal N = 1. In the case of a 1/10 μm 2 element, N = 5,
It is feasible.

【0007】図7は通常の1層のトンネル障壁層よりな
る単電子トンネル素子である。この素子が単電子トンネ
ル効果を示すための条件は上記(4)式より N=1>〔(εS)/d〕〔(kB T)/(2e2 )〕 …(8) 上記(7)式より N=1>〔S/(p0 d)〕〔h/(4e2 )〕 …(9) となり、Sを2桁以下に小さくし、100分の1μm2
とすることが必要となる。
FIG. 7 shows a single-electron tunnel element composed of a normal single tunnel barrier layer. Conditions for this element represents a single electron tunneling is above (4) N = 1> from the equation [(.epsilon.s) / d] [(k B T) / (2e 2) ] ... (8) above (7) From the equation, N = 1> [S / (p 0 d)] [h / (4e 2 )] (9) where S is reduced to 2 digits or less, and 1/100 μm 2
Is required.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記し
た従来の積層構造を持つ単電子トンネル素子において
は、100分の1μm以下の加工精度を持つ製造方法を
実現することは、容易ではないといった問題があった。
本発明は、上記問題点に鑑みて、サブミクロン平方オー
ダー以下のトンネル接合層を備え、その接合数を可変に
することにより液体ヘリウム温度(4.2K)以上で動
作可能な層状酸化物超伝導体を用いた高温単電子対トン
ネル素子の製造方法を提供することを目的とする。
However, in the above-described conventional single-electron tunneling device having a laminated structure, it is not easy to realize a manufacturing method having a processing accuracy of 1/100 μm or less. there were.
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a layered oxide superconducting device capable of operating at a liquid helium temperature (4.2 K) or higher by providing a tunnel junction layer of a submicron square order or less and making the number of junctions variable. It is an object of the present invention to provide a method for manufacturing a high-temperature single-electron pair tunnel element using a body.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕電気伝導層とトンネル障壁層からなる積層状結晶
構造を持つ層状酸化物超伝導体を用いた高温単電子対ト
ンネル素子の製造方法において、層状酸化物超伝導体の
針状単結晶を用意し、集束イオンビーム装置のホルダー
に固定する工程と、イオンビーム加工により前記単結晶
の片面の所定位置にx方向の長さ、y方向の幅とz方向
の前記単結晶の厚さの半分以上の深さを有する第1の細
い溝を形成する工程と、前記第1の細い溝の輪郭を示す
ように、前記単結晶の厚さを貫通する深さまで標識とな
る小さいスポットを作る工程と、その加工した単結晶の
面を裏返しにして4端子測定に用いるために銀ペースト
で固定する工程と、前記スポットから目的とする接合の
大きさに合わせたx方向の所定間隔をおいて、前記第1
の細い溝と同一長さ、幅及び深さを有する第2の細い溝
を前記第1の細い溝の平行線上に加工する工程と、xy
面上に長方形の接合を作製するためにエッジの部分をト
リミングする工程と、不要に残った部分を除去する工程
とを施すようにしたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides: [1] A high-temperature single element using a layered oxide superconductor having a laminated crystal structure composed of an electric conductive layer and a tunnel barrier layer. In a method for manufacturing an electron-pair tunneling element, a step of preparing a needle-like single crystal of a layered oxide superconductor and fixing it to a holder of a focused ion beam device, Forming a first narrow groove having a length in the direction, a width in the y direction, and a depth equal to or greater than half the thickness of the single crystal in the z direction; and forming a contour of the first narrow groove. Making a small spot that serves as a marker to a depth penetrating the thickness of the single crystal; turning the processed single crystal face upside down and fixing it with silver paste for use in four-terminal measurement; From the size of the desired joint At a predetermined interval in the x direction according to the size,
Forming a second narrow groove having the same length, width and depth as the narrow groove on the parallel line of the first narrow groove;
In order to form a rectangular joint on a surface, a step of trimming an edge portion and a step of removing an unnecessary portion are performed.

【0010】〔2〕上記〔1〕記載の高温単電子対トン
ネル素子の製造方法において、前記単結晶の厚さを調整
することによりトンネル接合数を可変にするようにした
ものである。 〔3〕上記〔1〕又は〔2〕記載の高温単電子対トンネ
ル素子の製造方法において、前記長方形の接合を前記針
状単結晶に複数個並列に形成し、高温単電子対トンネル
素子を得るようにしたものである。
[2] The method for manufacturing a high-temperature single-electron pair tunnel element according to [1], wherein the number of tunnel junctions is made variable by adjusting the thickness of the single crystal. [3] In the method for manufacturing a high-temperature single-electron pair tunnel element according to the above [1] or [2], a plurality of the rectangular junctions are formed in parallel with the needle-like single crystal to obtain a high-temperature single-electron pair tunnel element. It is like that.

【0011】〔4〕上記〔1〕、〔2〕又は〔3〕記載
の高温単電子対トンネル素子の製造方法において、前記
長方形のトンネル接合面積がサブミクロン平方オーダー
である。
[4] In the method for manufacturing a high-temperature single-electron pair tunnel element according to the above [1], [2] or [3], the rectangular tunnel junction area is on the order of submicron square.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。従来技術で示したように、層状酸化
物超伝導体の結晶構造は超伝導層と絶縁層(トンネル障
壁層)が交互に積層した構造をしており、加工深さによ
ってトンネル接合の数を制御することが可能である。
Embodiments of the present invention will be described below in detail. As shown in the prior art, the crystal structure of the layered oxide superconductor has a structure in which superconducting layers and insulating layers (tunnel barrier layers) are alternately stacked, and the number of tunnel junctions is controlled by the processing depth. It is possible to

【0013】図1は本発明の実施例を示す層状酸化物超
伝導体を用いた高温単電子対トンネル素子の製造工程図
であり、集束イオンビーム加工によるトンネル接合層及
び素子の製造工程を示している。以下、本発明の実施例
を示す層状酸化物超伝導体を用いた高温単電子対トンネ
ル素子の製造方法を図1を参照しながら説明する。
FIG. 1 is a view showing a manufacturing process of a high-temperature single-electron pair tunnel device using a layered oxide superconductor according to an embodiment of the present invention, and shows a manufacturing process of a tunnel junction layer and a device by focused ion beam processing. ing. Hereinafter, a method for manufacturing a high-temperature single-electron pair tunnel device using a layered oxide superconductor according to an embodiment of the present invention will be described with reference to FIG.

【0014】(1)まず、図1(a)に示すように、B
2 Sr2 CaCu2 8 針状単結晶(以下、単に単結
晶という)1を用意し、集束イオンビーム装置のホルダ
ー(図示なし)に固定する。 (2)次に、30kVのガリウム(Ga)イオンを用い
て、図1(b)に示すように、その単結晶1の両面に目
印となるマーク部2A,2Bに接合の大きさに合わせた
x方向の長さL1 、y方向の幅W1 とz方向の層状高温
超伝導体1の厚さの半分以上の深さD1 を有する第1の
細い溝3を形成する。
(1) First, as shown in FIG.
An i 2 Sr 2 CaCu 2 O 8 needle-shaped single crystal (hereinafter simply referred to as a single crystal) 1 is prepared and fixed to a holder (not shown) of a focused ion beam device. (2) Then, using gallium (Ga) ions of 30 kV, as shown in FIG. 1B, the size of the junction was adjusted to the mark portions 2A and 2B serving as marks on both surfaces of the single crystal 1. A first thin groove 3 having a length L 1 in the x direction, a width W 1 in the y direction, and a depth D 1 that is at least half the thickness of the layered high-temperature superconductor 1 in the z direction is formed.

【0015】(3)次に、第1の細い溝3の輪郭を示す
ように、単結晶の厚さを貫通する深さまで標識の小さい
スポット4を作り、次に、図1(c)に示すように、加
工した単結晶の面を裏返しにして銀ペーストで固定す
る。なお、この銀ペーストを4端子測定の電極として使
う。 (4)次いで、接続抵抗を減らすために、450度で1
0分位の熱処理を行う。次に、図1(d)に示すよう
に、目的とする接合の大きさに合わせたx方向に間隔A
をおいて、図1(b)で作製した第1の細い溝3と同一
長さL1 、同一幅W1 及び同一深さD1 の第2の細い溝
5を平行線上に加工する。
(3) Next, as shown in the outline of the first narrow groove 3, a spot 4 with a small mark is formed to a depth penetrating the thickness of the single crystal, and then shown in FIG. 1 (c). Thus, the surface of the processed single crystal is turned upside down and fixed with silver paste. Note that this silver paste is used as an electrode for four-terminal measurement. (4) Next, to reduce the connection resistance,
Heat treatment for about 0 minutes is performed. Next, as shown in FIG. 1 (d), a distance A in the x direction corresponding to the size of the target joint is set.
Then, a second thin groove 5 having the same length L 1 , the same width W 1 and the same depth D 1 as the first thin groove 3 manufactured in FIG. 1B is machined on a parallel line.

【0016】(5)次に、図1(e)に示すように、x
y面上に長方形の接合を作製するためにエッジの部分を
トリミングする。 (6)最後に、図1(f)に示すように、不要に残った
部分を除去し、層状酸化物超伝導体を用いた高温単電子
対トンネル素子が完成する。このように、本発明によれ
ば、集束イオンビームの微細加工技術を用いることによ
り、サブμm以下までの素子を作製することが可能であ
る。更に、酸化物超伝導体の固有積層構造を用いること
により、接合の面積及び層の数の制御が可能になる。
(5) Next, as shown in FIG.
Trim the edges to create a rectangular joint on the y-plane. (6) Finally, as shown in FIG. 1F, unnecessary portions are removed to complete a high-temperature single-electron pair tunnel element using a layered oxide superconductor. As described above, according to the present invention, it is possible to manufacture an element up to sub-μm or less by using the fine processing technique of the focused ion beam. Furthermore, the use of the intrinsic laminated structure of the oxide superconductor enables control of the area of the junction and the number of layers.

【0017】このような作製工程を用いて針状単結晶に
作製した高温単電子対トンネル素子を図2に示す。図2
では、試作された4個の素子を示しており、最大は1μ
m×0.6μm、最小は0.5μm×0.3μmを示
す。酸化物超伝導体は超伝導層と絶縁物層の積層構造を
持っており、結晶自体が固有ジョセフソン効果を示すこ
とが知られていたが、素子の面積を小さくしてサブμm
2 (サブミクロン平方)にすると固有ジョセフソン効果
の他に全く新しく、単電子対トンネル現象が起こること
が明らかになった。
FIG. 2 shows a high-temperature single-electron pair tunnel element manufactured into a needle-like single crystal by using such a manufacturing process. FIG.
Shows four prototyped devices, with a maximum of 1 μm.
m × 0.6 μm, the minimum is 0.5 μm × 0.3 μm. Oxide superconductors have a laminated structure of a superconducting layer and an insulator layer, and it has been known that the crystal itself exhibits the intrinsic Josephson effect.
At 2 (submicron square), it became clear that a single-electron pair tunneling phenomenon occurs in addition to the intrinsic Josephson effect.

【0018】図3は本発明の実施例を示す0.6μm2
の接合面積Sを持つ素子の電流−電圧特性図である。な
お、ここで、温度T=4.2K、電流I=0.2μA/
目盛り、電圧V=2mV/目盛りである。この図から明
らかなように、原点近くに約300μVの間隔を持つ5
つのスパイク状の電圧周期構造が明瞭に見られる。この
スパイク状電圧が単電子対トンネル素子の特徴で、最初
のスパイクは電子が2個トンネルする時に対応し、次の
スパイクは4個のトンネルを示す。
[0018] Figure 3 shows an embodiment of the present invention 0.6 .mu.m 2
4 is a current-voltage characteristic diagram of an element having a junction area S of FIG. Here, the temperature T = 4.2 K, the current I = 0.2 μA /
Scale, voltage V = 2 mV / scale. As is clear from this figure, the 5 having an interval of about 300 μV near the origin.
One spike-like voltage periodic structure is clearly seen. This spike-like voltage is characteristic of a single-electron-pair tunneling device, where the first spike corresponds to when two electrons tunnel and the second spike indicates four tunnels.

【0019】また、図4は本発明の実施例を示す0.3
μm2 の接合面積Sを持つ素子の電流−電圧特性図であ
る。そのスパイク状電圧は温度依存性を示し、T>12
Kで消滅することが分かる。単電子トンネル効果はこれ
まで金属や半導体で観測されているが、面積がサブμm
2 程度では10mK適度の極低温が必要であった。とこ
ろがBSCCO単結晶素子は、その静電容量Cが接合の
層の数Nに逆比例して小さくなるため、単電子の帯電エ
ネルギーe2 /2CがNの増加と共に大きくなる。この
ため、層の数Nが60位で、帯電エネルギーが、熱雑音
エネルギーkB Tより大きくなり、単電子トンネル効果
が起こることが分かった。
FIG. 4 shows an embodiment of the present invention.
FIG. 9 is a current-voltage characteristic diagram of an element having a junction area S of μm 2 . The spike voltage shows temperature dependence, T> 12
It turns out that it disappears by K. The single-electron tunnel effect has been observed in metals and semiconductors until now, but the area is sub-μm
At about 2 , an extremely low temperature of 10 mK was required. However, since the capacitance C of the BSCCO single crystal element decreases in inverse proportion to the number N of the bonding layers, the single-electron charging energy e 2 / 2C increases as N increases. Therefore, it was found that when the number N of the layers was about 60, the charging energy became larger than the thermal noise energy k B T, and a single-electron tunnel effect occurred.

【0020】単電子トンネルの起こるためのもう一つの
条件がある。それは接合の抵抗が量子抵抗R0 =h/4
2 =6.4kΩより大となり、いわゆる“クーロン閉
塞”が満足されなくてはならないが、BSCCO単結晶
は、その比抵抗が他の材料に比して大きいために満足さ
れていることも分かった。一連の実験の結果、面積を2
μm2 以下にすると、BSCCO単結晶は4.2K以上
で動作する高温単電子対トンネル素子となることが分か
った。
There is another condition for a single electron tunnel to occur. It means that the resistance of the junction is the quantum resistance R 0 = h / 4
e 2 = 6.4 kΩ or more, so-called “Coulomb closure” must be satisfied, but it is also found that the BSCCO single crystal is satisfied because its specific resistance is higher than other materials. Was. As a result of a series of experiments, the area was 2
It has been found that when the thickness is set to μm 2 or less, the BSCCO single crystal becomes a high-temperature single-electron pair tunnel element operating at 4.2 K or more.

【0021】ここで、単電子トンネル素子としては、電
気伝導層とトンネル障壁層からなる積層状結晶構造をも
つ銅酸化物超伝導体を用い、その銅酸化物超伝導体とし
てはBi2 Sr2 CaCu2 y ,La1.9 Sr0.1
uO4 ,YBa2 Cu3 xなどを用いる。また、銅酸
化物超伝導体に代えて、遷移金属カルコゲナイドやグラ
ファイトを用いることができる。この遷移金属カルコゲ
ナイドとしては、TaS2 ,TaSe2 ,NbSe2
用いることができる。
Here, as the single-electron tunnel element, a copper oxide superconductor having a laminated crystal structure composed of an electric conduction layer and a tunnel barrier layer is used, and Bi 2 Sr 2 is used as the copper oxide superconductor. CaCu 2 O y , La 1.9 Sr 0.1 C
uO 4 , YBa 2 Cu 3 O x or the like is used. Further, a transition metal chalcogenide or graphite can be used instead of the copper oxide superconductor. As this transition metal chalcogenide, TaS 2 , TaSe 2 , and NbSe 2 can be used.

【0022】そして、層数が多い積層構造を持つ単電子
トンネル素子の製造方法の一例として、分子線エピタキ
シャル(MBE)法によって、結晶を一層ずつ成長さ
せ、電気導電層とトンネル障壁層を交互に成長させて、
人工的積層構造を形成することができる。この場合、電
気伝導層は、金属や導電性半導体を用い、トンネル障壁
層としては、酸化物や絶縁性半導体を用いることもでき
る。
As an example of a method of manufacturing a single-electron tunnel device having a multilayer structure having a large number of layers, crystals are grown one by one by molecular beam epitaxy (MBE), and an electric conductive layer and a tunnel barrier layer are alternately formed. Let me grow
An artificial laminated structure can be formed. In this case, a metal or a conductive semiconductor can be used for the electric conductive layer, and an oxide or an insulating semiconductor can be used for the tunnel barrier layer.

【0023】以上の説明は、液体ヘリウム温度以上で動
作する高温単電子対トンネル素子が再現性よく実現でき
ることを示したものであり、従来の単電子素子ではでき
ない高温動作の大集積回路用のトランジスタやメモリー
の実現の可能性を示した。なお、本発明は上記実施例に
限定されるものではなく、本発明の趣旨に基づいて種々
の変形が可能であり、これらを本発明の範囲から排除す
るものではない。
The above description shows that a high-temperature single-electron pair tunnel element operating at a temperature equal to or higher than the liquid helium temperature can be realized with good reproducibility. And the feasibility of memory. It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0024】[0024]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 (A)サブミクロン平方オーダー以下のトンネル接合層
を備え、その接合数を可変にすることにより、液体ヘリ
ウム温度(4.2K)以上で動作させることができる。
As described above, according to the present invention, the following effects can be obtained. (A) It is possible to operate at a liquid helium temperature (4.2 K) or higher by providing a tunnel junction layer of submicron square order or less and making the number of junctions variable.

【0025】(B)液体ヘリウム温度以上で動作する高
温単電子対トンネル素子を再現性よく実現することがで
き、高温動作の大集積回路用のトランジスタやメモリー
の実現に寄与することができる。
(B) A high-temperature single-electron pair tunnel element operating at a temperature of liquid helium or higher can be realized with good reproducibility, which can contribute to the realization of a transistor and a memory for a large integrated circuit that operates at a high temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す層状酸化物超伝導体を用
いた高温単電子対トンネル素子の製造工程図である。
FIG. 1 is a manufacturing process diagram of a high-temperature single-electron pair tunnel device using a layered oxide superconductor according to an embodiment of the present invention.

【図2】本発明の実施例を示す針状単結晶に作製した高
温単電子対トンネル素子の平面図である。
FIG. 2 is a plan view of a high-temperature single-electron pair tunnel element manufactured in a needle-like single crystal according to an embodiment of the present invention.

【図3】本発明の実施例を示す0.6μm2 接合面積を
持つ素子の電流−電圧特性図である。
FIG. 3 is a current-voltage characteristic diagram of a device having a junction area of 0.6 μm 2 showing an example of the present invention.

【図4】本発明の実施例を示す0.3μm2 接合面積を
持つ素子の電流−電圧特性図である。
FIG. 4 is a current-voltage characteristic diagram of an element having a junction area of 0.3 μm 2 showing an example of the present invention.

【図5】銅酸化物超伝導体のBi2 Sr2 CaCu2
y の結晶構造を示す模式図である。
FIG. 5 is a copper oxide superconductor Bi 2 Sr 2 CaCu 2 O
FIG. 3 is a schematic diagram showing a crystal structure of y .

【図6】銅酸化物超伝導体のBi2 Sr2 CaCu2
y の結晶構造の層状構造の模式図である。
FIG. 6 is a copper oxide superconductor Bi 2 Sr 2 CaCu 2 O
FIG. 4 is a schematic diagram of a layered structure of a crystal structure of y .

【図7】通常の単電子トンネル素子(層数N=1)の模
式図である。
FIG. 7 is a schematic view of a normal single-electron tunnel element (the number of layers N = 1).

【符号の説明】[Explanation of symbols]

1 Bi2 Sr2 CaCu2 8 針状単結晶 2A,2B マーク部 3 第1の細い溝 4 スポット 5 第2の細い溝1 Bi 2 Sr 2 CaCu 2 O 8 acicular single crystal 2A, 2B mark portion 3 first narrow groove 4 spots 5 second thin grooves

フロントページの続き (72)発明者 金 相宰 宮城県仙台市青葉区片平2−1−1 東北 大学 電気通信研究所内 Fターム(参考) 4M113 AA01 AA06 AA16 AA23 AA24 AA25 AD62 AD63 BA01 BA14 BA29 BA30 BC04 CA33 CA34 CA35 Continued on the front page (72) Inventor Kim Aizai 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi F-term in the Institute of Electrical Communication, Tohoku University (reference) 4M113 AA01 AA06 AA16 AA23 AA24 AA25 AD62 AD63 BA01 BA14 BA29 BA30 BC04 CA33 CA34 CA35

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気伝導層とトンネル障壁層からなる積
層状結晶構造を持つ層状酸化物超伝導体を用いた高温単
電子対トンネル素子の製造方法において、(a)層状酸
化物超伝導体の針状単結晶を用意し、集束イオンビーム
装置のホルダーに固定する工程と、(b)イオンビーム
加工により前記単結晶の片面の所定位置にx方向の長
さ、y方向の幅とz方向の前記単結晶の厚さの半分以上
の深さを有する第1の細い溝を形成する工程と、(c)
前記第1の細い溝の輪郭を示すように、前記単結晶の厚
さを貫通する深さまで標識となる小さいスポットを作る
工程と、(d)その加工した単結晶の面を裏返しにして
4端子測定に用いるために銀ペーストで固定する工程
と、(e)前記スポットから目的とする接合の大きさに
合わせたx方向の所定間隔をおいて、前記第1の細い溝
と同一長さ、幅及び深さを有する第2の細い溝を前記第
1の細い溝の平行線上に加工する工程と、(f)xy面
上に長方形の接合を作製するためにエッジの部分をトリ
ミングする工程と、(g)不要に残った部分を除去する
工程とを施すことを特徴とする層状酸化物超伝導体を用
いた高温単電子対トンネル素子の製造方法。
1. A method for manufacturing a high-temperature single-electron pair tunnel element using a layered oxide superconductor having a laminated crystal structure composed of an electric conductive layer and a tunnel barrier layer, the method comprising the steps of: Preparing a needle-shaped single crystal and fixing it to a holder of a focused ion beam device; and (b) ion beam processing at a predetermined position on one surface of the single crystal, the length in the x direction, the width in the y direction, and the width in the z direction. Forming a first narrow groove having a depth of at least half the thickness of the single crystal; and (c)
Forming a small spot as a marker to a depth penetrating the thickness of the single crystal so as to indicate the contour of the first narrow groove; and (d) turning the processed single crystal face upside down to four terminals Fixing with a silver paste for use in the measurement; and (e) having the same length and width as the first narrow groove at a predetermined interval in the x direction from the spot in accordance with the size of the target junction. And processing a second narrow groove having a depth and a depth on a parallel line of the first narrow groove, and (f) trimming an edge portion to form a rectangular joint on an xy plane; (G) a step of removing unnecessary portions. A method for manufacturing a high-temperature single-electron pair tunnel device using a layered oxide superconductor.
【請求項2】 請求項1記載の高温単電子対トンネル素
子の製造方法において、前記単結晶の厚さを調整するこ
とによりトンネル接合数を可変にするようにしたことを
特徴とする層状酸化物超伝導体を用いた高温単電子対ト
ンネル素子の製造方法。
2. The method according to claim 1, wherein the number of tunnel junctions is made variable by adjusting the thickness of the single crystal. A method for manufacturing a high-temperature single-electron pair tunnel element using a superconductor.
【請求項3】 請求項1又は2記載の高温単電子対トン
ネル素子の製造方法において、前記長方形のトンネル接
合面積がサブミクロン平方オーダーであることを特徴と
する層状酸化物超伝導体を用いた高温単電子対トンネル
素子の製造方法。
3. The method for manufacturing a high-temperature single-electron pair tunnel element according to claim 1, wherein the rectangular tunnel junction area is on the order of submicron square. A method for manufacturing a high temperature single electron pair tunnel element.
JP25647898A 1998-09-10 1998-09-10 High temperature single electron pair tunneling device manufacturing method using layered oxide superconductor Expired - Fee Related JP3995810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25647898A JP3995810B2 (en) 1998-09-10 1998-09-10 High temperature single electron pair tunneling device manufacturing method using layered oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25647898A JP3995810B2 (en) 1998-09-10 1998-09-10 High temperature single electron pair tunneling device manufacturing method using layered oxide superconductor

Publications (2)

Publication Number Publication Date
JP2000091654A true JP2000091654A (en) 2000-03-31
JP3995810B2 JP3995810B2 (en) 2007-10-24

Family

ID=17293204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25647898A Expired - Fee Related JP3995810B2 (en) 1998-09-10 1998-09-10 High temperature single electron pair tunneling device manufacturing method using layered oxide superconductor

Country Status (1)

Country Link
JP (1) JP3995810B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246664A (en) * 2001-02-14 2002-08-30 Japan Science & Technology Corp Single crystal inherent josephson junction terahertz detector
JP2003069095A (en) * 2001-08-27 2003-03-07 Japan Science & Technology Corp Milliwave/sub-milliwave receiver based on integrated circuit including intrinsic josephson element
JP2006210585A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science New type terahertz oscillator using laminated josephson junction
JP2011233825A (en) * 2010-04-30 2011-11-17 National Institute Of Advanced Industrial & Technology Specific josephson junction element, quantum bit, superconducting quantum interference element, terahertz detection device, terahertz oscillation device, voltage standard device, millimeter and submillimeter wave receiver, and manufacturing method for specific josephson junction element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246664A (en) * 2001-02-14 2002-08-30 Japan Science & Technology Corp Single crystal inherent josephson junction terahertz detector
JP2003069095A (en) * 2001-08-27 2003-03-07 Japan Science & Technology Corp Milliwave/sub-milliwave receiver based on integrated circuit including intrinsic josephson element
JP2006210585A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science New type terahertz oscillator using laminated josephson junction
JP2011233825A (en) * 2010-04-30 2011-11-17 National Institute Of Advanced Industrial & Technology Specific josephson junction element, quantum bit, superconducting quantum interference element, terahertz detection device, terahertz oscillation device, voltage standard device, millimeter and submillimeter wave receiver, and manufacturing method for specific josephson junction element

Also Published As

Publication number Publication date
JP3995810B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
Barner et al. All a‐axis oriented YBa2Cu3O7− y‐PrBa2Cu3O7− z‐YBa2Cu3O7− y Josephson devices operating at 80 K
EP0329603B1 (en) Grain boundary junction devices using high-tc superconductors
EP0181191B1 (en) Superconducting device
JPH104222A (en) Oxide superconducting element and manufacture thereof
US6541789B1 (en) High temperature superconductor Josephson junction element and manufacturing method for the same
EP0576363A1 (en) Superconducting device having a superconducting channel formed of oxide superconductor material and method for manufacturing the same
JP2000091654A (en) Manufacture of high-temperature single electron pair tunnel element using layered oxide superconducting material
JP3231742B2 (en) Single-electron tunnel transistor using stacked structure
JP2000516401A (en) Layer arrangement and components containing this layer arrangement
EP0597663B1 (en) Process of producing a Josephson junction
US5856205A (en) Josephson junction device of oxide superconductor having low noise level at liquid nitrogen temperature
JPH104223A (en) Oxide superconducting josephson element
EP0729192A1 (en) Metal electrode for superconducting current path formed of oxide superconductor material and superconducting device utilizing thereof
JP2955407B2 (en) Superconducting element
JP3076503B2 (en) Superconducting element and method of manufacturing the same
JP2909455B1 (en) Superconducting element
JP2907094B2 (en) Superconducting transistor
JP2000022227A (en) Oxide superconductor material and element
JP4519964B2 (en) Manufacturing method of superconducting element
JP2680959B2 (en) Superconducting field effect device and method of manufacturing the same
JP4056575B2 (en) Superconducting device and manufacturing method thereof
JP2950958B2 (en) Superconducting element manufacturing method
JP2641971B2 (en) Superconducting element and fabrication method
KR100267974B1 (en) method for fabricating josephson junction device operating on high temperature
JP2614941B2 (en) Superconducting element and fabrication method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees