JP2002238981A - Air cleaning device - Google Patents

Air cleaning device

Info

Publication number
JP2002238981A
JP2002238981A JP2001038044A JP2001038044A JP2002238981A JP 2002238981 A JP2002238981 A JP 2002238981A JP 2001038044 A JP2001038044 A JP 2001038044A JP 2001038044 A JP2001038044 A JP 2001038044A JP 2002238981 A JP2002238981 A JP 2002238981A
Authority
JP
Japan
Prior art keywords
air
filter
oxide
photocatalyst
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001038044A
Other languages
Japanese (ja)
Inventor
Azusa Shiga
あづさ 志賀
Koichi Nakano
幸一 中野
Yu Fukuda
祐 福田
Hiroo Nitta
浩朗 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001038044A priority Critical patent/JP2002238981A/en
Publication of JP2002238981A publication Critical patent/JP2002238981A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air cleaning device which can solve the problem raised by the conventional air cleaning device using such an adsorbent as the activated carbon, etc., that the sulfur-based gas adsorbing performance of the adsorbent is low and the sulfur-based gas removing performance of the device drops as ventilating time elapses. SOLUTION: In this air cleaning device, a filter 1a containing a metal oxide 2 and a photocatalyst 3 is provided on the upstream side and another filter 1b containing zeolite 5 is provided on the downstream side so that a gaseous material may be removed efficiently by the metal oxide 2 and the gaseous material adsorbed to the oxide 2 is decomposed by the photocatalyst 3, and then, the product of the oxidative destruction caused by the photocalatyst 3 is adsorbed to the zeolite 5. Therefore, the sulfur-based gas removing performance of this air cleaning device can be improved and, in addition, can be prevented from dropping.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トイレ、ペット、
タバコ、調理、体臭等の臭いを除去する空気浄化装置に
関するものである。
The present invention relates to a toilet, a pet,
The present invention relates to an air purification device for removing odors such as tobacco, cooking, and body odor.

【0002】[0002]

【従来の技術】従来の空気浄化装置としては、活性炭等
の吸着剤を有する浄化フィルタを用い、その吸着剤によ
りガス状物質を除去するものが一般に使用されている。
また、光触媒の酸化分解によりガス状物質を除去するも
のも使用されている。
2. Description of the Related Art As a conventional air purifying apparatus, a purifying filter having an adsorbent such as activated carbon or the like and removing gaseous substances by the adsorbent is generally used.
Further, a photocatalyst that removes gaseous substances by oxidative decomposition is also used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような活性炭等の吸着剤を用いた従来の空気浄化装置で
は、アンモニア等のアルカリ性ガスや酢酸等の酸性ガス
は除去できるものの、イオウ系ガスの吸着性能が悪いこ
と、通気時間が経つにつれ除去性能が低下することが問
題であった。また、物理吸着は、分子間力による吸着で
あるため、吸着力が弱く、一旦除去したガス状物質を再
放出してしまうことも問題であった。
However, in the conventional air purifier using an adsorbent such as activated carbon as described above, an alkaline gas such as ammonia and an acidic gas such as acetic acid can be removed, but a sulfur-based gas cannot be removed. There are problems that the adsorption performance is poor and the removal performance decreases as the ventilation time elapses. In addition, since physical adsorption is adsorption by an intermolecular force, the adsorption force is weak, and there is a problem that the gaseous substance once removed is released again.

【0004】また、光触媒を空気浄化装置に用いた場
合、ガス状物質の酸化分解が通気速度に追いつかず、除
去効率が悪いこと、また不完全な酸化分解により発生す
る生成物が、もとのガスより悪臭を放つとことが問題で
あった。
In addition, when a photocatalyst is used in an air purifier, the oxidative decomposition of gaseous substances cannot catch up with the ventilation speed, the removal efficiency is poor, and the products generated by incomplete oxidative decomposition are reduced to the original. The problem was that it smelled worse than gas.

【0005】本発明は、上記従来の問題点を解決し、除
去性能を向上した空気浄化装置を提供することを目的と
する。
[0005] It is an object of the present invention to solve the above-mentioned conventional problems and to provide an air purifying apparatus with improved removal performance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、上流側に金属酸化物もしくは金属の複合酸
化物と光触媒を含むフィルタを配し、下流側にゼオライ
ト、活性炭、シリカゲルの少なくとも1種を含むフィル
タを配し、金属酸化物もしくは金属の複合酸化物の吸着
作用や触媒作用によりガス状物質を効率良く除去し、光
触媒により金属酸化物もしくは金属の複合酸化物に吸着
したガス状物質を分解し、ゼオライト、活性炭、シリカ
ゲルの少なくとも1種で金属酸化物もしくは金属の複合
酸化物の触媒作用や光触媒の酸化分解で発生した生成物
を吸着する。
In order to achieve the above object, the present invention provides a filter comprising a metal oxide or a composite oxide of a metal and a photocatalyst on the upstream side and a zeolite, activated carbon and silica gel on the downstream side. A gas containing at least one type of filter that efficiently removes gaseous substances by the adsorption or catalytic action of metal oxides or metal composite oxides and adsorbs the metal oxides or metal composite oxides with a photocatalyst It decomposes the substance and adsorbs the product generated by the catalytic action of the metal oxide or the composite oxide of the metal or the oxidative decomposition of the photocatalyst by at least one of zeolite, activated carbon and silica gel.

【0007】[0007]

【発明の実施の形態】本発明の請求項1記載の発明は、
汚染空気を浄化する浄化部と、前記浄化部を収容する空
気浄化装置本体と、前記浄化部の光触媒を励起させるた
めの光源を備え、前記空気浄化装置本体には前記浄化部
に空気を導入する吸気口と、前記浄化部で浄化した空気
を排出する排出口を備え、前記浄化部は上流側にマンガ
ン、銅、コバルト、亜鉛、鉄、ニッケルの少なくとも1
種類を含む金属酸化物もしくは複合酸化物と、光触媒を
含むフィルタを配し、下流側にゼオライト、活性炭、シ
リカゲルの少なくとも1種を含むフィルタを配した構成
である。上流側のフィルタの金属酸化物もしくは金属の
複合酸化物は、分子間力による物理吸着よりも吸着力が
強固な化学吸着により、ガス状物質を吸着することがで
きる。吸着したガスは光触媒により酸化分解される。下
流側のフィルタのゼオライト、活性炭、シリカゲルの少
なくとも1種で光触媒の酸化分解で発生した生成物を吸
着できる。
BEST MODE FOR CARRYING OUT THE INVENTION
A purifying section for purifying the contaminated air, an air purifying apparatus main body accommodating the purifying section, and a light source for exciting a photocatalyst of the purifying section; air is introduced into the purifying section into the air purifying apparatus main body. An intake port, and an exhaust port for discharging air purified by the purification section, wherein the purification section has at least one of manganese, copper, cobalt, zinc, iron, and nickel on the upstream side.
In this configuration, a filter containing a metal oxide or composite oxide containing a kind and a photocatalyst is disposed, and a filter containing at least one of zeolite, activated carbon, and silica gel is disposed on the downstream side. The metal oxide or the composite oxide of the metal of the upstream filter can adsorb a gaseous substance by chemical adsorption having a stronger adsorption force than physical adsorption by intermolecular force. The adsorbed gas is oxidatively decomposed by the photocatalyst. The product generated by the oxidative decomposition of the photocatalyst can be adsorbed by at least one of zeolite, activated carbon and silica gel in the downstream filter.

【0008】本発明の請求項2記載の発明は、請求項1
記載の発明であって、光源を上流側のフィルタの上流側
に配し、前記上流側のフィルタは上流側に光触媒が、前
記金属酸化物もしくは金属の複合酸化物に比べ多く存在
する構成である。光触媒による酸化分解は、紫外線が照
射されることにより光触媒表面に生じるOHラジカルに
よるものである。OHラジカルの発生量は紫外線強度に
依存し、紫外線強度が高いほどOHラジカルも多く発生
し、それにより酸化分解の効率も良くなる。紫外線強度
は距離に反比例するので、酸化分解の効率を良くするた
めには、光源と光触媒を近づける必要がある。また、ガ
ス状物質は上流側より徐々に吸着されるため、上流によ
り高濃度で吸着される。よって、ガス状物質が多く吸着
されているフィルタの上流部分の紫外線強度が高くなる
ように、光源をフィルタの上流側に配置し、さらにこの
上流側の表面に光触媒を多く存在させることにより発生
するOHラジカルの量を多くすることができ、酸化分解
の効率を高めている。フィルタの下流部分に吸着したガ
ス状物質についても、上流側のガス状物質が酸化分解さ
れて除去された後、濃度勾配により上流側へ移動し、同
様に光触媒により酸化分解されるのである。
[0008] The invention described in claim 2 of the present invention is claimed in claim 1.
The invention described, wherein the light source is disposed upstream of the upstream filter, and the upstream filter has a configuration in which a photocatalyst is present more upstream than the metal oxide or the metal composite oxide. . The oxidative decomposition by the photocatalyst is due to OH radicals generated on the photocatalyst surface by irradiation with ultraviolet rays. The amount of generated OH radicals depends on the intensity of ultraviolet light, and the higher the intensity of ultraviolet light, the more OH radicals are generated, thereby improving the efficiency of oxidative decomposition. Since the ultraviolet intensity is inversely proportional to the distance, it is necessary to bring the light source and the photocatalyst closer in order to improve the efficiency of oxidative decomposition. Further, since the gaseous substance is gradually adsorbed from the upstream side, it is adsorbed at a higher concentration in the upstream side. Therefore, it is generated by disposing the light source on the upstream side of the filter and increasing the amount of the photocatalyst on the surface of the upstream side so that the ultraviolet intensity in the upstream portion of the filter to which a large amount of gaseous substances is adsorbed is increased. The amount of OH radicals can be increased, and the efficiency of oxidative decomposition is increased. The gaseous substance adsorbed on the downstream portion of the filter is also oxidatively decomposed and removed from the gaseous substance on the upstream side, moves to the upstream side by the concentration gradient, and is similarly oxidized and decomposed by the photocatalyst.

【0009】本発明の請求項3記載の発明は、請求項1
または2記載の発明であって、上流側のフィルタを加熱
する加熱手段を備えたものであり、上流側のフィルタの
金属酸化物もしくは金属の複合酸化物が加熱されて活性
化し、触媒作用を発揮するようになり、ガス状物質を酸
化分解するため、除去効率が向上する。また、紫外線照
射時に加熱手段を作動させた場合、光触媒が加熱されて
活性化し、OHラジカルの発生量も増加するため、酸化
分解の効率も向上する。
The third aspect of the present invention is the first aspect of the present invention.
Or a heating means for heating the upstream filter, wherein the metal oxide or the metal composite oxide of the upstream filter is heated and activated to exhibit a catalytic action. As a result, the gaseous substance is oxidatively decomposed, thereby improving the removal efficiency. In addition, when the heating means is operated at the time of ultraviolet irradiation, the photocatalyst is heated and activated, and the amount of OH radicals generated is increased, so that the efficiency of oxidative decomposition is also improved.

【0010】本発明の請求項4記載の発明は、請求項3
記載の発明であって、加熱手段を上流側のフィルタの上
流側に配するものであり、加熱空気が気流に乗ってフィ
ルタを通過することでフィルタ全体を加熱することがで
きる。また、下流側のフィルタのゼオライト、活性炭、
シリカゲルに熱が伝わったり、排出口から高温空気が排
出されるのを防ぐことができる。
The invention according to claim 4 of the present invention is the invention according to claim 3.
In the described invention, the heating means is disposed on the upstream side of the upstream filter, and the entire filter can be heated by heating air passing through the filter in an airflow. Also, zeolite, activated carbon,
Heat can be prevented from being transmitted to the silica gel and hot air can be prevented from being discharged from the outlet.

【0011】本発明の請求項5記載の発明は、請求項1
〜4のいずれか1項に記載の発明であって、フィルタの
基材がハニカム構造体または発泡体であり、これら構造
体に金属酸化物もしくは金属の複合酸化物と、光触媒
と、ゼオライト、活性炭、シリカゲルの少なくとも1種
を担持してフィルタを構成する。これにより、通気によ
る抵抗を低く抑えることができ、かつ、接触面積を広く
採ることにより、除去効率を良くすることができる。ま
た、光の透過性が良く、光触媒への紫外線の照射を行う
場合にも有用である。
The invention according to claim 5 of the present invention is the invention according to claim 1.
5. The invention according to any one of items 1 to 4, wherein the base material of the filter is a honeycomb structure or a foam, and the structure includes a metal oxide or a composite oxide of a metal, a photocatalyst, zeolite, and activated carbon. And at least one kind of silica gel to constitute a filter. Thereby, the resistance due to ventilation can be kept low, and the removal efficiency can be improved by taking a large contact area. In addition, it has good light transmittance and is useful when irradiating a photocatalyst with ultraviolet rays.

【0012】本発明の請求項6記載の発明は、請求項1
〜5のいずれか1項に記載の発明であって、フィルタの
基材が繊維材料からなる織布または不織布であり、繊維
に金属酸化物もしくは金属の複合酸化物と、光触媒と、
ゼオライト、活性炭、シリカゲルの少なくとも1種を担
持してフィルタを構成する。屈曲性、加工性に優れるた
め、湾曲させて使用したり、プリーツ状に加工すること
ができる。
The invention according to claim 6 of the present invention is the invention according to claim 1.
5. The invention according to any one of items 1 to 5, wherein the base material of the filter is a woven or non-woven fabric made of a fiber material, and the metal oxide or the composite oxide of the metal and the photocatalyst,
The filter supports at least one of zeolite, activated carbon and silica gel. Since it is excellent in flexibility and workability, it can be used in a curved state or processed into a pleated shape.

【0013】本発明の請求項7記載の発明は、請求項1
〜6のいずれか1項に記載の発明であって、光触媒が酸
化チタン、酸化亜鉛、酸化タングズテン、酸化鉄の少な
くとも1種で構成するものであり、前記光触媒は、紫外
線の照射により光触媒反応を起こし、フィルタに吸着し
たガス状物質を酸化分解することができる。
[0013] The invention according to claim 7 of the present invention is the invention according to claim 1.
7. The invention according to any one of Items 1 to 6, wherein the photocatalyst is composed of at least one of titanium oxide, zinc oxide, tungsten oxide, and iron oxide, and the photocatalyst performs a photocatalytic reaction by irradiation with ultraviolet light. The gaseous substance adsorbed on the filter can be oxidized and decomposed.

【0014】[0014]

【実施例】以下、本発明の各実施例を添付図面に基づい
て説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】(実施例一)図1は本発明の第一の実施例
における空気浄化装置の断面図である。矢印が気流を表
している。1は汚染空気を通過させて浄化する浄化部を
構成するフィルタであり、上流側フィルタ1aと下流側
フィルタ1bより成る。上流側フィルタ1aは金属酸化
物2と、光触媒3と、金属酸化物2と光触媒3を担持す
る基材4aを有している。本実験例では基材4aは、1
平方センチメートルあたりのセル数を200有するゼフ
ァイバーセラミックで成形したハニカム体、400mL
を用いた。金属酸化物2は酸化マンガンと酸化銅の混合
物であり、光触媒3は酸化チタンである。また、下流側
フィルタ1bは、ゼオライト5と、ゼオライト5を担持
する基材4bを有している。本実験例では基材4bは、
4aと同様のファイバーセラミックのハニカム体、20
0mLを用いた。ゼオライト5は、疎水性のゼオライト
を用いた。
(Embodiment 1) FIG. 1 is a sectional view of an air purifying apparatus according to a first embodiment of the present invention. Arrows represent airflow. Reference numeral 1 denotes a filter which constitutes a purifying section for purifying by passing the contaminated air, and comprises an upstream filter 1a and a downstream filter 1b. The upstream filter 1a has a metal oxide 2, a photocatalyst 3, and a base material 4a supporting the metal oxide 2 and the photocatalyst 3. In this experimental example, the base material 4a is 1
Honeycomb molded from zefiber ceramic having 200 cells per square centimeter, 400 mL
Was used. The metal oxide 2 is a mixture of manganese oxide and copper oxide, and the photocatalyst 3 is titanium oxide. Further, the downstream filter 1b has the zeolite 5 and the base material 4b supporting the zeolite 5. In this experimental example, the base material 4b is
The same honeycomb body of fiber ceramic as in 4a, 20
0 mL was used. As the zeolite 5, a hydrophobic zeolite was used.

【0016】6は空気浄化装置本体、7は空気浄化装置
本体6の側壁に設けた汚染空気を浄化部1に導入するた
めの吸気口、8は空気浄化装置本体5の側壁に設けた浄
化した空気を空気浄化装置本体5から排出する排出口、
9は汚染空気を吸気口7から吸引する送風手段、10は
吸気口7から入った汚染空気中の粒子状物質を除去する
ための集塵フィルタ、11は浄化部1に設けた光触媒3
を励起するために紫外線を放射する光源であるブラック
ライトである。
Reference numeral 6 denotes an air purifying device main body, 7 denotes an intake port provided on a side wall of the air purifying device main body 6 for introducing contaminated air into the purifying section 1, and 8 denotes a purified air provided on a side wall of the air purifying device main body 5. An outlet for discharging air from the air purification device body 5,
9 is a blower for sucking contaminated air from the intake port 7, 10 is a dust filter for removing particulate matter in the contaminated air entered from the intake port 7, 11 is a photocatalyst 3 provided in the purification unit 1.
Is a black light that is a light source that emits ultraviolet light to excite light.

【0017】浄化部1であるフィルタ1aは、金属酸化
物2の酸化マンガンと酸化銅の混合物と光触媒3の酸化
チタンをバインダーとしてコロイダルシリカを加えて担
持させて作製した。担持方法としては、酸化マンガンと
酸化銅の混合物と、光触媒と、コロイダルシリカの混合
溶液に、基材4aを浸し、乾燥させることで行った。ま
た、フィルタ1bは、ゼオライト5の疎水性ゼオライト
をバインダーとしてコロイダルシリカを加えて担持させ
て作製した。担持方法は、疎水性ゼオライトとコロイダ
ルシリカの混合溶液に基材4bを浸し、乾燥させること
で行った。
The filter 1a, which is the purifying unit 1, was prepared by adding colloidal silica as a binder using a mixture of manganese oxide and copper oxide of the metal oxide 2 and titanium oxide of the photocatalyst 3 as a binder. The supporting method was performed by immersing the base material 4a in a mixed solution of a mixture of manganese oxide and copper oxide, a photocatalyst, and colloidal silica and drying the mixed solution. The filter 1b was produced by adding colloidal silica as a binder using hydrophobic zeolite of zeolite 5 as a binder. The supporting method was performed by immersing the base material 4b in a mixed solution of hydrophobic zeolite and colloidal silica and drying it.

【0018】以下、このように構成された空気浄化装置
の動作について説明する。送風手段9のファン9作動さ
せると、矢印で示した気流が発生し、吸気口7より吸気
された汚染空気は集塵フィルタ10を通過し、浄化部で
あるフィルタ1を通過して浄化される。汚染空気中に含
まれる塵等の粒子状物質は、集塵フィルタ10により除
去される。浄化部であるフィルタ1は、吸気口7から排
出口8へ向かう気流の上流側に金属酸化物2と、光触媒
3を有する上流側フィルタ1aを設置する。汚染空気中
に含まれるガス状物質は、金属酸化物2である酸化マン
ガンと酸化銅の混合物で吸着される。吸着されたガス状
物質は、通電されたブラックライト11の紫外線により
励起された光触媒3である酸化チタンにより、酸化分解
されて除去される。その後、ゼオライト5である疎水性
ゼオライトにより、酸化チタンによる酸化分解で発生し
た生成物は吸着され、除去される。その後、排出口8よ
り排気される。
Hereinafter, the operation of the air purifying apparatus thus configured will be described. When the fan 9 of the blowing means 9 is operated, an airflow indicated by an arrow is generated, and the contaminated air taken in from the intake port 7 passes through the dust collection filter 10 and is purified by passing through the filter 1 which is a purification unit. . Particulate matter such as dust contained in the contaminated air is removed by the dust filter 10. The filter 1 serving as a purifying unit is provided with an upstream filter 1 a having a metal oxide 2 and a photocatalyst 3 on the upstream side of an airflow from the intake port 7 to the exhaust port 8. Gaseous substances contained in the contaminated air are adsorbed by a mixture of manganese oxide and copper oxide, which are metal oxides 2. The adsorbed gaseous substance is oxidatively decomposed and removed by the titanium oxide which is the photocatalyst 3 excited by the ultraviolet light of the energized black light 11. Thereafter, the product generated by the oxidative decomposition with titanium oxide is adsorbed and removed by the hydrophobic zeolite as zeolite 5. Thereafter, the air is exhausted from the outlet 8.

【0019】本実施例によれば、ガス状物質が金属酸化
物2で化学吸着されるため、効率よく除去でき、さらに
光触媒3で吸着したガス状物質を分解できるので、金属
酸化物2は初期の除去性能を保つことができる。また、
下流側のゼオライト5で光触媒3の酸化分解で発生した
生成物を吸着するので、汚染空気を完全に浄化すること
ができる。
According to this embodiment, since the gaseous substance is chemically adsorbed by the metal oxide 2, it can be efficiently removed and the gaseous substance adsorbed by the photocatalyst 3 can be decomposed. Removal performance can be maintained. Also,
Since the product generated by the oxidative decomposition of the photocatalyst 3 is adsorbed by the zeolite 5 on the downstream side, the contaminated air can be completely purified.

【0020】(実施例二)図2は本発明の第二の実施例
を示す空気清浄装置の断面図である。実施例一と同一の
部分には同一番号を付して説明を省略する。12は上流
側のフィルタ1aを加熱する加熱手段であるヒータであ
り、上流側のフィルタ1aの金属酸化物2である酸化マ
ンガンと酸化銅の混合体が加熱されて活性化し、触媒作
用を発揮し、ガス状物質を酸化分解する。
(Embodiment 2) FIG. 2 is a sectional view of an air cleaning apparatus showing a second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description is omitted. Reference numeral 12 denotes a heater as heating means for heating the upstream filter 1a. The mixture of manganese oxide and copper oxide, which are the metal oxides 2 of the upstream filter 1a, is heated and activated to exert a catalytic action. Oxidatively decomposes gaseous substances.

【0021】以下、このように構成された空気浄化装置
の動作について説明する。送風手段9のファンおよびヒ
ータ12を作動させると、矢印で示した気流が発生し、
上流側のフィルタ1aがヒータ12により加熱され、吸
気口7より吸気された汚染空気は集塵フィルタ10を通
過し、浄化部であるフィルタ1を通過して浄化される。
汚染空気中に含まれるガス状物質は、加熱されて活性化
した金属酸化物2である酸化マンガンと酸化銅の混合物
で吸着または触媒作用により酸化分解される。吸着され
たガス状物質は、通電されたブラックライト11の紫外
線により励起された光触媒3である酸化チタンにより、
酸化分解されて除去される。その後、ゼオライト5であ
る疎水性ゼオライトにより、酸化マンガンと酸化銅や、
酸化チタンによる酸化分解で発生した生成物は吸着さ
れ、除去される。その後、排出口8より排気される。
Hereinafter, the operation of the air purifying apparatus thus configured will be described. When the fan of the blowing means 9 and the heater 12 are operated, an airflow indicated by an arrow is generated,
The filter 1a on the upstream side is heated by the heater 12, and the contaminated air taken in from the intake port 7 passes through the dust collection filter 10, and passes through the filter 1, which is a purification section, to be purified.
The gaseous substances contained in the contaminated air are oxidatively decomposed by adsorption or catalysis by a mixture of manganese oxide and copper oxide, which are metal oxides 2 activated by heating. The adsorbed gaseous substance is formed by titanium oxide, which is a photocatalyst 3 excited by ultraviolet light of a black light 11 that is energized.
It is oxidatively decomposed and removed. Then, manganese oxide and copper oxide, and zeolite 5 hydrophobic zeolite,
The products generated by the oxidative decomposition by titanium oxide are adsorbed and removed. Thereafter, the air is exhausted from the outlet 8.

【0022】次に、本実施例の空気浄化装置の脱臭性能
を、実施例一の空気浄化装置と、活性炭のみのフィルタ
を搭載した空気浄化装置とで比較して行った実験につい
て説明する。前記3種類の空気浄化装置を6m3の試験
ボックスの中に入れ、試験ボックス内にアンモニアと硫
化水素濃度がそれぞれ20ppmとなるように調製し
た。送風手段9のファンの風量を3m3/分に設定し、
ボックス内のアンモニア濃度および硫化水素濃度を測定
した。実施例二のヒータ12は100Wで開始から5分
間のみ通電した。アンモニア濃度の経時変化を図4に、
硫化水素の経時変化を図5に示す。活性炭のみのフィル
タに比べて、実施例一、二はガス濃度の減衰が速く、特
に硫化水素については活性炭のみが60分で除去率が5
%以下に達したのに対して、実施例一、二は10分より
前に5%以下に達しており、約6倍の脱臭スピードであ
った。また、実施例一と実施例二を比較すると、実施例
二の方がさらに除去性能が優れていた。これは加熱手段
であるヒータ12により酸化マンガンと酸化銅が加熱さ
れて活性化し、触媒作用を発揮したためと考えられる。
吸着だけでなく酸化分解による除去が加わったため、脱
臭性能がより向上したものと考えられる。
Next, an experiment will be described in which the deodorizing performance of the air purifying apparatus of the present embodiment is compared between the air purifying apparatus of the first embodiment and an air purifying apparatus equipped with a filter using only activated carbon. The three types of air purification devices were placed in a 6 m 3 test box, and the concentrations of ammonia and hydrogen sulfide were adjusted to 20 ppm in the test box. The air volume of the fan of the blowing means 9 is set to 3 m 3 / min,
The ammonia concentration and the hydrogen sulfide concentration in the box were measured. The heater 12 of Example 2 was energized at 100 W for only 5 minutes from the start. FIG. 4 shows the change over time of the ammonia concentration.
FIG. 5 shows the change over time of hydrogen sulfide. In Examples 1 and 2, the gas concentration decayed faster than in the filter using only activated carbon. In particular, for hydrogen sulfide, only activated carbon was removed in 60 minutes and the removal rate was 5%.
%, Whereas Examples 1 and 2 reached 5% or less before 10 minutes, and the deodorizing speed was about 6 times. In addition, comparing Example 1 and Example 2, Example 2 was more excellent in removal performance. This is presumably because manganese oxide and copper oxide were heated and activated by the heater 12 serving as a heating means, and exhibited a catalytic action.
It is considered that not only adsorption but also removal by oxidative decomposition was added, so that the deodorizing performance was further improved.

【0023】実施例一、二では、酸化チタンの励起を十
分にするためフィルタ1のブラックライト11側の表面
における360nmの紫外線強度が約2mW/cm2
なるように設定した。尚、殺菌等や冷陰極の紫外線灯を
用いても同様の効果が得られるものである。
In Examples 1 and 2, the intensity of 360 nm ultraviolet light on the surface of the filter 1 on the side of the black light 11 was set to about 2 mW / cm 2 in order to sufficiently excite the titanium oxide. It should be noted that the same effect can be obtained by using a sterilizing or cold cathode ultraviolet lamp.

【0024】光触媒2については、取り扱い易さ、価格
等から酸化チタンを用いたが、酸化チタン、酸化亜鉛、
酸化タングステン、酸化鉄の少なくとも1種類を含む混
合体や複合酸化物でも同様の効果が得られるものであ
る。
For the photocatalyst 2, titanium oxide was used in view of ease of handling and price, but titanium oxide, zinc oxide,
The same effect can be obtained with a mixture or a composite oxide containing at least one of tungsten oxide and iron oxide.

【0025】金属酸化物2として酸化マンガンと酸化銅
の混合体を用いたが、マンガン、銅、コバルト、亜鉛、
鉄、ニッケルの少なくとも一種類を含む金属酸化物また
は金属の複合酸化物であれば、同様の効果を示すもので
ある。
A mixture of manganese oxide and copper oxide was used as the metal oxide 2, but manganese, copper, cobalt, zinc,
A metal oxide containing at least one of iron and nickel or a composite oxide of a metal exhibits similar effects.

【0026】また、基材としてハニカム構造体を用いた
が、発砲体でも通気抵抗に若干の差は見られるものの、
脱臭性能については同様の効果が得られるものである。
Although a honeycomb structure was used as a base material, although a slight difference in airflow resistance was observed even with a foam,
The same effect can be obtained for the deodorizing performance.

【0027】ゼオライト5として、疎水性ゼオライトを
用いたが、活性炭、ゼオライト、シリカゲルのうち少な
くとも一種類を含む吸着材としても同様の効果を示すも
のである。
Although the hydrophobic zeolite is used as the zeolite 5, the same effect can be obtained as an adsorbent containing at least one of activated carbon, zeolite and silica gel.

【0028】また、本実施例では、加熱手段であるヒー
タ12への通電を100Wで5分間のみ行った。このと
き上流側フィルタ1aの表面温度は約100〜150℃
であった。この状態では、下流側フィルタ1bのゼオラ
イト5に熱が伝わったり、排出口8から高温空気が排出
されることがない。また、5分後に通電をやめても、酸
化分解により発生する反応熱により温度を保つことがで
きる。よって連続的に本実施例の空気浄化装置を運転す
る場合には、フィルタ温度を適温に保つよう、間欠的に
ヒータ12に通電すれば良い。これにより、フィルタ1
の温度が上がりすぎたり、それにより高温の空気が排気
されたりするのを防ぐことができる。また、消費電力を
低減することができる。
In this embodiment, the power supply to the heater 12 as the heating means is performed at 100 W for only 5 minutes. At this time, the surface temperature of the upstream filter 1a is about 100 to 150 ° C.
Met. In this state, no heat is transmitted to the zeolite 5 of the downstream filter 1b, and no high-temperature air is discharged from the discharge port 8. Even if the current is stopped after 5 minutes, the temperature can be maintained by the reaction heat generated by the oxidative decomposition. Therefore, when the air purifying apparatus of this embodiment is continuously operated, the heater 12 may be intermittently energized so as to keep the filter temperature at an appropriate temperature. Thereby, the filter 1
Temperature can be prevented from rising too high, and thereby exhausting hot air. Further, power consumption can be reduced.

【0029】(実施例三)図3は本発明の第三の実施例
を示す空気浄化装置の断面図である。実施例一および二
と同一の部分には同一番号を付して説明を省略する。
(Embodiment 3) FIG. 3 is a sectional view of an air purifying apparatus showing a third embodiment of the present invention. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and the description is omitted.

【0030】浄化部1であるフィルタ1aは、基材4a
の片面ずつに、金属酸化物2の酸化マンガンと酸化銅の
混合物と光触媒3の酸化チタンとをそれぞれバインダー
としてコロイダルシリカを加えて担持させて作製した。
担持方法としては、酸化マンガンと酸化銅の混合物とコ
ロイダルシリカの溶液に基材の厚さの2/3分程度まで
浸たし乾燥させた後に、もう一方の面を酸化チタンとコ
ロイダルシリカの溶液に前述と同様に基材4aの厚さの
1/3程度まで浸たし、乾燥させることで行った。
The filter 1a, which is the purifying section 1, includes a substrate 4a
A mixture of manganese oxide and copper oxide of the metal oxide 2 and titanium oxide of the photocatalyst 3 were respectively supported on one side of each of the above by adding colloidal silica as a binder.
As a supporting method, after immersing in a solution of a mixture of manganese oxide and copper oxide and colloidal silica to about / of the thickness of the substrate and drying, the other surface is coated with a solution of titanium oxide and colloidal silica. In the same manner as described above, the substrate 4a was dipped to about 1/3 of the thickness and dried.

【0031】次に本実施例一、実施例二、実施例三、活
性炭のみの空気浄化装置について光触媒により除去性能
の低下を防ぐことができるかをを確認するために行った
実験結果について説明する。前記3種類の空気浄化装置
を6m3の試験ボックスの中に入れ、試験ボックス内に
アンモニア濃度がそれぞれ20ppmとなるように調製
した。送風手段9のファンの風量を3m3/分で30分
運転を行った後のボックス内の濃度を測定した(これを
光照射回数が0回、初期とする。)。その後、送風手段
9のファンを停止させ、ブラックライト10に通電し、
光照射を2時間行った。再びボックス内のアンモニア濃
度を20ppmに調製し、30分運転を行った後の濃度
を測定した(これを光照射回数が1回目とする。)。こ
れらの一連の動作を5回繰り返した際のボックス内のア
ンモニアの濃度変化を表1に示す。尚、実施例二の空気
浄化装置については、30分の運転中はヒータへの通電
は行わず、光照射中のみに間欠的にヒータ12に通電を
して加熱した。また、実施例一の空気浄化装置を用い
て、光照射を行わない場合についても実験し、同じく表
1に示した。
Next, a description will be given of the results of experiments performed in the first, second and third embodiments of the present invention to confirm whether the reduction of the removal performance can be prevented by the photocatalyst in the air purifying apparatus using only activated carbon. . The three types of air purification devices were placed in a 6 m 3 test box, and the concentration of ammonia in the test box was adjusted to 20 ppm. After the operation of the fan of the blowing means 9 at a flow rate of 3 m 3 / min for 30 minutes, the density in the box was measured (the number of times of light irradiation is 0, which is referred to as an initial value). Thereafter, the fan of the blowing means 9 is stopped, and the black light 10 is energized.
Light irradiation was performed for 2 hours. Again, the ammonia concentration in the box was adjusted to 20 ppm, and the concentration after operation for 30 minutes was measured (this is the first light irradiation). Table 1 shows changes in the concentration of ammonia in the box when these series of operations are repeated five times. In the air purifying apparatus of Example 2, the heater was not energized during the operation for 30 minutes, but was intermittently energized and heated only during light irradiation. Experiments were also conducted using the air purification device of Example 1 when light irradiation was not performed, and
Shown in 1.

【0032】[0032]

【表1】 [Table 1]

【0033】初期の状態では活性炭のみのフィルタが、
他に比べて若干残存するアンモニア濃度が高くなってい
るが、各種空気浄化装置での性能の差はほとんどない。
運転と再生を繰り返していくにつれて、活性炭のみの空
気浄化装置は徐々に残存するアンモニア濃度が増加して
おり、除去性能が低下していることが解る。実施例一の
空気浄化装置を用いて光照射を行わない場合についても
同様に、回数が増えるに連れ、残存するアンモニア濃度
が増加しているが、活性炭に比較すると若干増加が緩や
かである。実施例一、二、三の空気浄化装置については
これら2つに比較し、明かにアンモニア濃度の増加が少
なく、光触媒により除去性能の低下が防がれていること
が解る。特に実施例二、三についてはほとんど低下して
いなかった。実施例二では、光照射時にヒータ12によ
る加熱も行っており、金属酸化物2である酸化マンガン
と酸化銅が加熱されて活性化し、触媒作用によりアンモ
ニアを酸化分解したことと、光触媒による酸化分解も加
熱により効率が向上したことの効果であると考えられ
る。また、実施例三では、アンモニアが多く吸着してい
るフィルタの上流部分の表面に光触媒3が多く存在して
おり、被分解物であるアンモニアの付近でOHラジカル
が発生するため、酸化分解が効率良く行われたためであ
ると考えられる。以上の結果より、本実施例の空気浄化
装置は、除去性能の低下を防ぎ、初期の除去性能を保つ
ことが確認された。
In the initial state, a filter using only activated carbon is used.
Although the residual ammonia concentration is slightly higher than the others, there is almost no difference in performance between the various air purification devices.
It can be seen that as the operation and regeneration are repeated, the concentration of ammonia remaining in the air purification device using only activated carbon gradually increases, and the removal performance decreases. Similarly, when light irradiation is not performed using the air purification device of the first embodiment, the remaining ammonia concentration increases as the number of times increases, but the increase is slightly slower than that of activated carbon. It can be seen that the air purifiers of Examples 1, 2 and 3 clearly have a smaller increase in ammonia concentration than the two air purifiers, and that the photocatalyst prevents a decrease in removal performance. Particularly, in Examples 2 and 3, there was almost no decrease. In Example 2, heating by the heater 12 was also performed at the time of light irradiation, and manganese oxide and copper oxide, which were the metal oxides 2, were heated and activated, and ammonia was oxidatively decomposed by a catalytic action. This is also considered to be the effect of the improvement in efficiency by heating. In the third embodiment, the photocatalyst 3 is present a lot on the surface of the upstream portion of the filter to which a large amount of ammonia is adsorbed, and OH radicals are generated near the ammonia to be decomposed. Probably because it was done well. From the above results, it was confirmed that the air purification device of the present example prevented the reduction of the removal performance and maintained the initial removal performance.

【0034】(実施例四)図6は本発明の第四の実施例
を示す空気浄化装置の断面図である。実施例一、二およ
び三と同一の部分には同一番号を付して説明を省略す
る。
(Embodiment 4) FIG. 6 is a sectional view of an air purifying apparatus showing a fourth embodiment of the present invention. The same parts as those of the first, second and third embodiments are denoted by the same reference numerals, and description thereof is omitted.

【0035】浄化部1であるフィルタ1aは、基材4a
であるセラミック繊維からなるプリーツ状に加工された
不織布に金属酸化物2の酸化マンガンと酸化銅の混合物
と、光触媒3の酸化チタンをバインダーのコロイダルシ
リカを加えて担持させた。担持方法は、酸化マンガンと
酸化銅の混合物と、酸化チタンと、バインダーのコロイ
ダルシリカの溶液にセラミック繊維からなるプリーツ状
に加工された不織布を浸漬、乾燥することにより行っ
た。
The filter 1a, which is the purifying section 1, includes a substrate 4a
A mixture of manganese oxide and copper oxide of the metal oxide 2 and titanium oxide of the photocatalyst 3 were supported on a pleated nonwoven fabric made of ceramic fibers as described above, with the addition of colloidal silica as a binder. The supporting method was carried out by immersing and drying a pleated nonwoven fabric made of ceramic fibers in a solution of a mixture of manganese oxide and copper oxide, titanium oxide, and colloidal silica as a binder.

【0036】フィルタ1bは、基材4bである基材4a
と同様のセラミック繊維からなるプリーツ状に加工され
た不織布に、ゼオライト5である疎水性ゼオライトをバ
インダーのコロイダルシリカを加えて担持させてた。担
持方法は、疎水性ゼオライトとバインダーのコロイダル
シリカの溶液にセラミック繊維からなるプリーツ状に加
工された不織布を浸漬、乾燥することにより行った。
The filter 1b includes a base material 4a which is a base material 4b.
A hydrophobic zeolite, which is zeolite 5, was supported on a pleated non-woven fabric made of the same ceramic fiber as above, with the addition of colloidal silica as a binder. The supporting method was carried out by immersing a pleated nonwoven fabric made of ceramic fibers in a solution of colloidal silica as a binder with a hydrophobic zeolite and drying.

【0037】尚、本実施例では基材4a、4bとしてセ
ラミック繊維を用いたが、高分子繊維、金属繊維を用い
ても脱臭性能については同様の効果が得られるものであ
る。
Although ceramic fibers are used as the substrates 4a and 4b in this embodiment, the same effect can be obtained with respect to the deodorizing performance by using polymer fibers and metal fibers.

【0038】[0038]

【発明の効果】本発明の空気浄化装置によれば、ガス状
物質の除去性能を向上することができ、かつ初期の除去
性能を保つことができる。
According to the air purifying apparatus of the present invention, the performance of removing gaseous substances can be improved and the initial removal performance can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例を示す空気浄化装置の断
面図
FIG. 1 is a sectional view of an air purification device showing a first embodiment of the present invention.

【図2】本発明の第二の実施例を示す空気浄化装置の断
面図
FIG. 2 is a cross-sectional view of an air purification device showing a second embodiment of the present invention.

【図3】本発明の第三の実施例を示す空気浄化装置の断
面図
FIG. 3 is a cross-sectional view of an air purification device showing a third embodiment of the present invention.

【図4】本発明の空気浄化装置を用いた実験でのアンモ
ニア濃度の経時変化を示す図
FIG. 4 is a diagram showing a change over time in ammonia concentration in an experiment using the air purification device of the present invention.

【図5】本発明の空気浄化装置を用いた実験での硫化水
素濃度の経時変化を示す図
FIG. 5 is a diagram showing a change over time in hydrogen sulfide concentration in an experiment using the air purification device of the present invention.

【図6】本発明の第四の実施例を示す空気浄化装置の断
面図
FIG. 6 is a cross-sectional view of an air purification device showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 浄化部(フィルタ) 1a 上流側フィルタ 1b 下流側フィルタ 2 金属酸化物 3 光触媒 4a 基材 4b 基材 5 ゼオライト(吸着剤) 6 空気浄化装置本体 7 吸気口 8 排出口 9 送風手段 11 ブラックライト(光源) 12 加熱手段(ヒータ) DESCRIPTION OF SYMBOLS 1 Purification part (filter) 1a Upstream filter 1b Downstream filter 2 Metal oxide 3 Photocatalyst 4a Substrate 4b Substrate 5 Zeolite (adsorbent) 6 Air purification device main body 7 Intake port 8 Outlet port 9 Blowing means 11 Black light ( Light source) 12 Heating means (heater)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 39/16 B01D 39/16 A 53/86 F24F 7/00 A ZAB B01D 53/36 H F24F 7/00 ZABJ // F24F 13/28 F24F 1/00 371A (72)発明者 福田 祐 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 新田 浩朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L051 BB01 BC07 BC10 4C080 AA05 AA07 BB02 CC01 CC03 HH05 JJ03 JJ06 KK08 LL02 LL03 MM02 MM04 MM05 MM06 NN22 QQ11 4D019 AA01 BA05 BB02 BB03 BC05 BC07 CA01 CA02 CB04 4D048 AA08 AA22 BA07X BA13X BA16Y BA27Y BA28X BA35X BA36Y BA37Y BA38Y BA41X BB01 BB02 BB08 BB09 CA01 CC40 CC46 CC50 CC52 CD01 CD08 EA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 39/16 B01D 39/16 A 53/86 F24F 7/00 A ZAB B01D 53/36 H F24F 7/00 ZABJ // F24F 13/28 F24F 1/00 371A (72) Inventor Yu Fukuda 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Hiroo Nitta 1006 Kadoma, Kadoma, Osaka Matsushita F-term (reference) in Denki Sangyo Co., Ltd. BA35X BA36Y BA37Y BA38Y BA41X BB01 BB02 BB08 BB09 CA01 CC40 CC46 CC50 CC52 CD01 CD08 EA01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 汚染空気を浄化する浄化部と、前記浄化
部を収容する空気浄化装置本体と、前記浄化部の光触媒
を励起させるための光源を備え、前記空気浄化装置本体
には前記浄化部に空気を導入する吸気口と、前記浄化部
で浄化した空気を排出する排出口を備え、前記浄化部
は、上流側にマンガン、銅、コバルト、亜鉛、鉄、ニッ
ケルの少なくとも1種類を含む金属酸化物もしくは複合
酸化物と、光触媒を含むフィルタを配し、下流側にゼオ
ライト、活性炭、シリカゲルの少なくとも1種で構成す
る吸着剤を含むフィルタを配した空気浄化装置。
1. A purifying section for purifying contaminated air, an air purifying apparatus main body accommodating the purifying section, and a light source for exciting a photocatalyst of the purifying section, wherein the air purifying apparatus main body includes the purifying section. An air inlet for introducing air into the air, and an outlet for discharging the air purified by the purifying unit, wherein the purifying unit includes at least one of manganese, copper, cobalt, zinc, iron, and nickel on the upstream side. An air purification device in which a filter including an oxide or a composite oxide and a photocatalyst is disposed, and a filter including an adsorbent composed of at least one of zeolite, activated carbon, and silica gel is disposed downstream.
【請求項2】 光源を上流側のフィルタの上流側に配
し、前記上流側のフィルタは上流側に光触媒が、前記金
属酸化物もしくは金属の複合酸化物に比べ、多く存在す
る請求項1に記載の空気浄化装置。
2. The light source according to claim 1, wherein the light source is disposed upstream of the upstream filter, and the upstream filter has more photocatalyst upstream than the metal oxide or the metal composite oxide. An air purification device as described in the above.
【請求項3】 上流側のフィルタを加熱する加熱手段を
備える請求項1または2に記載の空気浄化装置。
3. The air purifying apparatus according to claim 1, further comprising heating means for heating the upstream filter.
【請求項4】 加熱手段を上流側のフィルタの上流側に
配する請求項3記載の空気浄化装置。
4. The air purifying apparatus according to claim 3, wherein the heating means is disposed upstream of the upstream filter.
【請求項5】 フィルタの基材がハニカム構造体または
発泡体ある請求項1〜4のいずれか1項に記載の空気浄
化装置。
5. The air purification device according to claim 1, wherein the base material of the filter is a honeycomb structure or a foam.
【請求項6】 フィルタの基材が繊維材料からなる織布
もしくは不織布である請求項1〜5のいずれか1項に記
載の空気浄化装置。
6. The air purifying apparatus according to claim 1, wherein the base material of the filter is a woven or non-woven fabric made of a fiber material.
【請求項7】 光触媒を、酸化チタン、酸化亜鉛、酸化
タングズテン、酸化鉄の少なくとも1種で構成する請求
項1〜6のいずれか1項に記載の空気浄化装置。
7. The air purification device according to claim 1, wherein the photocatalyst is made of at least one of titanium oxide, zinc oxide, tungsten oxide, and iron oxide.
JP2001038044A 2001-02-15 2001-02-15 Air cleaning device Pending JP2002238981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001038044A JP2002238981A (en) 2001-02-15 2001-02-15 Air cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001038044A JP2002238981A (en) 2001-02-15 2001-02-15 Air cleaning device

Publications (1)

Publication Number Publication Date
JP2002238981A true JP2002238981A (en) 2002-08-27

Family

ID=18901090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038044A Pending JP2002238981A (en) 2001-02-15 2001-02-15 Air cleaning device

Country Status (1)

Country Link
JP (1) JP2002238981A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021356A (en) * 2002-09-03 2004-03-10 엘지전자 주식회사 oxygen generator for air-conditioner
JP2006055821A (en) * 2004-08-24 2006-03-02 Osada Giken Co Ltd Method and apparatus for treating gas from waste water tank
JP2006158677A (en) * 2004-12-08 2006-06-22 Sharp Corp Air cleaner
JP2011110546A (en) * 2009-11-30 2011-06-09 Japan Fine Ceramics Center Apparatus and method for decomposing volatile organic compound
JP2012078520A (en) * 2010-09-30 2012-04-19 Kyocera Mita Corp Air cleaning device and image forming device including the same
JP2015184202A (en) * 2014-03-25 2015-10-22 新コスモス電機株式会社 gas detector
WO2015186725A1 (en) * 2014-06-04 2015-12-10 株式会社 東芝 Carbon dioxide recovery device, and method for treating exhaust gas
JP2018141800A (en) * 2018-04-24 2018-09-13 新コスモス電機株式会社 Gas detector
KR101902793B1 (en) * 2017-04-19 2018-11-13 국방과학연구소 Metal compound filter for disposal of hazardous materials at low temperatures, preparation method thereof, and apparatus for disposal of hazardous materials comprising the same
JP2019103796A (en) * 2017-12-13 2019-06-27 株式会社フジコー Deodorizing apparatus for septic tank and method for deodorizing septic tank
JP2020517356A (en) * 2017-04-18 2020-06-18 ユニヴァーシティ・オブ・バス air filter
US20220280674A1 (en) * 2021-03-04 2022-09-08 Samsung Electronics Co., Ltd. Filter and filtering system including the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021356A (en) * 2002-09-03 2004-03-10 엘지전자 주식회사 oxygen generator for air-conditioner
JP2006055821A (en) * 2004-08-24 2006-03-02 Osada Giken Co Ltd Method and apparatus for treating gas from waste water tank
JP2006158677A (en) * 2004-12-08 2006-06-22 Sharp Corp Air cleaner
JP2011110546A (en) * 2009-11-30 2011-06-09 Japan Fine Ceramics Center Apparatus and method for decomposing volatile organic compound
JP2012078520A (en) * 2010-09-30 2012-04-19 Kyocera Mita Corp Air cleaning device and image forming device including the same
JP2015184202A (en) * 2014-03-25 2015-10-22 新コスモス電機株式会社 gas detector
JPWO2015186725A1 (en) * 2014-06-04 2017-04-20 株式会社東芝 Carbon dioxide recovery device and exhaust gas treatment method
GB2541339A (en) * 2014-06-04 2017-02-15 Toshiba Kk Carbon dioxide recovery device, and method for treating exhaust gas
WO2015186725A1 (en) * 2014-06-04 2015-12-10 株式会社 東芝 Carbon dioxide recovery device, and method for treating exhaust gas
GB2541339B (en) * 2014-06-04 2021-03-31 Toshiba Kk Carbon dioxide recovery apparatus and method for treating exhaust gas
JP2020517356A (en) * 2017-04-18 2020-06-18 ユニヴァーシティ・オブ・バス air filter
JP7195007B2 (en) 2017-04-18 2022-12-23 ユニヴァーシティ・オブ・バス air filter
US11779874B2 (en) 2017-04-18 2023-10-10 University Of Bath Air filters
KR101902793B1 (en) * 2017-04-19 2018-11-13 국방과학연구소 Metal compound filter for disposal of hazardous materials at low temperatures, preparation method thereof, and apparatus for disposal of hazardous materials comprising the same
JP2019103796A (en) * 2017-12-13 2019-06-27 株式会社フジコー Deodorizing apparatus for septic tank and method for deodorizing septic tank
JP2018141800A (en) * 2018-04-24 2018-09-13 新コスモス電機株式会社 Gas detector
US20220280674A1 (en) * 2021-03-04 2022-09-08 Samsung Electronics Co., Ltd. Filter and filtering system including the same

Similar Documents

Publication Publication Date Title
JP2002276999A (en) Air ventilating-cleaning device
EP2164812A1 (en) Purification of a fluid using ozone with an adsorbent and/or a particle filter
JP2010524628A (en) Air purifier having a regenerated deodorizing filter and a method for regenerating the deodorizing filter of the air purifier
JP2002238981A (en) Air cleaning device
KR20070115117A (en) Device for purifying polluted air
WO2005099778A1 (en) Method for decomposing harmful substance and apparatus for decomposing harmful substance
JPH1147256A (en) Deodorizing apparatus
WO2019152996A1 (en) System and method for air treatment
JP2002172157A (en) Air cleaner
JPH11276563A (en) Air cleaner
JP2002191682A (en) Air cleaner and air cleaning filter
EP0893128B1 (en) Composite space deodorizing filter
JP2002306587A (en) Air cleaner and air cleaning filter
JP4292799B2 (en) Contaminated air treatment apparatus and treatment method
JP4834911B2 (en) Air purification device
KR100278937B1 (en) Complex deodorization filter, complex deodorization filter device comprising same and method for manufacturing deodorization filter
JP4033552B2 (en) Air purifying filter and air purifier using the same
JP2003322370A (en) Photocatalyst air cleaning apparatus
JP2000217897A (en) Air purifying material and air purifying device using same
JP3653930B2 (en) Air cleaner
KR101144601B1 (en) Air purification unit using metal oxide catalyst
JP2003062055A (en) Air cleaner
JP2001227031A (en) Toilet deodorizing machine
JP2002336343A (en) Plasma catalyst reactor and air cleaner
JP3769939B2 (en) Air purifier