JP2002232024A - Method for manufacturing thermoelectric element - Google Patents

Method for manufacturing thermoelectric element

Info

Publication number
JP2002232024A
JP2002232024A JP2001022423A JP2001022423A JP2002232024A JP 2002232024 A JP2002232024 A JP 2002232024A JP 2001022423 A JP2001022423 A JP 2001022423A JP 2001022423 A JP2001022423 A JP 2001022423A JP 2002232024 A JP2002232024 A JP 2002232024A
Authority
JP
Japan
Prior art keywords
thermoelectric
microwave
temperature
thermoelectric element
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001022423A
Other languages
Japanese (ja)
Other versions
JP3523600B2 (en
Inventor
Kazuhiro Nishizono
和博 西薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001022423A priority Critical patent/JP3523600B2/en
Publication of JP2002232024A publication Critical patent/JP2002232024A/en
Application granted granted Critical
Publication of JP3523600B2 publication Critical patent/JP3523600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for densely manufacturing a thermoelectric element having no characteristic unevenness at a low cost. SOLUTION: The method for manufacturing the thermoelectric element comprises the steps of molding a raw powder of a thermoelectric material containing at least two types selected from the group consisting of Bi, Te, Sb and Se, and baking the molding by using microwave heating. In this case, particularly prior to the baking, the molding is preferably irradiated with the microwave to be reduced, and a frequency of the microwave is preferably 0.9 GHz or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電半導体材料の
焼結をマイクロ波の照射により行う熱電半導体素子の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric semiconductor device, in which a thermoelectric semiconductor material is sintered by microwave irradiation.

【0002】[0002]

【従来技術】従来より、P型半導体とN型半導体とを金
属を介し接合しPN接合対を形成し、接合部に流す電流
の方向によって一端が発熱されるとともに他端が冷却さ
れるいわゆるペルチェ効果を利用した熱電半導体素子
は、小型で構造が簡単でありフロンレスの冷却技術、光
検出素子、半導体製造装置等の電子冷却素子、レーザー
ダイオードの温度調節等の温調装置等の種々のデバイス
への幅広い利用が期待されている。
2. Description of the Related Art Conventionally, a P-type semiconductor and an N-type semiconductor are joined via a metal to form a PN junction pair, and one end is heated and the other end is cooled according to the direction of a current flowing through the junction. Thermoelectric semiconductor devices utilizing the effect are compact and simple in structure, and are suitable for various devices such as CFC-free cooling technology, photodetection devices, electronic cooling devices such as semiconductor manufacturing devices, and temperature control devices such as temperature control of laser diodes. Widespread use is expected.

【0003】これらの熱電半導体素子としては、室温付
近で最も性能が良い熱電半導体材料としてBi2Te3
Sb2Te3、Bi2Se3のカルコゲン系化合物及びこれ
らの固溶体が主として用いられている。
As these thermoelectric semiconductor elements, Bi 2 Te 3 ,
Chalcogen compounds of Sb 2 Te 3 and Bi 2 Se 3 and their solid solutions are mainly used.

【0004】これらの熱電素子の性能を向上するために
は酸素量の低減が非常に重要であり、そのため高純度の
各元素を所定量秤量し、ガラス管に真空封入し、溶融・
攪拌後冷却することで原料インゴットを作製し、インゴ
ットを粉砕・分級し、水素還元を行った後に不活性雰囲
気中でホットプレスを行い焼結体を得る方法を挙げるこ
とができる。例えば、ビスマス、テルル、セレン、アン
チモンからなる3種または4種の元素を主成分と添加剤
との混合粉を溶解・粉砕し、得られた合金粉末をホット
プレス法により焼成することが、特開平01−1064
78号公報に記載されている。
[0004] In order to improve the performance of these thermoelectric elements, it is very important to reduce the amount of oxygen. Therefore, predetermined amounts of high-purity elements are weighed, sealed in a glass tube, and melted.
A method of producing a raw material ingot by stirring and cooling, pulverizing and classifying the ingot, performing hydrogen reduction, and then hot pressing in an inert atmosphere to obtain a sintered body can be mentioned. For example, a method of melting and pulverizing a mixed powder of three or four elements of bismuth, tellurium, selenium, and antimony as a main component and an additive, and firing the obtained alloy powder by a hot press method is a special feature. Kaihei 01-1064
No. 78.

【0005】また、溶融・粉砕した合金粉末をダイスに
充填し加熱しながらシリンダにより押し出し、ダイス出
口を1個の熱電素子断面の形状にすることで長尺状の熱
電半導体材料を作製し、所定の長さで切断し、熱電半導
体素子を作製する熱間押し出し法を挙げることができ
る。例えば、熱電材料の押し出し材を押し出しダイスに
装入し、加熱しながらシリンダにより素材を押し出し、
一定の長さで切断し熱電半導体素子を得る方法が特開平
08−186299号公報に記載されている。
A long thermoelectric semiconductor material is produced by filling the molten and pulverized alloy powder into a die, extruding it with a cylinder while heating, and forming the die exit into a single thermoelectric element cross section. Hot extruding method for producing a thermoelectric semiconductor element by cutting at a length. For example, the extruded material of thermoelectric material is charged into an extrusion die, and the material is extruded by a cylinder while heating.
Japanese Patent Application Laid-Open No. 08-186299 describes a method for obtaining a thermoelectric semiconductor element by cutting at a predetermined length.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記特
開平01−106478号公報のようなホットプレスを
用いる方法では緻密体が得られるものの焼結工程後に所
望の素子大きさにカッター等で切断する必要があるため
切り粉が発生し、材料費が無駄になり、製品コストが上
昇する問題があった。
However, in the method using a hot press as disclosed in Japanese Patent Application Laid-Open No. 01-106478, although a dense body can be obtained, it is necessary to cut it into a desired element size with a cutter or the like after the sintering step. Therefore, there is a problem that chips are generated, material costs are wasted, and product costs increase.

【0007】また、この方法では、切断する部分によっ
て素子の熱電性能が異なり、性能のばらつきが大きく、
不良の発生が多いという問題があった。
Further, according to this method, the thermoelectric performance of the element differs depending on the portion to be cut, and the performance varies greatly.
There was a problem that many defects occurred.

【0008】また、特開平08−186299号公報に
示された方法では、1個ずつ熱電素子を切断するため押
し出しに要する時間が長く、約400℃の高温で押し出
し加工しているので、押し出し素材が高温に長時間曝さ
れることになる。このため、初期に押し出しされた素子
と終期に押し出された素子とで高温に曝される時間が異
なるために熱電素子毎の特性のばらつきが大きいといっ
た問題があった。
In the method disclosed in Japanese Patent Application Laid-Open No. 08-186299, it takes a long time to extrude thermoelectric elements one by one and extrudes them at a high temperature of about 400 ° C. Will be exposed to high temperatures for extended periods of time. For this reason, there has been a problem that the element extruded at the beginning and the element extruded at the end differ in the time of exposure to a high temperature, and the characteristics of the thermoelectric elements vary greatly.

【0009】さらに、簡便で低コストの常圧焼成等によ
る焼結法では緻密体を得ることが困難であり、性能が劣
っているといった問題があった。
Further, there is a problem that it is difficult to obtain a dense body by a simple and low-cost sintering method using normal pressure sintering or the like, and the performance is inferior.

【0010】従って、本発明は、緻密で、特性ばらつき
のない熱電素子を低コストで製造する方法を提供するこ
とを目的とする。
Accordingly, an object of the present invention is to provide a method for manufacturing a thermoelectric element which is dense and has no characteristic variation at low cost.

【0011】[0011]

【課題を解決するための手段】本発明は、焼成によって
製品と略同一形状になる成形体をマイクロ波加熱により
焼成することで、熱電材料の製造工程を簡略化でき、均
一な緻密体が得られるという知見に基づきなされたもの
で、コスト削減及び素子性能の均一化を図ったものであ
る。
SUMMARY OF THE INVENTION The present invention simplifies the manufacturing process of a thermoelectric material by sintering a molded body having substantially the same shape as a product by sintering by microwave heating, and obtains a uniform dense body. It has been made based on the knowledge that it is possible to reduce the cost and make the element performance uniform.

【0012】即ち、本発明の熱電素子の製造方法は、B
i、Te、Sb及びSeから選ばれる少なくとも2種か
らなる熱電材料の原料粉末を成形した後、マイクロ波加
熱を用いて焼成することを特徴とするものである。
That is, the method for manufacturing a thermoelectric element of the present invention comprises:
The method is characterized in that raw material powder of at least two kinds of thermoelectric materials selected from i, Te, Sb and Se is molded and then fired using microwave heating.

【0013】この方法によれば、マイクロ波の照射によ
る加熱で焼成することで、従来の焼結法では得られにく
かった緻密体を低温・短時間で得ることができ、蒸気圧
の高いセレン、テルル等の蒸発量を抑制でき、表面近傍
における組成変化を防止できる。その結果、組成ずれ、
または過剰なセレン、テルルを添加する必要がないばか
りか、成形体が均一に加熱されるため、特性の均一な材
料が得られ、特性のばらつきを抑制することができる。
According to this method, by sintering by heating by microwave irradiation, it is possible to obtain a compact at a low temperature and in a short time, which is difficult to obtain by the conventional sintering method, and to obtain selenium having a high vapor pressure, The evaporation amount of tellurium or the like can be suppressed, and a composition change near the surface can be prevented. As a result, the composition deviation,
Alternatively, not only is it unnecessary to add excessive selenium and tellurium, but also the material is uniformly heated, so that a material having uniform characteristics can be obtained and variation in characteristics can be suppressed.

【0014】また、本発明によれば、製品と略同一の焼
結体を得ることができるため、熱電半導体材料の焼結体
を切断する工程を省略することができる。従って、切断
時の材料のロス、素子の欠け等による歩留まりの向上が
でき、材料コストの低減を図ることができる。
Further, according to the present invention, since a sintered body substantially the same as the product can be obtained, the step of cutting the sintered body of the thermoelectric semiconductor material can be omitted. Therefore, the yield can be improved due to loss of material at the time of cutting, chipping of elements, and the like, and material cost can be reduced.

【0015】また、前記焼成に先立って、前記成形体に
マイクロ波を照射して還元処理を行うことが好ましい。
従来は、長時間を有する還元処理が、短時間で行うこと
ができ、そのまま焼成も行えるため、一貫した工程によ
り熱電素子製造の効率化を図ることができる。
Preferably, prior to the firing, a reduction treatment is performed by irradiating the compact with microwaves.
Conventionally, since a reduction treatment having a long time can be performed in a short time and can be directly baked, the efficiency of thermoelectric element production can be improved by a consistent process.

【0016】さらに、前記マイクロ波の周波数が0.9
GHz以上であることが好ましい。0.9GHz以上の
マイクロ波を用いることによって熱電材料が効果的にマ
イクロ波を吸収でき、焼成時間をより短くできるため、
さらなる揮発量の抑制と結晶粒子の微細化が可能とな
り、均一性と熱電性能とを向上することができる。ま
た、焼成温度も低く、時間も短時間で済むため素子形成
のプロセスコストを抑えることができ最終的な熱電モジ
ュールの低コスト化が可能となる。
Further, the frequency of the microwave is 0.9
It is preferably at least GHz. By using a microwave of 0.9 GHz or more, the thermoelectric material can effectively absorb the microwave, and the firing time can be shortened.
Further suppression of the volatilization amount and miniaturization of the crystal particles are possible, and the uniformity and thermoelectric performance can be improved. Further, since the firing temperature is low and the time is short, the process cost of element formation can be suppressed, and the cost of the final thermoelectric module can be reduced.

【0017】さらにまた、前記マイクロ波加熱による焼
成が、前記成形体を10℃/min以上の速度で昇温す
る工程と、200℃〜550℃の温度に30分以下の時
間保持する工程とを含むことが好ましい。これにより、
熱電素子の相対密度を95%以上に緻密化できるととも
に、短時間処理により揮発成分の蒸発量を少なくできる
ため、特性のばらつきを抑制し、粒成長をさらに抑制し
た微細組織を実現できる。
Further, the firing by microwave heating includes a step of raising the temperature of the molded body at a rate of 10 ° C./min or more, and a step of maintaining the molded body at a temperature of 200 ° C. to 550 ° C. for a time of 30 minutes or less. It is preferred to include. This allows
Since the relative density of the thermoelectric element can be reduced to 95% or more and the amount of volatile components evaporated can be reduced by short-time treatment, variation in characteristics can be suppressed, and a fine structure in which grain growth is further suppressed can be realized.

【0018】[0018]

【発明の実施の形態】本発明は、Bi、Te、Sb、S
eから選ばれる少なくとも2種からなる熱電半導体から
なる熱電素子に関するものであり、まず、上記の熱電半
導体からなる原料粉末を準備する。この原料は、公知の
方法を利用でき、例えば、ガラス管に混合粉末を充填
し、容器内を真空又はアルゴンガス封入により金属粉末
の酸化を防止する。そして、ロッキング炉により所定の
温度に昇温し、金属粉末を溶融し、得られた合金塊を粉
砕して焼成原料とすることができる。また、この際ドー
パントとしてHgBr2やSbI等の元素を添加しても
良い。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to Bi, Te, Sb, S
The present invention relates to a thermoelectric element made of at least two kinds of thermoelectric semiconductors selected from e. First, a raw material powder made of the above thermoelectric semiconductor is prepared. For this raw material, a known method can be used. For example, a glass tube is filled with the mixed powder, and the inside of the container is evacuated or sealed with argon gas to prevent oxidation of the metal powder. Then, the temperature is raised to a predetermined temperature by a rocking furnace, the metal powder is melted, and the obtained alloy lump is pulverized to obtain a firing raw material. At this time, an element such as HgBr 2 or SbI may be added as a dopant.

【0019】なお、溶融した合金を冷却する際には、そ
のまま凝固点以下に冷却しても良いが、結晶配向を考慮
して、凝固点以上の温度に保持して一端から除冷し一方
向凝固を行い、結晶成長方位を制御することが好まし
い。
When the molten alloy is cooled, it may be cooled to a temperature below the freezing point as it is. However, in consideration of the crystal orientation, the temperature is kept at a temperature higher than the freezing point, and cooling is performed from one end to perform unidirectional solidification. It is preferable to control the crystal growth direction.

【0020】また、上記の合金塊の粉砕には、公知の方
法であるスタンプミル、ボールミル、振動ミル等を挙げ
ることができる。
The above-mentioned pulverization of the alloy lump may be performed by a known method such as a stamp mill, a ball mill, or a vibration mill.

【0021】粉砕後に熱電半導体からなる原料中の酸素
を除去するため、水素ガス等の還元性雰囲気中でマイク
ロ波を照射して還元処理を行うことが好ましい。この還
元処理は通常の加熱炉でも行うことが可能であるが、特
にマイクロ波加熱を用いることが、短時間で実施できる
とともに、表面の反応性がより改善して焼結性を高め、
焼結体の熱電特性を向上することができる。なお、この
還元処理は、焼成の前であれば成形後でも差し支えな
い。
After the pulverization, in order to remove oxygen in the raw material made of the thermoelectric semiconductor, it is preferable to perform a reduction treatment by irradiating a microwave in a reducing atmosphere such as hydrogen gas. This reduction treatment can be performed in a normal heating furnace, but in particular, microwave heating can be performed in a short time, and the reactivity of the surface is further improved to enhance the sinterability.
The thermoelectric properties of the sintered body can be improved. This reduction treatment may be performed after molding as long as it is before firing.

【0022】この焼成原料を公知の成形方法、例えば、
一軸プレス法、CIP法、鋳込み法、射出成形法等によ
り成形体を作製する。プレス法による成形方法を用いる
場合、成形圧100MPaで成形して所望の形状を得る
ことができるが、ドクターブレード法を用いテープ状に
成形し、該成形体を積層することで素子形状の成形体を
作製しても良い。
This sintering raw material is formed by a known molding method, for example,
A molded body is produced by a uniaxial pressing method, a CIP method, a casting method, an injection molding method, or the like. When using a molding method by a pressing method, a desired shape can be obtained by molding at a molding pressure of 100 MPa. However, an element-shaped molded body is formed by forming into a tape shape using a doctor blade method, and laminating the molded body. May be produced.

【0023】このとき、成形体の寸法が、焼成後に製品
と略同一形状になるようにすることが重要である。これ
により、焼結後素子を切断する必要がなく、切断時の材
料のロス、欠けなどによる不良品の発生を抑えることが
できる。また、成形体が均一に加熱されるため、素子毎
の性能のばらつきを抑えることができる。
At this time, it is important that the dimensions of the molded body be substantially the same as the product after firing. Thus, it is not necessary to cut the element after sintering, and it is possible to suppress the occurrence of defective products due to loss or chipping of the material during cutting. Further, since the molded body is uniformly heated, it is possible to suppress variations in performance of each element.

【0024】得られた成形体はマイクロ波加熱によって
焼成する。即ち、成形体にマイクロ波を照射し、合金に
マイクロ波を吸収させて自己発熱させるため、エネルギ
ー効率が高く、急昇温が可能で、且つ低コストに寄与で
きる。また、マイクロ波が材料粒子表面に均一に作用す
るため、成形体を均一に加熱することができ、特性のば
らつきを抑制することができる。
The obtained molded body is fired by microwave heating. That is, since the molded body is irradiated with microwaves to cause the alloy to absorb the microwaves and self-heat, the energy efficiency is high, the temperature can be rapidly increased, and the cost can be reduced. In addition, since the microwave acts uniformly on the surface of the material particles, the molded body can be uniformly heated, and variation in characteristics can be suppressed.

【0025】このマイクロ波加熱は、成形体をマイクロ
波加熱装置の共振器内に配置し、マグネトロン、クライ
ストロン又はジャイロトロン等の発振管より発振され、
導波管を通して空洞共振器内に導かれたマイクロ波を成
形体に照射するものである。
In this microwave heating, the compact is placed in a resonator of a microwave heating device and oscillated from an oscillation tube such as a magnetron, klystron or gyrotron.
The molded body is irradiated with a microwave guided into the cavity resonator through the waveguide.

【0026】なお、成形体はアルミナ繊維等からなる断
熱材にて周囲を囲むことで試料表面からの放熱を抑制で
き、効果的に加熱することができる。また、試料温度は
公知の測定方法、例えばタングステン−レニウム等の熱
電対や二色温度計等の非接触法で測定することができ
る。
By surrounding the molded body with a heat insulating material made of alumina fiber or the like, heat radiation from the sample surface can be suppressed, and heating can be performed effectively. The sample temperature can be measured by a known measuring method, for example, a thermocouple such as tungsten-rhenium or a non-contact method such as a two-color thermometer.

【0027】このマイクロ波加熱に用いるマイクロ波の
周波数は0.9GHz以上、特に2GHz以上、さらに
は10GHz以上、より好適には25GHz以上である
ことが望ましい。0.9GHz以上とすることで熱電半
導体からなる粉末原料が効果的にマイクロ波を吸収で
き、加熱・焼結時間を極力短くすることが可能となる。
そのため揮発量を抑制でき、また熱電半導体の結晶粒子
が粒成長することなく焼結でき、結晶粒微細化が可能で
あり、熱伝導率を低くすることができる。
The frequency of the microwave used for the microwave heating is preferably 0.9 GHz or more, particularly 2 GHz or more, more preferably 10 GHz or more, and more preferably 25 GHz or more. By setting the frequency to 0.9 GHz or more, the powder raw material made of the thermoelectric semiconductor can effectively absorb microwaves, and the heating and sintering time can be shortened as much as possible.
Therefore, the amount of volatilization can be suppressed, and the crystal grains of the thermoelectric semiconductor can be sintered without grain growth, the crystal grains can be refined, and the thermal conductivity can be lowered.

【0028】さらに前記マイクロ波加熱は、合金の酸化
を防止するため、窒素ガスやアルゴン等の不活性ガス雰
囲気で行うことが好ましい。
Further, the microwave heating is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon in order to prevent oxidation of the alloy.

【0029】また、マイクロ波加熱は、昇温工程と焼成
工程とを含み、昇温工程においては、昇温速度が10℃
/min以上であることが好ましい。また、焼成工程に
おいては、200℃〜550℃の温度で、30分以下の
時間保持することが好ましい。
The microwave heating includes a heating step and a baking step, and in the heating step, the heating rate is 10 ° C.
/ Min or more. Further, in the firing step, it is preferable to hold at a temperature of 200 ° C. to 550 ° C. for 30 minutes or less.

【0030】このような高速昇温及び短時間焼成によ
り、蒸発による合金の組成変動を抑制でき、粒成長を抑
制でき熱伝導率を低くすることで熱電特性を向上でき
る。また、粒子表面の反応性及び拡散速度を高める結
果、焼結体の相対密度を95%以上、特に98%以上に
緻密化できるため、例えば焼結体の表面に半田付けを行
う場合、内部に半田がしみ込んで性能低下を起こすこと
なく、優れた熱電特性を示すことができる。
By such a rapid temperature rise and short-time firing, variation in the composition of the alloy due to evaporation can be suppressed, grain growth can be suppressed, and the thermal conductivity can be improved by lowering the thermal conductivity. Further, as a result of increasing the reactivity and diffusion rate of the particle surface, the relative density of the sintered body can be densified to 95% or more, particularly 98% or more. For example, when soldering is performed on the surface of the sintered body, Excellent thermoelectric properties can be exhibited without causing performance degradation due to solder penetration.

【0031】昇温速度が10℃/minより低いと昇温
に多くの時間を必要とするため、テルルやセレン等の成
分が揮発して組成ずれを起こしやすく、不良の原因とな
る。したがって10℃/min以上、特に15℃/mi
n以上、さらには20℃/min以上であることが好ま
しい。
If the rate of temperature rise is lower than 10 ° C./min, a long time is required for the temperature rise, so that components such as tellurium and selenium are volatilized and composition deviation is liable to occur, which causes defects. Therefore, 10 ° C./min or more, especially 15 ° C./mi
It is preferably at least n, more preferably at least 20 ° C./min.

【0032】また同様に、組成ずれ防止のため、200
℃〜550℃、特に300℃〜500℃、さらには35
0℃〜450℃の温度で、30分以下、特に20分以
下、さらには10分以下、より好適には5分以下の焼成
を行うことが好ましい。
Similarly, in order to prevent composition deviation, 200
C. to 550.degree. C., especially 300.degree. C. to 500.degree.
It is preferable to perform firing at a temperature of 0 ° C. to 450 ° C. for 30 minutes or less, particularly 20 minutes or less, further 10 minutes or less, and more preferably 5 minutes or less.

【0033】このようにして得られた熱電素子は、所望
により外径加工を実施し、寸法を統一することができ
る。そして、例えば、上記の熱電素子を複数配列し、一
対の熱交換基板で挟持するとともに、熱電素子を電気的
に接続して熱電モジュールを作製し、上記の配列した熱
電素子に電気を供給して、熱交換器板の一方を冷却する
ことができる。
The thermoelectric element obtained in this manner can be subjected to external diameter processing as required, and the dimensions can be unified. And, for example, a plurality of the above-described thermoelectric elements are arranged, sandwiched between a pair of heat exchange boards, and the thermoelectric elements are electrically connected to produce a thermoelectric module, and electricity is supplied to the arranged thermoelectric elements. , One of the heat exchanger plates can be cooled.

【0034】[0034]

【実施例】出発原料には、純度99.99%以上のビス
マス、テルル、およびセレンをn型としてBi2Te
2.85Se0.15となるように秤量し、これらの混合粉末を
それぞれパイレックス(登録商標)ガラス管に真空封入
しロッキング炉にて溶融・攪拌後冷却することにより熱
電半導体材料インゴットを作製した。その後スタンプミ
ルを用いて粗粉砕した後、エタノール溶媒中で24時間
回転ミルを施した。
EXAMPLES As starting materials, bismuth, tellurium, and selenium having a purity of 99.99% or more as n-type Bi 2 Te
2.85 Se was weighed to 0.15 , each of these mixed powders was vacuum-sealed in a Pyrex (registered trademark) glass tube, melted and stirred in a rocking furnace, and then cooled to produce a thermoelectric semiconductor material ingot. Then, after coarse pulverization using a stamp mill, a rotary mill was applied in an ethanol solvent for 24 hours.

【0035】粉砕原料をシリカチューブに入れ2L/m
inの流量の水素気流中で28GHzのマイクロ波を照
射し水素還元処理を行った後、一軸プレスにて100M
Paの成形圧で、縦1mm、横1mm、長さ1.5mm
の成形体を作製した。
Put the pulverized raw material into a silica tube and add 2 L / m
After performing a hydrogen reduction treatment by irradiating a microwave of 28 GHz in a hydrogen gas flow with a flow rate of in, 100 M by a uniaxial press.
With a molding pressure of Pa, length 1 mm, width 1 mm, length 1.5 mm
Was formed.

【0036】得られた成形体は、マイクロ波加熱炉の空
洞共振器内のアルミナ断熱材中に設置され、マイクロ波
を照射して焼成した。ここで、マイクロ波加熱炉のマイ
クロ波源として、周波数0.915GHz、出力3k
W、及び2.45GHz、出力2kWのマグネトロン、
周波数28GHz、出力10kWのジャイロトロンのい
ずれかを用いた。そして、還元処理は2L/minの水
素気流中のマイクロ波加熱により表1の条件にて行い、
焼成は2L/minのアルゴンガス気流中のマイクロ波
加熱により表1に示す条件で行った。
The obtained compact was placed in an alumina heat insulating material in a cavity resonator of a microwave heating furnace, and fired by irradiating microwave. Here, as a microwave source of the microwave heating furnace, a frequency of 0.915 GHz and an output of 3 k
W and 2.45 GHz, 2 kW output magnetron;
A gyrotron having a frequency of 28 GHz and an output of 10 kW was used. Then, the reduction treatment is performed under the conditions shown in Table 1 by microwave heating in a 2 L / min hydrogen stream,
The firing was performed by microwave heating in a 2 L / min argon gas flow under the conditions shown in Table 1.

【0037】なお、試料No.13は、上記粉砕原料を
Ar雰囲気中で圧力300Kg/cm2、温度500℃
で10分間のホットプレスを行って直径200mmの焼
結体を作製し、その後縦0.9mm、横0.9mm、長
さ1.2mmに切断した。また、試料No.14は、上
記粉砕原料をAr雰囲気中で押出しながら焼成し、縦
0.9mm、横0.9mm、長さ500mmの素材を作
製し、縦0.9mm、横0.9mm、長さ1.2mmに
切断した。
The sample No. Reference numeral 13 denotes a pressure of 300 kg / cm 2 and a temperature of 500 ° C. in the above-mentioned ground material in an Ar atmosphere.
For 10 minutes to produce a sintered body having a diameter of 200 mm, and then cut into 0.9 mm in length, 0.9 mm in width and 1.2 mm in length. In addition, the sample No. 14 sintering while extruding the pulverized raw material in an Ar atmosphere to produce a material having a length of 0.9 mm, a width of 0.9 mm and a length of 500 mm, and a length of 0.9 mm, a width of 0.9 mm and a length of 1.2 mm Cut into pieces.

【0038】得られた焼結体は、表面の研削加工を行
い、アルキメデス法により比重を測定し、理論密度から
相対密度を測定した。また、4端子法により25℃の導
電率σを測定しσ=1/ρにより比抵抗ρを算出した。
The surface of the obtained sintered body was ground, the specific gravity was measured by the Archimedes method, and the relative density was measured from the theoretical density. The conductivity σ at 25 ° C. was measured by the four-terminal method, and the specific resistance ρ was calculated by σ = 1 / ρ.

【0039】さらに、熱伝導率は、直径10mm、厚み
1mmの試験片を別途作製し、JISR1611のレー
ザーフラッシュ法にて測定した。また、ゼーベック係数
は、縦4mm、横4mm、長さ15mmの角柱試料を作
製し、真空理工社製熱電能評価装置により、25℃で測
定した。そして、性能指数Zは、Z=S2/ρk(Sは
ゼーベック係数、ρは抵抗率、kは熱伝導率である)よ
り算出した。
Further, the thermal conductivity was measured by separately preparing a test piece having a diameter of 10 mm and a thickness of 1 mm and using the laser flash method of JISR1611. The Seebeck coefficient was measured at 25 ° C. using a thermoelectric evaluation device manufactured by Vacuum Riko Co., Ltd. by preparing a prism sample having a length of 4 mm, a width of 4 mm, and a length of 15 mm. The figure of merit Z was calculated from Z = S 2 / ρk (S is the Seebeck coefficient, ρ is the resistivity, and k is the thermal conductivity).

【0040】また、特性ばらつき評価のため、性能指数
のばらつき(不良率)を100個の試料に基づいて算出
した。さらに、成形体から試料作製までの原料の損失を
重量変化から測定した。結果を表1に示す。
For the evaluation of the characteristic variation, the variation of the performance index (defective rate) was calculated based on 100 samples. Furthermore, the loss of the raw material from the compact to the preparation of the sample was measured from the change in weight. Table 1 shows the results.

【0041】[0041]

【表1】 [Table 1]

【0042】本発明の試料No.1〜12は、相対密度
が95%以上となり、性能指数Zが全て3×10-3/K
を超え、熱電性能に優れた素子であった。また、同一条
件で作製した100個の熱電素子の性能指数は性能のば
らつきが2%以内とばらつきの少ないものであった。
In the sample No. of the present invention, In Nos. 1 to 12, the relative density was 95% or more, and the figure of merit Z was all 3 × 10 −3 / K.
And was an element excellent in thermoelectric performance. In addition, the performance index of 100 thermoelectric elements manufactured under the same conditions had a small variation in the performance within 2%.

【0043】一方、ホットプレス法で作製した本発明の
範囲外の試料No.13は性能指数Zが2.41×10
-3/K、性能指数のばらつきは6%、原料損失率が46
%であった。
On the other hand, the sample No. out of the range of the present invention manufactured by the hot press method. 13 has a performance index Z of 2.41 × 10
-3 / K, dispersion of figure of merit 6%, raw material loss rate 46
%Met.

【0044】また、押出焼成法で作製した本発明の範囲
外の試料No.14は熱電性能Zが2.52×10-3
K、性能指数のばらつきは12%、原料損失率が33%
であった。
In addition, a sample No. out of the scope of the present invention produced by the extrusion baking method. 14 has a thermoelectric performance Z of 2.52 × 10 −3 /
K, dispersion of figure of merit 12%, raw material loss rate 33%
Met.

【0045】[0045]

【発明の効果】本発明の熱電素子の製造方法は、加圧す
ることなく低温短時間で緻密体を得ることができ、また
切断工程を省略できるため、その結果、材料の無駄がな
く、熱電性能に優れた熱電半導体素子を実現できる。
According to the method for manufacturing a thermoelectric element of the present invention, a dense body can be obtained at a low temperature and in a short time without applying pressure, and a cutting step can be omitted. And a thermoelectric semiconductor element excellent in quality can be realized.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Bi、Te、Sb及びSeから選ばれる少
なくとも2種からなる熱電材料の原料粉末を成形した
後、マイクロ波加熱を用いて焼成することを特徴とする
熱電素子の製造方法。
1. A method of manufacturing a thermoelectric element, comprising forming a raw material powder of at least two kinds of thermoelectric materials selected from Bi, Te, Sb, and Se, followed by firing using microwave heating.
【請求項2】前記焼成に先立って、前記成形体にマイク
ロ波を照射して還元処理を行うことを特徴とする請求項
1記載の熱電素子の製造方法。
2. The method for manufacturing a thermoelectric element according to claim 1, wherein a reduction treatment is performed by irradiating the compact with microwaves before the firing.
【請求項3】前記マイクロ波の周波数が0.9GHz以
上であることを特徴とする請求項1または2記載の熱電
素子の製造方法。
3. The method according to claim 1, wherein the frequency of the microwave is 0.9 GHz or more.
【請求項4】前記マイクロ波加熱による焼成が、前記成
形体を10℃/min以上の速度で昇温する工程と、2
00℃〜550℃の温度に30分以下の時間保持する工
程とを含むことを特徴とする請求項1乃至3のうちいず
れかに記載の熱電素子の製造方法。
4. The sintering by microwave heating includes a step of raising the temperature of the molded body at a rate of 10 ° C./min or more;
4. The method for producing a thermoelectric device according to claim 1, further comprising a step of maintaining the temperature at 00 ° C. to 550 ° C. for a period of 30 minutes or less.
JP2001022423A 2001-01-30 2001-01-30 Thermoelectric element manufacturing method Expired - Fee Related JP3523600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022423A JP3523600B2 (en) 2001-01-30 2001-01-30 Thermoelectric element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022423A JP3523600B2 (en) 2001-01-30 2001-01-30 Thermoelectric element manufacturing method

Publications (2)

Publication Number Publication Date
JP2002232024A true JP2002232024A (en) 2002-08-16
JP3523600B2 JP3523600B2 (en) 2004-04-26

Family

ID=18887839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022423A Expired - Fee Related JP3523600B2 (en) 2001-01-30 2001-01-30 Thermoelectric element manufacturing method

Country Status (1)

Country Link
JP (1) JP3523600B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079447A (en) * 2007-09-27 2009-04-16 Mhi Environment Engineering Co Ltd Apparatus and method for heating asphalt and equipment for manufacturing pavement
US7939744B2 (en) * 2001-08-21 2011-05-10 Kyocera Corporation Thermoelectric element
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same
WO2020184762A1 (en) * 2019-03-14 2020-09-17 엘티메탈 주식회사 Method for manufacturing bi-te-based thermoelectric material by using microwave sintering
CN113121235A (en) * 2021-04-09 2021-07-16 哈尔滨工业大学 Preparation method of thermoelectric power generation material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939744B2 (en) * 2001-08-21 2011-05-10 Kyocera Corporation Thermoelectric element
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same
US8519256B2 (en) 2003-08-26 2013-08-27 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and method for manufacturing the same
JP2009079447A (en) * 2007-09-27 2009-04-16 Mhi Environment Engineering Co Ltd Apparatus and method for heating asphalt and equipment for manufacturing pavement
WO2020184762A1 (en) * 2019-03-14 2020-09-17 엘티메탈 주식회사 Method for manufacturing bi-te-based thermoelectric material by using microwave sintering
CN113121235A (en) * 2021-04-09 2021-07-16 哈尔滨工业大学 Preparation method of thermoelectric power generation material
CN113121235B (en) * 2021-04-09 2022-04-12 哈尔滨工业大学 Preparation method of thermoelectric power generation material

Also Published As

Publication number Publication date
JP3523600B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
CN100448045C (en) Thermoelectric material, thermoelectric element and thermoelectric module, and method for manufacturing same
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
US8753529B2 (en) Clathrate compound, thermoelectric material, and method for producing thermoelectric material
WO1990016086A1 (en) Thermoelectric semiconductor material and method of producing the same
JP2000252526A (en) Skutterudite thermoelectric material, thermocouple and manufacture thereof
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
KR20070117270A (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JP2847123B2 (en) Manufacturing method of thermoelectric material
KR20140065721A (en) Thermoelectric material, thermoelectric device and apparatus comprising same, and preparation method thereof
CN105990510B (en) A kind of copper seleno high performance thermoelectric material and preparation method thereof
JP3523600B2 (en) Thermoelectric element manufacturing method
KR101323320B1 (en) GeTe thermoelectric material doped with Ag and Sb and manufacturing method thereby
KR101417965B1 (en) GeTe thermoelectric material doped with Ag and Sb and La and manufacturing method thereby
JPH0832588B2 (en) Thermoelectric semiconductor material and manufacturing method thereof
JP4467584B2 (en) Thermoelectric material manufacturing method
KR20200027754A (en) SnSe2 BASED THERMOELECTRIC MATERIAL AND PRODUCING METHOD OF THE SAME
JPH09321347A (en) Thermoelectric conversion material and manufacture thereof
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP4666841B2 (en) Method for manufacturing thermoelectric material
JP2004179264A (en) Thermoelectric material and manufacturing method therefor
JP2004349566A (en) Unidirectional coagulation thermoelectric crystal material and its manufacturing method, thermoelectric component using the same and its manufatcuring method, and thermoelectric module
JP3605366B2 (en) Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same
JP4671553B2 (en) Thermoelectric semiconductor manufacturing method
JPH07215704A (en) Production of ib-iiib-vib group compound thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040206

LAPS Cancellation because of no payment of annual fees